
Interfacing a Cognitive Agent Platform with
Second Life

Surangika Ranathunga, Stephen Cranefield, and Martin Purvis

Department of Information Science, University of Otago,
PO Box 56, Dunedin 9054, New Zealand

{surangika,scranefield,mpurvis}@infoscience.otago.ac.nz

Abstract. Second Life is a multi-purpose online virtual world that pro-
vides a rich platform for remote human interaction. It is increasingly
being used as a simulation platform to model complex human inter-
actions in diverse areas, as well as to simulate multi-agent systems. It
would therefore be beneficial to provide techniques allowing high-level
agent development tools, especially cognitive agent platforms such as
belief-desire-intention (BDI) programming frameworks, to be interfaced
to Second Life. This is not a trivial task as it involves mapping poten-
tially unreliable sensor readings from complex Second Life simulations to
a domain-specific abstract logical model of observed properties and/or
events. This paper investigates this problem in the context of agent in-
teractions in a multi-agent system simulated in Second Life. We present
a framework which facilitates the connection of any multi-agent platform
with Second Life, and demonstrate it in conjunction with an extension
of the Jason BDI interpreter.

1 Introduction

Second Life [1] is a multi-purpose online virtual world that is increasingly being
used as a simulation platform to model complex human interactions in diverse
areas such as eduction, business, medical and entertainment. This is mainly be-
cause of the rich platform it provides for remote human interactions, including
the possibility of enabling software-controlled agents to interact with human-
controlled agents. Second Life is more sophisticated than conventional 2D simu-
lation tools, and is more convenient than cumbersome robots, thus it has started
to gain attention as a simulation platform for testing multi-agent systems and
other AI concepts. It would therefore be beneficial to provide techniques allow-
ing high-level agent development tools, especially cognitive agent platforms such
as belief-desire-intention (BDI) programming frameworks, to be interfaced with
Second Life.

When interfacing agent platforms with Second Life, there are two impor-
tant aspects to be addressed: how the sensor readings from the Second Life
environment are mapped to a domain-specific abstract logical model of observed
properties and/or events and how the agent actions are performed on the Second
Life virtual environment. The first aspect can be quite complex when considering

the high volumes of potentially unreliable sensor readings an agent receives. As
for the latter, it is important to identify ways of correctly interfacing the agents
with their representation module inside Second Life (the Second Life avatar),
because Second Life may have synchronization issues with respect to carrying
out the actions specified by the agent model.

With the use of the LIBOMV client library [2], we have developed a frame-
work that facilitates the connection of any multi-agent framework with Second
Life and addresses the above challenges. The main focus of this paper is to high-
light the importance and difficulty of creating an abstract logical model of the
sensory inputs of an agent deployed in Second Life, and to present the solution
we developed in our connection framework to address this problem.

Creating a high-level abstract logical model of agent sensory data involves
two main steps: extracting sensory readings from Second Life accurately, and
formulating a high-level domain-specific abstract logical model to be passed to
an agent’s cognitive module. The latter has not gained much attention in the
related research with respect to deploying intelligent agents inside Second Life.

In our framework, an agent deployed in Second Life can sense the Second Life
environment around it with the use of its LIBOMV client, and the framework
records these sensor readings. There are some difficulties in obtaining accurate
sensor readings from Second Life simulations. Therefore we have introduced a
novel technique in our framework, which extracts sensor readings from Second
Life more accurately than the commonly used data extraction methods.

The extracted sensory data result in a high volume of low-level informa-
tion (avatar and object position information and avatar animation information),
making it difficult to use this data in an agent’s reasoning process. In order to
convert this low-level information into a form that can be used by the multi-agent
system, we employ a complex event processing mechanism and identify the high-
level domain-specific complex events embedded in the retrieved low-level data.
The output of the framework is a snapshot of the Second Life environment that
contains all the low-level and high-level events and other contextual information
that took place in a given instant of time, encoded as propositions. This pro-
vides an agent a complete view of the environment around it, thus eliminating
the possibility of having to base its reasoning on a partial set of data.

We also note that our framework facilitates the co-existence of agents be-
longing to multiple agent platforms in the same Second Life simulation. In this
paper, we demonstrate this framework in conjunction with an extension of the
Jason BDI interpreter that allows agents to specify their expectations of future
outcomes in the system and to respond to fulfilments and violations of these
expectations [3]. An agent’s expectations we consider here are constraints on
the future that are based on published norms, agreed contracts, commitments
created through interaction with other agents, or personally inferred regularities
of agent behaviour. An agent may base its practical reasoning on the assumption
that one or more of its expectations will hold, while ensuring that it will receive
notification events when these rules are fulfilled and/or violated.

