UNIVERSITY

OTAGO

The Styx Agent Methodology

Geoff Bush
Stephen Cranefield
Martin Purvis

The Information Science
Discussion Paper Series

Number 2001/02
January 2001
ISSN 1177-455X

University of Otago
Department of Information Science

The Department of Information Science is one of six departments that make up the
School of Business at the University of Otago. The department offers courses of study
leading to a major in Information Science within the BCom, BA and BSc degrees. In
addition to undergraduate teaching, the department is also strongly involved in post-
graduate research programmes leading to MCom, MA, MSc and PhD degrees. Re-
search projects in spatial information processing, connectionist-based information sys-
tems, software engineering and software development, information engineering and
database, software metrics, distributed information systems, multimedia information
systems and information systems security are particularly well supported.

The views expressed in this paper are not necessarily those of the department as a
whole. The accuracy of the information presented in this paper is the sole responsibil-
ity of the authors.

Copyright

Copyright remains with the authors. Permission to copy for research or teaching pur-
poses is granted on the condition that the authors and the Series are given due ac-
knowledgment. Reproduction in any form for purposes other than research or teach-
ing is forbidden unless prior written permission has been obtained from the authors.

Correspondence

This paper represents work to date and may not necessarily form the basis for the au-
thors’ final conclusions relating to this topic. It is likely, however, that the paper will ap-
pear in some form in a journal or in conference proceedings in the near future. The au-
thors would be pleased to receive correspondence in connection with any of the issues
raised in this paper, or for subsequent publication details. Please write directly to the
authors at the address provided below. (Details of final journal /conference publication
venues for these papers are also provided on the Department’s publications web pages:
http:/ /www.otago.ac.nz/informationscience/pubs/). Any other correspondence con-
cerning the Series should be sent to the DPS Coordinator.

Department of Information Science
University of Otago

P O Box 56

Dunedin

NEW ZEALAND

Fax: +64 3 479 8311
email: dps@infoscience.otago.ac.nz
www: http:/ /www.otago.ac.nz/informationscience /

http://www.otago.ac.nz/informationscience/pubs/
mailto:dps@infoscience.otago.ac.nz
http://www.otago.ac.nz/informationscience/

The Styx Agent Methodology

Geoff Bush, Stephen Cranefield and Martin Purvis

January 26, 2001

Keywords: Agent-based software engineering, The development of methodologies for AOSE is
methodologies for agent-oriented software develon area that is currently receiving much attention,
ment. there have been several agent-oriented methodol-
ogies proposed recently [12, 23, 8, 11] and survey
papers are starting to appear [15]. However there is
Abstract still much scope for work in this area and the au-
thors believe that the agent-oriented methodologies

Agent-oriented software engineering is a promisiné’r()posed SO far. can be |.mproved.

new approach to software engineering that uses theTh.e rest of this paperis structured'as foIIOW§, the
notion of an agent as the primary entity of abstrac?€W ideas that Styx introduces are discussed in sec-
tion. The development of methodologies for agentﬁ'on 2 and the scope of Styx is _outlm_ed in sectlon_3.
oriented software engineering is an area that is cuf-"€ Styx Agent Methodology itself is presented in
rently receiving much attention, there have beefection 4 and itis compared to other methodologies
several agent-oriented methodologies proposed ri Section 5. Future work is discussed in section 6
cently and survey papers are starting to appedind conclusions are drawn in section 7.

However the authors feel that there is still much

work necessary in this area; current methodologie

can be improved upon. This paper presents a neé Towards a Novel Methodol-
methodology, the Styx Agent Methodology, which ogy

guides the development of collaborative agent sys-

tems from the analysis phase through to system im:f-oftware development has been identified as a dif-

]E)Iementa;iosn an_d r::ain_tenance. A %iStinnghin?icult task, software has a high inherent complexity
eature of Styx Is that '_t COVers a wider range ol jig apstract, intangible nature adds further dif-
software development life-cycle activities than d

) %iculties [3]. Over the past two decades research in
other recently proposed agent—orlentgd methodo software engineering has improved the software de-
ogies. The key areas covered by this methodol;

h ficati ¢ S elopment process significantly, nevertheless, many
ogy are the specification of communication CoNgqyare projects are still late or over-budget [21].

