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Abstract

A novel connectionist architecture that differs from conventional architectures based on the
neuroanatomy of biological organisms is described. The proposed scheme is based on the model
of multilayered optical thin-films, with the thicknesses of the individual thin-film layers serving
as adjustable 'weights' for the training. A discussion of training techniques for this model and
some sample simulation calculations in the area of patten recognition are presented. These
results are shown to compare with results when the same training data are used in connection
with a feed-forward neural network with back propagation training. A physical realization of

this architecture could largely take advantage of existing optical thin-film deposition technology.

1 Introduction

Although connectionism has taken its inspiration from the neuroanatomy of biological organisms,
the essence of this form of computation does not require strict adherence to the biological
exemplar. What it fundamentally implies is simply an interconnected set of parallel distributed
processing elements with nonlinear transfer functions between the elements [1,2,3].  Thus
connectionist architectures that differ significantly from the biological model may still exhibit
interesting computational properties and may be worthy of consideration. In this paper we
describe an alternative connectionist architecture that takes its inspiration from the technology of
optical multilayer thin-films (see Figure 1) and which we will refer to as the Optical Thin-Film

Model (OTEM).
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Figure 1. Neural network and optical thin-film connectionist models.

Section 2 provides a brief background on the optical properties of thin-film multilayers. Section
3 describes how information could be encoded into appropriate optical signals so that
connectionist computations could be performed. Section 4 describes the computational method
used to train a simulated thin-film multilayer with a training set. Section 5 presents some sample
experimental calculations with this simulation model and compares the results to those performed
with a conventional neural net architecture. Section 6 discusses the possibility of a physical

realisation of this optical thin-film architecture for connectionist computations.

2 Optical thin-films

We will first consider the optical properties of a single (ideal) thin-film and then go on to consider

the case when there are several contiguous thin-films.

2.1 Reflection and transmission coefficients for a single, isolated layer.

We assume the material of the thin-film is uniform, mostly transparent, and non-dispersive and
can be characterised by a single index of refraction, n. Its physical configuration can be
represented by a plane parallel plate existing in a medium, such as a vacuum, whose index of
refraction is equal to 1.0 (Figure 2). When a light beam of a single wavelength is incident on such

a plane parallel plate, the beam is split into two parts -- a reflected beam and a transmitted
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(refracted) beam that enters the material. The respective angles and magnitudes of these two
newly created beams are determined by (a) the polarization and wavelength of the incident light
beam, (b) the angle of incidence of the beam with the plate (thin-film) and (c) the index of
refraction of the plate material [4,5]. Figure 2 shows the amplitudes of these individual light beam
components, with the incident beam shown (on the left) to have an initial amplitude of a. The
amplitude of the reflected beam component (on the left of the figure) is reduced by the reflection
coefficient, r, and the amplitude of the transmitted component of the beam is reduced by a
transmission coefficient, 7. When the transmitted beam inside the plate material reaches the other
surface, it is again split up into a reflected beam attenuated by the reflection coefficient r, and a
refracted beam attenuated by a second transmission coefficient, ¢/, associated with light that passes
from a refractive material back into the vacuum. As can be seen in the figure, the light beam
component inside the plate continues to undergo reflections and refractions, such that there are
a number of reflected beams (ar, atrt', atr’t’, atr’t’, atr’t', . . ) and transmitted beams (art’, arrt’

atr't’, at’r', .. ) that come off the top and bottom of the plate.

atrt' atr°t atr’t  atr’t

NS
ERVAVAVAY
N

att’ atr’t  atr’t atr®t

Figure 2. Multiple reflections and refractions in a thin-film.

Since the reflected beams, ar, atrt, atr't' atr't’, etc., are waves, they differ from each other in both

amplitude and phase, and the overall reflection of the light beam off the plate will be determined



by the multiple-beam interference of this infinite series of reflected component waves [5].
Algebraic expressions for the overall reflection and transmission coefficients (Eqs. (4) and (5),
below) can be derived in a self-consistent manner if the simplifying assumption is made that the
incident beam is perpendicular to the surface of the plate (thereby eliminating the polarization as

a factor).

