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Abstract

A novel c:0m’zecIirmist arcliileclure that LlwtZl‘.S’_]’l"()l7lcorivenfionczl þÿ�a�r�c�h�i�l�e�c�t�u�r�e�.�s �laased on the

neurocmalomy Qfbiological orgcmisrnsis þÿ�c�l�e�s ��c�r�i�b�e�r�1�’�.Yhc proposer!scheimf is based on the model

ofn’zz.iliilayeredoptical thin-films, with the þÿ�t�h�i�c�l�c�n�e�.�s�’�.�s ��e�sQf the infliviflual þÿ�f�l ��l�l�l�’�l�j�f�l�l�I�T�llayers þÿ�.�s ��e�r�v�z�‘�r�r�.�g

as acljusiable ’weighrs"jor the trainirig. A discussion. fjirfzirzi/rig teclmiquesfor this model cmd

some sample þÿ�.�S�‘�l�I�’�)�’�?�.�L�l�l�(�l�I ��l�0�I�l�»calculations in the area Q/(‘])(ll[(?7Zrecognition are presented. §l‘hc.s’e

þÿ�r�e�s�u�l�!�.�s �are shown to compare with resillts when the seine training :lata are ilsed in (.‘()l’Z7l(¢()fl()fl

with cz_/had-fnrwarclneural network with back propagation training. A physical realization Q/‘

this arcfliitecrfure ccmlcl largely take aclvcmtageQ/’existing optical thinffilm clepmritiori technology.

1 Introduction

Although connectionism has taken its inspiration from the neuroz1naton’iy of biological orgzmisms,

the essence of this form þÿ�o�l �computation does not require strict zidherence to the biologic-al

exernplar. What it fundamentally implies is simply an interconnected set of pztralleldistributed

processing elements with nonlinear transfer functions between the elements [l_2,3]. Thus

eonnectionist architectures that tlilliar signihcantly from the biological model may still exhibit

interesting computational properties and may be worthy ot‘conside1’z1tion. ln this paper we

describe an iilternative eonnectionist. architecture that takes its inspiration frorn the technology þÿ�o�i �

optical rnultilaycr thin-ffilrns (sec Figure l) and which We will reier to as the Optical ’l‘hin-l;‘iliin

Model (()TFM).
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Figure 1. Neural network and optical thin-film connectionist models.

Section 2 provides a brief background on the optical properties þÿ�o�l �l.hin-ci‘ilm mnltilayers. Section

3 describes how information could be encoded into appropriate optical signals so that

connectionist computations could be performed. Section 4 describes the computational method

used to train a, simulated tliin---film multilayer with a training set. Section 5 presents some sample

experirnentalcalculations with this simulation model and compares the results to those pcrformetl

with a conventional neural net architecture. Section 6 discusses the possibility of a. physical

realisation of this optical thins-~iilrn areliitecture for conneetionist computations.

2 Optical thin-films

We will lirst consider the optical propertiesofa single(ideal) thin~tilm and then go on to consider

the case when there are several contiguous thin-filins.

2.1 Reflection and transmission coefficients fora single, isolated layer.

We assume the material þÿ�o�l �the thin-film is uniform, mostly transparent, and non~-dispersiveand

can be cliaracterisecl by a single index of refraction, n. Its physical configuration can be

represented by a plane parallel plate existing in a tnediuin, such as a vacuum, whose index þÿ�o�i �

þÿ�r�e ��f ��r�a�c�t�i�o�nis equal to l.() (Figure 2). When a light beam elf a single wavelength is incident on such

a plane parallel plate, the beam is split into two parts ~~ a reflected beam and a. transmitted

2.



(retracted) beam that enters the material. The respective angles and magnitudes of these two

newly created beams are determined by (11)the polarization and wavelength þÿ�e�l �the incident light

beam, (b) the angle þÿ�o�l �incidence of the beam with the plate (thin-film) and (c) the index þÿ�o�l �

I‘@f‘l‘21C[l()ll()f‘l|’1Gplate material [45]. Figure 2 shows the amplitudesof these individual light beam

components, with the incident beam shown (on the left) to have an initial amplitude of ct, The

amplitudeofthe reflected beam component (on the left ofthe figure) is reduced by the reflection

coefficient, r, and t.he amplitude ofthe transmitted component of the beam is reduced by a

transmission eoetlicietit, /_ When the transmitted beam inside the plate material reaches the other

surface, it is again split up into a reflected beam attenuated by the reflection coefficient r, and a

retracted beam attenuated by a second transmission coellicient, l’, associated with light that passes

from a þÿ�r�e�l ��r�a�e�t�i�v�ematerial back into the vacuum. As can be seen in the figure, the light beam

component inside the plate continues to undergo reflections and 1’eli’actions, such that there are

a number of reflected beams (ctr, þÿ�c�z�t�r�r ��,r1tr’it’,ufr’5l",¢1tr7t’,. . .) and transmitted beams (aff, cur;/’,

þÿ�a�l�’�r�"�1 ��,þÿ�a�t�/�’ ��l�’,... ) that come þÿ�o�l ��tthe top and bottom of the plate.
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Figure 2. l\/lultiple reflections and þÿ�r�e�l ��r�a�c�t�.�i�o�n�sin a l.i’llI‘l~llllTl.