cepts,_inter-ag_ent_ commun_ication and each agents key idea that has emerged from software engi-
behaviour activation—but it does not address o ing research is the use of software development
development of application-specific parts of a Sysq, o g qologies, which are a set of procedures and
f[em. It will pe supported by a software tool Whichmethods to guide the software development pro-
is currently in development. cess. The goal of developing and using such meth-
odologies is to change software development from
) an ad-hoc practice to a well-structured engineering
1 Introduction process that produces high-quality software within
the constraints of limited resources and adhering to
Agent-oriented software engineering (AOSE) is a predicted schedule.
promising new approach to software engineering Recent commercial systems [4, 22] have demon-
that uses the notion of an agent as the primary entitrated that AOSE is potentially a powerful new
of abstraction [16]. The agent-oriented approackoftware engineering paradigm. However these sys-
is rapidly emerging as a powerful paradigm for detems have been developed without the support of
signing and developing complex software systemsgent-oriented methodologies; current methodol-
AOSE researchers hope that the use of the agengjies are yet to be widely adopted and may not have
abstraction will provide a significant improvementbeen sufficiently mature to be useful in the devel-
to current software engineering practice, similar te

; ; 1In the interest of brevity the phrase “agent-oriented metho
the Improvements galned from structured prOgramologies”, or just the word “methodologies” will be used ireth

ming, the object-oriented approach [2] and desigBjace of “methodologies for agent-oriented software esgjin
patterns [14]. ing” unless otherwise qualified.

opment of these applications. For agent-oriented)

software engineering to become a widely accepted Requirements

practice, as many agent researchers predict it will, b

it is important that mature tools and methodologies Analysis

are developed. 4
Several agent-oriented methodologies have been Design

recently described; High Level and Intermediate)

Models [12], Gaia [23], the ZEUS Methodology [8] Implementation

and Multiagent Systems Engineering [11]. All of U

these offer approaches to the analysis and design of Maintenance

agent-oriented software systems. Ideas introduced

in these methodologies have been drawn upon in . .
the development of Styx, however there are severa-lliable 1: Atypical software development life cycle
new ideas that distinguish Styx from those previ-

ously presented in the literature.

Styx covers a wider range of software developtools are often borrowed from object-oriented ap-
ment life-cycle activities than other methodologiesproaches, there are many differences between ag-
providing not only analysis and design models buénts and objects that must be considered. This
also skeleton source-code for the implementatiophase has received the most attention from agent-
phase and support for the maintenance phase. Itdgiented methodology researchers and it forms a
designed so that a software tool can automate thgibstantial part of the Styx methodology.
transformations between analysis-level and design-
level models and automatically generate skeleto . . .
source-code from the design-level models. Thi mplementation The implementation phase has

software tool will also informally verify the devel- received Ies_s attention; it is not support_ed in the
opment process. Domain concepts that will be use@ethodologles reviewed in this paper. Since these

in communication between agents are modelled gpethodologies are intended to be useful over a wide
range of agent types and there are so many differ-

the analysis level, allowing a more complete model e
of inter-agent communication at the design levelCNt yPes of a_gents, It IS difficult for a methodology
Styx also utilises the interaction protocols specifiet{iO ble bo”; vt\{ldelyhapphcable and also support the
by the Foundation for Intelligent Physical Agents'mp ementation phase.

(FIPA) [13] in order to support inter-agent commu- To address this issue Styx i_ntroduces the ide_a
nication. of an abstract agent specification language. This

is to be a text based language that is sufficiently

generic that it can be mapped to a large propor-
2.1 Coveringthe Software Life Cycle tion of agent-oriented software development frame-

works and toolkits. In the ideal case these map-
It is customary in the software engineering literapings would be performed automatically, however
ture to prescribe a number of phases that constitutg the case that an unsupported framework or toolkit
‘the software developmentlife cycle’, an example iSs used a mapping could be achieved by hand or a
given in table 1. The software development life cynew automatic mapping be developed.
cle covers the entire life of a software system, start- The jmplementation phase of the software de-
ing from gathering the initial requirements for theye|opment life-cycle involves transforming the set
system, building models of the system, implementaf design level models into an executable imple-
ing and finally maintaining the system. mentation defined in some programming language.