The parameters used in these expressions are characterised in Figure 3.
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Figure 3. A single thin-film with light incident () on the left.

A monochromatic light beam (I in Figure 3) with wavelength A is incident on the left side and,
to simplify the presentation, is taken to have an electric field vector' amplitude normalized to 1.
At the left surface of the thin-film, the incident beam is split into a transmitted component and
reflected component with amplitudes -f and ¢, respectively, where

f = @ -1 and [ = - (1)

7+ 1) @+ 1)

i1 is the complex refractive index of the thin-film, and /i = n + ik, where n is the ordinary index

"The light wave also has a magnetic field vector component, but it is sufficient to consider
only the electric field vector here. The phase of the wave is customarily incorporated into the
description by representing the component as having a complex amplitude.

4



of refraction and k is the attenuation coefficient. The transmitted beam component with amplitude
¢t now undergoes a phase shift as it travels a distance d (the thickness of the film) up to the right

hand surface, so that its phase shifted amplitude is &, where

2mid

A (2)

i

At the right-hand boundary the beam is again split up into transmitted and reflected components.
The transmitted component that emerges on the right has an amplitude of &(fn). Since the
reflected component is one of an infinite series of reflected components at this interface, they can
be lumped together to represent the interference combination of all of the reflected components
by b in Figure 3; &b is the phase shifted result of this leftward-travelling wave at the inside left-
hand surface of the film. At the left hand surface, the wave with amplitude & is split into a
refracted (transmitted) component with amplitude ntgb and a reflected component travelling back
to the right with amplitude feb. At the right-hand surface, the phase-shifted rightward travelling
wave, here with amplitude f£b, is also split into two components: a reflected component already

accounted for by b and a transmitted component with amplitude f&bnt.

Expressions for the reflection and transmission coefficients of the thin-film can now be taken

directly from Figure 3:

r. = ~f + nteb and t, = (et + fe*b)nt (3)

When these two equations are solved for the unknown b, the complex reflection and transmission
coefficients can be given in terms of the refractive index and thickness of the film and the

wavelength of the incident light (using expressions | and 2):

S
1 ‘“‘fQSZ

r, =

4)



and

e(1 - f?)
1 - [

(5)

2.2 Reflection and transmission coefficients for a multilayer thin-film structure

The reflection and transmission coefficients for a multilayer thin-film structure are obtained by
means of a recursive approach. Assume several thin-films with different refractive indices have
been successively deposited on top of a substrate material to form a multilayer thin-film stack
(Figure 4). Let r, denote the complex reflection coefficient at the outer surface of the thin-film
structure, and let £; denote the transmission coefficient in the substrate (output medium) at the last
boundary surface. The values of these coefficients will depend on the refractive indices and
thicknesses of all the films in the structure, the refractive index of the output medium, and the

wavelength of light.

Output Medium

N -1 Layers

Figure 4. A multilayer stack of N - [ thin-films deposited on a substrate (output medium).

Imagine an additional thin-film Jayer that is brought up to an existing thin-film multilayer structure
of N-1 layers whose values of r; and ¢ are already known (Figure 5). The additional thin-film
layer 1s going to be the Nth layer and has a refractive index of Ay = ny + ik . The distance
between the Nrh layer and the N-7 layer substructure will be zero, but the layers are shown

separated in Figure 5 for the purposes of explanation.
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Figure 5. An additional thin-film layer is brought up to a multilayer structure of N-1 layers.

