A Multi-Level Approach and Infrastructure for
Agent-Oriented Software Development

Mariusz Nowostawski
Geoff Bush
Martin Purvis
Stephen Cranefield
Department of Information Science
University of Otago
PO Box 56, Dunedin, New Zealand
Phone: (64 3) 479 8318, Fax: (64 3) 479 8311

{mnowostawski,gbush,mpurvis,scranefield } @infoscience.otago.ac.nz

Keywords

agents, multi-agent system, multi-agent platform scalability

ABSTRACT

An architecture, and the accompanying infrastructural sup-
port, for agent-based software developement is described
which supports the use of agent-oriented ideas at multiple
levels of abstraction. At the lowest level are micro-agents,
which are robust and efficient implementations of stream-
lined agents that can be used for many conventional pro-
gramming tasks. Agents with more sophisticated function-
ality can be constructed by combining these micro-agents
into more complicated agents. Consequently the system sup-
ports the consistent use of agent-based ideas throughout the
software engineering process, since higher level agents may
be hierarchically refined into more detailed agent implemen-
tations. We outline how micro-agents are implemented in
Java and how they have been used to construct the Opal
framework for the construction of more complex agents that
are based on the FIPA specifications.

1. INTRODUCTION

It has been argued that the use of agents, particularly intelli-
gent agents, can be useful for the modelling and construction
of complex distributed information systems [9, 10]. Implicit
in these arguments is the basic notion that the use of agents
supports scalability; that as system complexity scales up-
ward to highly distributed and dynamic environments, the
use of agents will be essential for the successful operation
and maintenance of these systems. Three important tech-
niques have been identified for dealing with the complexity
of large systems [2], as follows:

Decomposition —essentially the notion of “divide and con-
quer”.

Abstraction — encapsulating and hiding unimportant de-
tails by defining modelling “chunks” that emphasise a
few important details and suppress others. As a model
is gradually refined, the abstractions associated with
specific model components may be changed.

Organisation — the process of identifying and managing
the interoperation of complex components.

It has been shown that it is plausible to consider agents to be
effective entities for use in connection with all three of these
techniques [11]. The consistent use of agents throughout the
software development process in this manner is often termed
agent-based software engineering.

For agent-based software engineering to hold in practice, it
is necessary that there be a suitable agent-building infras-
tructure available for software engineers so that they can
employ agent constructs in the various ways that they are
envisioned. In particular to support decomposition, it is nec-
essary to be able to use agents at various levels of modelling
detail and refinement. In this way, a designer should be able
to consider a system at any level of detail desired and think
of that system in terms of agents (each of which could, in
principle, be composed of smaller, internal agents). In ad-
dition, the use of agent entities should not impose an un-
satisfactory performance penalty on the designer who elects
to use them. This means that agent-based software devel-
opment should support scalability if it allows agents to be
used at various levels of abstraction and, at the same time,
supports the efficient execution of agent interoperation.

At the present time, however, there does not appear to
be any agent-building toolkits or infrastructural support
that completely meets these two basic demands and enables
agent-based software engineering in the ideal manner envi-
sioned. The main publicly available agent-building toolkits
discussed in the literature [1, 13, 14] are focussed on the
construction of systems whose individual agents have a rel-
atively coarse degree of granularity and which are not in-
tended to be refined into smaller agents. Coarse grained
agents typically require significant amounts of computing
machinery. This may involve machinery to support inter-
operable and semantically rich string-based communication
models [3], or to support high-level cognitive modelling, for
example by using the BDI model [5]. While such powerful
machinery may be valuable for certain situations, its use for
building smaller components, such as graphical user inter-

face applications, may be irrelevant and impractical. Mad-
Kit [6, 7] is a fine-grained agent-building toolkit that in-
cludes some ideas similar to those expressed here, although
to our understanding it has some architectural differences
and has not been used as the basis for a coarse-grained
agent-building infrastructure, such as the Otago agent frame-
work, Opal.

Existing agent-building toolkit systems are quite complex
in their own right. They are primarily built using object-
oriented software technology, as opposed to agent-based tech-
nology. Consequently they do not have the notion of agents
built-in to their machinery. The present paper discusses an
approach for building complex software systems, whereby
agents can be used at multiple levels of modelling and op-
erational detail. With this approach, both fine-grained and
coarse-grained agents can be employed where desired. In
particular, one can use the approach to design an infras-
tructural toolkit that is to be used to support the general
construction of agent-based systems. We discuss our work in
this connection by describing the design and development of
Opal, an agent-building framework that has been designed
using this multi-level agent-based approach.