With the extended functionality of the Jason platform, we demonstrate how
a Jason agent deployed in Second Life using our framework can take part in
complex simulations and respond to the received percepts from Second Life and
the identified fulfilments and violations of its expectations. The fulfilments and
violations of an agent’s expectations are detected by an expectation monitor [4]
that is integrated with the framework through an interface, and the agent’s
expectations are defined as temporal logic formulae to be monitored by the
expectation monitor. The framework forwards the processed sensory readings
from Second Life to both the Jason environment and the expectation monitor.
Therefore, in parallel to a Jason agent being able to respond to the observed
changes in the environment, the expectation monitor matches these changes
with the monitored formulae and identifies the fulfilment or violation of these
defined expectations. The notifications of the identified fulfilments or violations
are also passed to the Jason agent.

The rest of the paper is organized as follows. Section 2 describes the poten-
tial of Second Life as a simulation environment and the related implementation
problems. Section 3 describes the developed framework and in Section 4, we
demonstrate this developed system by means of an example. Section 5 discusses
some related work. Section 6 concludes the paper.

2 Second Life as a Simulation Environment

Second Life provides a sophisticated and well developed virtual environment
for creating simulations for different domains and to test AI theories, including
agent-based modelling. With the average monthly repeated user logins at around
8000001, and with the virtual presence of many organizations, Second Life con-
tains many interaction possibilities, which inherently lead to the provision of
new scenarios to be used in simulations. Second Life is not restricted to a spe-
cific gaming or training scenario. Developers can create a multitude of scenarios
as they wish, using the basic building blocks that are provided. For example, in
Second Life, these scenarios could be in the areas of education, business, enter-
tainment, health or games. The significance of using Second Life scenarios lies
in the fact that they can be carried out between software-controlled agents, and
also between software-controlled agents and human-controlled agents.

Second Life has been identified as a good simulation platform for testing AI
theories [5] and specifically multi-agent systems [6]. A detailed analysis on the
benefits of using Second Life over traditional 2D simulations and physical robots
has also been done [5], with the main advantage reported being the ability to
create sophisticated test beds in comparison to 2D simulations, and more cost
effective test beds when compared to physical robots.

Despite this, still we do not see Second Life being used for complex simula-
tions of AI theories or multi-agent systems modelling. The lack of use of Second
Life as a simulation environment for AI research can be, to a certain extent,
1 http://blogs.secondlife.com/community/features/blog/2011/01/26/the-second-life-

economy-in-q4-2010

attributed to the previous lack of a convenient programming interface. Tradi-
tional programming in Second Life is done using in-world scripts created using
the proprietary Linden Scripting Language (LSL). These scripts are associated
with objects, and in order to use them to control an agent inside Second Life,
the objects should be attached to the agent. This approach has many limitations
when used for AI simulations, for reasons such as the limited control over the
agent wearing the scripted object. We discuss this in more detail in Section 2.1.

With the development of the third party library LibOpenMetaverse (LI-
BOMV), Second Life can now be accessed through a more sophisticated pro-
gramming interface. LIBOMV is a “.Net based client/server library used for
accessing and creating 3D virtual worlds” [2], and is compatible with the Second
Life communication protocol. Using the LIBOMV client-side API, “bots” can
be defined to control avatars in Second Life. With appropriate programming
techniques, the LIBOMV library can be used to create avatars that have be-
havioural abilities similar to those controlled by humans. This includes moving
abilities such as walking, running or flying, performing animations such as cry-
ing, or laughing, communication abilities using instant messaging or public chat
channels, and the ability to sense the environment around it.

2.1 Challenges in Monitoring Agent Interactions in Second Life

For Second Life simulations that contain a lot of agents and objects moving at
speed, there is a challenge in retrieving accurate position information at a high
frequency to make sure that important events are not missed out.

Although an in-world sensor created using an LSL script can retrieve accurate
position information of avatars and objects, it has limitations when extracting
position and animation information of fast moving objects and avatars. A sensor
can detect only 16 avatars and/or objects in one sensor function call, and the
maximum sensor range is 96 metres. One approach to overcoming this problem
is to employ multiple sensors; however multiple scripts operating for long du-
rations at high frequency introduce “lag” to the Second Life servers, i.e. they
slow the rate of simulation. For the same reason and because of the imposed
memory limitations on scripts, an LSL script cannot undertake complex data
processing, and since there is no provision to store the recorded data in-world at
runtime, recorded data must be communicated outside the Second Life servers
using HTTP requests which are throttled to a maximum of only 25 requests per
20 seconds. Moreover, there is a possibility that avatar animations with a shorter
duration (e.g. crying or blowing a kiss) may go undetected, because a sensor can
record only animations that are played during the sensor operation.