Current work on agent-oriented methodologieSupposing the ideal case, providing automated sup-
typically does not cover all phases of the softwargort for this phase would involve some form of au-
development life cycle. The first phase, gathertomatic programming. However this is not gen-
ing requirements, does not significantly change fogrally feasible because including enough informa-
agent-oriented software projects. Techniques fafon in the design level models for a program to
requirements gathering already exist, for examplge automatically generated would make the design
formalised specifications, use cases or user storigshase far too complex. To ensure that it remains fo-
These are generally not developed further for theused on the task at hand, Styx does not attempt to
agent-oriented approach. Note however that thgrovide support for developing application-specific
requirements are interpreted using agent-orientgshrts of a system, but rather focuses solely on the
concepts in the analysis phase. agent-oriented aspects. The authors believe that
The analysis and design of agent-oriented syghe implementation phase can be best supported by

tems is significantly different from analysis and deproviding a skeleton implementation of the agent-
sign of other types of software systems. Althougtbased aspects of a software system, leaving pro-

grammers to focus on the application-specific assdology designed specifically to be supported by
pects of their system. Note that the generation ofomputer software could be more automatable, es-
this skeleton implementation would be a two-stegecially by providing automatic techniques for the
process; firstly the design models would be mappetiansformation between the design and implemen-
into the abstract agent specification language, artdtion phases. A key feature of Styx is the software
then the abstract specification would be mapped totaol that supports this methodology.

particular implementation language, toolkit or plat- Note that automatic programming is not the goal

form. of this methodology; application specific aspects
Automatically generating such a skeleton implewill be left to the designers of each system. This

mentation directly from the design-level modelsiool will provide support for drawing the various

would require that they contain a sufficient amoungraphical models in the methodology, generate and

of information about how the individual agents aremaintain skeleton design models and skeleton im-

structured and how they will behave. The Interplementation source code, and perform informal

nal Agent Model and Conversation Model of theyalidation of the development process.

High Level and Intermediate Models methodology

and the Services Model of the Gaia methodology all

provide a table that loosely resembles a finite statg 3 Rolesas Agent Classes

machine. The authors believe that it would be feasi-

ble to automatically transform models such as thesg strength of the object-oriented paradigm is the

to some skeleton implementation. ability to specify reusable classes of objects, rather

than specifying individual objects, which promotes

Maintenance The longest phase of the softwarer€usability and modularity. The Gaia m(.athodqlo.gy,

development life cycle is usually the maintenancés Well as other work [17], uses roles in a similar

phase. A well-documented development process [§anner for agent-based systems. Developing with

important for maintenance. However aside fronf0les means that one agent may be able to play sev-

providing such documentation there has been n@ral roles, or a single role may be played by more

support for maintenance in existing methodologieshan one agent. Styx is strongly oriented towards
Documents outlining the analysis and desigrgevelopmg reusable roles that are later used for the

phases of system development form an importaffonstruction of agents.
part of the support offered by Styx for the main-
tenance phase, as is true of other methodologies. L
However the skeleton source code generation pré&-4 Specifying Agent M essage Content
posed in the previous paragraph provides an addi- o .
tional area in which the maintenance phase needs fo!S non-trivial to develop a mapping between the
be supported. During a system’s lifetime change§Ontentof agentcommunicationlanguage messages
may be made to the analysis and design model@nd the objec_?sthat the_appllcatlo_n specific parts of
as it is likely that requirements will change overthe system will work with [7]. Neither of the meth-
time and thus require modifications to these mod@dologies proposed here address the specification
els. Styx provides a source-code skeleton to suppd?f the content of agent message, however this has
the implementation phase, which is generated frofg€€n included in the ZEUS methodology [8].
these analysis and design models. Now since theseStyx incorporates a model at the analysis level
models will change over the lifetime of the systemwhich specifies the possible content of agent mes-
it is important that the methodology provides somesages. This model uses the class diagram syntax
way of updating the implementation skeleton in re-of the Unified Modelling Language (UML) [20].
sponse to such changes. Simply regenerating thigML class diagrams have been chosen because
skeleton would not provide sufficient support forthey are a well-known modelling representation,
this, as the skeleton will be fleshed out with appli-and because of the increasing usage of the object-
cation specific code during implementation. Thu®riented paradigm in the professional software de-
an important feature of the proposed methodologyelopment community, both for application-specific
is to be able not only to generate these skeletons baoding and also for agent development toolkits and
also to be able to update them with the applicatioframeworks. Modelling message content as object
specific code in place. classes makes the conceptual gap between applica-
tion specific code and the content of agent com-
- . munication language messages smaller. This idea
2.2 Designing for Automation draws upon recently published work [9, 10].

Several parts of the High Level and Intermedi- 2Assuming that the system will be implemented in an object-

ate Models methodology appear tO. be partially aUsiented programming language, which is currently a common
tomatable, however the authors believe that a methpproach.

