
The Styx Agent Methodology

Geoff Bush
Stephen Cranefield

Martin Purvis

The Information Science
Discussion Paper Series

Number 2001/02
January 2001

ISSN 1177-455X



University of Otago

Department of Information Science

The Department of Information Science is one of six departments that make up the
School of Business at the University of Otago. The department offers courses of study
leading to a major in Information Science within the BCom, BA and BSc degrees. In
addition to undergraduate teaching, the department is also strongly involved in post-
graduate research programmes leading to MCom, MA, MSc and PhD degrees. Re-
search projects in spatial information processing, connectionist-based information sys-
tems, software engineering and software development, information engineering and
database, software metrics, distributed information systems, multimedia information
systems and information systems security are particularly well supported.

The views expressed in this paper are not necessarily those of the department as a
whole. The accuracy of the information presented in this paper is the sole responsibil-
ity of the authors.

Copyright

Copyright remains with the authors. Permission to copy for research or teaching pur-
poses is granted on the condition that the authors and the Series are given due ac-
knowledgment. Reproduction in any form for purposes other than research or teach-
ing is forbidden unless prior written permission has been obtained from the authors.

Correspondence

This paper represents work to date and may not necessarily form the basis for the au-
thors’ final conclusions relating to this topic. It is likely, however, that the paper will ap-
pear in some form in a journal or in conference proceedings in the near future. The au-
thors would be pleased to receive correspondence in connection with any of the issues
raised in this paper, or for subsequent publication details. Please write directly to the
authors at the address provided below. (Details of final journal/conference publication
venues for these papers are also provided on the Department’s publications web pages:
http://www.otago.ac.nz/informationscience/pubs/). Any other correspondence con-
cerning the Series should be sent to the DPS Coordinator.

Department of Information Science
University of Otago
P O Box 56
Dunedin
NEW ZEALAND

Fax: +64 3 479 8311
email: dps@infoscience.otago.ac.nz
www: http://www.otago.ac.nz/informationscience/

http://www.otago.ac.nz/informationscience/pubs/
mailto:dps@infoscience.otago.ac.nz
http://www.otago.ac.nz/informationscience/


The Styx Agent Methodology

Geoff Bush, Stephen Cranefield and Martin Purvis

January 26, 2001

Keywords: Agent-based software engineering,
methodologies for agent-oriented software develop-
ment.

Abstract

Agent-oriented software engineering is a promising
new approach to software engineering that uses the
notion of an agent as the primary entity of abstrac-
tion. The development of methodologies for agent-
oriented software engineering is an area that is cur-
rently receiving much attention, there have been
several agent-oriented methodologies proposed re-
cently and survey papers are starting to appear.
However the authors feel that there is still much
work necessary in this area; current methodologies
can be improved upon. This paper presents a new
methodology, the Styx Agent Methodology, which
guides the development of collaborative agent sys-
tems from the analysis phase through to system im-
plementation and maintenance. A distinguishing
feature of Styx is that it covers a wider range of
software development life-cycle activities than do
other recently proposed agent-oriented methodol-
ogies. The key areas covered by this methodol-
ogy are the specification of communication con-
cepts, inter-agent communication and each agent’s
behaviour activation—but it does not address the
development of application-specific parts of a sys-
tem. It will be supported by a software tool which
is currently in development.

1 Introduction

Agent-oriented software engineering (AOSE) is a
promising new approach to software engineering
that uses the notion of an agent as the primary entity
of abstraction [16]. The agent-oriented approach
is rapidly emerging as a powerful paradigm for de-
signing and developing complex software systems.
AOSE researchers hope that the use of the agent
abstraction will provide a significant improvement
to current software engineering practice, similar to
the improvements gained from structured program-
ming, the object-oriented approach [2] and design
patterns [14].

The development of methodologies for AOSE is
an area that is currently receiving much attention,
there have been several agent-oriented methodol-
ogies1 proposed recently [12, 23, 8, 11] and survey
papers are starting to appear [15]. However there is
still much scope for work in this area and the au-
thors believe that the agent-oriented methodologies
proposed so far can be improved.

The rest of this paper is structured as follows, the
new ideas that Styx introduces are discussed in sec-
tion 2 and the scope of Styx is outlined in section 3.
The Styx Agent Methodology itself is presented in
section 4 and it is compared to other methodologies
in section 5. Future work is discussed in section 6
and conclusions are drawn in section 7.