With a LIBOMV client deployed in Second Life, all the aforementioned lim-
itations can be avoided. Avatar and object movements and avatar animations
inside a Second Life environment generate corresponding update events in the
Second Life server, and the server passes this information to the LIBOMV client
using the Second Life communication protocol. The processing of this informa-
tion is done outside the Second Life servers, thus causing no server lag.

However, this approach does have its own limitations which affect the ac-
curacy of recorded information. As with other viewer clients, the Second Life
server sends information to the LIBOMV client only if there is any change in
the environment perceived by the LIBOMV client. This means that the client
has to “assume” its perceived environment. For objects and avatars that are
moving, the client has to keep on extrapolating their position values based on
the previously received velocity and position values until it receives an update
from the server. Extrapolated position values may not be completely in tally
with the server-sent values and this situation is evident when extrapolating po-
sition values for objects and avatars that move fast. Moreover, it was noted that
there is an irregularity in the recorded position data for small objects that may
easily go out of the viewing range of the LIBOMV client, which directly affects
the recording of accurate position information for small objects.

In order to overcome these challenges, we introduce a combined approach
(described in Section 3) based on attaching an object containing an LSL script
to a LIBOMV client deployed in Second Life. These communicate with each
other and produce near-accurate position information about avatars and objects
that move at speed.

This data extraction mechanism can only generate low-level position and
animation information, which should be further processed to identify the high-
level domain-specific information embedded in the low-level data. In doing this, it
is important that the data collected using the LIBOMV client and the LSL script
are formed into one coherent snapshot which resembles the state of the Second
Life environment. When deducing the high-level domain-specific information, it
is important that these coherent snapshots are used, in order to make use of all
the events and other related information that took place in a given instant of
time. Otherwise an agent’s decision may be based on partial information.

3 System Design

Figure 1 shows how different components of the system are interfaced with each
other. The LIBOMV client creates and controls an avatar inside the Second
Life server. It continuously senses the environment around it, and carries out
movement and communication acts as instructed and passes back the result no-
tifications to the connected agent module whenever necessary (e.g. the result
notification of the login attempt). We have used the Jason agent development
platform [7], which is based on the BDI agent model, to demonstrate the inte-
gration of multi-agent platforms with Second Life using our framework. Here a
Jason agent acts as the coordinator component of this system. It instantiates the
LIBOMV client to create the corresponding Second Life avatar, and commands
the LIBOMV client to carry out actions inside Second Life on behalf of it.

The Extended Jason Platform The Jason platform we have integrated with
the framework is an extended version [3] of Jason. The Jason agent platform
contains an environment interface that facilitates the easy integration of Jason

Fig. 1. Overall System Design

agents with other simulations. With this interface, it is possible to execute the
agent actions in an external simulated environment (for example, passing the
commands to a robot’s actuators) and it is also possible to retrieve the sensory
readings of the simulated environment to be presented as percepts for agents.

The extended version of the Jason architecture used in this work implements
a tight integration of expectation monitoring with the Jason BDI agent model,
where domain-specific individual agents can directly react to the identified ful-
filments and violations of their expectations. The Jason interpreter is extended
with built-in actions to initiate and terminate monitoring of expectations, and
with these built in actions, any expectation monitoring tool can be “plugged in”
to the Jason environment.

Interface Between the LIBOMV Client and the Jason Agent The in-
terface between the LIBOMV client and the Jason agent is facilitated using a
simple protocol we have developed (which we intend to develop further), and
they communicate through sockets (denoted by ‘S’ in Figure 1). This decoupling
makes it possible to connect any agent platform with the LIBOMV clients easily,
and it could well be the case that different LIBOMV clients are connected with
agents in different agent platforms. The protocol currently defines how an agent
should pass commands to the LIBOMV client such as requesting the LIBOMV
client to log into the Second Life server, uttering something in the public chat
channels, sending instant messages to other avatars, moving to a given location in
a given way (e.g. walking, running or flying) and executing an animation. It also
defines how an agent platform can interpret a message sent by the LIBOMV
client. These messages are formulated based on the environment information
recorded by the LIBOMV client module. The Jason environment class makes

use of this protocol and converts the agent actions into the corresponding pro-
tocol constructs and passes them to the LIBOMV client. Similarly, it interprets
the messages sent by LIBOMV clients to generate percepts for the Jason agents.