2. MICRO-AGENT KERNEL

The overall goal of our approach is to use the notion of
agency to model and build systems at any level of abstrac-
tion. This is achieved by instantiating the idea of an agent
at the lowest level of operation so that it is practically real-
isable for efficient code execution but still retains enough of
the features of agenthood that it can still be considered to be
an agent for modelling and design purposes. In order to fa-
cilitate the following discussion, we identify some terms that
we will use to describe various aspects of our architecture:

Agent — a persistent entity deployed on a multi-agent sys-
tem. This can be considered to be an actor that plays
one or more particular roles in a society of agents.

Micro-agent — a particular type of agent that represents
the lowest and most primitive level of agent instantia-
tion

Role — a specification of a cohesive set of behaviours, func-
tions or services in the multi-agent society. Roles may
be played by one or more agents in an agent system.
Each agent playing a role may take a different ap-
proach to providing the role’s services.

Responsive Agent — an agent which does not control its
own thread of execution, but simply reacts to the stim-
uli from the outside. Upon activation this agent can
nevertheless perform deliberative computations, engage
in social interactions, commit to or refuse to accept a
particular goal given to it, or perform or refuse to per-
form a particular function assigned to it.

Autonomous Agent — an agent which controls its own
thread of execution. It actively pursues and maintains
its goals, stimulates other agents, including responsive
agents, and may control and manipulate other agents
(by playing the Group role).

Agent Group — a role that provides an environment in
which other agents (sub-agents) exist. This role is used
for registration and discovery in a society of agents. It
provides a mechanism for agents to locate each other
based on the role they are playing, a role-based “yellow
pages” service for micro-agents. Agents can register
with more than one agent playing the group role.

Agent Manager — a special role used for managing a so-
ciety of agents. This role deploys, starts up, controls,
and shuts down agents, usually in a context of a spe-
cific group.

Agent System — any persistent society of agents. An agent
system could have multiple groups, and specific groups
or agents could be introduced, deployed or redeployed,
or killed at various times during the life of the system.
An agent can be decomposed into smaller sub-agents
that work together. When this happens, we can think
of the original agent as having become an agent sys-

tem.
AgentGroup

“ind(Role type) : Role el
Sregister {Agent a) —{ ~

eregister{Agent a) initiAgent a
PsubAgents() - Agent[]

1 plays
fives-an
Agent ' SocialRole

:‘gn;tt%qgggt(?;r%uopb?]sa SwantfSocialRale r, Goal g
QgetGroup(; - AgentGroup —D> %ommit(SogialRole r, Goalg)
YgetOwnerf) - AgentGroup ‘refuse(Sop ialRole r, Goalg)
Qprohib'rt(; ‘done(SomalRole r, Goal g)
Spermitf) ‘failed(SociaIF{ole t, Goal g}

Figure 1: MicroAgent System Design

A UML diagram of the key entities in the micro-agent sys-
tem is shown in Figure 1. There are two base elements in
the micro-agent system, namely agents and roles. Agents
represent actors in the system that can play one or more
roles. Roles are interface specifications of a cohesive set of
services that may be provided by one or more agents, and
each agent may take a different approach to providing the
role’s services in order to implement that role. An agent
group is a role that provides an environment in which other
agents (sub-agents) exist. Because an agent group is a role,
some agents can contain other agents. This can be used as
a hierarchical decomposition method for cases where it is
logical to design agents in terms of a set of sub-agents. All
agents belong to at least one agent group (an owner) that
they live in; however the top-level agent group does not have
an owner, and this is effectively a recursion termination con-
dition.

2.1 Micro-agents
Micro-agents exist at the lowest-level of agent-based abstrac-
tion in this architecture. In order to be efficient at this

fine-grained level they do not have all of the qualities often
attributed to typical, more coarsely-grained agents.

Those agents that exist at the higher level of abstraction,
such as those based on the Foundation for Intelligent Physi-
cal Agents (FIPA)[4] specifications, typically engage in agent
communication using the declarative representation for their
messages that is based on speech-act theory[15]. Micro-
agents, on the other hand, employ a simpler form of agent
communication and, in addition, have more limited flexibil-
ity when compared to higher level agents.

Coarser-grained agents, such as FIPA-based agents, may
make reference to ontologies (which characterize the terms
and relationships mentioned in their messages), and they
may reason about such ontologies or even adopt new on-
tologies for new agent conversations. Micro-agents, on the
other hand, do not have ontologies in that sense but can be
thought of as having an implicit system-level ontology that
cannot be changed or reasoned about.