Again, the incident light on the left is taken to have a normalized amplitude value of 1. Egs. (4)
and (5) are used to determine r; and &, for the Nth layer. Since the light incident on the N-7 layer
substructure does not have an amplitude of 1, the amplitude of light reflected off its front surface
is not its reflection coefficient r,, but some other value, which we take to be x. This reflected
light with amplitude x is partially reflected by the Ntk layer back towards the substructure and
partially transmitted through the Ntk layer out to the left, and these components have amplitudes
of xryand xt, respectively. The N-7 layer substructure has a reflection coefficient of r,, and self-

consistency requires that the following relations hold:

roo= Tyt
o=, ©

x o=

Eliminating x from the above yields the following expressions for r and #:

R — (7)



and

[ = (8)

r and ¢ are the reflection and transmission coefficients for a N layer thin-film stack and r, and ¢,
are the corresponding coefficients for a N-7 layer thin-film stack. Relabelling these terms so that
they correspond to the number of layers in the film stack and substituting in the expressions for
ryand £, from equations (4) and (5) yields the following recursive expressions for calculating the

thin-film stack reflection and transmission coefficients:

Sl =)+ (ey ~ fry
ry = - ‘ 5 )]
(I = fyen) = S = g9ry,

and
)
) iy ThEy
Iy = ) (10)
(1 NSN) I =gy,
with
~ . 277, d
iy — 1 2 i
A _ A
fy = —, Ty = ——— and g, = e (1)
' 7., + 1 a, + 1
My - N

The recursive expressions shown in equations (9) and (10) provide the means for computing the
reflection and transmission coefficients for a thin-film stack of any number of layers. It is these
highly nonlinear expressions that form the basis for the connectionist computations to follow. The

optical reflectance and transmittance, which are what is ordinarily obtained from optical



measurements of thin-film stacks, are directly derived from the reflection and transmission

coefficients:

R = Ir(WP and TA) = 1(W)P? (12)

3 Encoding information in the optical thin-film model

Expressions (9), (10), and (11) describe the reflection and transmission coefficients of a N-layered
thin-film stack in terms of the N refractive index and thickness values of the layers and the optical
wavelength of light. For computational purposes, these coefficients, with real and imaginary
values always in the range of -1.0 to +1.0, may be considered to be a generalized output. It is also
possible, by means of expressions (12), to use reflectance and transmittance as generalized
outputs and thereby associate computations more directly with conventional optical
measurements. Both of these approaches have been used in experiments reported in this paper.
With these generalized outputs and for a specified range of optical wavelengths, virtually any
desired spectral characteristic of these coefficients can be obtained by choosing a set of thin-film

layers with appropriate values of thickness and refractive index [6,7].

There are several possible schemes for encoding input information to be used for computational
purposed with this model [6]. The approach employed in this paper is to encode input into the
indices of refraction of the various thin-film layers. Under this scheme if there are to be M input
values for a computation, then there must be at least M thin-film layers available. As is shown in
the next section, the thicknesses of the various layers are then used as adjustable 'weights' to

obtain the desired output.

Figure 6 shows an example of this encoding scheme. A five-layer thin-film stack is shown, each
layer characterized by its refractive index, n,, and its thickness, d. For each layer i, one of the
inputs is encoded into an appropriately scaled value of the refractive index n A and added to a
base value of that layer's refractive index, ny,;, (with n AP << 1) to arrive at the layer's index value

n;. The values of ny; are kept large enough relative to the encoded incremental values, R, LO
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ensure that there is always a substantial variation of the refractive index n; from layer to layer,
irrespective of the value of the input for that layer. Note that it is not necessary for every layer

of the stack to be used for input; a thin-film stack could be designed with some extra layers that

are not used for encoding input.

n,d, n, = ng + N

n,d, n, = nNg + Iy,

n,d, n, = ng + N

n,d, n, = ng, + N,

n,,d, n, = ng + 1,
Substrate

Figure 6. A thin-film stack with inputs encoded as incremental values of the refractive indices.