The module that contains LIBOMV clients is capable of handling multiple
concurrent LIBOMV clients and socket connections. Therefore if the correspond-
ing multi-agent system is able to create concurrently operating agents, this can
easily create a multi-agent simulation inside Second Life. Consequently, the mod-
ule that contains the Jason platform is designed in such a way that it is capable
of handling multiple concurrent instances of socket connections connected to
the Jason agents. As shown in Figure 1, a Jason agent connects to its inter-
face socket through the Jason Environment class, and the Jason Connection
manager interface. The Jason connection manager and the LIBOMV connection
manager together ensure that all these individual Jason agents are connected to
the correct LIBOMV client, through the interface sockets.

Interface Between the LIBOMV Client and the Second Life Server
As an attempt to overcome the limitations of data extraction using LSL and LI-
BOMV, we have implemented a combined approach to extract data from Second
Life. In this new approach, a scripted object is attached to the LIBOMV client.
Detection of the avatars and objects to be monitored is done at the LIBOMV
client side. Identification information for these is then sent to the script. As the
script already knows what is to be tracked, a more efficient, light-weight function
can be used to record position and velocity information instead of the normal
LSL sensor function. Recorded position and velocity data are sent back to the
LIBOMV client, while avatar animation updates are directly captured by the
LIBOMV client to make sure animations with short durations are not missed.
Any messages received as instant messages or in the public chat channels are
also directly captured by the LIBOMV client. With this combined approach, the
LSL script guarantees the retrieval of accurate position information, while the
LIBOMV client takes the burden of complex data processing off the Second Life
servers, thus providing an accurate and efficient data retrieval mechanism.

3.1 Data Processing Module

The data processing module consists of three main components; the data pre-
processor, the complex event detection module and the data post-processor.
The responsibility of the data processing module is to map the received sensor
readings from complex Second Life environments to a domain-specific abstract
logical model. In essence, it creates snapshots of the system that include posi-
tion and animation information of the avatars and objects in the given Second
Life environment in a given instant of time, along with the identified high-level
domain-specific information and other contextual information, which are en-
coded as propositions.

Data Pre-Processor: First, the low-level data received from Second Life
are used to deduce basic high-level information about the avatars and objects,

e.g. whether an avatar is moving, and if so, in which direction and the movement
type (e.g. walking, running or flying), and whether an avatar is in close proximity
to another avatar or an object of interest. Other contextual information such as
the location of the avatar or the role it is playing can also be attached to this
retrieved information as needed.

As mentioned above, the LIBOMV client receives position information of
objects and avatars from the script, and the updates corresponding to avatar
animations and communication messages are directly captured by the LIBOMV
client. This means that a received position information update does not con-
tain the information about the current animation of the corresponding avatar,
and the received animation and message updates do not contain the informa-
tion about the current position of the avatar. Moreover, these animation and
communication updates do not contain the position information of other avatars
and objects in the environment, or their animation information. However, for ev-
ery update received by the LIBOMV client (whether it be the position updates
from the script, or an animation or a communication update), it is important
to combine the information received from all these different sources, in order
to create a complete snapshot of the Second Life environment. Therefore the
data pre-processor caches the latest received animation, position and velocity
information for each avatar and object of interest.

When a new set of position information is received from the script, the
cached animation information for that avatar is associated with the newly re-
ceived avatar movement information. The LIBOMV client receives an update
corresponding to every avatar animation change (e.g. if an avatar is currently
standing, and suddenly starts running, the LIBOMV client receives an animation
update ‘run’). Therefore it is safe to assume that an avatar keeps on perform-
ing the animation already recorded in the cache. Similarly when an animation
update is received for an avatar, it is associated with the extrapolated position
values of that avatar, based on the cached position and velocity information.
Since the LIBOMV client receives position information from the script every
500 milliseconds, the extrapolation error can be assumed to be very low. As for
the received communication messages, the cached information corresponding to
the avatar is used to generate its position and animation information at the time
of the communication act. Finally, in each of these cases, animation, position and
velocity information for all the other avatars and objects of interest is generated
for the time instant represented by the received update. Thus, for every set of
position information sent by the script and every animation and communication
message update sent by the Second Life server, the data pre-processor generates
a complete snapshot of the environment that contains the avatar and object po-
sitions and avatar animations. These snapshots can be easily distinguished from
each other with the use of the associated timestamp.

These processed data are then sent to another sub-component of the data pre-
processor which prepares data to be sent to the complex event detection module.
We specifically extracted this sub-component from the main data pre-processing
logic in order to make it possible to easily customize the data preparation logic

according to the selected complex event detection module. For example, for the
complex event detection module we have employed currently, this sub-component
decomposes the generated snapshot into the constituent data structures corre-
sponding to individual avatars and objects, and sends the information related
to objects to the complex event detection module before those corresponding to
avatars.