2 Towards a Novel Methodol-
ogy

Software development has been identified as a dif-
ficult task, software has a high inherent complexity
and its abstract, intangible nature adds further dif-
ficulties [3]. Over the past two decades research in
software engineering has improved the software de-
velopment process significantly, nevertheless, many
software projects are still late or over-budget [21].
A key idea that has emerged from software engi-
neering research is the use of software development
methodologies, which are a set of procedures and
methods to guide the software development pro-
cess. The goal of developing and using such meth-
odologies is to change software development from
an ad-hoc practice to a well-structured engineering
process that produces high-quality software within
the constraints of limited resources and adhering to
a predicted schedule.

Recent commercial systems [4, 22] have demon-
strated that AOSE is potentially a powerful new
software engineering paradigm. However these sys-
tems have been developed without the support of
agent-oriented methodologies; current methodol-
ogies are yet to be widely adopted and may not have
been sufficiently mature to be useful in the devel-

1In the interest of brevity the phrase “agent-oriented method-
ologies”, or just the word “methodologies” will be used in the
place of “methodologies for agent-oriented software engineer-
ing” unless otherwise qualified.

1



opment of these applications. For agent-oriented
software engineering to become a widely accepted
practice, as many agent researchers predict it will,
it is important that mature tools and methodologies
are developed.

Several agent-oriented methodologies have been
recently described; High Level and Intermediate
Models [12], Gaia [23], the ZEUS Methodology [8]
and Multiagent Systems Engineering [11]. All of
these offer approaches to the analysis and design of
agent-oriented software systems. Ideas introduced
in these methodologies have been drawn upon in
the development of Styx, however there are several
new ideas that distinguish Styx from those previ-
ously presented in the literature.

Styx covers a wider range of software develop-
ment life-cycle activities than other methodologies,
providing not only analysis and design models but
also skeleton source-code for the implementation
phase and support for the maintenance phase. It is
designed so that a software tool can automate the
transformations between analysis-level and design-
level models and automatically generate skeleton
source-code from the design-level models. This
software tool will also informally verify the devel-
opment process. Domain concepts that will be used
in communication between agents are modelled at
the analysis level, allowing a more complete model
of inter-agent communication at the design level.
Styx also utilises the interaction protocols specified
by the Foundation for Intelligent Physical Agents
(FIPA) [13] in order to support inter-agent commu-
nication.

2.1 Covering the Software Life Cycle

It is customary in the software engineering litera-
ture to prescribe a number of phases that constitute
‘the software development life cycle’, an example is
given in table 1. The software development life cy-
cle covers the entire life of a software system, start-
ing from gathering the initial requirements for the
system, building models of the system, implement-
ing and finally maintaining the system.

Current work on agent-oriented methodologies
typically does not cover all phases of the software
development life cycle. The first phase, gather-
ing requirements, does not significantly change for
agent-oriented software projects. Techniques for
requirements gathering already exist, for example
formalised specifications, use cases or user stories.
These are generally not developed further for the
agent-oriented approach. Note however that the
requirements are interpreted using agent-oriented
concepts in the analysis phase.

The analysis and design of agent-oriented sys-
tems is significantly different from analysis and de-
sign of other types of software systems. Although

Requirements
⇓

Analysis
⇓

Design
⇓

Implementation
⇓

Maintenance

Table 1: A typical software development life cycle

tools are often borrowed from object-oriented ap-
proaches, there are many differences between ag-
ents and objects that must be considered. This
phase has received the most attention from agent-
oriented methodology researchers and it forms a
substantial part of the Styx methodology.

Implementation The implementation phase has
received less attention; it is not supported in the
methodologies reviewed in this paper. Since these
methodologies are intended to be useful over a wide
range of agent types and there are so many differ-
ent types of agents, it is difficult for a methodology
to be both widely applicable and also support the
implementation phase.

To address this issue Styx introduces the idea
of an abstract agent specification language. This
is to be a text based language that is sufficiently
generic that it can be mapped to a large propor-
tion of agent-oriented software development frame-
works and toolkits. In the ideal case these map-
pings would be performed automatically, however
in the case that an unsupported framework or toolkit
is used a mapping could be achieved by hand or a
new automatic mapping be developed.

