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Abstract

The paper applies novel techniques for on-line, adaptive learning of macroeconomic data and a
consecutive analysis and prediction. The evolving connectionist systems paradigm (ECOS) is used in
its two versions - unsupervised (evolving self- organised maps), and supervised (evolving fuzzy neural
networks - EFuNN). In addition ro these techniques self-organised maps (SOM) are also employed for
finding elusters of countries based on their macroeconomic parameters. EFuNNs allow for modelling,
clustering, prediction and rule extraction. The rules that describe future annual values for the
consumer price index (CPI), interest rate, unemployment and GDP per capita are extracted from data
and reported in the paper for both global - EU-Asia block of countries, and for smaller groups - EU,
EU-candidate countries, Asia-Pacific countries. The analysis and prediction models proof to be useful
tools for the analysis of trends in macroeconomic development of clusters of countries and their future
prediction.
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1. Introduction

Complex decision making in a complex, dynamic economic environment is often a very difficult task.
Investigation into huge amount of multivariate data is needed to extract and manipulate information
distributed within, so that decision making can be soundly sustained. On-line decision support systems
(DSS) built for this purpose should have advanced features such as:

¢ Good explanation facilities, preferably presenting the decision rules used;
o Dealing with vague, fuzzy information, as well, as with crisp information;

» Dealing with contradictory knowledge, e.g. when two experts predict different trends in the stock
market;

¢ Dealing with large data bases with a lot of redundant information, or coping with lack of data.

e Hierarchical organisation, i.e., they can involve different levels of processing, comparing different
possible solutions, using alternatives, sometimes in a recurrent way.
Recent advances on artificial neural networks and our latest progress made on evolving connectionist-

based systems (ECOS) has suggest that neural network algorithms, especially ECOSs can provide
intuitive and robust solutions for economic data analysis and modelling [17.

In this study, we focus on the analysis and prediction of macroeconomic indicators of European and
Asia-Pacific countries, with the use of connectionist models.

2. Computational Models
2.1.  Self-organizing Maps (SOM)

SOM is a popular neural network algorithm proposed by Kohonen [2] for unsupervised learning. Given
a set of data, the SOM algorithm will try to generate a map consisting of nodes usually set in a 2~
dimensional lattice. Once the map is set out, given a new pattern of data, or a feature code as input, the



map will search among its grid nodes, each of which corresponding to a prototype feature code, find
the best-matching one, and the new pattern is categorised correspondingly. Therefore the SOM
algorithm is also referred as Self-Organizing Feature Map (SOFM) in the sense that it maps features
onto prototypes in the map.

With the ability of dimension reduction, clustering and multivariate data visualisation, SOM is closely
related to statistical methods like PCA and MDS.

2.2.  Evolving Self-organizing Maps (ESOM)

ESOM is an on-line evolving extension of the SOM model [3]. Tt uses a learning rule similar to SOM,
but its network structure is evolved dynamically from input data. ESOM does not hold any pre-
assumption on the topology of its feature map. The map topology is evolved from incoming data by
dynamically creating prototype nodes and setting out their connections. Simulations carried out have
shown that ESOM has better vector-quantisation accuracy, faster learning speed and better
visualisation ability compared with SOM.

2.3.  Evolving Fuzzy Neural Networks (EFuNN)

The architecture, learning and evolving algorithms, rule extraction and rule insertion algorithms of
EFuNN are given in {4]. EFuNNSs have the following advantages when compared with traditional MLP
or SOM networks:

*  An on-line incremental mode capable of one-pass learning. EFuNNs can learn in an incremental,
adaptive way through one-pass propagation of any new data examples. EFuNNs start
evolving/learning with no rule (hidden) nodes and they grow as data is presented to them. Tt also
has a much faster learning speed.

e Ability to work in a complex environment with changing dynamics. For instance, a stock index
system is in a random walk state, then it moves to a chaotic state, and then to quasi periodic state,
and an EFuNN that predicts future stock values learns all the time the new behaviour without any
human intervention for parameter adjustment.

e Ability to mix expert rules and data as there are algorithms for rule insertion and rule extraction:

e Clustering data in an on-line mode without pre-defining the number of clusters, or the
dimensionality and the size of the problem space.

Examples of using EFuNNs for adaptive, intelligent decision support systems for stock prediction and
loan approval are given in [5].

3. Experiments

Huge amounts of data in yearly and quarterly time-scales is being collected from many diverse sources
like EUROSTAT, Datastream, IMF, World Bank, OECD, statistics departments and central banks of
countries for this research. Here we use four macroeconomic indicators throughout all unsupervised
mapping and supervised prediction experiments. The indicators are GDP per capita in US dollars,
inflation rate, interest rate, and unemployment rate, Data of three groups of countries are collected and
analysed: EU countries, candidate countries, and Asia-pacific countries.