Since the retlccted beams, ur, czfrr, þÿ�r�1�t�r ��g�t�’�t�t�t�f�’�q�t�’�,etc., are waves, they dil"t‘er from each other in both

amplitudeand phase,and the overall reflection of the light beam þÿ�o�i�l �the plate will be determined

’U
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by the multiple-beam interference of this infinite series of reflected component waves {5].

Algebraic expressionsfor the overall reflection and transmission coetheients (Eqs. (4) and (5),

below) can be derived in a sehiconsistent manner þÿ�i�l �the simplifying assumption is made that the

incident bearn is perpendicular to the surface of the plate (thereby eliminating the polarization as

a factor).

The parameters used in these expressionsare characterised in Figure 3.
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Figure 3. A þÿ�S�i�I�Q�Q�Q�A�Q�R�H�Q�E�E�R�§�i�£�i�i�°�i�’�i�i�Q�i�§�} ��"�§�i�§�§�i�l�i�l�i�i�lu; on the lui.

A moneehromatie light beam (1 in Figure 3) with wavelength K is incident on the left side and,

to simplify the presentation, is taken to have an electric field vector’ amplitude normalized to l.

Al; the lett surface of the thin-ftilm, the incident beam is split into a transmitted c:on1ponent and

reflected component with amplitudes -f and t, respectively, where

_f   and I  »-----M2
y (_i)

(fi + 1) (fir is 1)

ii is the complex ifefractive index of the t_liin-flilni, and fi = rz -4- ik, where ri is the ordinary index

’The light wave also has a magneticheld vector component, but it is sullieient to consider

only the electric field vector here. The phase þÿ�o�l �the wave is customarily ineorporatied into the

description by representing the component as having a complex amplitude.
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þÿ�o�l �refraction and lc is the attenuation þÿ�e�o�e�f ��f�i�e�i�e�n�t�.The transmitted beam component with amplitude

5 new undergoes a phaseshift as it travels 21 distance rl (the thickness ofthe film) up to the right

hand surface. so that its phase shifted amplitude is et, where

I
þÿ�2�T�E�l ��i�d

A (2)
83?

At the |’igl’1t_~hfn’1tlboundary the beam is again split up into trztnsmitted and reflected components.

The t,runsmitt.ed component that emerges on the right has an amplitude of £t(tn). Since thc

reflected component is one of :in inlinite series þÿ�o�l �reflected components ut this interface, they can

be lumped together to represent the interference combination of all of the reflected components

by b in Figure 3; eb is the phaseshifted result of this lcftwztrd»truvelling wttve at the inside þÿ�l�e�’�l ��t�~

hand. surface þÿ�o�t �thc film. At the left hand þÿ�s�u�r�l ��z�1�e�e�,the wave with amplitude .tb is split into n

refrzicted (transmitted) component with amplitudentda and at rellected component travelling buck

to the right with amplitudefsb. At the right-hand surface, the phuse~shiftedrightwzird travelling

wave, here with umplitudefetb,is also split into two components: at reliected component al1°ez-ttly

accounted for by b and a transinitted component with amplitude jlsgbnt,

Expressions for the reflection and transmission coefficients ofthe thin-film can now be tztkcn

directly from Figure 3:

rf
1 if + nteb and If

== (et +_fe2/9)ni (3)

When these two equations are solved lor the unknown lf, the complex reflection and transmission

coefficients can be given in terms of the ret‘rz1etive index and thickness ofthe film and the

wavelength of the incident light (using expressions I und 2):

,  ef°+f12f‘
I

,f
~ -~~-~--

en
~

1 _ þÿ�f�’�2 ‹�2
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and
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2.2 Reflection and transmission coefficients for a multilayer thin-»film structure

The reflection and trzuismission coefficients for at multilayer thin-film structure are obtained by

means of zi recursive approach. Assume several thin-films with diff‘erent refractive indices have

heen successively deposited on top of al substrate material to form ii multilayer thin~lilm stack

(Figure 4). Let r, denote the complex reflection coefficient at the outer surface ofthe thin»lilm

structure, and let le denote the transmission coefficient in the substrate (output medium) at the lust.

boundary SLlI‘l:LlCC. The values of these coefficients will depend on the l‘Cl‘l‘2l(I[lVC indices and

thicknesses ot‘;_1}l the films in the structure, the þÿ�r�e�[ ��r�a�c�t�i�v�eindex þÿ�o�l �the output medium, z-:ind the

Wavelengthof light.
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Figure 4. A multilayer stack of N - I thin-films deposited on Ll substrate (output medium).