The implementation phase of the software de-
velopment life-cycle involves transforming the set
of design level models into an executable imple-
mentation defined in some programming language.
Supposing the ideal case, providing automated sup-
port for this phase would involve some form of au-
tomatic programming. However this is not gen-
erally feasible because including enough informa-
tion in the design level models for a program to
be automatically generated would make the design
phase far too complex. To ensure that it remains fo-
cused on the task at hand, Styx does not attempt to
provide support for developing application-specific
parts of a system, but rather focuses solely on the
agent-oriented aspects. The authors believe that
the implementation phase can be best supported by
providing a skeleton implementation of the agent-
based aspects of a software system, leaving pro-

2



grammers to focus on the application-specific as-
pects of their system. Note that the generation of
this skeleton implementation would be a two-step
process; firstly the design models would be mapped
into the abstract agent specification language, and
then the abstract specification would be mapped to a
particular implementation language, toolkit or plat-
form.

Automatically generating such a skeleton imple-
mentation directly from the design-level models
would require that they contain a sufficient amount
of information about how the individual agents are
structured and how they will behave. The Inter-
nal Agent Model and Conversation Model of the
High Level and Intermediate Models methodology
and the Services Model of the Gaia methodology all
provide a table that loosely resembles a finite state
machine. The authors believe that it would be feasi-
ble to automatically transform models such as these
to some skeleton implementation.

Maintenance The longest phase of the software
development life cycle is usually the maintenance
phase. A well-documented development process is
important for maintenance. However aside from
providing such documentation there has been no
support for maintenance in existing methodologies.

Documents outlining the analysis and design
phases of system development form an important
part of the support offered by Styx for the main-
tenance phase, as is true of other methodologies.
However the skeleton source code generation pro-
posed in the previous paragraph provides an addi-
tional area in which the maintenance phase needs to
be supported. During a system’s lifetime changes
may be made to the analysis and design models,
as it is likely that requirements will change over
time and thus require modifications to these mod-
els. Styx provides a source-code skeleton to support
the implementation phase, which is generated from
these analysis and design models. Now since these
models will change over the lifetime of the system
it is important that the methodology provides some
way of updating the implementation skeleton in re-
sponse to such changes. Simply regenerating this
skeleton would not provide sufficient support for
this, as the skeleton will be fleshed out with appli-
cation specific code during implementation. Thus
an important feature of the proposed methodology
is to be able not only to generate these skeletons but
also to be able to update them with the application
specific code in place.

2.2 Designing for Automation

Several parts of the High Level and Intermedi-
ate Models methodology appear to be partially au-
tomatable, however the authors believe that a meth-

odology designed specifically to be supported by
computer software could be more automatable, es-
pecially by providing automatic techniques for the
transformation between the design and implemen-
tation phases. A key feature of Styx is the software
tool that supports this methodology.

Note that automatic programming is not the goal
of this methodology; application specific aspects
will be left to the designers of each system. This
tool will provide support for drawing the various
graphical models in the methodology, generate and
maintain skeleton design models and skeleton im-
plementation source code, and perform informal
validation of the development process.

2.3 Roles as Agent Classes

A strength of the object-oriented paradigm is the
ability to specify reusable classes of objects, rather
than specifying individual objects, which promotes
reusability and modularity. The Gaia methodology,
as well as other work [17], uses roles in a similar
manner for agent-based systems. Developing with
roles means that one agent may be able to play sev-
eral roles, or a single role may be played by more
than one agent. Styx is strongly oriented towards
developing reusable roles that are later used for the
construction of agents.

2.4 Specifying Agent Message Content

It is non-trivial to develop a mapping between the
content of agent communication language messages
and the objects2 that the application specific parts of
the system will work with [7]. Neither of the meth-
odologies proposed here address the specification
of the content of agent message, however this has
been included in the ZEUS methodology [8].

Styx incorporates a model at the analysis level
which specifies the possible content of agent mes-
sages. This model uses the class diagram syntax
of the Unified Modelling Language (UML) [20].
UML class diagrams have been chosen because
they are a well-known modelling representation,
and because of the increasing usage of the object-
oriented paradigm in the professional software de-
velopment community, both for application-specific
coding and also for agent development toolkits and
frameworks. Modelling message content as object
classes makes the conceptual gap between applica-
tion specific code and the content of agent com-
munication language messages smaller. This idea
draws upon recently published work [9, 10].

2Assuming that the system will be implemented in an object-
oriented programming language, which is currently a common
approach.

