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ABSTRACT
Container terminals play a critical role in international shipping and
are under pressure to cope with increasing container traffic. The
problem of managing container terminals effectively has a num-
ber of characteristics which make agents a suitable technology to
consider applying. Container terminals involve the operation of
distributed entities (e.g. quay cranes, straddle carriers) which coor-
dinate to achieve competing goals in a dynamic environment. This
paper describes a joint industry-university project which has ex-
plored the applicability of agent technology to the domain of con-
tainer terminal management. We describe an emulation platform
of a container terminal based on the JADE agent framework, along
with two optimisations that have been developed and integrated
with the emulator: allocating container moves to machines through
negotiation, and allocating containers to yard locations through an
evolutionary algorithm.

Categories and Subject Descriptors
H.4.2 [Information Systems Applications]: Types of Systems—
logistics; I.2.11 [Artificial Intelligence]: Distributed AI—multi-
agent systems

General Terms
Algorithms

Keywords
Container Terminal Management, Container Terminal Optimisa-
tion, Logistics

1. INTRODUCTION
As of 2005, some 18 million total containers make over 200

million trips per year. There are ships that can carry over 14,500
Twenty-foot equivalent units (TEU), for example the Emma Mærsk,
396 m long, launched August 2006. Today, approximately 90% of
non-bulk cargo worldwide is transported by container, and modern
container ships can carry up to 15,000 twenty-foot equivalent units

(TEU). Container terminals play a crucial role in the process of
shipping containerised goods, since they are the interface between
sea and land transport (rail and trucks). Due to their critical role,
and the growth in the amount of container traffic, container ter-
minals are under pressure to increase their operating capacity and
efficiency.

A number of characteristics of container terminals make them
a natural candidate for agent-based solutions. Firstly, they can be
naturally described as a system of interacting entities (e.g. cranes)
which are distributed and autonomous, and which interact to solve
a problem (e.g. loading and unloading ships) in an efficient way.
Secondly, the problem being solved is complex: there are multiple
competing goals (e.g. unloading a ship and loading a train) and
there are multiple constraints (see Section 2). Thirdly, the envi-
ronment is dynamic: the situation is subject to change, and things
can (and do) go wrong. Taken together, these three characteristics
make it natural to investigate agent-based techniques for container
terminal management and optimisation.

This paper reports on a joint industry-university project that in-
vestigated the application of agents to container terminal optimisa-
tion. The industry partner was Jade Software Corporation, whose
portfolio of products includes Jade Master Terminal (JMT), a com-
prehensive container terminal management solution. The project
included visits to a local container terminal port in order to obtain a
detailed understanding of the problem and its associated complex-
ities. Additionally, real (but anonymised) data from the port was
used for evaluation purposes. This data included machine move-
ments and container arrival and departure information.

Note that the aim of this project is not to automate container
handling: the domain is sufficiently complex that we cannot hope to
capture all relevant situations and constraints. Instead, our ultimate
aim is to develop an intelligent decision support tool that can assist
human decision makers who are running a container terminal.

The key contributions of this paper are:

• An agent-based container terminal emulation platform, which
can be used to assess (static) policies, or to guide decision
makers during day-to-day operation (Section 4).

• A negotiation-based algorithm for optimising allocation of
container moves to straddle carriers (Section 5).

• A genetic algorithm approach for optimising the allocation
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Figure 1: Port Scenario

of containers to yard locations (Section 6).

This paper is structured as follows. In Section 2 we introduce
the domain of container terminals, along with associated problems;
followed by a discussion of related work (Section 3). Section 4
presents the agent-based simulator which we have developed. We
then discuss specific optimisations that address allocating container
moves to straddle carriers (Section 5) and allocating container lo-
cations in the yard (Section 6). Finally, Section 7 concludes with
discussions and future plans.

2. CONTAINER TERMINAL OPERATION
In this section we briefly introduce the domain of container ter-

minal operations, and the associated problems that confront a con-
tainer terminal manager. Note that the discussion here is neces-
sarily brief and omits various details and complexities. We aim
to capture the essence of the problem, and give some sense of the
various constraints and factors that make the problem challenging,
without describing all such constraints and factors.