Imagine an additional thin-film layer that is brought up to an existing thin-film multilayer structure

þÿ�o�l �N- _/ layers whose values off; and IQ,ure already known (Figure 5). The udd.itionz1l thin-film

luyer is going to be the Nth layer and has at þÿ�I�‘�C�l�‘�l�‘�1�_�i�C�[�l�V ‹index Olllifv = :iv »+- il; _ The distance

between the Nth layer and the N-1 layer substructure will he zero, but the layers are shown

sepztrateclin Figure 5 forthe purposes þÿ�0�l�‘ ‹�?�-�X�[�J�l�Z�I�.�l�l ‹�1�l�l�O�I�l�.
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Again, the incident light on the left is taken to have a normalized amplitude value þÿ�o�l �1. Eqs (4)

and (5) are used to determine rf and if for the Nth layer. Since the light incident on the N-I layer

substructure does not have an arnplitudeof l, the amplitude þÿ�o�t �light reflected off its front þÿ�s�u�r�l ��a�c�e

is not its reflection coefficient rx, but some other value, which we take to be x. This reflected

light with amplitude x is partially reflected by the Nth layer back towards the substructure and

partially transmitted through the Nth layer out to the left, and these components have amplitudes

ofxrf and xtf respectively The NJ layer substructure has a reflection cocflicient of l1,, and self-

consistency requires that the following relations hold:

þÿ � � I

’ff
"" ’ffl

I’  (lf it If/

X Z (lr "l þÿ ��f�f ��) ��"� 

Eliminating x from the above yields the following expressions for r and tc

2 2

rf
+ (ff

 

rf)/’Y
,» I

_;_________f___;,_____;___;(7)
þÿ ��_

rjrs
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and
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r anti t zitre the reflection and transmission coefficients for a N layer thin~’lilm stack and rx :md t(

are the correspondingcoefficients for Z1 N-I layer thin~l‘il_rn stack. Relzihellingthese terms so that

they correspond to the number þÿ�o�l �layers in the lilm stack and substituting in the expressions lor

ij, and If from equations (4) and (5) yields the following recursive expressions for caleulzittingthe

thin-lilrn stuck reflection and trztnsmission coefficients:
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’lf‘l’1e recursive expressionsshown in equations(9) and (10) provide the means for computing the

reflection and transmission fora(hill-fll1‘l‘lSlZ1Ckofanynumberoflayers.Itisthescfor a (hill-fll1‘l‘lSlZ1Ck of any number of layers. It is thesc

highly nonlinear expressionsthat form the basis forthe eonnectionist computations to follow. The

optical relleetatnce and trzinsinittnnee, which are what is orclinztrily obtained from optical
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measurements of thin~lilm stacks, are directly derived from the reflection and transmission

coefficients:

I\7()\) If |r(Z,)I2 and 7(1) = |t(}l)l2 (12)

3 Encoding information in the optical thimfilm model

lixpressions (9), (IO), and (l l) describe the reflection and transmission coefficients of a N~layercd

thin-lilm stack in terms of the N rehactive index and thickness values of the layers and the optical

wavelength of light. For computational purposes, these coefficients, with real and imaginary

values always in the range of -» l .O to -t~l .0, may be considered to he a generalizedoutput. It is also

possible, by means of expressions (IZ), to use reflectance and transmittance as generalized

outputs and thereby associate computations more directly with conventional optical

measurements. Both of these approacheshave been used in experiments reported in this paper.

With these generalized outputs and for a specified range ol" optical wavelengths, virtually any

desired spectralcharacteristic of these coefiieients can he obtained by choosing a set of thin~filn’i

layers with appropriate values of thickness and refractive index [6,’7].

There are several possible schemes for encoding input information to he used for computational

purposed with this model [6]. The approach employed in this paper is to encode input into the

indices þÿ�o�l �refraction ofthe various thin~t‘ilm layers. Under this scheme if there are to be M input

values tor a computation, then there must be at least M thin~l‘ilm layers available. As is shown in

the next section, the thicknesses ol’ the various layers are then used as adjustable ’weights’ to

obtain the desired output.

Figure 6 shows an example of this encoding scheme. A live-layer thin»~tilm stack is shown, each

layer characterized hy its refractive index, ni, and its thickness, (L. For each layer i, one of the

inputs is encoded into an appropriately scaled value of the refractive index HAI, and added to a

base value ol‘ that layers refractive index, rim, (with nA, << rz,,,) to arrive- at the layer’s index value

ii, The values þÿ�o�l �n,,, are kept large enough relative to the encoded incremental values, VIA,
to

9



ensure that there is always a substantial variation of the refractive index iii from layer to layer,

irrespective of the value of the input for that layer. Note that it is not necessary for every layer

ofthe stack to he used for input; a thin~~filni stack could be designed with some extra layers that

are not used for encoding input.