Micro-agents, being the closest entities to the machine plat-
form, must be implemented on a specially designed micro-
kernel. For example, for the Opal system, which is imple-
mented in Java, the micro-agents are implemented by ex-
tending defined packaging and framework constraints, and
they communicate via method calls. As a consequence, the
micro-agents behave in strictly-defined and predictable ways
and do not carry out runtime reasoning. Additionally, some
micro-agents are responsive agents and do not own their own
thread or threads of control.

Agents may be composed of any number of other agents
or micro-agents. Non-primitive micro-agents are composed
only of micro-agents. The same agent-based modelling ap-
proaches apply in the same way to both coarse-grained agents
and to micro-agents — the same design methodology, role-
oriented and society-oriented techniques apply equally to
coarse-grained agents as to micro-agents. Agent-oriented
decomposition and role-based modelling are independent of
the deployment scale. All the roles can potentially be played
by micro-agents or coarser-grained agents with a similar re-
sult. However the key advantage of micro-agents is that for
small scale systems they will radically out-perform coarse-
grained agents at runtime.

2.2 Communication

For traditional communication in multi-agent, peer-to-peer
asynchronous message passing with a formal agent commu-
nication language is used [3]. A message is embedded inside
an envelope, which contains routing information, identifica-
tion of the receiver and the sender, and the content of the
message. The message content, which can be expressed in
one of a number of possible content languages, makes refer-
ences to terms formally defined in an ontology, and can be
sent in the context of ongoing an interaction protocol [4] or
conversation. A conversation in this context is a sequence
of message exchanges which may span multiple interaction
protocols and multiple agents.

In order to maintain the spirit of inter-agent semantic com-
munication as expressed in speech-act theory, micro-agents
have been designed so that they communicate using mes-

sages of the following types: directives, assertives, expres-
sives, commissives, permissives and prohibitives [16]. This
does not represent a true implementation of natural lan-
guage communication, but instead uses names derived from
the discipline. The intention is to enable the developer to
employ a mental model of language-based agent communi-
cation when micro-agents are used.

The social aspects of the agent interactions are captured in
the SocialRole (see Figure 1), which contains all the prim-
itive type of communicative acts we have discussed above.
The communicative acts (performatives) are implemented as
simple method calls with a special argument list. The per-
formative is represented as the method name itself, while the
sender is identified by the first parameter and the message
content is represented by the goal argument. Goals together
with Roles can be designed in UML, which then maps di-
rectly to the implementation via classes and interfaces.

2.3 Implementation

The current implementation of the micro-agents and the
kernel which supports them is written in the Java program-
ming language. This elevates existing object-oriented design
patterns up to a useful a agent-oriented abstraction level.
However the Java programming language imposes some con-
straints of what can be done, and consequently some of the
patterns that are desirable from the agent-based perspective
cannot be implemented in a straightforward and efficient
manner. Some of the most notable problems are:

e an agent dynamically playing different roles maps to
a class implementing that can play several differing
interfaces at runtime. This is not possible without
the inefficient dynamic proxy mechanism introduced
in Java 1.3

e an agent will often need to identify the sender of a
message, but using Java it is impossible to identify the
caller of a method without using an additional formal
argument in the method

e Java reflection, needed to discover runtime agent ca-
pabilities, is inefficient

Despite these constraints, we believe that there are good
reasons to implement an agent based system in the Java
language, and we also believe that we have successfully im-
plemented most of the features which lie at the heart of
agent-oriented software engineering. The intention has been
to provide a micro-agent and kernel framework which is as
efficient as possible so that the micro-agent message oper-
ation involves little more overhead than a normal virtual
method call in Java.

2.4 Hello World Example

To demonstrate the use of micro-agents from the Java devel-
opers perspective we have developed a simple “Hello World”
example. The Hello World agent system consists of four
agents, the User agent, HelloPrinter, Dumper, and Data-
Collector, which are organized into two groups, as shown
in Figure 2. The User agent is a social agent which wants
the Hello World data to be printed. HelloPrinter is a social

agent which can achieve the goal of printing Hello World.
Dumper is a responsive agent which can dump data to a
system output port, and DataCollector is a simple respon-
sive agent which can provide data, and in this scenario it
provides the static “Hello World” string.

Anonymous Agent System

User Agent HelloPrinter Agent

VAN

.| | DataCollector Dumper

Figure 2: Hello World example

By separating these four different aspects of the system,
different agents implementing the same roles can be plugged
in without affecting the rest of the system. This will allow
us to have the following collection of agents,

e Dumper agents, which dump to the screen, to a file,
or to some GUI-based output

e several DataCollector agents, one collecting data from
the user sitting in front of the console, others from a
file, telephone or GUI application

These extensions could be added during runtime by plugging
in different agents dynamically, without affecting the rest of
the system.