3



2.5 Reusing FIPA Interaction Proto-
cols

Current agent-oriented methodologies either do not
specify the conversations that will occur between
agents in detail (for example Gaia), or otherwise
expect that the system designers will invent new
conversation protocols for each agent system (for
example High Level and Intermediate Models and
MaSE [11]). Specifying agent conversations is an
important part of a design methodology that seeks
to support the implementation phase, however it
seems that reinventing conversation protocols for
each agent system is often unnecessary. Styx will
incorporate the specification of conversation proto-
cols at the design level, but will draw these from
a well-known pool—the interaction protocols intro-
duced in the forthcoming FIPA 2000 specifications
[13]. These cover a wide range of possible inter-
agent interactions, from simple Request and Query
protocols, to more complex Dutch Auction and Iter-
ated Contract Net protocols. Although the complete
documentation for these is not yet available, never-
theless based on the strength of previous versions
of the FIPA interaction protocol specifications and
on the wide range of proposed protocols the authors
believe that these protocols will form a sound basis
upon which to build this part of the methodology.
Note that reusing these protocols does not restrict
Styx to agent systems that are based on the FIPA
specifications because, with some slight modifica-
tion, the protocols could be used with different stan-
dards for message passing that exist in other types
of agent system.

3 Scope of the Styx Agent
Methodology

Styx is intended to be used in the development of
collaborative agent systems [18]. These are sys-
tems which tend to use static, coarse-grained ag-
ents and are typically used to solve problems more
efficiently than a single centralised system. Prob-
lems may exceed the capabilities of a single cen-
tralised system because of resource limitations, the
need to interoperate with multiple legacy systems or
because a problem is inherently distributed, for ex-
ample distributed sensor networks, distributed data
sources, or distributed expertise.

Styx does not consider systems that contain a
large number of roles—it is envisioned that apply-
ing Styx to a system that has significantly more than
about twenty to thirty different roles would result
in the analysis level models becoming too complex
to give a clear, high-level overview of the system.
However there is little restriction on how many ag-
ents can be instantiated from the roles defined from

Deployment Model

Use Case Map

Final Implementation

Domain Concepts Model

Application Specifc Code

Requirements Specification

Agent Skeleton

Role Relationship Model

Role Responsibility Models

Identify Roles and Concepts

D
es

ig
n

Im
pl

em
en

ta
tio

n
A

na
ly

si
s

Figure 1: Overview of the Styx Agent Methodology

Styx, for example a system may contain hundreds
of telephone agents instantiated from a single role.

It is assumed that agent systems developed us-
ing Styx will be implemented using some agent de-
velopment toolkit or framework that is based on an
object-oriented language3 and that application spe-
cific code will also be developed in the same object-
oriented language.

Such notions as planning, scheduling, mobility
and learning, which are commonly associated with
agent systems, are not explicitly handled by Styx.
It is assumed that support for these things would be
provided either by the agent development toolkit or
framework, or that they would be included by-hand
in the application-specific parts of the system.

4 Overview of the Styx
Agent Methodology

A schematic overview of Styx is presented in fig-
ure 1. Styx is briefly summarised in the next para-
graph, and more complete descriptions of each part
of the methodology are given in sections 4.1 to 4.6
with reference to a simple fruit-market scenario.

The analysis phase starts by identifying agent
roles and domain concepts, followed by generat-
ing a high-level Use Case Map [5], which gives an
overview of the entire system, and a Domain Con-
cepts Model, which specifies what concepts will be
used in the communication between agents. In the
design phase Role Responsibility Models are gen-
erated for each component of the Use Case Map,

3Such toolkits are becoming increasingly common, for ex-
ample JADE [1], FIPA-OS [19] and JACK [6].

4



where each responsibility of a component is spec-
ified in more detail. The Role Relationship Model
specifies how roles are related to each other and the
concepts about which they will communicate. The
Deployment Model maps the roles identified in the
Use Case Map to agents. The implementation phase
is supported by an Agent Skeleton and together with
application specific code this forms the final imple-
mentation. Although it is not shown in the figure
the maintenance phase will be supported by both
the models detailed so far and also by changes in
the analysis and design models being reflected in
the implementation skeletons.