þÿ�l ��I�5�,�d�5 N5 == HB5 ~f~ HM

þÿ�;�.�_�.�_�_�_�_�_�_�_�_�_�_�_�[ ��_�@�f�Q�_�_�_�_�_�_�_�.�_�_�_�_"4 = "M * ’744

þÿ�"�.�_�_�.�_�_�_�l ��_�;�£�§�_�_�,�,�.�_�,�_�.�_�_ �"3 = "Ba ~" ’113

________Q;FQ_ "2 Z "BQ * "fi 2

i

 __._Q.z._fi_z___._u.________ru_ __ __

"1 þÿ�’ � "
B1

"’ "Af
l

Substrate

Figure 6. A thin~film stack with inputs encoded as incremental values of the refractive indices.

The thin~iilrn stack providesoutput values of the ref lcction and transmission coefficients for each

value ofthe optical wavelength. One can use a single wavelength for a computation, but it is

often more effective to use multiple wavelengths in order to provide better discrimination among

the various outputs. When multiple wavelengthsare used, an indexing scheme must be set up that

maps a desired computational output to a particular spectral response of the system over the

wavelength range. Examples of this approach will be shown when sample.calculations are

presented in section 5.

4 Training with the optical thin~film architecture

The goal of training is to determine a set of appropriate layer thicknesses in the O’I‘Fi\/I to satisfy

the target optical specifications, and it can be viewed as supervised learning based on direct

coniparison ofthe model output with known correct answers [S] The learning process proceeds

until the model yields an acceptable output upon presentation ofthe appropriate input. The

degree to which an output is acceptablecan be measured by the value of a merit function, which,

for example, can be taken to have the form:

10



Mix)  L‘-Rfk./tai?an- Rfk./tai? an
i~1

where x is the vector ofdesign variables includingparameters such as individual layer thicknesses,

R,,is the target reflectance at /l,(,,R is the computed value of rellectance at /lk for a particular value

ol°_x,and m is the nurnlaer ofwavelengths. The goal of learning then is to achieve a suitably small

value of the merit function, which corresponds to the cost function in a neural þÿ�l�l�(�;�5�l�.�\ ��\ ��(�)�l�‘�k�.An

alternative merit function can be taken to be:

HI

Mpc) : L‘|p~0(/tk)-- »-(X,/tklll (14)
/¢_~/

where r,, is the target reflection eoeilicient at /lk, and r is the complex reflection coefficient at /lk

for a particular x, so that the reflectance R = lrlz. The advantage þÿ�o�l �this second formulation is

that an extra variable (real and imaginary components þÿ�o�l �r,, rather than just a real value RU)can

be specilied for a target at a given wavelength,and hence it is possible to specify more tasks with

fewer wavelengths. This can have the consequence of reducing the amount of computation

involved. Since Eq. (13) corresponds to conventional optical measurements, it should be easier

to implement in an optical realisation,

The training procedure is an iterative approach involving the following steps:

(I) lnitialize the thickness and rel‘racti\/e index of each layer, and assign thc initial best Ill()-I‘ll

value M ,,,,_,,
= w. Specify the optical targets (here, for illustration, we use reilectance

values) at each /l (Wavelength).

(2) Repeat until the M ,,,,_,, is sufficiently small (or until a specified number of iterations have been

completed).

(Za) Vary the thicknesses of some layers using a search algorithm to þÿ�l ��i�n�dan optimal set ol

layer thicknesses.

l l



(Zh) Calculate R or r’ at each /l.

(Ze) tfffalculate merit function M using either Eq. (13) or (14).

(Zd) If/l/I ( M,,,,_,,,then assignthe value ofM to M ,W and update the thickness of each layer

and other parameters necessary for the later calculations.

Training the optical thin~film multilayer involves searching for an appropriate C)Tl*7l\/l

eonfiggurationby observing the value ofthe merit function lor each thickness combination. There

are two factors that can make this search computationally expensive:

( l) Exhaustive search of all possible thickness combinations is prohibitive for a large number ot

layers. For instance, for a lO layer model and assuming that 2() different thicknesses are

evaluated for each layer, exhaustive search would require þÿ�2�0 �evaluations.

(2) lf Eqs (9) and (l()) are used to compute the reflection and transmission coefficients ofa

multilayer, then whenever an individual layer thickness is altered, the reflection and

transrnission coefficients lor each other layerwould ordinarily have to be recalculated in order

to determine the multilayer reflection and transmission coefficients.

Optimization procedures can be used to deal with both of these difficulties l_9,l()‘l, and in the

present work two optimization procedures are employed to provide more effective training. ln

order tio prune the largesearch space, the "N~squaredscan" approach [l l] is used. Though it may

miss out an optimal solution, the "N-squared scan" approach has been shown to be useful in

practice [12]. To avoid rcevaluating the optical performance of unaltered layers (difficulty 2,

above) we have developed an algorithmic routine is used to short’ cut the calculation process ol’

the multilayer reflectance, Without relying on Eqs. (9) and (IO) to compute the reflection and

transmission coefficients for each layer repeatedly, This technique takes advantage of some

intermediate elements of previous multilayer calculations that can be retained for subsequent use.