A container terminal consists of a number of different areas, de-
picted in Figure 1. The apron is the area directly beside the ship,
into which containers are unloaded from the ship, and from which
containers are loaded onto the ship. Note that the apron is of limited
size. The bulk of the container terminal is taken up with the yard
where containers are stored. Figure 1 does not show the structure of
the yard, and some specific areas (such as empty container storage,
or container cleaning). Nor does it show the rail and truck areas,
where trucks and trains arrive to collect and/or drop off containers.

Whilst the basic areas (e.g. apron, yard) are somewhat consis-
tent between different container terminals, the machines used vary.
The local port that we have worked with has a particular setup that
involves two types of machines: Quay Cranes (QCs) and Straddle
Carriers (SCs). Quay Cranes (“Crane” in Figure 1) are able to move
along the shore and can load containers from the apron to the ship,
or unload them from the ship to the apron. Figure 2 shows a ship
being unloaded by two (large blue) Quay Cranes. Straddle Carrlers
(Figure 3) are mobile cranes, able to move freely within the con-
tainer terminal. They are able to lift containers and stack them up
to a certain height.

Given these areas and machines, the basic process of unloading
a ship is as follows. Containers are unloaded from the ship to the
apron by the QC. While this is being done, Straddle Carriers are
clearing the apron by transporting containers from the apron to the
yard, and stacking them. The process for loading a ship is the re-

Figure 2: Container Terminal
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Figure 3: Straddle Carrier

verse (SCs bring containers from the yard to the apron, and the
containers are loaded on to the ship by the QCs).

This process sounds fairly simple, but, as mentioned earlier, is
made complicated by a range of factors and constraints. For in-
stance1):

• There may be more than one QC operating on a given ship,
so SCs need to be shared between the QCs. Additionally,
two QCs operating on the one ship need to maintain a safe
separation distance.

• When retrieving containers from the yard, the container needed
may be beneath other containers, which requires these con-
tainers to be moved in order to access the desired container. It
is worth noting that yard space is limited, and that container
terminals sometimes operate at a high level of yard capacity,
so that one cannot avoid stacking containers in a sub-optimal
way.

• Straddle Carriers need to divide their time between servicing
QCs and dealing with trucks and trains that arrive. In the
case of trucks, their arrivals are not predictable.

• Some containers are refrigerated (“reefers”), and these can-
not be without power for an extended period. Port terminal
operation guidelines aim to have reefers be disconnected for
no longer than 10 minutes (and for at most 60 minutes).

1Some additional specific complicating factors are noted in Sec-
tion 6



• For safety reasons, humans and machines cannot be in the
same area at the same time. One situation where this con-
strains operations is that reefers need to be connected to power
by humans, but they need to be moved by Straddle Carriers.
This means that connecting/disconnecting reefers needs to be
coordinated with Straddle Carriers accessing the area.

• The order in which containers are loaded into a ship is con-
strained by the need to maintain a ship’s balance. If the ship
begins to list, then the shipping order may need to be dynam-
ically changed.

• Issues may arise during operations such as machines break-
ing down, or finding that certain containers cannot be stacked
on top of certain other containers.

• Straddle Carrier operators are human and may make mistakes
in data entry. This may lead to situations such as a later driver
attempting to pick up container C1 from the yard, only to find
that C1 is not where it is meant to be.

This list of factors and constraints is not exhaustive, but it hope-
fully does convey a sense of the complexity and challenge of this
domain.

The key metric for container terminal efficiency is ship turnaround
time: any delays to a ship’s schedule are bad (and may involve a fi-
nancial penalty to the port). Some of the decisions that the terminal
operators need to make as part of day-to-day operations are:

• Where should an incoming ship dock? This matters because
a ship may be closer to one part of the yard than another,
which influences the cost of moving containers between the
ship and yard.

• How should QCs be allocated to a ship?

• How should SCs be allocated between QCs, yard rearrange-
ment operations, and trucks and trains? The management
of straddle carriers has a big impact on the terminal’s ef-
ficiency. If QCs are not adequately served, then they may
need to wait for containers to be moved, which delays ship
loading/unloading.

• Where should a given (incoming) container be placed in the
yard? The placement of containers in the yard can make a big
difference to the cost of moving the container later to where
it is needed.

In our work we have focused on the last two questions.

3. RELATED WORK
There are a few papers that propose to apply multi-agent systems

in the domain of container terminal management and optimisation.
Thurston and Hu [12] proposes to use a multi-agent system to

automate container terminal operations. They focus on the loading
process only. Like us, they have agents for each of the machines
(quay cranes, straddle carriers). While their work is promising, the
paper is early work: it outlines the approach and reports on an early
Java prototype. No experimental evaluation is reported, and (from
personal contact with the author) it appears that no subsequent work
has been done.