25 Reusing FIPA Interaction Proto- [Requirements Specification |

cols l

. . . [Identify Roles and Concepts]
Current agent-oriented methodologies either do nop l l

specify the conversations that will occur betweenz
agents in detail (for example Gaia), or otherwise<
expect that the system designers will invent new
conversation protocols for each agent system (for
example High Level and Intermediate Models and_
MaSE [11]). Specifying agent conversations is an,—,z’
important part of a design methodology that seek&
to support the implementation phase, however it
seems that reinventing conversation protocols for
each agent system is often unnecessary. Styx will
incorporate the specification of conversation protos [Agent Skeleton] [Application Specife Cod e]
cols at the design level, but will draw these from g /

Use Case Map] [Domain Concepts Mod%l

[Role Responsibility Model

[Deployment Model J [Role Relationship Mod(%l

a well-known pool—the interaction protocols intro-
duced in the forthcoming FIPA 2000 specifications
[13]. These cover a wide range of possible inter—~ —
agent interactions, from simple Request and Quer[)_(_ .
protocols, to more complex Dutch Auction and Iter-F19ure 1: Overview of the Styx Agent Methodology
ated Contract Net protocols. Although the complete

documentation for these is not yet available, neverstyxy for example a system may contain hundreds

theless basgd on the strength of previous verS|0drc1)§ telephone agents instantiated from a single role.
of the FIPA interaction protocol specifications an ,
It is assumed that agent systems developed us-

on the wide range of proposed protocols the authors S Il be imol d usi d
believe that these protocols will form a sound basid'd Styx will be Imp emented using some agent de-
upon which to build this part of the rnethodology_velopment toolkit or framework that is based on an

Note that reusing these protocols does not restri&bject-orieqted languagend that. application spe-
Styx to agent systems that are based on the FIP(Rf,'C code will also be developed in the same object-
specifications because, with some slight modifica?"iented Ian.guage. _) N
tion, the protocols could be used with different stan- Such notions as planning, scheduling, mobility

dards for message passing that exist in other typ@é‘d learning, which are comrnpnly associated with
of agent system. agent systems, are not explicitly handled by Styx.

It is assumed that support for these things would be
provided either by the agent development toolkit or

framework, or that they would be included by-hand
3 Scope of the Styx Agent in the application-specific parts of the system.
M ethodology

lemel

mp

[Final Implementation J

Styx is intended to be used in the developmentofl Overview of the Styx
collaborative agent systems [18]. These are sys-
tems which tend to use static, coarse-grained ag- Agent Methodol ogy

ents and are typically used to solve problems more

efficiently than a single centralised system. Probf* Schematic overview of Styx is presented in fig-
lems may exceed the capabilities of a single cerl’® 1. Styx is briefly summarised in the next para-
tralised system because of resource limitations, tHg@Ph. and more complete descriptions of each part
need to interoperate with multiple legacy systems of! the methodology are given in sections 4.1 o0 4.6
because a problem is inherently distributed, for exVith reference to a simple fruit-market scenario.

ample distributed sensor networks, distributed data The analysis phase starts by identifying agent
sources, or distributed expertise. roles and domain concepts, followed by generat-

Styx does not consider systems that contain iat['g a high-level Use Case Map [5], which gives an

large number of roles—it is envisioned that apply->VEVIeW of the entire system, and a Domain Con-

ing Styx to a system that has significantly more tharqep;s_Mo:el, which s_pec_|f|esbwhat concepts WII” br?
about twenty to thirty different roles would result US€d In the communication between agents. In the

in the analysis level models becoming too comple>‘iieSign phase Role Responsibility Models are gen-

to give a clear, high-level overview of the system.erated for each component of the Use Case Map,

However the.re is "t_tle restriction on how many ag- 3such toolkits are becoming increasingly common, for ex-
ents can be instantiated from the roles defined frorimple JADE [1], FIPA-OS [19] and JACK [6].

where each responsibility of a component is spec- Buyer Seller
ified in more detail. The Role Relationship Model

specifies how roles are related to each other and the B3
concepts about which they will communicate. Th I e
Deployment Model maps the roles identified in the B2 B—
Use Case Map to agents. The implementation phase <
is supported by an Agent Skeleton and together withe—_| @
application specific code this forms the final imple- Bl s1
mentation. Although it is not shown in the figure
the maintenance phase will be supported by both
the models detailed so far and also by changes in Vi3

the analysis and design models being reflected in ML ® M2
the implementation skeletons.