The thin-film stack provides output values of the reflection and transmission coefficients for each
value of the optical wavelength. One can use a single wavelength for a computation, but it is
often more effective to use multiple wavelengths in order to provide better discrimination among
the various outputs. When multiple wavelengths are used, an indexing scheme must be set up that
maps a desired computational output to a particular spectral response of the system over the
wavelength range. Examples of this approach will be shown when sample calculations are

presented in section 5.
4 Training with the optical thin-film architecture

The goal of training is to determine a set of appropriate layer thicknesses in the OTFM to satisfy
the target optical specifications, and it can be viewed as supervised learning based on direct
comparison of the model output with known correct answers [8]. The learning process proceeds
until the model yields an acceptable output upon presentation of the appropriate input. The
degree to which an output is acceptable can be measured by the value of a merit function, which,

for example, can be taken to have the form:



m

M(x) = J(R(A) - R(x,4)) (13)
k=1

where x is the vector of design variables including parameters such as individual layer thicknesses,
R, is the target reflectance at A,,, R is the computed value of reflectance at A, for a particular value
of x, and m is the number of wavelengths. The goal of learning then is to achieve a suitably small
value of the merit function, which corresponds to the cost function in a neural network. An
alternative merit function can be taken to be:

i

M(x) = I Ur(A) = rx A’ (14)
k=1

where r, is the target reflection coefficient at 4,, and r is the complex reflection coefficient at A,
for a particular x, so that the reflectance R = [rI>. The advantage of this second formulation is
that an extra variable (real and imaginary components of r, rather than just a real value R,) can
be specified for a target at a given wavelength, and hence it is possible to specify more tasks with
fewer wavelengths. This can have the consequence of reducing the amount of computation
involved. Since Eq. (13) corresponds to conventional optical measurements, it should be easier

to implement in an optical realisation.

The training procedure is an iterative approach involving the following steps:

(1) Initialize the thickness and refractive index of each layer, and assign the initial best merit
value My, = <« Specify the optical targets (here, for illustration, we use reflectance

values) at each A (wavelength).

(2) Repeat until the My, is sufficiently small (or until a specified number of iterations have been

completed).

(2a) Vary the thicknesses of some layers using a search algorithm to find an optimal set of

layer thicknesses.



(2b) Calculate R or r at each A.

(2¢) Calculate merit function M using either Eq. (13) or (14).

(2d) If M { My, then assign the value of M to M,,,, and update the thickness of each layer

and other parameters necessary for the later calculations.

Training the optical thin-film multilayer involves searching for an appropriate OTFM
configuration by observing the value of the merit function for each thickness combination. There

are two factors that can make this search computationally expensive:

(1) Exhaustive search of all possible thickness combinations is prohibitive for a large number of
layers. For instance, for a 10 layer model and assuming that 20 different thicknesses are

evaluated for each layer, exhaustive search would require 20" evaluations.

(2) If Egs. (9) and (10) are used to compute the reflection and transmission coefficients of a
multilayer, then whenever an individual layer thickness is altered, the reflection and
transmission coefficients for each other layer would ordinarily have to be recalculated in order

to determine the multilayer reflection and transmission coefficients.

Optimization procedures can be used to deal with both of these difficulties [9,10], and in the
present work two optimization procedures are employed to provide more effective training. In
order to prune the large search space, the "N-squared scan" approach [11] is used. Though it may
miss out an optimal solution, the "N-squared scan" approach has been shown to be useful in
practice [12]. To avoid reevaluating the optical performance of unaltered layers (difficulty 2,
above) we have developed an algorithmic routine is used to short cut the calculation process of
the multilayer reflectance, without relying on Eqgs. (9) and (10) to compute the reflection and
transmission coefficients for each layer repeatedly. This technique takes advantage of some

intermediate elements of previous multilayer calculations that can be retained for subsequent use.

5 Experimental Calculations with the Optical Thin-Film Model



In this section the performance of the Optical Thin-Film Model is examined with respect to
several widely studied data sets [2,8,13,14] and compared with the performance of a
"conventional" connectionist learning algorithm, the multilayer perceptron with backpropagation

training (labelled "BP" in the following).