Rebollo et al. [9] also propose to automate container terminal
operations using a multi-agent system. Again, the paper is high-
level: it provides a system architecture, but does not provide de-
tails for how the individual agent would operate. Implementation

appears to have been in progress, but we have not found any sub-
sequent papers describing the resulting implementation, or results
from evaluation (the most recent paper [2] is shorter and does not
contain any further details).

Note that such work, which attempts to address all of the prob-
lems of a container terminal, is quite ambitious, and is in danger of
needing to make simplifying assumptions that render it inapplica-
ble to real ports. Our approach is firstly to not attempt to automate
a terminal, but to provide decision support; and secondly, to deal
with parts of the problem separately, while trying to avoid oversim-
plifying the problem.

Other work that seeks to apply agents to container terminals has
been more modest in scope, seeking either to tackle part of the
problem only, or to simulate but not to control. An example of
the latter is Henesey et al. [4], which describes a simulation tool
(“SimPort”). Unlike the earlier described work, they do not aim
to automate the operation of a container terminal, but instead to
provide a tool that can be used to analyse the performance of (static)
policies. This analysis can then be used to select static policies to
implement.

Kefi et al. [5] is an example of work that tackles a part of the
problem. They propose to use a multi-agent system to solve the
yard allocation problem. They do not provide details of their ap-
proach, but do report results that appear promising. One potential
issue with their approach is scalability, since they use an agent to
represent each container (their results only consider up to 26 con-
tainers).

In addition to agent-based approaches, there have been other
(non-agent-based) approaches that aim to tackle various aspects of
the management and optimisation of container terminals (see [11,
10] for recent surveys). A common limitation of such work, which
is often based on operations research techniques, is that it computes
solutions up-front, but does not address the dynamic nature of the
problem.

Kim and Park [6] tackle the QC allocation problem within an op-
erational research framework. They propose an inefficient branch
& bound approach, and then improve it using a Greedy Random-
ized Adaptive Search Procedure (“GRASP”). Their GRASP is sim-
ilar to Tabu search (and to our negotiation process) in that it devel-
ops an initial solution, and then iteratively improves it by progres-
sive cost-guided modification. This work does not address what
happens when things go wrong, and deals with developing sched-
ule for QCs, not for Straddle Carriers (although we would expect
that the techniques could be adapted to be used for developing SC
schedules).

The work of Chen et al. [3] is in some ways quite close to our
work on optimising container moves (Section 5), and, indeed, their
formalisation was the starting point for our work. However, they
make a number of assumptions that are unreasonable in practice,
and which we have relaxed. In particular, they assume that the yard
maintains a clean separation between containers for loading and
for unloading (“inbound and outbound containers are not mixed
up in one block in storage yards”). Additionally, they assume a
three-stage process and do not provide for “buffering” where, for
example, a Quay Crane can unload a second or third container even
though the first container has not yet been taken to the yard.

Considering now the yard allocation problem (which we cover in
Section 6), there is a range of work that tackles this problem. Zhang
et al. [13] consider the problem of allocating inbound and outbound
containers to blocks in the yard, within the context of an overall
planning hierarchy for a container terminal. A two-stage process
first determines the number of containers that are to be assigned to
each block to evenly balance the overall workload. This is followed



Figure 4: Emulation Architecture

by the allocation of individual containers to specific blocks, with-
out considering the specific placement of containers within each
block. The Integer Programming model used was replaced in [1]
by an Evolutionary Algorithm, with operators designed to enforce
the majority of the problem constraints.

Preston and Kozan [8] propose a Container Location Model (the
plan for container storage in the yard) based on an Evolutionary
Algorithm (EA) to optimise outbound transfers for a single ship as-
suming one of three deterministic types of loading schedule. This
was extended in [7] by integrating a Container Transfer Model (the
sequence of container moves between yard and vessel) with the
Container Location Model; the integrated approach produced bet-
ter results than having independent location and transfer optimiza-
tions.

Zhou et al. [14] made the point that it is unrealistic to ignore
uncertainties in simulations of container yard operations and so
adopted a fuzzy-coefficient model to capture the stochastic nature
of operations.