Fruit-Market Scenario A simple multi-agent
fruit-market scenario will be used to demonstrate
the proposed methodology. This involves buyers
and sellers of fruit in an electronic marketplace. A
seller can notify the marketplace that some fruit is
for sale with a sale-order and buyers can notify the
marketplace they want to buy fruit with a buy-order.
The marketplace attempts to match buy- and sell-
orders; and when a match is made it notifies the
buyer concerned, who then sends payment details
to the seller, who in turn sends delivery details for
the order to the buyer. The actions of the buyer and
seller agents are directed by human users, intended
users are farmers who will sell fruit, supermarkets
that will buy fruit and warehouses that will both buy
and sell fruit. When placing an order with the mar-
ket, buyers and sellers name the type of fruit, spec-
ify a quality rating (A, B or C grade), the price per
unit and the quantity. The marketplace assumes that
buy orders can be filled by more than one seller, that
sell orders can be split between buyers, and that all
transactions are successful.

4.1 Use Case Map

The first step of the analysis phase is to create a
high-level Use Case Map (UCM) [5] for the system.
Use Case Maps model possible processes in a sys-
tem as paths which traverse various components of
the system. Components are drawn as boxes, while
paths are drawn as lines crossing various compo-
nents (see figure 2). The start of a path is indicated
by a solid circle, while the end point is indicated by
a strong line. When a path crosses a component that
component is assigned one or more responsibilities
associated with the path. The Use Case Map is la-
belled with component names, responsibility names
and other explanatory notes. These maps provide a
highly condensed notion suitable for modelling the
high-level behaviour of a system.

To develop the Use Case Map, the roles that ag-
ents may play are identified in the requirements
specification and placed in the Use Case Map as
components. Interactions between roles are then

Buyer Seller

Market

S1

S2

B1

B2

B3

M1 M3
M2

Figure 2: A UCM for the fruit-market scenario.

Label Responsibility

B1 Post buy-order

B2 Send payment

B3 Receive fruit

S1 Post sell-order

S2 Receive payment and send fruit

M1 Receive buy-order

M2 Receive sell-order

M3 Match buy- and sell-orders and

notify buyer

Table 2: Responsibilities for the fruit-market UCM

identified in the requirements specification and
placed in the Use Case Map as paths. Finally when
a path crosses a component, one or more responsi-
bilities are assigned to that component. Thinking of
components as agent roles and paths as interactions
between agent roles means that the Use Case Map
becomes more of an agent-oriented model, as op-
posed to the standard object-oriented interpretation
outlined in Buhr’s original work [5].

A sample UCM is given for the fruit-market ex-
ample in figure 2 and the responsibilities in this fig-
ure are expanded in table 2. This UCM was devel-
oped by first creating system components for each
identifiable role in the requirements specification
and then for each interaction between entities a path
was drawn on the diagram and responsibilities were
assigned.

4.2 Domain Concepts Model

The Domain Concepts Model models each concept
that agents will communicate about. Each concept
is modelled as a particular object class, expressed
using a UML Class Diagram. A Domain Concepts
Model for the fruit-market example is presented in
figure 3. This shows object classes for buy- and

5



BuyOrder SellOrder FilledOrder

buyer : String
seller : String
payDetails : String
deliveryInfo : String

fruitType : String
fruitQuality : char
pricePerUnit : int
quantity : int

Fruit Order

Figure 3: Domain Concepts Model for the fruit-
market scenario.

sell-orders and orders that have been filled.
Note that the types assigned to fields will be later

mapped to implementation level types, and that
this example usesString andint for simplic-
ity. More complex field types would ideally be used
in a more complete model, for exampledeliv-
eryInfo, which is modelled as a String in this
example, would be better modelled as another ob-
ject class, with address, date and time fields, which
themselves may be object types.

4.3 Role Responsibility Model

Role Responsibility Models are created for each
component of the analysis level UCM, and take the
form of a table with four columns: responsibility,
pre- and post-condition, and action. For each re-
sponsibility in the analysis level UCM, an entry is
made in the appropriate role’s Role Responsibil-
ity Model. The pre- and post-conditions are in-
formal statements that can be either true or false.
These are listed to guide the implementation phase;
the implementation-level action will be performed
when the pre-conditions are true, and a correct im-
plementation will achieve the post-conditions un-
less it meets some error condition. One or more
actions, which are simply named at this stage, are
listed for each responsibility. These give some in-
dication of the actions that are to be performed in
order to achieve this responsibility. Several actions
can be specified, allowing a responsibility to be bro-
ken down into a number of steps at this level.

There are several keywords used in the Role Re-
sponsibility Model; the pre-conditionmessage
received, post-conditionmessage sent and
action sendMessage. These keywords will be
used during the generation of skeleton source code
to link the actions specified in the Role Responsi-
bility Model with the agent interactions specified in
the Role Relationship Model.