5 Experimental Calculations with the Optical Thin-Filln Model
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In this section the performance ofthe Optical Thin-Film Model is examined with respect to

several widely studied data sets [2,8,l3,l4] and compared with the performance of a

"conventional" connectionist learning algorithm, the multilayer pcrceptron with backpropagation

training (labelled "BP" in the following).

5.1 Data Sets Used

Five different sets of data are used for experimental training and testi XOR, PARITY,

PATTERN I, PATTERN2, and IRIS. The first four have binary values (either 1.0 or 0.0). but

the fifth data set (IRIS) is eontiinuous~valued. The XOR data set has ’four 2-bit’ binary numbers

as inputs. The PARITY data set comprises I6 four-bit binary numbers for the inputs. For visual

pattern recognition two examples on a 5 by 5 grid are covered: P/\’1"I‘ERNI, comprising four

distinct patterns, and PATTERN2, comprisingeight distinct patterns. For both PATTERI\ll and

P/\’l"l‘ERN2 input patterns containing errors are also presented to examine the degree to which

the OTFM can, as other connectionist architectures, classify correctly and degrade gracefully in

the presence þÿ�o�f �noise. The IRIS data set [15] concerns the classification of three dittereiit classes

of iris plant and contains IS() samplesdivided into a training and a testi data set.

5.2 Experimental Results

For each ofthe experimentsillustrated here, the OTFM multilayer is assumed to be deposited on

a substrate with a refractive index of4.() (corresponding to the refractive index of germanium in

the rnicrowave region of the spectrum) and the input medium is taken to have a refractive index

of 1.0 (corresponding to air). As discussed in section 4, the output values of an O"l‘Fl\/I stack can

be chosen to he the complex--valuedretlection and transmission coefficients or the real~valued

reflectance and transmittance coefficients (absolute magnitudes of the complex~valucd

cocl‘ficicnts). Depending on what is chosen, either Eq. (13) or (ld) above is used. For the XOR,

PARITY, and PATTERNI data sets the reflectance coefficient was the output parameter used,

and the merit vaiue was determined by expression(l3). For thc P/\’il"I‘ERN2 and IRIS data sets

the complex reliection coefficient was used as the output pararneter, and the merit value was

determined by expression (I4).
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For the BP model, the learning rate is typically set to 0.2, and the momentum is set to 0. l. ’1"he

best fI‘Zlll‘)lflgresult is selected out oi" 5 trainings for each data set.

5.2.1 XOR: the XOR problem

The XOR problem involves training a system to reproduce the Boolean exclusive--or logical

flll‘lCilO1l and is the simplest ease þÿ�o�i �the Nvinput parity problem. It is also perhaps the simplest

elassiiication problem that is not linearly separable. Table l shows that the desired computation

(training target) is 1.0 if the þÿ�i ��i�1�’�s�tinput is 0.() and the second is 1.0 or if the first is I.0 and the

second is 0.0; otherwise the desired output is 0.0.
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Table I.. Training results on the XOR problem.

Layer p

p pyNp ypynfhickness 

1 1.2 1.278507
i

2 2.4 1010522

3 1_2 2.427093

4 2.4 1 0.093s37

5 1_2 l 0.798172

6 2_4 0.299938

7 1_2 0.797708 y

3, l ,

24
 . ....____ Q.§?.l§35f*

Table 2. Optical descriptionof a 8--layerOTFM for solvin the XOR

problem. "N" shows the initial l’Cfl‘21CflVC indices. "’l‘hiekness"

shows il found thickness combination, which results in a solution of

the XOR problem shown in Table l.
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/\1’l 8-layer þÿ�(�‘�)�’�l�‘�l�* ��l�\�/�1(shown in þÿ�"�l�‘�&�1�l�T�)�l ‹2) was used lor training to solve the XOR problem. In each

input row as shown in Tztble 1, two input hits were encoded into the refractive index ofthe first

lztyer and second layers respectively (see section 3). The model was trained for an input light

wavelength value of 4 um. The rel‘r11ctive index sealing factor for the inputs (maxiinum value of

111/M)was set to be 0.7 (see figure 6). Tzlhle l shows the result ofthis trziining. For 11 tolerance

value o1‘0.3, the results in the "Rellectz1ncc" column are acceptable-according to the "Tz1rget"

column. Also shown i11’I‘11l>le l are the results for il "BP" neurzil network with two nodes in the

|1il1~1ye1’.Thetrainingtimelorthe()’I‘Fl\/1.inthiscasewas11pp1’oxi1110tely4niinutesandforl1~1ye1’.T he training time lor the ()’I‘Fl\/1. in this case was 11pp1’oxi1110tely4 niinutes and for

the BP model ztpproxiinately I() minutes.

5.2.2 PARITY: the purity problem

The purity problem exzuriinecl here has 16 four-bit binary l’1LlIDl)CI‘S und is l‘requently used for

evuluziting connectionist models because þÿ�o�l �its nonliiieurity [8]. The desired output is 0.0 if the

purity ol" the four-Abit number is even, and l.() if the parity is odd.