4. AN AGENT-BASED SIMULATOR
As basis for the optimization approaches, we present the open

source port emulation model ContMAS 2. It consists of several types
of agents, which cooperate through (asynchronous) message com-
munication to achieve a common goal, namely the (intelligent) un-
loading of containers from a ship to the yard. Although it is con-
figured to do so using QCs and SCs to fit the situation in the given
local port, the model is flexible and can easily be configured to
match any different port setup. ContMAS is designed as a tool for
general port emulations. With its help results derived from differ-
ent projects using the same model will be more easily comparable
than current heterogeneous approaches. Also extensions developed
during such projects may be integrated to form a better general
model. In particular, ContMAS can be used for planning a new
or re-planning a present port, to test and compare optimization and
operation strategies, to simulate utilization scenarios or to run a
just-in-time troubleshooting support tool in an actual port.

2LGPL, available at http://www-stud.uni-due.de/~sehawagn/
contmas/page/index_en.html

Architecture
ContMAS utilizes the Java Agent DEvelopment Framework (JADE3)
maintained by Telecom Italia. It is plain Java and uses Jena to ac-
cess .owl files for certain features. It can be run as a project in the
agent platform management tool AgentGUI 4, which then provides
a bird’s eye view of the physical layout. The Protégé ontology
editor serves as a tool for the development of the communication
ontology and configuration interface.

The system is structured into core agents, user interface agents,
administrative agents and module agents (see Figure 4). Core agents
represent the different handling devices in a port, but are generally
modeled as one generic type with multiple options of configuration.
This provides a flexible approximation of the reality while reducing
the complexity by abstraction. ContMAS realizes a decentralised
planning process since agents maintain and are solely responsible
for individual plans for the execution order of container moves. In
its basic version ContMAS allows the simple emulation of the activ-
ities within a harbor. However, in order to test different optimiza-
tion strategies agents can be equipped with “intelligence”, which
means that a specific strategy can be added to each agent. Alterna-
tively, agents can use advisors in order to come to a better decision.
This approach is the one which we will describe in more detail here.
While ContMAS guarantees the autonomy of each agent it never-
theless allows agents to access advisors (called module agents) in
order to get specific advice for their planning purposes. Accessing
such advisors is just an option and does not imply that the agents
need to do what the advisor suggests. An advisor can be seen as
a central planning component and will be accessed by all agents
in order to realize a specific optimization strategy. While the exis-
tence of a central planning tool contradicts in general the idea of a
distributed and autonomous agent environment it provides an ideal
solution for an emulation tool which does not need to react under
real-time conditions. However, the fact that we have central com-
ponents means that planning strategies can easily be replaced by
other ones. This permits an easy testing and comparison of differ-
ent optimization strategies. In this paper we will present two al-
ready developed optimization strategies, one which deals with the
optimization of the allocation of container moves to straddle car-
riers (Section 5), and one to optimize the allocation of container
positions in the yard (Section 6).

Agents
The core agents are called ContainerHolderAgents. Those are the
agents which can pick up, transport (“hold") and drop containers,
one for each individual device or other actor, such as cranes, ships,
straddle carriers, yard areas or apron areas. JADE uses ontologies
on a very basic level to support the communication between agents.
ContMAS exploits the ontology objects as internal data storage for
the current physical position and state of the agent, including all
currently held containers and those which are about to get passed
from or to other agents. This allows us to use Protégé as a graphical
tool during development and as an editor for the run-time config-
uration of the emulation. Also it establishes an open interface for
external applications, e.g. for the import and export of data in real-
life systems.

There are several other agents in the model. The HarbourMas-
ter controls the setup and events such as creation of a new agent

3Not to be confused with the Jade product from Jade Software Cor-
poration.
4currently under development by Dipl.-Ing. Christian Derksen and
Nils Loose at University Duisburg-Essen http://www.dawis.wiwi.
uni-due.de/team/christian-derksen/



Figure 5: Example Yard

e.g. for a newly arriving ship. The ControlGUIAgent provides the
graphical interface for the human user. The RandomGenerator pro-
vides random numbers or events for simulations. Agents are also
used for visualisations such as a bird’s eye map or 3D rendering of
the containers held by an agent (e.g. Figure 5).

Environment
The logical structure of the port is modelled as a tree of Domains.
Each Domain lies in exactly one parent Domain and can contain
several sub-Domains. An agent lives in exactly one Domain and
can be capable of accessing several other Domains. For example, a
Crane lives in the Domain CraneRails and can access the Domain
TrainRails, ShipBerth and StraddleCarrierStreet to exchange con-
tainers with agents living in those Domains. This structure permits
to dynamically calculate the shortest logical path through the port
for a container, along with possible alternatives for comparison and
weighing.