A sample Role Responsibility Model for the
fruit-market scenario is shown in table 3. Because

Buyer Seller

Market

Buy-order Sell-order

Filled-order

Filled-order

Filled-order
Information

Information

Information

Information Information

Figure 4: Role Relationship Model for the fruit-
market scenario.

of space limitations the responsibilities (abbrevi-
ated to Resp.) are named using the abbreviations
presented in table 2.

4.4 Role Relationship Model

The Role Relationship Model further elaborates the
relationships between roles that are indicated by the
analysis level Use Case Map; relationships exist
where there is a path linking two components of the
Use Case Map. Each relationship is assigned a type
drawn from the interaction protocols specified in
the forthcoming FIPA 2000 specifications [13] and
an object from the Domain Concepts Model. The
interpretation is that a conversation of the specified
type will occur between the agents, where informa-
tion is interchanged using the specified object.

A sample Role Dependency Model is shown in
figure 4 for the fruit market scenario. This shows
several ‘information’ dependencies, where one role
makes some information available to another role.
For example a Buyer would inform the Marketplace
when it wishes to buy fruit, using a Buy-order ob-
ject. Note that the ‘information’ dependency is used
here as a place holder for the appropriate FIPA in-
teraction protocols.

4.5 Deployment Model

The Deployment Model is the most simple model
in this methodology. It specifies a many-to-many
mapping between agents and roles which assigns
roles to agents. This model specifies what agents
will exist in the system, and what roles they will
play. An example for the fruit-market is given in
figure 5.

4.6 Implementation Phase

The design-level models and the Domain Concepts
model will form the basis for generating skeleton
source code for the implementation phase. The

6



Role name: Marketplace

Resp. Precondition Postcondition Action

M1 Message received Order added to databaseaddOrderToDB

M2 Message received Order added to databaseaddOrderToDB

M3 Buy and Sell orders matched Message sent sendMessage

Role name: Seller
Resp. Precondition Postcondition Action

S1 User wants to sell Message sent sendMessage

S2 Message received Payment checked, Message sentcheckPayment, sendMessage

Role name: Buyer

Resp. Precondition Postcondition Action

B1 User wants to buy Message sent sendMessage

B2 Message received Message sent makePayment, sendMessage

B3 Message received User knows shipment details notifyUser

Table 3: Role Responsibility Models for the fruit-market scenario

Buyer Seller Marketplace Roles

Agents Warehouse Marketplace FarmerSupermarket
Agent Agent Agent Agent

Figure 5: Deployment Model for the fruit-market
scenario.

generation of this skeleton implementation will be
a two step process, firstly the design models will
be mapped into the abstract agent specification lan-
guage, and then the abstract specification would be
mapped to a particular implementation language,
toolkit or platform.

The Domain Concepts Model will map directly
into a set of object class definitions that will be
available to all agents. Programmers will be able to
use these object classes for communication between
agents without concern for how the object instances
are mapped into a string based representation for the
particular agent communication language encoding.

The Role Responsibility and Role Relationship
Models will be used to generate skeleton code
that takes care of inter-agent conversations and be-
haviour activation. The skeleton code will provide
method stubs for each action specified in the Role
Responsibility Model and these stubs will be filled
in by programmers. The Role Relationship Model
will be used to generate state-machine-based enti-
ties that take care of conducting the conversation
appropriately and that activate the appropriate ac-
tion methods when a certain message is received.
When an action method is activated, it will be sup-
plied with the instance of an object from the Do-
main Concepts Model that arrived with the activat-
ing message. Programmers will be provided with
methods to call when it is necessary to send a mes-
sage from within application-specific code, these
methods will have a formal parameter of the type

specified in the Role Relationship Model (drawn
from the classes in the Domain Concepts Model).

So far the source code skeletons for agent roles
have been outlined, however these must be mapped
to individual agents for the deployment of the sys-
tem. This is specified at the design level in the De-
ployment Model, and at the implementation level
this information is used to group roles into agents.
How this occurs will depend largely upon the target
agent development toolkit or framework.

5 Styx and other methodologies

There are several parallels between Styx and other
recently proposed agent-oriented methodologies,
however most of the ideas that are reused are given
a significantly different interpretation and several
new ideas are introduced.