5.1 Data Sets Used

Five different sets of data are used for experimental training and test: XOR, PARITY,
PATTERNI, PATTERN2, and IRIS. The first four have binary values (either 1.0 or 0.0), but
the fifth data set (IRIS) is continuous-valued. The XOR data set has four 2-bit binary numbers
as inputs. The PARITY data set comprises 16 four-bit binary numbers for the inputs. For visual
pattern recognition two examples on a 5 by 5 grid are covered: PATTERNI, comprising four
distinct patterns, and PATTERN2, comprising eight distinct patterns. For both PATTERNTI and
PATTERN?2 input patterns containing errors are also presented to examine the degree to which
the OTEM can, as other connectionist architectures, classify correctly and degrade gracefully in
the presence of noise. The IRIS data set [15] concerns the classification of three different classes

of iris plant and contains 150 samples divided into a training and a test data set.

5.2 Experimental Results

For each of the experiments illustrated here, the OTFM multilayer is assumed to be deposited on
a substrate with a refractive index of 4.0 (corresponding to the refractive index of germanium in
the microwave region of the spectrum) and the input medium is taken to have a refractive index
of 1.0 (corresponding to air). As discussed in section 4, the output values of an OTFM stack can
be chosen to be the complex-valued reflection and transmission coefficients or the real-valued
reflectance and transmittance coefficients (absolute magnitudes of the complex-valued
coefficients). Depending on what is chosen, either Eq. (13) or (14) above is used. For the XOR,
PARITY, and PATTERNI data sets the reflectance coefficient was the output parameter used,
and the merit value was determined by expression (13). For the PATTERN2 and IRIS data sets
the complex reflection coefficient was used as the output parameter, and the merit value was

determined by expression (14).



For the BP model, the learning rate is typically set to 0.2, and the momentum is set to 0.1. The

best training result is selected out of 5 trainings for each data set.

5.2.1 XOR: the XOR problem

The XOR problem involves training a system to reproduce the Boolean exclusive-or logical
function and is the simplest case of the N-input parity problem. It is also perhaps the simplest
classification problem that is not linearly separable. Table 1 shows that the desired computation

(training target) is 1.0 if the first input is 0.0 and the second is 1.0 or if the first is 1.0 and the

second is 0.0; otherwise the desired output is 0.0.

Inputs Targets OTFM BP
(8 layers) (2 hidden nodes)
0 0 0 0.100546 0.02760
0 1 | 0.813596 0.97010
| 0 ] 0.728428 0.97008
1 I 0 0.195737 0.03752

Table 1. Training results on the XOR problem.

Layer N Thickness
! 1.2 1.278507
2 2.4 1.010522
3 1.2 2.427093
4 2.4 0.093837
5 1.2 0.798172
6 2.4 0.299938
7 1.2 0.797708
8 2.4 0.291884

Table 2. Optical description of a 8-layer OTFM for solving the XOR
problem. "N" shows the initial refractive indices. "Thickness"
shows a found thickness combination, which results in a solution of
the XOR problem shown in Table .



An 8-layer OTFM (shown in Table 2) was used for training to solve the XOR problem. In each
input row as shown in Table 1, two input bits were encoded into the refractive index of the first
layer and second layers respectively (see section 3). The model was trained for an input light
wavelength value of 4 um. The refractive index scaling factor for the inputs (maximum value of
n ;) was set to be 0.7 (see figure 6). Table 1 shows the result of this training. For a tolerance
value of 0.3, the results in the "Reflectance” column are acceptable according to the "Target"
column. Also shown in Table 1 are the results for a "BP" neural network with two nodes in the
hidden layer. The training time for the OTEM in this case was approximately 4 minutes and for

the BP model approximately 10 minutes.

5.2.2 PARITY: the parity problem
The parity problem examined here has 16 four-bit binary numbers and is frequently used for
evaluating connectionist models because of its nonlinearity [8]. The desired output is 0.0 if the

parity of the four-bit number is even, and 1.0 if the parity is odd.