Data structures
When communicating about containers and their transportation, agents
always use a data structure called TransportOrderChain (TOC).
It represents the path of a container through the port in terms of
several TransportOrders as chain links, each for one step between
two domains or agents. A TransportOrderChain can, for exam-
ple, consist of TransportOrders, one for each step ship→crane,
crane→apron, apron→straddle carrier and straddle carrier→yard.
The agents administrate all containers (and therefore TransportOrder-
Chains) which are known to them through a list; each is marked
with one TransportOrderChainState, which indicates that the agent
has sent a proposal for a TOC, a pick-up is planned, the container
is currently held (transported/stored), a call for proposals has been
issued, or the drop is planned. The data structures provide all infor-
mation needed during the negotiations and at the same time work
as flexible control artifacts as shown in the next sections. They
abstract from the diverse ways of handling containers between the
different devices towards a universalised view.

Operation
All negotiations between the agents are carried out by means of
an extended contract net protocol: Any agent currently holding a
container, e.g. a ship, initiates a call for proposals (CFP) to other
suitable agents, e.g. cranes. They respond with a REFUSE or PRO-
POSE message, in the latter case containing the possible time of
pick-up. The initiating agent then decides on one of the proposals
and sends an ACCEPT message to that agent; all other agents get
a REJECT message. Through this message exchange, the issuing
agent and the determined contractor established a time and place to
meet physically to hand over the container in question. Both agents
move independently and can also negotiate with other agents about
more containers in the meantime, thus building up a local plan.

When the agreed upon time is reached, both agents should have
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Figure 6: Setup and Processing Time

moved to their negotiated position and the initiating agent issues a
REQUEST to execute the appointment, i.e. to hand over the con-
tainer. The contractor will acknowledge with an INFORM mes-
sage. At this point, the administration over the container changes
from the initiating agent to the contractor, which can itself become
an initiator and issue a CFP for the next step of transportation, e.g.
from crane to apron, adding a new TransportOrder to the Trans-
portOrderChain. The communication between very different types
of handling devices and other agents therefore is homogeneous and
the TransportOrderChain builds up during negotiation. The set of
all TOCs reaching the yard in one run contains a complete record
of all container transfers and the corresponding time represents a
trace or resulting global plan for a given setup and can be used to
advise human actors in the port.

Additional Features
In ContMAS, it is also possible to import TOCs with varying amounts
of detail to determine the level of freedom the agents have. This al-
lows the emulation to be used for several purposes, such as testing
pre-planned runs against plans that have been produced just-in-time
through negotiation or “replay” data from a real port, as was done
in our project. New features can easily be introduced by develop-
ment of a new agent and/or by adding communication capability
modules to the agents of the model.

5. OPTIMISATION OF ALLOCATION OF
MOVES TO STRADDLE CARRIERS

As mentioned in Section 2, one of the problems that we focus on
is the management of Straddle Carriers. If Straddle Carriers are not
managed well, then Quay Cranes can be idle, waiting for contain-
ers to be provided for loading, or for apron space to clear up so that
they can unload containers from the ship. Straddle Carrier manage-
ment is thus an important sub-problem. We have thus developed a
negotiation-based optimisation strategy to allocate container moves
to Straddle Carriers.

A key feature that distinguishes this mechanism from the process
used by ContMAS is that we develop a schedule of planned moves
ahead of time, whereas in ContMAS until now container moves are
put up for bids when the machine is ready to dispose of the con-
tainer. Planning ahead and therefore negotiating over containers
not yet held by a machine is a feature likely to be included in one
of the next versions of ContMAS.

In our approach each machine agent, Quay Crane or Straddle
Carrier, maintains a schedule of container moves. In essence this is
a timeline: a list of container moves (each with associated source
and destination locations) with associated timing information. The
timing information is defined in terms of processing time and setup



time. Processing time is the time taken to move a given container
from its source location to its destination location. The processing
time depends only on the container and the machine. The setup
time is the time between finishing one container and being ready to
pick up the next container. It depends on both containers. These
times are depicted in Figure 6.