Styx draws on three models that exist in the High
Level and Intermediate Models methodology, how-
ever Styx interprets the components of these mod-
els as roles rather than individual agents. The ap-
proach of using a Use Case Map at the analysis
level was seen as a particularly good way of giv-
ing a high-level overview of the system in a single
diagram, which details both the structural and the
behavioural aspects. In contrast to the High Level
and Intermediate Models methodology, Styx inter-
prets the components of the Use Case Map as roles,
rather than as individual agents.

The Role Responsibility Model is similar to the
Internal Agent Model of the High Level and Inter-
mediate Models methodology and by Gaia’s Ser-
vices Model. Representing the responsibilities of
a role as a table is a useful way of specifying the
actions that carry out the responsibility at a de-
sign level, and since these tables resemble finite

7



state machines they can be used to generate skele-
ton source-code.

The Role Relationship Model is inspired by the
Dependency Diagram of the High Level and Inter-
mediate Models methodology, however new ideas
have been introduced; relationships are defined us-
ing FIPA interaction protocols in preference to ad-
hoc dependency types, and information about dis-
course objects is included. The Role Relationship
Model is somewhat more complex than the original
Dependency Diagram, however reusing FIPA inter-
action protocols and using object classes specified
at the analysis level allows a more complete model
of agents’ social behaviour than the combination
of both the Dependency Diagram and the Conver-
sation Model of the High Level and Intermediate
Models methodology.

The Deployment Model is drawn directly from
the Agent Model in the Gaia methodology. It is nec-
essary to have a model of this type in a role-based
methodology as the final products of the methodol-
ogy are agents, not roles, and Gaia’s Agent Model
appears a particularly concise way of achieving this.

6 Future Work

The Styx agent methodology is still in a specifca-
tion phase; many of the difficult problems have been
left for future work. A key part of this work will
be using Styx to develop examples of a variety of
typical agent-based systems, ranging from process
control systems, to distributed information systems,
to more complex market-place applications than the
simplistic fruit-market scenario. This will ensure
that Styx is applicable to a wide range of prob-
lem domains, rather than being focused on a certain
class of applications.

The specification of the text-based abstract agent
specification language has not yet been completed.
This will be ‘boot-strapped’ by identifying common
concepts identified among current agent software
development toolkits and frameworks. This work is
perhaps one of the more important areas of Styx, as
it will ensure that Styx is not only applicable to cur-
rent frameworks and toolkits, but also that it will be
applicable to future work. JADE [1], FIPA-OS [19]
and JACK [6] are the current candidate implemen-
tation toolkits to which mappings from the abstract
specification language will be provided. The exact
detail of how the abstract agent specification will be
generated from the design-level models will depend
on the specification language that is developed, and
is another item for future work.

It is not yet determined if specifying a single ob-
ject class per relationship in the Role Relationship
Model will be appropriate in all cases, for exam-
ple a ‘query’ conversation may require one class
of object to specify the query but another class for

the results of the query to be made available. This
problem could be overcome by specifying a single
object that has fields for both the query and answer,
but this would be more of a work-around than an el-
egant solution. This issue will be resolved once the
FIPA 2000 specifications for interaction protocols
have been released, and it may well be necessary to
specify multiple object classes per relationship in
the Role Relationship Model for certain interaction
types.

7 Conclusions

Styx represents a new approach to agent-oriented
software engineering that is more comprehensive
in scope than many other methodologies. Styx
will provide a software tool that automates much
of the difficult work that currently goes into build-
ing agent-based systems and will ensure that soft-
ware development projects using an agent-based
approach will be able to focus most of their ef-
fort on developing application-specific code, rather
than grappling with agent research issues. However
there is a significant amount of work, both program-
ming and research, to be completed before Styx is
ready for widespread use.

References

[1] F. Bellifemine, A. Poggi, and G. Rimassa.
Jade programmers guide.
http://sharon.cselt.it/projects/jade, June 5
2000.

[2] G. Booch. Object Oriented Analysis and
Design with Applications. Addison Wesley,
1994.

[3] F. P. Brooks. The mythical man-month :
essays on software engineering. Addison-
Wesley, anniversary edition, 1995.

[4] T. Buchheim, G. Hetzel, G. Kindermann, and
P. Levi. A multi-agent approach for opti-
cal inspection technology. In R. Mizoguchi
and J. Slaney, editors,PRICAI 2000, Topics
in Artificial Intelligence, volume 1886 ofLec-
ture Notes in Artificial Intelligence. Springer,
2000.