Complex Event Detection Module: An event stream processing engine
called Esper [8] is used to identify the complex high-level domain-specific events
embedded in the data streams generated by the data pre-processor. The Esper
engine allows applications to store queries and send the low-level data streams
through them in order to identify the high-level aggregated information. Esper
keeps the data received in these data streams for time periods specified in these
queries, thus acting as an in-memory database. Esper also has the ability to
process multiple parallel data streams.

Esper provides two principal methods to process events: event patterns and
event stream queries. We make use of both these methods when identifying the
high-level domain-specific events. The received data streams are sent through
the event stream queries first, to filter out the needed data. Then these filtered
data are sent through a set of defined patterns which correspond to the high-level
events that should be identified. Event identification using patterns is done in
several layers to facilitate the detection of events with a duration. The output
of each layer is subsequently passed on to the layer that follows, thus building
up hierarchical patterns.

The output of the complex event detection module is sent to the data post-
processor.

Data Post-Processor: The data post-processor is required to convert the
recognized low-level and high-level information into an abstract model to be
passed to the connected multi-agent system.

The detected low-level data, as well as high level events and other context
information are converted to propositions and are grouped into states to be sent
to the multi-agent system. Essentially, a state should represent a snapshot of
the Second Life environment at a given instant of time. Therefore the times
at which the basic events (e.g. receipt of avatar animation, or receipt of the
position information from the script) were received by the system were selected
as the instants modelled in the output state sequence. This creates separate
states consisting all the low-level events that took place at the same basic event,
high-level events as well as the related contextual information.

Expectation Monitor Interface: The expectation monitor interface shown
in Figure 1 is an optional sub-component that processes the output of the data
post-processor a step further by adding a reference to the dependent state for
those events that depend on previous other high-level events. It sends these data
to an expectation monitor attached to it, and in this work we use an expec-
tation monitor that was developed in previous research [4]. The responsibility
of the expectation monitor is to identify the fulfilments and violation of agent

expectations that are defined using the extended version of the Jason platform
as explained in Section 1.

When an expectation monitor is initially started, it receives a rule (a con-
dition and an expectation) and a property (fulfilment or violation) through the
expectation monitor interface to start monitoring. The rule’s condition and re-
sulting expectation are provided as separate arguments using a specific form of
temporal logic, with the expectation expressing a constraint on the future se-
quence of states [4]. When the monitor starts receiving the output of the data
post-processor as a sequence of states, it matches these against the rule’s con-
dition to determine if the expectation has become active. It also evaluates any
active expectations (created by a condition evaluating to true), progressively
simplifies the monitored expectation and finally deduces fulfilment or violation
of the expectation2. The fulfilments and violations of agent expectations add
a new level of abstraction above the state descriptions generated by the data
post-processor, where the expectations are introduced by the agent dynamically
and the fulfilments and violations are detected based on the already identified
information in the snapshots. Therefore, in addition to the continuous stream
of domain-specific high-level events and state information that our framework
supplies to the agent from Second Life, an agent developed using this extended
version of the Jason platform can dynamically subscribe to fulfilment and viola-
tion events for specific rules of expectation that are appropriate to its personal
or social context.

4 Example - A Jason Agent Engaged in the Football
Team Play Scenario “Give and Go”

In this section we demonstrate how a Jason agent can engage in a SecondFoot-
ball [9] virtual football training scenario with a human controlled player3, and
how it can reason based on received percepts and the detected fulfilments and
violations of its expectations.

SecondFootball is an interesting simulation in Second Life which enables
playing virtual football. It is a multi-avatar, fast-moving scenario which promises
to be a hard test case to test our framework when compared with most of the
publicly accessible environments in Second Life. This system provides scripted
stadium and ball objects that can be deployed inside Second Life, as well as a
“head-up display” object that an avatar can wear to allow the user to initiate
kick and tackle actions.

In this example, we implement a simplified version of the football team play
scenario “give and go”. Figure 2 shows a screen shot of this training scenario.
2 The system employs multiple expectation monitor instances in parallel in order to

monitor multiple concurrently active expectations an agent may have. This is due
to a limitation in the expectation monitor we have employed that it cannot monitor
for concurrently active individual expectations.

3 One of our agents is currently controlled by a human as our Jason agents are still
not capable of handling complex reasoning involved with playing football.

Fig. 2. Su Monday getting ready to pass the ball to Ras Ruby to start the training
scenario

Here, the Jason agent Ras Ruby is engaged in the team play scenario with the
player Su Monday, who is controlled by a human. When Ras Ruby receives the
ball, she adopts the expectation that Su Monday will run until she reaches the
PenaltyB area, so that she can pass the ball back to Su Monday, to attempt to
score a goal.