Market

Fruit-Market Scenario A simple multi-agent
fruit-market scenario will be used to demonstrate
the proposed methodology. This involves buyers

Figure 2: A UCM for the fruit-market scenario.

and sellers of fruit in an electronic marketplace. A Label | Responsibility

seller can notify the marketplace that some fruit is Bl Post buy-order

for sale with a sale-order and buyers can notify the B2 Send payment

marketplace they want to buy fruit with a buy-order. B3 Receive fruit

The marketplace attempts to match buy- and sell- S1 Post sell-order

orders; and when a match is made it notifies the S2 Receive payment and send fruit
buyer concerned, .who then sends.payment_details M1 Receive buy-order

to the seller, who in turn send§ delivery details for M2 Receive sell-order

the order to the buyer. The actions of the bu_yer and M3 Match buy- and sell-orders and
seller agents are directed by human users, intended notify buyer

users are farmers who will sell fruit, supermarkets

thatwill buy fruit and warehouses that will both buy Tp|e 2: Responsibilities for the fruit-market UCM

and sell fruit. When placing an order with the mar-

ket, buyers and sellers name the type of fruit, spec-

ify a quality rating (A, B or C grade), the price per

unit and the quantity. The marketplace assumes thigtentified in the requirements specification and

buy orders can be filled by more than one seller, thgtlaced in the Use Case Map as paths. Finally when

sell orders can be split between buyers, and that &l path crosses a component, one or more responsi-

transactions are successful. bilities are assigned to that component. Thinking of
components as agent roles and paths as interactions
between agent roles means that the Use Case Map

4.1 UseCaseMap becomes more of an agent-oriented model, as op-

The first step of the analysis phase is to create %osed to the standard object-oriented interpretation

high-level Use Case Map (UCM) [5] for the system.OUtIIned in Buhr's qugl'nal work [5].)
Use Case Maps model possible processes in a sys* Sample UCM is given for the fruit-market ex-

tem as paths which traverse various components §fP!€ in figure 2 and the responsibilities in this fig-

the system. Components are drawn as boxes, whit§€ &€ expanded in table 2. This UCM was devel-

paths are drawn as lines crossing various comp@P€d Dy first creating system components for each
nents (see figure 2). The start of a path is indicatetfiéntifiable role in the requirements specification
by a solid circle, while the end point is indicated byand then for each interaction between entities a path

a strong line. When a path crosses a component th4S drawn on the diagram and responsibilities were

component is assigned one or more responsibilitie&SSigned.

associated with the path. The Use Case Map is la-

belled with component names, responsibility nameg o Domain Concepts M odel

and other explanatory notes. These maps provide a

highly condensed notion suitable for modelling theThe Domain Concepts Model models each concept

high-level behaviour of a system. that agents will communicate about. Each concept
To develop the Use Case Map, the roles that ags modelled as a particular object class, expressed

ents may play are identified in the requirementsising a UML Class Diagram. A Domain Concepts

specification and placed in the Use Case Map adlodel for the fruit-market example is presented in

components. Interactions between roles are thdigure 3. This shows object classes for buy- and

Fruit Order Information
- - Filled-order
fruitType : String
fruitQuality : char
pricePerUnit : int Information
quantity : int .
Filled-order
Information
Filled-order
BuyOrder SellOrder FilledOrder
buyer : String
seller : String

payDetails : String
deliverylnfo : String

- Market .
Information Information
Buy-order Sell-order

Figure 3: Domain Concepts Model for the fruit-gjgyre 4: Role Relationship Model for the fruit-
market scenario. market scenario.

sell-orders and orders that have been filled. of space limitations the responsibilities (abbrevi-

Note that the types assigned to fields will be latepted to Resp.) are named using the abbreviations
mapped to implementation level types, and thagresented in table 2.