3.1 Cluster Analysis of macro-economies

3.1.1. Mapping EU member countries

The data (the four macroeconomic indicators utilised in all the unsupervised mapping) of the fifteen
countries joining the European Union have been fed into a Self-Organizing Map. The resulting map is
shown in Fig.1 and Fig.2.
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Fig.1 The annual map of 15 European countries according to 4 characteristics

The first feature to be observed in the map is the behaviour of some EM countries that in the last few
years has shown considerable improvement in their economy. On of this is of course Ireland that thanks
to fundamental structural reforms has reached considerable goals. This virtuous path can be detected in
the map in which Ireland is moving from the left side (IR94, IR95, IR96, IR97) to the right one (IR9S,
IR9Y). The fact that in the 1999 year Ireland and United Kingdom are grouped in the same cluster is
indicative of this improvement in the Ireland economy.

One other country that in the last few years has shown a good economic evolution is Spain. This is
indicated by the map positioning Spain in its own cluster in the left-down part of the resulting SOM,
quite far from other countries like Italy, France, Belgium and Sweden that in the last few years
experienced a more slow economic growth.

The explanation of the different positioning in the map of Spain and Ireland could be explained with
some differences in their fast economic growth. Besides, the SOM in mapping the countries has maybe
accentuated this feature.

One other thing emerging from the map (and confirmed by the evidence) that has to be stressed is the
stability that some EU countries has shown in the last few years. But in this case stability means that
countries like Italy and France, because their inability to follow some fundamental structural reform in
labour market and in goods market, were not able to catch the train of high growth rate made possible
by the new technologies available in the industry and in the information environment.
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Fig. 2 Macro-economics mapping of EU countries, generated by ESOM with 33 nodes

Finally, the map has correctly shown the path of small economies like Portugal and Greece that in the
last two years have been continuously reducing the gap between more advanced European economies.

3.1.2. Mapping EU candidate countries
Bulgaria, Czech Republic, Cyprus, Estonia, Hungary, Latvia, Lithunia, Malta, Poland, Romania,
Slovakia, Slovenia and Turkey have presented applications for Membership of the European Union.

On Applications for Membership of the European Union, based on the criteria laid down by the
Copenhagen European Council in June 1993, the applicant country must have

e achieved stability of Institutions guaranteeing democracy, the rule of law, human rights and
respect for and protection of minorities,

e a functioning market economy, as well as the capacity to cope with competitive pressure and
market forces within the EU,

e the ability to take on the obligations of membership, including adherence to the aims of
political, economic and monetary union.

For an evaluation of the second criteria of Copenhagen European Council, collected data about
macroeconomic indicators of the 11 candidate countries (Cyprus and Malta are not included) have been
fed into a Self-Organizing Map. The resulting map is shown in figure 3 and component analysis
according to 4 characteristics is shown in Figure 5 a-d.
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Fig. 4 Visualisation of ESOM on macro-economics of EU candidate countries. (29 nodes).
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According to the map in Figure 3, the component analysis in Figure 5 a-d and the ESOM visualisation
in Fig. 4 can be observed 3 sub clusters. Czech Rep., Hungary and Slovenia are grouped in the first
subcluster and among the EU candidate countries they have best economies. In the second subcluster
may be thought 3 Baltic countries Estonia, Latvia and Lithunia. The economies of Poland and Slovakia
may be seen in this second subcluster, too. Poland’s economy is closer to the first and Slovakia’s
economy is closer to the third cluster,

The third one - Bulgaria (99/98) - is in between the second cluster and Bulgaria (94-97), Romania and
Turkey. Turkey placed in the bottom left comer of the map because of its chronic inflation. The
carthquake which struck Turkey in August 1999 caused considerable economic damage and Turkey has
undergone a period of recession in 1999, In recent years, Bulgaria has made considerable progress in
macroeconomic stabilisation, whereas Romania’s economic situation has deteriorated in 1998.

3.1.3 Pacific Countries

The first observation from the map in Figure 6 and Figure 7 is the effects of Asian crisis in 1997. From
Japan to Hong Kong, Asia’s economies are placed in a deep recession and this situation can be
observed for the years 1997 and 1998 in the map. According to the basic macroeconomic indicators
used in this research, the Pacific financial story for 1999 is the happy end.

EE9S Fi57
BROG FR94 vy
swar FR7
/\/ \ -
98 DES7 BES4 8195
96 DEOS F199 FRe9 elg7
5198
e ”
P
BE97 .
awes BES W84 s cAgs a4 arag e SKe8
BESS
SKos
3 DEG4
o DEQY 1R o
Swas
CAGE
Livsd NLOE NLG4
UKS7
95 Usad v
a6 US95 .
a7 Usas
UKas
DKag
DKa3 ‘
A 7295 NLO7
Usas
|oa
os ASg5 L
o6 A596 Fres c796 cz87 FES4 -ROST
pTag rogs | f
o i JFPS8 s CHa4 : i
TP LSS s
HKAT Eﬁgg 4%94 CHB8
SNa5 KR95 CHo?
JPe7 SNE6 '8"{:83 KRE6 CHos . 1B%
aNGT [Fg=lvirg NRGa #
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characteristics (GDP Per Capita in USS$, Inflation rate, Interest rate, Unemployment rate).
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Fig. 7 Macro-economic performance map generated using ESOM and Sammon’s Projection
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3.2. Prediction of macro-economics with the use of EFulNNs

Experiments on prediction of macro-economic indexes have also been carried out. Good on-line
prediction accuracy is gained in all EFUNN modules, as shown in Fig.8, Fig.9, and Fig.11.
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3.3. Extracting rules for macroeconomic development
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Fig. 10 and Fig. 12 present the rule sets extracted from corresponding EFUNN modules.