Inputs Targets OTFM BP
(25 layers) (4 hidden nodes)
0 0 0 0 0 0.246310 0.02224
0 0 0 | I 0.640190 0.99903
0 0 | 0 | 0.596955 0.99902
0 0 | | 0 0.286317 0.00921
0 1 0 0 | 0.822227 0.99903
0 | 0 | 0 0.214709 0.00920
0 | I 0 0 0.213929 0.00918
0 1 1 | I 0.832500 0.96059
| 0 0 0 I 0.784272 0.99903
1 0 0 1 0 0.207857 0.00921
| 0 | 0 0 0.145810 0.00918
1 0 | | | 0.822444 0.96040
I | 0 0 0 0.285641 0.00918
| | 0 ! | 0.600092 0.96021
| 1 I 0 I 0.553203 0.96004
| 1 | 1 0 0.342155 0.08257

Table 3. Training result for solving the parity problem. If the tolerance is set to 0.5, the
OTFM outputs are acceptable according to the targets required.
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Table 3 shows the result of the OTFM training for solving the parity problem, using the PARITY
data set. In this training, a 25-Jayer OTFM was used to obtain the desired reflectances at an
wavelength of 4.4 m. The refractive index scaling factor was set to be 0.5. Although the result
of this training does not show the degree of precision obtained by a BP network trained with the
same data set, the desired computation is obtained. For a tolerance setting of 0.45, the trained
OTFM matches the target settings. The training times were approximately 18 minutes for this

optical thin-film stack and apprxoimately 32 minutes for the BP network.

5.2.3 PATTERNI: recognition of four 5 X 5 grid patterns

Four 5 by 5 grid patterns were used for training in this experiment. As in the preceding two
experiments, the reflectance was used as the OTFM output and expression (13) was used as the
merit function for training. Figure 7 shows the four 5 by 5 grid patterns ('I', 'O', 'C', and 'X") that

the model was trained to recognize.

Figure 7. Four 5 by 5 grid patterns: T, 'O', 'C" and 'X'. A black square represents
1.0, and a blank square represents 0.0.

A multilayer film stack of 25 layers was trained for this recognition task. Fach element in the
mput pattern ("pixel") represented either 1.0 (black) or 0.0 (blank) and was encoded into the
refractive index of a given layer. Thus the 25 input values of the pattern were coded into the 25
individual layer refractive indices in the model. For each of these target input patterns, the OTFM
was trained with respect to a set of target reflectances at 8 separate wavelengths, ranging from
10 pm to 12.8 pm. The 8 target reflectances were specified differently for each pattern as shown
in Fig. 8. The goal was to train the model film stack to produce reflectances as close as possible
to the target reflectances, so that after training it would be able to distinguish these patterns to

a maximum degree.

16
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The results of this training can be seen in Figure 9, where it can be seen that the trained OTFM

stack produced high and low values of reflectance approximately corresponding to the target

values.
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Although the target values were not achieved precisely, the output reflectance spectra easily

distinguish the four patterns of Figure 7.

Figure 10. Four noisy versions of pattern "I".

To examine the response of the OTFM in the presence of noise, four noisy versions of pattern 'T',
pl, p2, p3 and p4 were tested on the trained model (Figure 10). In these four patterns, the
majority of black and blank digits of the pattern 'T' remain unchanged. Noise is added to the
pattern by changing some the original pixels of 'I' from black to blank or from blank to black, with

noise increasing gradually from pl to p4: the pattern p4 is considered as the poorest pattern of

1 1 1
o
"
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Figure 11. Plots of the testing results on 'I' and on its noisy versions p1, p2, p3, and p4.
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1'. The intent is to examine the manner in which performance degrades in the OTFM.

Depending on the tolerance required, noisy patterns of 'I', pl, p2, p3 and p4 can be classified as
T or a "wrong" pattern. For example for a low tolerance, only pl is qualified to be T, and p2, p3
and p4 are all classified as "wrong" patterns. As shown in Figure 11, as the noise increases from
pl to p4, the resulting reflectance curve becomes more distant from the target reflectance curve,
indicating that the system degrades gracefully with increasing noise. Even for p4, its curve can

still be seen as closer to 'I', compared with the reflectance curves of 'O, 'C" and X" in Figure 8.