this example useSt ri ng andi nt for simplic-

ity. More complex field types would ideally be used . .
in a more complete model, for exampde! i v- 4.4 Role Relationship Model

eryl nfo, which is modelled as a String in this The Role Relationship Model further elaborates the
example, would be better modelled as another ols|ationships between roles that are indicated by the
ject class, with address, date and time fields, WthBnaWsis level Use Case Map; relationships exist

themselves may be object types. where there is a path linking two components of the
Use Case Map. Each relationship is assigned a type
4.3 RoleResponsibility Model drawn from the interaction protocols specified in

the forthcoming FIPA 2000 specifications [13] and

Role Responsibility Models are created for eactan object from the Domain Concepts Model. The
component of the analysis level UCM, and take thénterpretation is that a conversation of the specified
form of a table with four columns: responsibility, type will occur between the agents, where informa-
pre- and post-condition, and action. For each retion is interchanged using the specified object.
sponsibility in the analysis level UCM, an entry is A sample Role Dependency Model is shown in
made in the appropriate role’s Role Responsibilfigure 4 for the fruit market scenario. This shows
ity Model. The pre- and post-conditions are in-several ‘information’ dependencies, where one role
formal statements that can be either true or falsenakes some information available to another role.
These are listed to guide the implementation phas&or example a Buyer would inform the Marketplace
the implementation-level action will be performedwhen it wishes to buy fruit, using a Buy-order ob-
when the pre-conditions are true, and a correct imject. Note that the ‘information’ dependency is used
plementation will achieve the post-conditions un-ere as a place holder for the appropriate FIPA in-
less it meets some error condition. One or morgeraction protocols.
actions, which are simply named at this stage, are
listed for each responsibility. These give some in-
dication of the actions that are to be performed in4'5 Deployment Model
order to achieve this responsibility. Several action¥he Deployment Model is the most simple model
can be specified, allowing a responsibility to be broin this methodology. It specifies a many-to-many
ken down into a number of steps at this level. mapping between agents and roles which assigns

There are several keywords used in the Role Reoles to agents. This model specifies what agents
sponsibility Model; the pre-conditiomessage will exist in the system, and what roles they will
recei ved, post-conditiommessage sent and play. An example for the fruit-market is given in
actionsendMessage. These keywords will be figure 5.
used during the generation of skeleton source code
to link the actions specified in the Role Responsi—4 6
bility Model with the agent interactions specified in
the Role Relationship Model. The design-level models and the Domain Concepts

A sample Role Responsibility Model for the model will form the basis for generating skeleton
fruit-market scenario is shown in table 3. Becauseource code for the implementation phase. The

Implementation Phase

Role name: Marketplace

Resp. Precondition Postcondition Action
M1 Message received Order added to databaseaddOrderToDB
M2 Message received Order added to databageaddOrderToDB
M3 Buy and Sell orders matched Message sent sendMessage
Role name: Seller
Resp. Precondition Postcondition Action
S1 User wants to sell Message sent sendMessage

S2 Message received Payment checked, Message s¢ntheckPayment, sendMessage

Role name: Buyer

Resp. Precondition Postcondition Action
Bl User wants to buy Message sent sendMessage
B2 Message received Message sent makePayment, sendMessage
B3 Message received User knows shipment details notifyUser

Table 3: Role Responsibility Models for the fruit-marke¢sario

Roles Buyer Seller Marketplace ghacified in the Role Relationship Model (drawn
| T~ _— | | from the classes in the Domain Concepts Model).
Agents SupermarkeWarehousd-armer Marketplace
Agent Agent Agent Agent So far the source code skeletons for agent roles

have been outlined, however these must be mapped
Figure 5: Deployment Model for the fruit-market to individual agents for the deployment of the sys-
scenario. tem. This is specified at the design level in the De-

ployment Model, and at the implementation level

this information is used to group roles into agents.
genera’[ion of this skeleton implementation will beHOW this occurs will depend |arge|y upon the target

a two step process, firstly the design models wilhgent development toolkit or framework.

be mapped into the abstract agent specification lan-

guage, and then the abstract specification would be

mapped to a particular implementation languag .
toolkt or platform. % Styx and other methodologies

The Domain Concepts Model will map directly
into a set of object class definitions that will peThere are several parallels between Styx and other