Setting up the Hello World System in Java could look like
this:

public static void main(String[] args){

// the process of loading and creating new agents
// performs registration and initialisation
Agent hello = SystemAgentLoader.

loadAgent(new HelloPrinterImpl());
Agent user = SystemAgentLoader.

loadAgent(new UserAgent());

// add sub agents to hello agent

Group group = hello.getGroup();

AgentLoader loader = group.getAgentLoader();
loader.load Agent(new DumperAgent());
loader.load Agent(new DataCollectingAgent());

// go!

Goal g = HelloPrintedGoal.instance();
hello.want(user, g);

Implementation | Time (ms)
Java 340
Micro-agents 440
JADE 140,000

Figure 3: 10,000 Hello World Iterations

// HelloPrinter Role Implementation

public class HelloPrinterImpl
extends DefaultSocialRoleImpl
implements HelloPrinter {

public void want(Agent a, HelloPrintedGoal g){
// machinery to achieve goal

The code above shows an example of a top level main method
which sets up agents in different groups. One group is the
top level agent group containing the User agent and Hel-
loPrinter agent. The second group is contained within the
HelloPrinter agent—it controls and manipulates a DataCol-
lector agent and a Dumper agent.

To demonstrate the merit of the micro agent approach three
different Hello World implementations have been developed
and timed. The first implementation was a simple call to the
Java method System.out.println("Hello World"); and
the second the micro-agent implementation as described above.
The third was a implementation using the the same agent-
decomposition as the micro-agent example, but with the
JADE agent toolkit [1]. The results of timing 10,000 Hello
World requests are shown in Figure 3.

The JADE agents actually did not perform any message
processing or parsing during the tests, and there was no
data conversion performed for a given transport. It ran on
single virtual machine and all message passing was done via
a simple Java RMI mechanisms. This shows that coarse
grained agents may in some cases be 300 times slower than
our micro-agent implementation. That confirms that FIPA-
like agents are not likely to be suitable for fined-grained,
simple and efficient system components.

3. MICRO-AGENT APPLICATIONS

In this section we demonstrate how the micro-agent system
can be used to build applications using an agent-oriented
approach. An agent-based model of a robot is discussed
later in this section. This is an example of an application
where micro-agents are required because of the scale of the
problem. In Section 4, the development of Opal using micro-
agents is discussed. This is an example of how micro-agents
might be used to develop a non-trivial system.

An initial agent-oriented model of a robot is shown in Figure
4. This model identifies the role of an robot, interacting with
an environment and receiving instructions from a human op-
erator. It would be possible to go from this model directly to
an implementation of the robot as a coarse-grained agent.
This implementation would be monolithic and it is likely
that further design, possibly using object-oriented method-

ologies, would be required to provide a decomposition from
this high-level model to implementation level components.

Robot
Human Environment
—_—

Figure 4: Role oriented decomposition A

Figure 5 shows a more detailed decomposition of the robot.
Several autonomous, concurrently running and communicat-
ing sub-roles are identified, a sensory processor, task sched-
uler and meta-level processor. Three independent effectors
are also identified, the arm and the left and right wheels.
These components may themselves be further decomposed,
the figure shows only the decomposition of the task sched-
uler. Three reactive components of the task scheduler are
identified, a command analyser, action planner and action
executor. An example scenario could be the operator ask-
ing the robot to move to a particular location. This direc-
tive would be processed by the command analyzer, then the
planner would create a plan to reach the location, then the
executor sends instructions to the wheels and arm to move
to the location.

Robot

Meta-level Processor

\T ¢ Arm

Task Scheduler/ ;

Y \ Left Wheel |

\A Right Wheel
Sensory Processor

juswuolinug

I
|
|
I
! Task Scheduler
I
I

|

|

:

|

Command Analyser |
- - |
|

I

* |

' Executor '

Figure 5: Role oriented decomposition B

Planner

The level of detail expressed in this model would not be prac-
tical to implement using traditional coarse-grained agents—
as the hello world example has shown this would be too inef-
ficent. Although the initial model for the coarse-grained im-
plementation was agent-oriented further refinement of such
a model using traditional agent development technologies
would likely require alternative design methods to be used.
On the other hand, using the micro-agent approach de-
scribed in this paper a more-detailed level of design can be
achieved with agent modelling employed all the way down
to the implementation level.