The OTFM training for this experiment took 16 minutes, while a BP network trained with
PATTERNI took 2 minutes to complete a satisfying training. However if fewer wavelengths can

be used for OTFM, the training time can be reduced substantially.

To reduce training time, the same OTFM stack with the 4 patterns of PATTERNTI was trained
by using complex reflection coefficients specified at only two different target wavelengths and
using the merit function of Eq. (14) was also performed. Compared with the first training method
used with PATTERNI, the performance of the OTFM improved: a lower error rate was obtained,
and the training time was much shorter (since only two wavelengths were necessary). A similar
experiment with this approach, in which 8 patterns were used (PATTERN2 data set) for training,

is described in the following section.

5.3.4 PATTERN?2: recognition of eight 5 X 5 grid patterns.

For the training of a pattern recognition problem involving 8 patterns, a more flexible approach
is adopted by using the merit function Eq. (14). The complex reflection coefficient of a film stack
can be represented as the vector sum of its real and imaginary parts, r = Re(r) + {Im(r) and
similarly the target reflection coefficient as r, = Re(r,) + ilm(r,). Then rather than training the
model by comparing R, and R, the training can be performed by comparing Re(r,) with Re(r) and
Im(r,) with Im(r) directly. Since there are now two comparisons made for each wavelehgth value,
the number of wavelengths needed in the computation is reduced and a computational saving
results. This approach is illustrated here with a 8 pattern recognitions problem. The four patterns

shown in Figure 7 were again used here, plus another four patterns shown in Fig. 12.



a0

Figure 12. The additional four patterns used in the PATTERN2 data set.

A 25-layer stack was also used for this 8-pattern recognition experiment, and it was trained at a
single wavelength of 8 um. The specified target reflection coefficients for patterns T, 'O', 'C', 'X,
L', 'N', 'G" and 'D" were distributed evenly around the outside of the unit circle of the complex
plane and are shown in Figure 13. Any other points within the circle could have been chosen as
target points, and it is a subject of further research to determine how best to distribute target

points on the complex plane.
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Figure 13. Targets specified for the 8 patterns of
Figures 6 and 11.

After training the 25-layer stack for the specified targets, the stack yielded the reflection
coefficients for the 8 patterns shown in Figure 14. Each of the resulting reflection coefficient
points is the closest point to its corresponding. When a new input pattern is presented to the film
stack, the distance to the nearest target reflection coefficient can be calculated to determine which

pattern is ‘closest' to the input pattern.
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Figure 14. Training result for the 8 pattern
recognition problem

In order to examine the trained model's response to noise, noisy versions of the pattern 'I' were
also employed (Figure 14). As shown in Figure 15, additional pixels of noise have been added

to the 'I' pattern to create the alternative patterns, pl, p2, and p3.

T p1 p2

Figure 15. Noisy increasing steadily from 'I', p1, p2 and p3.

The result of applying these input patterns to the trained stack are shown in Figure 16: as noise
increases the resulting reflection coefficient points move away from the reflection coefficient of
the original 'T' pattern point. Thus the model film stack degrades gracefully with the addition of

noise to the inputs.
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Figure 16. Result of noisy versions of T' (Figure 14)
applied to the trained film stack (Figure 13).

5.3.5 IRIS: classification and generalization with the iris data set.

The iris data was first used by Fisher [16], and is still frequently used today as the standard
discriminant analysis example [13]. The data set is used to discriminate three classes of iris using
four continuous-valued features for each case. There are 150 cases, with 50 instances for each
class. One class of the data is linearly separable from the other two, while those other two are not

linearly separable from each other.

Each of the four features for the iris data set has a different range of values, so a separate scaling
factor, A, was used for each feature, which was multiplied by the corresponding input value and
the produce then added to the base value of the layer refractive index. The A scaling factors used
for this experiment were 0.03, 0.08, 0.03, and 0.04 for the respective iris data features (sepal

length, sepal width, petal length and petal width).