The container move allocation problem is how to assign the needed
container moves to machines (QCs and SCs) in a way that meets all
constraints, while attempting to reduce the overall processing time.
A solution to the container move allocation problem is a set of ma-
chine, each with a schedule of container moves. Taken collectively,
the moves proposed must correctly unload the ship5 while respect-
ing the various constraints. The overall goal is to reduce the ship
turnaround time, and thus the overall quality of a solution is given
by its cost: how much time is taken? This is simply the comple-
tion time of the last machine to complete (i.e. the maximum of the
finishing time over the machines).

The process for deriving a solution has two phases: initial al-
location and optimisation. In the initial, allocation, phase each
container is considered in turn and is put up for “auction”, with
each (relevant6) machine bidding. The container is allocated to the
cheapest bidding machine, and is inserted into its schedule. In do-
ing the initial allocation we need to ensure that each container is un-
loaded from the ship before it is scheduled to be moved to the yard.
This is done by tracking the time at which a container reaches the
apron (its “minTime”) and ensuring that the Straddle Carrier does
not move the container earlier than its minTime.

The second phase, optimisation, attempts to improve the initial
solution by repeatedly modifying it. The modifications considered
involve selecting a container and considering (a) moving it to a
different position in its machine’s schedule; or (b) moving it to a
different machine. The possible reallocations are evaluated based
on (an approximation) of the cost difference, and the cheapest one
is chosen and applied to the current solution, in order to obtain a
new solution.

In proposing and applying container move reallocations, we need
to ensure that we do not reallocate a container move in a way that
violates the “unload before move” constraint. We also need to en-
sure that we do not propose to deal with containers in a non-viable
sequence (e.g. unloading C1 before C2 if C1 is below C2 in the
ship).

When a container move is allocated to a machine, the machine’s
schedule may need to be adjusted, since moves that are after the
new move are delayed. Similarly, when a container move is taken
away from a machine, the container moves that were scheduled
after it may be able to be done earlier, and so again, the schedule
needs to be adjusted. Note that any adjustments to a container’s
start and end time may affect other container moves allocated to
different machines.

The process described (briefly) above is performed before ma-
chines begin performing moves, and develops a complete sched-
uled plan for unloading a ship. A strength of the approach is that
should something go wrong, the schedule can be updated to reflect
necessary changes, and the allocation process re-run in order to
deal with the change. For example, should a Straddle Carrier break
down, the solution is updated by removing the Straddle Carrier in
question, and putting its allocated container moves back into the list
of moves to be allocated. The allocation process is then re-run to
allocate these container moves to other Straddle Carriers. In order

5We have focused on unloading only in our work so far.
6A machine is relevant to a container move if it is able to perform
that type of move. For example, a Quay Crane is relevant to a move
which involves the apron and a ship.
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Figure 7: Experimental Results (Small data set)

to support this style of usage the solution includes not just a set of
machines (with their associated schedules), but also a list of unal-
located container moves, and the “current time”. The latter is used
during the process of container move allocation and optimisation
to ensure that container moves which have already been done (i.e.
are in the past) do not get changed.

We have implemented this negotiation-based approach for con-
tainer management. The implementation makes use of a Tabu Search
framework (OpenTS7). Although the framework is centralised, and
thus not an accurate model of a distributed agent-based solution,
in other ways it is a good model of the process for developing a
solution. Specifically, the optimisation phase maps very nicely to a
Tabu search approach in which an initial solution is developed, and
then is progressively modified by applying small changes, selected
based on their costs.

The implementation has been integrated with ContMAS as an
“advisor”: when machines bid for container moves in ContMAS,
they may consult the prepared schedule, and use this to guide whether
they submit bids or not.

We now briefly present some (initial) experimental results. These
were derived using real (anonymised) data from the local port, with
only data fitting our simplified scenario being used (unloading only,
using only one area in the yard, and with no housekeeping moves
considered). Specifically, the experimental data has been extracted
from the JMT system which is used by the local port. We have
used data from January 2009. This data contains all recorded ma-
chine activity (e.g. “SetDown”, “PickUp”) as well as a record of
containers arriving and leaving the port (e.g. “ReceiveShip”, “Re-
leaseShip”). Each record includes a date and time stamp, as well as
(where relevant) the machine involved and its type (QC or SC).