The rules are of the form of:

IF (macroeconomic parameters) (¢) is (....)

AND (macroeconomic parameters) (t-1) is (....)

THEN (macroeconomic parameters) (t+1) is (....)

where (t) is the currently month. Three membership functions are used.
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[6] (1 0.618 ) ( 2 0.382 )
[71 ( 2 0.672 ) (3 0.328 )
(8] (1 6.637 ) ( 2 0.363 )
then [1] ( 1 0.690 ) ( 2 0.310 )
[2] (1 0.644 ) ( 2 0.356 )

(31 (2 0.530 ) (3 0.470 )

(4] (1 0.631 ) ( 2 0.369 )

Rule 16:

if [1] (1 0.592 ) (2 0.408 )
(2] (1 0.310 ) ( 2 0.690 )
[3] (1 0.320 ) ( 2 0.680 )
(4] (1 0.651 ) ( 2 0.349 )
[5] (1 0.617 ) (2 0.383 )
[6] (1 0.360 ) ( 2 0.640 )
(717 (1 0.363 ) ( 2 0.637 )
[81 (1 0.647 ) ( 2 0.353 )

then [1] ( 1 0.585 ) (2 0.403 )
(21 (1 0.395 ) ( 2 0.593 )

[3] (1 0.357 ) ( 2 0.631 )

(4] (1 0.649 ) ( 2 0.340 )

Fig.10. Rules of GDP prediction for all countries.

Inputfs)
Dutpus)
Epochls)
Examples
Lreated BNy
Pruned BNs
Aggregated ANs
Absolute Errog 475,463
Max AbsEnor 8273,636
-Max AbsErop 12710134
AMSE 4245668
NDE} 0.557
Runninglime

CPUTime

: K-Aggregation

Fig.11. EU member countries ~ GDP on-line learning and prediction
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[2) (2 0.929 ) ( 3 0.071 )
[31 ¢ 2 0.967 ) (3 0.033 )
[4] (1 0.664 ) ( 2 0.336 )
[51 (1 0.132 ) ( 2 0.868 )
[6] ( 2 6.828 ) (3 0.172 )
(77 ¢ 2 0.845 ) ( 3 0.155 )
[8] (1 0.678 ) ( 2 0.322 )
then ([1} ( 1 0.204 ) (2 0.796 )
(2] ¢ 2 6.797 ) (3 0.203 )

(31 (2 0.450 ) ( 3 0.550 )

[4] (1 0.701 ) (2 0.299 )

Rule 9:

if (11 (1 0.600 ) (2 0.400 )
[2] (1 0.534 ) (2 0.466 )
3] (1 0.344 ) ( 2 0.656 )
(4] (1 0.329 ) (2 0.671 )
[5] (1 0.595 ) ( 2 0.405 )
(6] (1 0.625 ) ( 2 0.375 )
[7] (1 0.413 ) ( 2 0.587 )
(g1 (1 0.345 ) ( 2 0.655 )

then [1] ( 1 0.557 ) (2 0.441 )
[2] (1 0.600 ) (2 0.398 )

[3}] (1 0.437 ) (2 0.561 )

(4] (1 0.355 ) ( 2 0.643 )

Fig. 12. Rules for the European Union

4.

Conclusions and Directions for Further Research

Future work is planned with the use of quarterly macroeconomic data. This is expected to result in a
more precise models developed. A further analysis of the trends in the development of the EU-
candidate countries will be conducted. The preliminary analysis shows a trend of development towards
the centre the EU cluster. A more precise comparative analysis on the trends of development of the
three major groups of countries - EU, EU-candidates and Asia-Pacific will be attempted.
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Appendix-A: Legends

AS  |[Austria IT ltaly

AU  |Australia JP  |Japan

BE |Belgium KR |Korea, Rep.
BG |Bulgaria LT |Lithunia

CA |[Canada LV |Latvia

CH |China NL |Netherlands
CZ |Czech Rep. NZ |New Zealand
DE |Germany PL  |Poland

DK [Denmark PT  [Portugal

EE  |Estonia RO |Romania
EL  |Greece Sl Slovenia
ES |Spain SK  |Slovakia

Fi Finland SN [Singapore
FR France SW |Sweden

HK  [Hong Kong TR {Turkey

HU  |Hungary UK [U. Kingdom
IR Ireland US |USA
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