The training approach was the same as that used for the 8 grid pattern recognition experiment
(using Merit function Eq. (14)), but 3 wavelengths were used for training on each pattern. The
additional wavelengths were used to assist in the discrimination of the 2nd and 3rd iris classes,
which are not linearly separable. The thin-film stack consisted of four layers, and training was
carried out over wavelength values of 5.0 pm, 5.3 um, and 5.6 pm. The target reflection
coefficients (real and imaginary components) were {0.2, 0.2}, {0.3, 0.3} and {0.4, 0.4} for class
I,and {-0.5, 0.1}, {-0.4, 0.3} and {-0.3, 0.4} for class 2, and {0.1, -0.5}, {0.3, -0.4) and {0.4,

-0.3} for class 3, as shown in Fig. 17.
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Figure 17. Target reflection coefficient points for
IRIS classification at three wavelengths.

After the film stack was trained with 120 examples from the IRIS data set, it was tested with 30

novel test examples. A forced classification approach was employed that first takes the average



value of all the points for each training class at 3 different wavelengths. During testing this value
1s compared with the actual output; the one having the minimum difference is chosen as the

classified type. Figure 18 shows the test results at the three wavelengths.
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(c) Test results at wavelength = 5.6 um

Figure 18. Test results on 30 IRIS examples.
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The OTEFM stack classified 28 out of the 30 test examples correctly in this experiment. When all
150 elements of the IRIS data set were presented, 5 were classified incorrectly. These results are
comparable to neural network calculations that have been used in connection with the IRIS data

set [13].
6 Conclusions

Connectionist models can be used to provide nonlinear mappings between their inputs and
outputs. Neural networks achieve this mapping by adjusting the weights of connections among
the processing units. The OTFM has a novel connectionist architecture whereby the thickness
of each thin-film layer can be considered to be such an adjustable weighted connection. By
searching for a set of appropriate thicknesses of individual layers, the goal of learning the

association between the input and the output can be eventually achieved.

An optical realization of this architecture would offer the possibility of more or less instantaneous
evaluations of the (trained) thin-film stack. Also, because optical beams at ordinary intensities do
not interfere with each other, the architecture could support the simultaneous evaluation of
multiple signals. The manner in which input is encoded into the thin-film architecture, however,
would require adjustments to the refractive indices of the optical materials. Such variation of
refractive index can be achieved for some materials by means of elastooptic, electrooptic, and
magnetooptic effects [17], but the effects are often relatively small. An another approach could
involve the use of gradient index optics, which are usually associated with fiber-optics, but which
have also been deposited in the form of thin-films [18,19]. These materials have a refractive index
that varies from point to point within the medium. By using such materials in thin-film
multilayers, it would seem feasible that variable refractive index values could be achieved by

physically redirecting a laser beam to the multilayer at different spots on the surface.

A more flexible approach would be to employ the Herpin equivalent index concept [20,21] as
outlined by Dobrowolski and Piotrowski [22]. The Herpin equivalent index method can be used
when there is a need to prepare a film with refractive index n, n, < n < p that does not

correspond to that of any known material. The equivalent effect of such a film can be achieved



for a given optical wavelength by a suitable three-layer combination consisting of materials with
indices n; and 5, . This means that it is always possible to duplicate the performance of any
multilayer system consisting of many different materials by one consisting of only the lowest and
highest refractive-index materials from the original system, since one can always substitute any
layer from the original system by a three-layer Herpin equivalent. Although the Herpin equivalent
index is defined for a single wavelength, Dobrowolski and Piotrowski show how this approach
can be used effectively for a thin-film multilayer over a range of wavelengths, as long as the range
1s not too great. Although this approach involves the introduction of additional thin-films and
thus requires greater computation, it appears to offer the greatest flexibility for physical

implementations of the optical thin-film multilayer connectionist architecture.

The observation that alternative distributed nonlinear architectures may have attractive
computational properties has been made by several authors, for example Serra and Zanarini [23].
We are exploring one such architecture based on the technology of optical thin-film multilayers,
which is of interest both for its novel computational properties and for the possibility of practical

realizations in terms of optical systems.
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