Our experiments used two data sets: a small data set and a larger
data set. Both data sets involve a single ship. The smaller data
set has 30 containers, 1 Quay Crane and 4 Straddle Carriers. The
larger data set has 82 containers, 3 Quay Cranes, and 8 Straddle
Carriers. Figure 7 shows the solution quality (i.e. its cost: smaller
is better) as the optimisation step is repeatedly applied. As can be
seen, the initial solution resulting from the initial allocation phase
(at x=0) is improved by the first few optimisation steps. Similarly,
Figure 8 shows that for the larger data set, the initial solution is also
improved by the first few (in this case five) optimisation steps, after
which point no further improvement is found.

7http://www.coin-or.org/Ots
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Figure 8: Experimental Results (Large data set)

6. OPTIMISATION OF CONTAINER YARD
ALLOCATION

The method used to allocate containers to storage locations within
the yard has a significant effect on the profitability of a container
terminal. Beyond the expected operational costs of yard operations,
penalties often apply if a vessel must be held at the terminal beyond
its agreed berthing window to complete loading and unloading op-
erations. Extra time may be needed to extract a container that is
stored underneath other containers (“overstows".) Every extra con-
tainer move (“rehandles") from one location to another within the
yard adds to the operating cost. Therefore container terminal op-
erators normally attempt to arrange the containers within the yard
with the aim of minimising the berthing times for the vessels that
are expected, and of avoiding double handling of containers. Fi-
nally, the allocation pattern affects the vehicle movements within
the yard, which may have unintended consequences such as an in-
creased likelihood of yard vehicle collisions.

Yard allocation is further complicated in practice by various un-
certainties, for example:

• Containers that arrive into the yard by land may do so at any
time within a nominal time period — 3 weeks at the local
port; unlike many ports, the local port does not impose a cut-
off date/time for container delivery. The order in which con-
tainers arrive in therefore has no relationship to the order in
which they will leave, and there may be no time to rearrange
containers in the yard prior to loading.

• Ships sometimes do not arrive at all. All of the containers
scheduled for a particular voyage must then be rebooked on
other vessels or returned (if that is possible.) More signifi-
cantly for yard operations, those remaining containers may
now be obstructing access to containers for later voyages.

• Tide or weather conditions may result in a ship being berthed
with a reversed orientation — with the bow being where the
stern was expected. As the loading sequence depends on the
orientation this can create a significant problem of overstows.

For these reasons most prior research (see Section 3) has addressed
various sub-areas within the overall problem of optimising con-
tainer locations within the yard. This prior research indicates that
simplified variants of the Yard Allocation Problem are amenable
to optimisation, however no single approach to date has addressed

the complete problem. Note that this is a multi-objective prob-
lem with many, often conflicting, constraints to be satisfied. To try
to tackle this task we have implemented an optimisation interface
within ContMAS that allows a variety of approaches to be tried.

Agents that need a yard location in which to store an incoming
container make a request of a BayMapOptimiser agent, which calls
one of potentially several optimisers. Each optimiser when called
is given an ordered list of expected container moves (either from
yard to ship or, as initially implemented, from ship to yard), and
the current yard state, and must answer with a list of the optimal
storage locations within the yard for each container.

Our initial module, described below, uses an Evolutionary Algo-
rithm.

The Evolutionary Algorithm Module
Given a sequence of expected container moves and a representation
of the current yard state, an Evolutionary Algorithm (EA) is used
to attempt to optimise the location for each container placement
within the yard. Straddle Carriers, such as are used within the yard
we modelled, can only place or remove the uppermost container in
a stack. Any time a Straddle Carrier needs to move a container that
is part-way down in a stack, it must first remove all the overstowed
containers to a free location in the yard, and this is obviously ex-
pensive. This implies that the order of operations is important; con-
tainers should be loaded in a stack in the opposite order to which
they will be removed. We therefore hypothesised that the sequence
of container moves should be explicitly addressed by each compo-
nent of the EA, and so our EA consists of an ordered genome rep-
resentation, a fitness function that simulates the sequence of moves
when assessing costs, and custom order-preserving crossover and
mutation operators.

Genome representation: the genome is made up of a sequence
of (container id, yard location) genes, where each gene represents
a move of a particular container to a [lane,bay,tier] location within
the yard. Order is significant — the genome (AA12, [0,0,0]) (BB34,
[1,1,1]) is not the same as the genome (BB34, [1,1,1]) (AA12,
[0,0,0]). Containers usually appear more than once in the genome,
to capture moves into and out of the yard; any additional entries
for a given container signal potentially costly rehandles, or moves
within the yard.