In order to implement this team-play scenario, the high-level complex events
of the SecondFootball domain we wanted to detect were whether the ball was in
the possession of a particular player, whether the ball is being advanced towards
a goal, and successful passing of the ball among players by means of up-kicks
and down-kicks. Though not used in the example, the framework is also capable
of detecting goal scoring by up-kicks and down-kicks, dribbling the ball over
the goal line, and successful or unsuccessful tackles. The developed framework
had to be customised to achieve these requirements, and in the future we intend
to introduce options(e.g. configuration files and run-time scripts) that can be
utilized to customize the framework for a given Second Life simulation more
easily.

When the system starts, the Jason agent corresponding to Ras Ruby is ini-
tialized. When the Jason agent starts executing, it first tries to log itself in
Second Life. The following Jason plan initiates the login process.

// The ‘+!’ prefix resembles a new goal addition
+!start <-

connect_to_SL("xxxx", "Manchester United, 88, 118, 2500");
!check_connected.

The parameters specify the login password and the login location, respectively.
After sending this login request to the LIBOMV client, the agent has to wait

till it gets the confirmation of the successful login from the LIBOMV client, as
shown in the following plan:

+!check_connected: not connected
<-
.wait(2000);
// ‘!!’ means tail-recursion optimised posting of a goal
!!check_connected.

When it finally receives the successful login notification, the agent instructs
the LIBOMV client to run the avatar to the area MidfieldB2 using the plan
shown below.

+!check_connected: connected
<-
action("run","MidfieldB2").

Once in the area MidfieldB2, the agent Ras Ruby waits for Su Monday to
kick and pass the ball to it. Once it successfully receives the ball the agent gets
the “successful kick(su monday, ras ruby)” percept (which is generated by the
framework and states that Su Monday successfully passed the ball to Ras Ruby
through a kick), and this generates a new belief addition event (‘+success-
ful kick’) which triggers the corresponding plan given below.

In this plan, we have used the internal action start monitoring defined in
the extended version of the Jason platform [3], and initiate monitoring for the
fulfilment and violation of the expectation. Here, in the first parameter we define
the type of expectation; whether it is a fulfilment or a violation. The second
parameter assigns a name for the expectation. The third parameter is the name
of the expectation monitor used. The fourth parameter is the triggering condition
for the expectation, and in this example, it is a keyword with a special meaning
(#once). For this scenario the initiating agent wants the rule to fire precisely
once, as soon as possible, and this can be achieved in our current expectation
monitor by using a ‘nominal’ (a proposition that is true in exactly one state)
for the current state as the rule’s condition. However, the BDI execution cycle
only executes a single step of a plan at each iteration, and any knowledge of
the current state of the world retrieved by the plan may be out of date by the
time the monitor is invoked. The #once keyword instructs the monitor to insert
a nominal for the current state of the world just before the rule begins to be
monitored. Here, the actual expectation formula is given by the fifth parameter,
and the sixth parameter is a list of optional context information, which we do
not utilize in this example.

The fulfilment of this expectation occurs when Su Monday advances towards
GoalB (advanceToGoalB(su monday)) , until (’U’) she reaches PenaltyB,
denoted by ’penaltyB(su monday)’ . Similarly, the violation of this expectation
occurs if Su Monday stopped somewhere before reaching penaltyB, or she moves
in the opposite direction before reaching PenaltyB area4.

4 The conditions and expectations are defined in temporal logic and we do not wish
to elaborate on them in the scope of this paper. These are written as nested Python
tuples, as this is the input format for the expectation monitor written in Python.

//The ‘+’ prefix resembles an event relating to belief addition
+successful_kick(su_monday,ras_ruby) <-

//internal actions
.start_monitoring("fulf",

"move_to_target",
"expectation_monitor",
"#once",
"(’U’,

’advanceToGoalB(su_monday)’,
’penaltyB(su_monday)’)",

[]);

.start_monitoring("viol",
"move_to_target",
"expectation_monitor",
"#once",
"(’U’,
’advanceToGoalB(su_monday)’,
’penaltyB(su_monday)’)",

[]).

If Su Monday fulfilled Ras Ruby’s expectation, the expectation monitor de-
tects this and reports back to the Jason agent. The following plan handles this
detected fulfilment and instructs the avatar to carry out the kick action5.

+fulf("move_to_target", X) <-
//Calculate kick direction and force, turn, then ...
action("animation", "kick").

On the other hand, if Su Monday violated the expectation, the expectation
monitor reports the violation to the Jason agent, and the agent uses the first
plan below to decide the agent’s reaction to the detected violation, which creates
a goal to choose a new tactic for execution. The second plan (responding to this
new choose and enact new tactic) is then triggered, and the agent adopts the
tactic of attempting to score a goal on its own by running towards the PenaltyB
area with the ball6 .