available to all agents. Programmers will be able t§€cently proposed agent-oriented methodologies,
use these object classes for communication betwe&@wever most of the ideas that are reused are given
agents without concern for how the object instance® sug_mﬂcantly _d|fferent interpretation and several
are mapped into a string based representation for tfi€W ideas are introduced.
particular agent communication language encoding. Styx draws on three models that exist in the High
The Role Responsibility and Role Relationship-€vel and Intermediate Models methodology, how-
Models will be used to generate skeleton cod&ver Styx interprets the components of these mod-
that takes care of inter-agent conversations and bls as roles rather than individual agents. The ap-
haviour activation. The skeleton code will provideProach of using a Use Case Map at the analysis
method stubs for each action specified in the Rollevel was seen as a particularly good way of giv-
Responsibility Model and these stubs will be filleding @ high-level overview of the system in a single
in by programmers. The Role Relationship Modefiagram, which details both the structural and the
will be used to generate state-machine-based enfiehavioural aspects. In contrast to the High Level
ties that take care of conducting the conversatiognd Intermediate Models methodology, Styx inter-
appropriately and that activate the appropriate ad2rets the components of the Use Case Map as roles,
tion methods when a certain message is receivetfther than as individual agents.
When an action method is activated, it will be sup- The Role Responsibility Model is similar to the
plied with the instance of an object from the Do-Internal Agent Model of the High Level and Inter-
main Concepts Model that arrived with the activatmediate Models methodology and by Gaia’s Ser-
ing message. Programmers will be provided wittvices Model. Representing the responsibilities of
methods to call when it is necessary to send a mea-role as a table is a useful way of specifying the
sage from within application-specific code, thesactions that carry out the responsibility at a de-
methods will have a formal parameter of the typesign level, and since these tables resemble finite

state machines they can be used to generate sketbe results of the query to be made available. This
ton source-code. problem could be overcome by specifying a single
The Role Relationship Model is inspired by theobject that has fields for both the query and answer,
Dependency Diagram of the High Level and Inter-but this would be more of a work-around than an el-
mediate Models methodology, however new ideasgant solution. This issue will be resolved once the
have been introduced; relationships are defined ugdPA 2000 specifications for interaction protocols
ing FIPA interaction protocols in preference to ad-have been released, and it may well be necessary to
hoc dependency types, and information about disspecify multiple object classes per relationship in
course objects is included. The Role Relationshiphe Role Relationship Model for certain interaction
Model is somewhat more complex than the originatypes.
Dependency Diagram, however reusing FIPA inter-
action protocols and using object classes specified)
at the analysis level allows a more complete model Conclusions
of agents’ social behaviour than the combination
of both the Dependency Diagram and the ConvelStyx represents a new approach to agent-oriented
sation Model of the High Level and Intermediatesoftware engineering that is more comprehensive
Models methodology. in scope than many other methodologies. Styx
The Deployment Model is drawn directly from will provide a software tool that automates much
the Agent Model in the Gaia methodology. It is nec-of the difficult work that currently goes into build-
essary to have a model of this type in a role-baseithg agent-based systems and will ensure that soft-
methodology as the final products of the methodolware development projects using an agent-based
ogy are agents, not roles, and Gaia's Agent Modeipproach will be able to focus most of their ef-
appears a particularly concise way of achieving thigort on developing application-specific code, rather
than grappling with agent research issues. However
there is a significant amount of work, both program-
6 FutureWork ming and research, to be completed before Styx is
ready for widespread use.
The Styx agent methodology is still in a specifca-
tion phase; many of the difficult problems have been
left for future work. A key part of this work will References
be using Styx to develop examples of a variety of
typical agent-based systems, ranging from proces$1] F. Bellifemine, A. Poggi, and G. Rimassa.
control systems, to distributed information systems, Jade programmers guide.
to more complex market-place applicationsthanthe http://sharon.cselt.it/projects/jade, June 5
simplistic fruit-market scenario. This will ensure 2000.
that Styx is applicable to a wide range of prob-
lem domains, rather than being focused on a certairl2] G. Booch. Object Oriented Analysis and
class of applications. Design with Applications Addison Wesley,
The specification of the text-based abstract agent 1994.
specification language has not yet been completed,
This will be ‘boot-strapped’ by identifying common
concepts identified among current agent software
development toolkits and frameworks. This work is
perhaps one of the more important areas of Styx, a
it will ensure that Styx is not only applicable to cur-
rent frameworks and toolkits, but also that it will be
applicable to future work. JADE [1], FIPA-OS [19]
and JACK [6] are the current candidate implemen-
tation toolkits to which mappings from the abstract
specification language will be provided. The exact
detail of how the abstract agent specification will be

generated from the design-level models will depend[s5] R. Buhr and R. Casselmabise Case maps for

on the specification language that is developed, and * Opject-oriented SystemBrentice Hall, 1996.
is another item for future work.

It is not yet determined if specifying a single ob- [6] P. Busetta, R. Rnnquist, A. Hodgson, and
ject class per relationship in the Role Relationship A. Lucas. Jack intelligent agents - components
Model will be appropriate in all cases, for exam- for intelligent agents in Java. In P. Davidsson,
ple a ‘query’ conversation may require one class editor,AgentLink News 2vww.agentlink.org,
of object to specify the query but another class for 2000.