Fitness function: the fitness of each entity is calculated by simu-
lating the sequence of moves encoded in the genome to a simplified
representation of the container terminal. Each move between yard
and ship has a cost equal to the ‘Manhattan’ distance of the move.
Any genome that encodes an invalid sequence of moves is given a
high penalty cost. Invalid sequences include ones where a required
move is missing from the genome, or falls out of sequence, or a
move involves an overstowed container. A binary tournament is
used to select a sample of the best (lowest cost) genomes for the
next generation.

Mutation operator: mutation acts only on the location encoded
within a specified proportion of genes in the genome; mutation does
not affect the order of container moves. A random set of genes is
selected, and each gene in the set gets its location adjusted to a
random free location in the yard:

function Mutation(Genome A):
for 0 to number_of_mutations:

randomly pick a gene from Genome A
set the gene’s location to a free location in the Yard

return mutated Genome

Crossover operator: The order of genes in the genome is signif-
icant, so the crossover operator developed attempts to preserve the
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Figure 9: Preliminary Experimental Results (minimal com-
plexity problem)

order of genes from each parent in the new child genome. It does
this by identifying locations unique to the second parent, and then
switching those for the locations of a random proportion of genes
in the first parent, so leaving the order of moves untouched. This
can result in invalid genomes, e.g., where the crossover results in
a container to be in mid-air. Such invalid genomes are repaired by
dropping mid-air containers down the stack to a supported position:

function Crossover(Genome A, Genome B):
location_list = locations in Genome B that are not in Genome A
new child Genome = copy of Genome A
for 0 to some number_of_crossovers:

randomly select a gene in the child Genome
set that gene’s location value to the next location in

the location_list
return child Genome

For example, if GenomeA = (AA12, [1,1,1]) (BB34, [2,2,2])
and GenomeB = (CC56, [1,1,1]) (AA12 ,[3,3,3]), the unique lo-
cations in Genome B would be simply [3,3,3], and one possible
child genome would be (AA12, [3,3,3]) (BB34, [2,2,2,]). The ef-
fect is to construct a child genome that maintains the move ordering
of Genome A, while incorporating location material from Genome
B.

Figure 9 shows results from a single EA run of an example sce-
nario involving the extraction of 20 containers from a 10×3×2
yard. The containers are requested according to a fixed schedule
and the EA is initialised with a population of 200 individuals. The
figure shows the population converging on a lower (that is, better)
fitness value, where the fitness value is proportional to the total dis-
tance of Straddle Carrier moves to complete the scenario.

7. DISCUSSION
We have presented a port emulation platform (ContMAS) which

has been implemented as a multi-agent system. The ContMAS plat-
form can serve as an integrating framework for solutions to differ-
ent aspects of the container terminal management and optimisation
problem. ContMAS can be seen as a basic emulation tool which can
be equipped with different optimisation strategies (called module
agents). These module agents are easily replaceable, thus, allow
an easy integration of different optimisation strategies. This has
been illustrated with the description of two specific aspects of the
problems that we have tackled, namely yard allocation and straddle
carrier move optimisation, which have been investigated, imple-
mented, and integrated with ContMAS. Furthermore, we have con-
ducted evaluations (some of which is covered in this paper) which

have shown that our optimisations are effective, e.g. that the EA
model is able to improve upon random yard allocations.

Overall, our conclusion is that taking an agent-based approach
has proven to be a natural choice because of the nature of ports
in which many actors work together with a high degree of auton-
omy. The agent paradigm supports the modeling of such an envi-
ronment with a high level of detail, flexibility and consistency with
the archetype by assuring as little transfer friction as possible. The
use of a free and mature agent framework reduced development
overhead and enabled access to easy exploitation of parallelization
potential and advanced features like agent mobility for further de-
velopment.

There is a range of directions for future work. One direction is
to allow the replace the centralized module agents by a distributed
solution; i.e., an individual, agent-inherent mechanism for SC op-
timisation. The challenge is, among others, that the optimisation
phase currently considers a very large number of possible realloca-
tions, and we need to reduce this for a distributed implementation
to be practical. We are in the process of investigating heuristics for
doing this reduction.

Finally, regarding the EA-based yard allocation mechanism, our
hypothesis that an order-based EA is required to optimise the com-
plete yard allocation problem is as yet untested. We plan to conduct
experimental tests against a control random allocation policy, and
against the current ‘block allocation’ heuristic used by the local
port.
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