+viol("move_to_target",X) <-
!choose_and_enact_new_tactic.

+!choose_and_enact_new_tactic : .my_name(Me) <-
action("run", "penaltyB").

5 Due to technical problems the Second Life avatar cannot currently perform the actual
‘kick’ animation

6 when an avatar is in possession of the ball and the avatar starts moving, the ball
moves in front of the avatar

5 Related Work

Research involved with programming with Second Life has focused either on
extracting sensory readings from Second Life, or controlling avatar movement
and conversational behaviours to create Intelligent Virtual Agents (IVA). Not
much research has attempted to model reactive agents that generate behavioural
responses to their observations on the Second Life environment, or addressed the
issue of mapping low-level sensory data to high-level domain-specific information.

Most of the research that worked on extracting sensory readings from Second
Life has utilized this retrieved information for statistical purposes. It can be seen
that both LSL scripts and LIBOMV clients have been used for sensory data
extraction from Second Life servers, but the latter had been more effective in
collecting large amounts of data. LIBOMV clients have been successfully used to
create crawler applications that collected large amounts of data about avatars
and user-created content, to statistically analyze the number of avatars and
objects present in various different Second Life regions over periods of time [10,
11]. There has also been an attempt to exploit the power of both these approaches
in designing a multi-level data gathering tool which collected more than 200
million records over a period of time [12]. There have also been several attempts
to collect data from Second Life using LSL scripts to examine social norms
related to gender, interpersonal distance, dyantic interaction proximities and
spatial responses in a virtual environment [13, 14], however both these studies
had to base their analysis on a very low number of data samples due to the
data collection mechanism they employed. A similar study was carried out using
LIBOMV clients where the authors tried to capture spatio-temporal dynamics
of user mobility [15].

Cranefield and Li presented an LSL script-based framework that sensed the
Second Life environment and tried to identify the fulfilments and violations of
rules defined in structured virtual communities [16]. However, this research had
been conducted in a narrow scope which dealt only with animations of human-
controlled avatars.

Burden provided a theoretical proposal for creating IVAs inside Second Life
with the sophisticated abilities of concurrent perception, rational reasoning and
deliberation, emotion, and action, and also pointed out the complexities of a
practical implementation [17]. A theoretical framework has also been proposed
which integrates different modules that handle these different capabilities [6], but
the practical implementation of both of these is still limited to simple sensory,
movement and conversational abilities.

There have been several research attempts on creating IVAs inside Second
Life using LIBOMV clients, but their main focus had been on improving the
conversational and animation abilities of the agents [18, 19].

Research has been carried out by Bogdanovych and colleagues who devel-
oped a number of useful libraries for connecting agents to Second Life (including
their own BDI interpreter for controlling agents inside Second Life), in specially
designed environments that were instrumented to connect to “electronic institu-
tion” middleware [20]. In contrast, our research focused on developing a frame-

work that supports connecting multi-agent systems with existing Second Life
environments. Moreover, they have not much focused on how to create coher-
ent snapshots that provide a complete view of a given Second Life environment
at a given instant of time to be presented to the multi-agent system, or how
the extracted low-level data can be used to identify much complex high-level
information, which was the main focus of our work.

6 Conclusion

In this paper we presented a framework that can be used to deploy multiple
concurrent agents in complex Second Life simulations, and mainly focused on
how the potentially unreliable data received by an agent deployed in a Second
Life simulation should be processed to create a domain-specific high-level ab-
stract model to be used by the agent’s cognitive modules. This problem has
not gained much attention from the past research on Second Life. We hope the
implementation details we provided would be a valuable road map for future
researchers hoping to use Second life for multi-agent simulations in various dif-
ferent paradigms, apart from the developed framework being a potential starting
point for further research in integrating multi-agent systems with Second Life.

We note that any multi-agent platform can be connected with Second Life
using our framework, and demonstrated this with an extended version of the
Jason BDI interpreter. With the use of an example, we demonstrated how a
Jason agent can execute actions inside Second Life and how it can respond to
the observed changes in the environment. We also integrated an expectation
monitor with our framework and demonstrated how Jason agents can use the
sensory data to identify higher level events associated with fulfiled and violated
personal expectations, based on the complex interactions that they take part in.

Although the current framework is customized for the SecondFootball simu-
lation, in the future we plan to enhance this framework to be more generalized,
and experiment with it in various simulations such as medical training scenarios.
Moreover, we intend to enhance the capabilities of Jason agents, so that they
will be able to actively participate in more complex scenarios.