Inputs Targets (l)’l‘Fl\/I BP

p

 p  
  pA

_i_:?A__p__p
 __>» þÿ�_ ��_�A   p A125layers)

p

(4 hidden nodes)

0 0 0
p

0 0 0.246310 0.02224

p

0 0 0 1 1 0.640190 0.99903

l 0 0 1 0 1 0.596955 0.99902

0 0 1 1 0 0.21563 17 0.00921

0
.

1 0 0 1
l

0.822227 0.99903

0 1 1 0 1 0 0.214709 0.00920

0 1 1 0 0 0.2 H5929 0.009 1s

0 1 1 1 1 0.832500 0.96059

1 1 0 0 0 1 0.734272 0.99903

1 0 0 1 0 0.207857 0.00921

1 0 1 0 0 0. [458 10 0.00918

1 0 1 1 1 0.322444 0.96040

1 1  0 0 0 0.205041 0.009111

1 1 0 1 1 1 ().60(l()92 0.9002 1

1 1
p

1 0 1 1 0.553203 0.90004

1 1 1
M _1___ 1

pp 0 _

0.342155 0.011257

"l‘z1ble 3. Training result for solving the parity p1°0hle111.lf the tolerztncc. is set to 0 5, thc

(‘)’il‘lf9l\fI outputs are ttcceptubleticcording to the targets required.
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Table 3 shows the result ofthe OT FM training for solving the purity problem, using the PARITY

data set. In this training, a 25-layer OTFM was used to o|;>tz1in the desired retlectances nt nn

wavelengthof 4.4 tim. The refractive index scaling factor was set to be 0.5. Alfll0llgl} the result

of this training does not show the degree of precision obtained by :1 BP network trained with the

same dzita set, the desired computation is obtained. For it tolerance setting of 0.45, the trained

(‘)’l‘Fl\/I mzttchcs the target settings. ’I"l1e training times were approximately 18 minutes for this

optical thin-film stack and apprxoimately 32 minutes for the BP network.

5.22.3 PA’l"[‘ERN l: recognition þÿ�o�l �leur 5 X 5 grid pntterns

Four 5 by 5 grid patterns were used for training in this experiment. As in the preceding two

experiments, the reflectance was used as the OTFM output and expression (I3) was used as the

merit lunction for training. Figure 7 shows the four 5 by 5 grid patterns þÿ�( ��1�’�,’O’, ’C’, and ’X‘) tliztt

the model was trained to recognize.

M

 
N M

þÿ� �f�f � 
it

i i  1  
    ....     

I . 
 

il
0

 
t-l __t.J t lf  I  l  
Figure 7. Four 5 by 5 grid patterns: T, ’()’, ’C’ and ’X’. A black square represents
1.0, and at blank square represents 0.0.

A multilayer film stuck of 25 layers was trained for this recognition tnsk. Each element in the

input pnt.tern ("pixel") represented either l.0 (black) or 0.0 (blank) and was encoded into the

þÿ�r�e�t ��r�u�c�t�i�v�eindex ofa given layer. Thus the 25 input values þÿ�o�t �the pattern were coded into the 25

individual layer relructive indices in the model. For each of these tznfget input patterns, the O’1‘Fl\/1

was trained with respect to it set of target reliectatnces at 8 separate wavelengths, tzmgiiig front

l0 prn to 12.8 urn. The 8 target retleetunces were specified tlilferently for each pattern us shown

in Fig. 8. The goal was to train the model film stuck to produce rellectzinces its close as possible

to the target rellectnnces, so that alter training it would he able to distinguish these patterns to

it maximum degree.
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The results þÿ�o�l �this training can be seen in Figure 9, Where it can

rns specified over

be soon that the trz1.ined O’1"F\/I

slack produced high and low values of 1’eflectancc approximzitelycorresponciing to the þÿ�l�2�1�I�‘�& ��L�’�l

values.
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Although the target values were not achieved precisely, the output reflectance spectra easily

distinguish the four patterns of Figure 7.
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p4

To examine the response ofthe O’I"Fl\/l in the presence of noise, four noisy versions of pattern l ,

pl, p2, p3 and p4 were tested on the trained model (Figure IO). ln these four patterns, the

majority þÿ�o�l �black and blank digits þÿ�o�i �the pattern þÿ ��I�’remain unchanged. Noise is added to the

pattern by changingsome the original pixels þÿ�o�l �’l’ from black to blank or from blank to l>l21elwithwith

noise increasing grftduzilly froin pl to P42thc pattern p4 is consittlered us the poorest pattern of

Wavelength
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þÿ ��l�’�.The intent is to examine the manner in which pertorinancedegrades in the OTPM.