[5] R. Buhr and R. Casselman.Use Case maps for
Object-oriented Systems. Prentice Hall, 1996.

[6] P. Busetta, R. Rnnquist, A. Hodgson, and
A. Lucas. Jack intelligent agents - components
for intelligent agents in Java. In P. Davidsson,
editor,AgentLink News 2. www.agentlink.org,
2000.

8



[7] G. Bush, M. Purvis, and S. Cranefield. Ex-
periences in the development of an agent ar-
chitecture. In C. Zhang and V.-W. Soo, ed-
itors, Design and Application of Intelligent
Agents (proceedings of PRIMA 2000), vol-
ume 1881 ofLecture Notes in Artificial Intel-
ligence. Springer, 2000.

[8] J. Collins and D. Ndumu. Zeus methodology
documentation. Available at http://www.labs.
bt.com/projects/agents/index.htm.

[9] S. Cranefield and M. Purvis. UML as an
ontology modelling language. InProceedings
of the Workshop on Intelligent Information
Integration, 16th International Joint Confer-
ence on Artificial Intelligence (IJCAI-99),
1999. http://sunsite.informatik.rwth-aachen.
de/Publications/CEUR-WS/Vol-23/cranefi%
eld-ijcai99-iii.pdf.

[10] S. Cranefield and M. Purvis. Extending
agent messaging to enable OO information
exchange. In R. Trappl, editor,Proceed-
ings of the 2nd International Symposium
“From Agent Theory to Agent Implemen-
tation” (AT2AI-2), pages 573–578, Vienna,
April 2000. Austrian Society for Cybernetic
Studies. Published under the title “Cybernet-
ics and Systems 2000”.

[11] S. A. DeLoach and M. Wood. Develop-
ing Multiagent Systems with agentTool. In
N. Jennings and Y. Lesperance, editors,In-
telligent Agents VI, volume 1757 ofLec-
ture Notes in Artificial Intelligence. Springer,
2000.

[12] M. Elammari and W. Lalonde. An agent-
oriented methodology: High-level and inter-
mediate models. Presented at AIOS 99, avail-
able at http://www.aois.org/, 1999.

[13] Foundation For Intelligent Physical Agents
(FIPA) web site.
Located at http://www.fipa.org/.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides.Design patterns : elements of reusable
object-oriented software. Addison-Wesley,
1995.

[15] C. A. Iglesias, M. Garijo, and J. C. Gonzalez.
A survey of agent-oriented methodologies. In
J. P. Muller, M. P. Singh, and A. S. Rao, ed-
itors, Intelligent Agents V, volume 1555 of
Lecture Notes in Artificial Intelligence, pages
317–330. Springer, 1998.

[16] N. R. Jennings and M. Wooldridge. Agent-
oriented software engineering. In J. Brad-
shaw, editor,Handbook of Agent Technology.
AAAI/MIT Press, 2000.

[17] E. A. Kendall. Agent roles and role models:
New abstractions for multiagent system anal-
ysis and design. InProceedings of the Interna-
tional Workshop on Intelligent Agents in Infor-
mation and Process Management, Germany,
September 1998.

[18] H. S. Nwana. Software agents: An overview.
Knowledge Engineering Review, 11(3):1–40,
September 1996.

[19] S. Poslad, P. Buckle, and R. Hadingham. The
FIPA-OS agent platform: Open source for
open standards. InProceedings of the 5th
International Conference and Exhibition on
the Practical Application of Intelligent Agents
and Multi-Agents, pages 355–368, 2000.

[20] J. Rumbaugh, I. Jacobson, and G. Booch.The
Unified Modeling Language Reference Man-
ual. Addison-Wesley, 1998.

[21] I. Sommerville. Software Engineering.
Addison-Wesley, 1996.

[22] D. Vasko, F. Maturana, A. Bowles, and
S. Vandenberg. Autonomous cooperative fac-
tory control. In C. Zhang and V.-W. Soo,
editors,Design and Application of Intelligent
Agents (proceedings of PRIMA 2000), vol-
ume 1881 ofLecture Notes in Artificial Intel-
ligence. Springer, 2000.

[23] M. Wooldridge, N. R. Jennings, and D. Kinny.
The Gaia Methodology for Agent-Oriented
Analysis and Design.Journal of Autonomous
Agents and Multi-Agent Systems, 3, 2000.

9