References

1. Linden Lab. Second Life Home Page. http://secondlife.com

2. OpenMetaverse Organization. libopenmetaverse developer wiki. http://lib.

openmetaverse.org/wiki/Main_Page

3. Ranathunga, S., Cranefield, S., Purvis, M.: Integrating Expectation Handling into
Jason. Discussion Paper 2011/03, Department of Information Science, University
of Otago (2011). http://eprints.otago.ac.nz/1093/

4. Cranefield, S., Winikoff, M.: Verifying social expectations by model checking trun-
cated paths. Journal of Logic and Computation (2010). Advance access, doi:
10.1093/logcom/exq055

5. Veksler, V.D.: Second Life as a Simulation Environment: Rich, high-fidelity world,
minus the hassles. In: Proceedings of the 9th International Conference of Cognitive
Modeling (2009)

6. Weitnauer, E., Thomas, N., Rabe, F., Kopp, S.: Intelligent agents living in social
virtual environments bringing Max into Second Life. In: H. Prendinger, J. Lester,
M. Ishizuka (eds.) Intelligent Virtual Agents, Lecture Notes in Computer Science,
vol. 5208, pp. 552–553. Springer Berlin / Heidelberg (2008)

7. Bordini, R.H., Hubner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak using Jason. John Wiley & Sons Ltd, England (2007)

8. EsperTech. Esper Tutorial. http://esper.codehaus.org/tutorials/tutorial/

tutorial.html

9. Vstex Company. SecondFootball Home Page. http://www.secondfootball.com
10. Varvello, M., Picconi, F., Diot, C., Biersack, E.: Is there life in Second Life? In:

Proceedings of the 2008 ACM CoNEXT Conference, CoNEXT ’08, pp. 1:1–1:12.
ACM, New York, NY, USA (2008)

11. Eno, J., Gauch, S., Thompson, C.: Intelligent crawling in virtual worlds. In: Pro-
ceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web In-
telligence and Intelligent Agent Technology - Volume 03, WI-IAT ’09, pp. 555–558.
IEEE Computer Society, Washington, DC, USA (2009)

12. Kappe, F., Zaka, B., Steurer, M.: Automatically detecting points of interest and
social networks from tracking positions of avatars in a virtual world. In: Proceed-
ings of the 2009 International Conference on Advances in Social Network Analysis
and Mining, pp. 89–94. IEEE Computer Society, Washington, DC, USA (2009)

13. Friedman, D., Steed, A., Slater, M.: Spatial social behavior in Second Life. In:
C. Pelachaud, J.C. Martin, E. Andr, G. Chollet, K. Karpouzis, D. Pel (eds.) Intel-
ligent Virtual Agents, Lecture Notes in Computer Science, vol. 4722, pp. 252–263.
Springer Berlin / Heidelberg (2007)

14. Yee, N., Bailenson, J.N., D, P., Urbanek, M., Chang, F., Merget, D.: The unbear-
able likeness of being digital; the persistence of nonverbal social norms in online
virtual environments. Cyberpsychology and Behavior 10, 115–121 (2007)

15. La, C.A., Michiardi, P.: Characterizing user mobility in Second Life. In: Proceed-
ings of the first workshop on Online social networks, WOSP ’08, pp. 79–84. ACM,
New York, NY, USA (2008)

16. Cranefield, S., Li, G.: Monitoring social expectations in Second Life. In: J. Padget,
A. Artikis, W. Vasconcelos, K. Stathis, V. Silva, E. Matson, A. Polleres (eds.)
Coordination, Organizations, Institutions and Norms in Agent Systems V, Lecture
Notes in Artificial Intelligence, vol. 6069, pp. 133–146. Springer (2010)

17. Burden, D.J.H.: Deploying embodied AI into virtual worlds. Knowledge-Based
Systems 22, 540–544 (2009)

18. Ullrich, S., Bruegmann, K., Prendinger, H., Ishizuka, M.: Extending MPML3D
to Second Life. In: H. Prendinger, J. Lester, M. Ishizuka (eds.) Intelligent Virtual
Agents, Lecture Notes in Computer Science, vol. 5208, pp. 281–288. Springer Berlin
/ Heidelberg (2008)

19. Jan, D., Roque, A., Leuski, A., Morie, J., Traum, D.: A virtual tour guide for
virtual worlds. In: Proceedings of the 9th International Conference on Intelligent
Virtual Agents, IVA ’09, pp. 372–378. Springer-Verlag, Berlin, Heidelberg (2009)

20. Bogdanovych, A., Rodriguez-Aguilar, J.A., Simoff, S., Cohen, A.: Authentic in-
teractive reenactment of cultural heritage with 3D virtual worlds and artificial
intelligence. Applied Artificial Intelligence 24(6), 617–647 (2010)