Depending on the tolerance required, noisy patterns o1"I’, pl, p2, p3 and p4 can he classified as

’l’ ora "wrong" pattern. For examplelor a low tolerance, only pl is qualified to be ’1’, and p2, p3

and p4 are all classilied as "wrong" patterns. As shown in Figure l l, as the noise increases þÿ�i ��r�o�i�n

pl to pdl, the resulting retlectanee curve becomes more distant from the target reilectance curve,

indicating that the system degradesgracefully with increasing noise. Even for p4, its curve can

still be seen as closer to ’l’, compared with the reflectance curves ot" ’O’, þÿ ��C�’and ’X’ in Figure 8.

The O’l‘Fl\/1 training for this experiment took I6 minutes, while a BP network trained with

P/\’I"‘lQ‘ERNl took 2 minutes to complete a satistyingtraining. However if icwer wavelengths can

be used for O’I‘Fl\/I, the training time can be reduced substantially.

To reduce training time, the same ()’l‘Fl\/I stack with the 4 patterns þÿ�o�l �PA’l"’l‘ERNl was trained

by using complex reflection coefficients specified at only two different target wavelengths and

using the rncrit l:LlI1CtlOl] of Eq. (14) was also performed. Compared with the first training method

used with P/\rl"l‘IER_N l, the perforrnaneeof the (’)’l‘Fl\/l improved: a lower error rate was obtained,

and the training time was much shorter (since only two wavelengths were necessary). A siinilar

experiment with this approach,in which 8 patterns were used (PATTERN2 data set) for training,

is described in the following section.

5.3.4 þÿ�l�f ��/�\�’�l�"�l�‘�E�R�N�2�:recognition oleight 5 X 5 grid patterns.

For the training of a pattern recognition problem involving 8 patterns, a more tlcxible approach

is adopted by using the merit function Eq. (14). The complex reflection coefficient. þÿ�o�i �a film stack

can be represented as the vector sum of its real and imaginary parts, r = Re(/f) + iIrn(r) and

similarly the target reflection þÿ�e�o�e�h ��i�c�i�e�n�tas ro = Re(r,,) + ilnn(/;,). Then rather than training the

model by comparingR0and R, the training can be peri‘ormedby comparing Re(/~,,)with Re( r) and

lll’]()‘U)with ’l‘]T1()’)directly. Since there are now two comparisonsmade for each wavelengthvalue,

the number of wavelengths needed in the computation is reduced and a coniputational saving

results. This approach is illustrated here with a 8 pattern recognitions problem. The four patterns

shown in Figure 7 were again used here, plus another four patterns shown in Fig. IZ.
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Figure IZ. The additional four patterns used in the PATTERN2 data set.

A 25-layer stack was also used for this 8-pattern recognition experiment, and it was trained at at

singlewavelength o’t‘8 /tam. The specifiedtarget reflection coefficients for patterns ’I’, ’O’, ’C’, ’_X’,

’l_,’, ’N’, ’G’ and ’D’ were distributed evenly around the outside of the unit circle þÿ�o�l �the complex

plane and are shown in Figure l3, Any other points within the circle could have been chosen as

target points, and it is at subject offurtlicr research to determine how best to distribute target

points on the complex plane.
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Figure 13. Targets specified for the 8 patterns of

Figures 6 and ll.

After training the 25-layer stack for the specified targets, the stuck yielded the reflection

coefficients for the 8 patterns shown in Figure 14. Each of the resulting rellection coefficient

points is the closest point to its corresponding. When at new input pattern is presented to the film

stuck, the distance to the nearest target reflection coeliicient can be calculated to determine which

pattern is ’closest’ to the input pattern.
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recognition problem

In order to examine the trained models response to noise, noisy versions þÿ�o�l �the pattern ’l’ were

also employed (Figure lil). As shown in Figure 15, additional pixels of noise have been added

to the ’I’ pattern to create the alternative patterns, pl, p2, and p3.
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The result of applying these input patterns to the trained stack are shown in Figure 16 as 110186

increases the resulting þÿ�1 ��e�l�‘�l�e�c�t�i�o�ncoefficient points move away l"ro|n the reflection coetlieient ol

the original ’I’ pattern point. Thus the model film stack degrades gracefully with the lCl(llflOll ot

noise to the inputs.
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Figure 16. Result of noisy versions ol" ’l’ (Figure 14)
applied t.o the trained film stack (Figure 13).

5.3.5 IRIS: classification and generalization with the iris dataset.

The iris data was first used by Fisher [16], and is still frequently used today as the standard

discriminant analysisexamplel 1311.The data set is used to discriminate three classes of iris using

four eontinuous-valued features for each case. There are 150 cases, with 50 instances for each

class. One Class of the data is linearlyseparablefrom the other two, while those other two are not

linearly separable from each other.

Each ofthe Your features for the iris data set has a dillerent range þÿ�o�l �values, so a separate scaling

factor, A, was used for each feature, which was multiplied by the corresponding input value and

the produce then added to the base value ofthe layer refractive index. The A sealing factors used

for this experiment were 0.03, 0.08, 0.03, and 0.04 for the respective iris data features (sepal

lengflz, þÿ�.�s ��f�f�p�a�lwidllz, petal length and petal width).