3] F. P. Brooks. The mythical man-month :
essays on software engineeringAddison-
Wesley, anniversary edition, 1995.

ﬁ4] T. Buchheim, G. Hetzel, G. Kindermann, and
P. Levi. A multi-agent approach for opti-
cal inspection technology. In R. Mizoguchi
and J. Slaney, editor&RICAI 2000, Topics
in Artificial Intelligence volume 1886 of_ec-
ture Notes in Artificial IntelligenceSpringer,
2000.

[7] G. Bush, M. Purvis, and S. Cranefield. Ex-[17] E. A. Kendall. Agent roles and role models:

periences in the development of an agent ar-
chitecture. In C. Zhang and V.-W. Soo, ed-
itors, Design and Application of Intelligent
Agents (proceedings of PRIMA 2000)ol-
ume 1881 ol_ecture Notes in Atrtificial Intel-
ligence Springer, 2000.

[18]

[8] J. Collins and D. Ndumu. Zeus methodology

9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

documentation. Available at http://www.labs.
bt.com/projects/agents/index.htm.

S. Cranefield and M. Purvis. UML as an
ontology modelling language. Froceedings
of the Workshop on Intelligent Information
Integration, 16th International Joint Confer-
ence on Artificial Intelligence (1JCAI-99)
1999. http://sunsite.informatik.rwth-aachen.

[19]

de/Publications/CEUR-WS/\ol-23/cranefi% [20]

eld-ijcai99-iii.pdf.

S. Cranefield and M. Purvis. Extending

agent messaging to enable OO informatiorf21] 1. Sommerville.

exchange. In R. Trappl, editoRroceed-
ings of the 2nd International Symposium

New abstractions for multiagent system anal-
ysis and design. IRroceedings of the Interna-
tional Workshop on Intelligent Agents in Infor-
mation and Process Managemg@ermany,
September 1998.

H. S. Nwana. Software agents: An overview.
Knowledge Engineering Review1(3):1-40,
September 1996.

S. Poslad, P. Buckle, and R. Hadingham. The
FIPA-OS agent platform: Open source for
open standards. IRroceedings of the 5th
International Conference and Exhibition on
the Practical Application of Intelligent Agents
and Multi-Agentspages 355-368, 2000.

J. Rumbaugh, I. Jacobson, and G. Boothe
Unified Modeling Language Reference Man-
ual. Addison-Wesley, 1998.

Software Engineering.
Addison-Wesley, 1996.

“From Agent Theory to Agent Implemen-[zz] D. Vasko, F. Maturana, A. Bowles, and

tation” (AT2AIl-2), pages 573-578, Vienna,
April 2000. Austrian Society for Cybernetic
Studies. Published under the title “Cybernet-
ics and Systems 2000".

S. A. DeLoach and M. Wood. Develop-
ing Multiagent Systems with agentTool. In
N. Jennings and Y. Lesperance, editolrs;
telligent Agents V]I volume 1757 oflLec-
ture Notes in Artificial IntelligenceSpringer,
2000.

M. Elammari and W. Lalonde. An agent-
oriented methodology: High-level and inter-
mediate models. Presented at AIOS 99, avail-
able at http://www.aois.org/, 1999.

Foundation For Intelligent Physical Agents
(FIPA) web site.
Located at http://www.fipa.org/.

E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides. Design patterns : elements of reusable
object-oriented software Addison-Wesley,
1995.

C. A. Iglesias, M. Garijo, and J. C. Gonzalez.
A survey of agent-oriented methodologies. In
J. P. Muller, M. P. Singh, and A. S. Rao, ed-
itors, Intelligent Agents YV volume 1555 of
Lecture Notes in Artificial Intelligencepages
317-330. Springer, 1998.

N. R. Jennings and M. Wooldridge. Agent-
oriented software engineering. In J. Brad-
shaw, editorHandbook of Agent Technolagy

AAAI/MIT Press, 2000.

(23]

S. Vandenberg. Autonomous cooperative fac-
tory control. In C. Zhang and V.-W. Soo,
editors,Design and Application of Intelligent
Agents (proceedings of PRIMA 2000)ol-
ume 1881 ofLecture Notes in Artificial Intel-
ligence Springer, 2000.

M. Wooldridge, N. R. Jennings, and D. Kinny.
The Gaia Methodology for Agent-Oriented
Analysis and DesignJournal of Autonomous
Agents and Multi-Agent Systens 2000.