The training approach was the same as that used for the 8 grid pattern recognition þÿ�C�X�l�) ‹�3�I�‘�l�l�‘�l�’�l�C�»�l�l�l�‘

(usingMerit function Eq. (l4)), but 3 wavelengths were used for training on each pattern. The

additional wavelengths were used to assist in the discrimination ol the 2nd and 3rd iris classes,

which are not linearly separable. The thin~t1lm stack consisted þÿ�o�l �four layers, and training was

carried out over wavelength values of 5.0 tim, 5.3 uni, and 5.6 pin. The target reflection

eoellieients (real and imaginarycomponents) were {0/2, 0.2}, {0.3, (‘).3} and {0.4, 0.4} lor class

1, and {-0.5, 0.1 }. {-0.4, 0.3} and {-0.3, 0.4} for class 2, and {0.l, -O.5}, {0.3, --0.4} and {0.4,

~0.3} for Class 3, as shown in Fig. 17.
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Figure 17. Target reflection Coefficient points for

IRIS clussiliczltion at three wuvelengllets.

Atter the lllm stack was trainecl with 120 examples from the IRIS data set, it was tested with 30

novel lest. examples. A lbrced ClØ1SSlliC21[l()l]approach was employed that l‘ir:al. takes the average
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value ofall the points for each training class at 3 different wavelengths. During testing this value

is eompzxred with the ztetual output; the one having the minimum difference is chosen as the

elussilieci type. Figure I8 shows the test results at the three wavelengths.
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The UTFM stack classified 28 out ofthe 30 test examplescorrectly in this experiment, When all

l5O elements of the IRIS data set were presented,5 were classified incorrectly. ’These results are

comparable to neural network calculations that have been used in connection with the ’IRIS data

set [l3].

6 Conclusions

Connectionist models can be used to provide nonlinear mappings between their inputs and

outputs. Neural networks achieve this mapping by adjusting the weiglits þÿ�o�l �connections among

the processing units. The OTFM has a novel connectionist architecture whereby the thickness

of each thin-film layer can be considered to be such an adjustable weighted connection. By

searching for a set of appropriate thicknesses þÿ�o�l �individual layers, the goal of learning the

association between the input and the output can be eventually achieved.

/\n optical realization þÿ�o�l �this architecture would offer’ the possibility þÿ�o�l �more or less instantaneous

evaluations ofthe (trained) thin~tilm stack. Also, because opticalbeams at ordinary intensities do

not interfere with each other, the architecture could support the simu1t_aneou.s evaluation þÿ�o�t �

multiple signals. The manner in which input is encoded into the thin-film architecture, however,

would require adjustments to the refractive indices of the optical materials. Such variation of

refractive index can be achieved for some materials by means ol’ elastooptic, electrooptic, and

magnetooptic effects [17], but the effects are often relatively small. An another approach could

involve the use of gradient index optics, which are usually associated with ’l:iber~optics,but which

have also been deposited in the form þÿ�o�t ��t�h�i�n�~�l�i�l�m�sl1l8, l9l. These materials have a refractive index

that varies from point to point within the medium. By using such materials in thin~lilm

multilaycrs, it would seem feasible that variable refractive index values could be achieved by

physically redirecting a laser be-am to the multilayer at different spots on the surface.

A more ilexible approach would be to employ the Herpln equivalent index concept [2O,2l] as

outlined by Dobrowolski and Piotrowslci [22]. The Herpin equivalent index method can be used

when there is a need to prepare a film with refractive index ri, HL < zz < /Ti that does not

correspond to that þÿ�o�i �any known material. The equivalent þÿ�e�l ��l ��c�c�tþÿ�o�l �such a film can be achieved
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for a given optical wavelength by a suitable three-~~1ayercombination consisting of materials with

indices /1,1 and n,,. This means that it is always possible to duplicate the performance of any

multilayer system consistingol" many different materials by one consisting of only the lowest and

highest re’1‘ra_ct_ive.-index materials from the original system, since one can always substitute any

layer þÿ�1 ��r�o�mthe original system by a three-layerHeipin equivalent. Although the 1-lerpinequivalent

index is deiined for a single wavelength, Dobrowolski and Piotrowski show how this approach

can be used elieetively for a thin-iilm multilayer over a range of wavelengths, as long as the range

is not too great. Although this approach involves the introduction of additional thin-films and

thus requires greater computation, it appears to ofler the greatest llcxibility tor physical

implementations ofthe optical þÿ�t�h�i�n�-�1 ��i�l�mmultilayer conneetionist architecture.

The observation that alternative distributed nonlinear architectures may have attractive

computational properties has been made by several authors, lor example Serra and Zanarini [23].

We are exploring one such architecture based on the technology þÿ�o�l �optical þÿ�t�l�i�i�n�~�t ��i�1�mmultilayers,

which is þÿ�o�l �interest both for its novel computational properties and for the possibility þÿ�o�l �practical

realizations in terms of optical systems.
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