4. OPAL AGENT FRAMEWORK

As discussed in section 2, micro-agents are presented with-
out much of the coarse-grained machinery often associated
with “intelligent” agents. While micro-agents have been
found appropriate for closed systems, such as those discussed
in the previous section, many interesting agent-related re-
search areas involve open systems, where the agents are typ-
ically coarse-grained, heterogeneous entities that make use
of different languages and ontologies.

The Foundation for Intelligent Physical Agents (FIPA) is
developing open specifications for such coarse-grained agent
systems [4]. A key part of this work has been the FIPA Ab-
stract Agent Architecture (FAA), which is an abstract spec-
ification of the infrastructure necessary to provide a suitable
platform on which such agents can exist.

Role OPAL Agent

‘F

OPAL Agent Platform

SgetDescriptionf) : AgentDescription

YregisterAgent {OpalAgent oa)
SderegisterAgent{CpalAgent oa)
$modifyAgentinfo{Opal Agent oa)
YfindAgent{AgentDescription ad)
$sendiessagefMessage m)

oo
SE Yl ge

Figure 6: Micro-agent Roles used by Opal

This section discusses the Otago Agent Platform (Opal)
which provides a correct concrete instantiation of the FAA,
as well as other tools and utilities useful for the development
of agent-based systems. In a sense, Opal can be considered
to be a scaled-up version of the micro-agent system. There is
considerable amount of infrastructure specified by FIPA for
coarse grained agents that does not exist in the micro-agent
system as we have described it. To provide this additional
capabilities for FIPA-type agents, specialised micro-agents
need to be introduced. The Opal system is therefore de-
signed to be combination of these specialised micro-agents,
that together provide for FIPA functionality.

4.1 Opal Architecture

An important concept of the FAA is the idea of an Agent
Platform (AP), this provides environmental support and the
basic services for the agents deployed on it and it also pro-
vides a directory service to agents outside the AP. The Opal
AP is implemented as a micro-agent playing the Agent Plat-
form Role (see Figure 6). The key services that the AP
provides are inter-platform message transport via the Mes-
sage Transport System (MTS), agent management and a
white-pages directory via the Agent Management System
(AMS), and yellow-pages directory services via the Direc-
tory Facilitator (DF). These three logical capability sets are
implemented in the Opal AP as separate micro-agents.

The AP Role implementation does not itself perform the
bulk of the processing required for the actions of the AP
Role (see Figure 6), rather its tasks are delegated to the

three contained micro-agents. To register an agent, the MTS
needs to know about the agent so it can receive messages
for it, the AMS needs to add the agent to its white-pages
directory and the DF needs to add the agent to its yellow-
pages directory.

Micro—agent group

BDI Micro—-agent
Micro—agent 2 Planner
Exceptions Inten.tion
Handler Engine
Action Knowledge
Engine Base
OPAL Agent

ConversationController

FIPA ACL Handler

Messagéispatcher

Figure 7: Opal’s FIPA Platform and Opal Agents

It is convenient for developers to specify the receiver of a
message using a simple name. For the platform to send
the message the transport-level address, which might be a
CORBA IOR, Java RMI address or even an email address,
must first be found using the AMS, then the MTS is used
to send the message. When performing an action the Agent
Platform agent has the responsibility for ensuring that the
correct sequence of sub-actions gets performed, but does not
perform any of these sub-actions itself.

Aside from the micro-agent role representing the agent plat-
form, an Opal system needs to contain the higher-level coarse-
grained FIPA agents that exist on the Agent Platform. The
micro-agent roles representing FIPA agents can contain a
variety of sub-agent roles. An agent that contains no sub-
agents is provided with only the ability to send and receive
messages. Figure 7 shows a single FIPA agent that uses a
conversation controller micro-agent role to keep track of con-
versations that the agent is involved in. The conversation
controller requires that some micro-agent exists that is able
to play the message dispatcher role. Another FIPA agent
may require the Belief-Desire-Intention micro-agent role to
enable it to be developed using the BDI model.

A complete Opal Agent System with associated FIPA-specified

services is depicted in Figure 8. Individual Opal Agents of
the type shown in Figure 7 can all access an Opal Plat-
form Agent. The Opal Platform Agent contains individual
micro-agents that implement the FIPA-specified services of
the Message Transport System (MTS), the Directory Facil-
itator (DF), and the Agent Management System (AMS).

Opal System

OPAL Platform Agent

AMS

DF

MTS

Figure 8: Example of Opal System

4.2 Message Transport and Dispatching
Transport services are the lowest level services provided usu-
ally by the Agent building toolkit or framework, to enable
inter-agent communication and message passing. Most of
the existing agent frameworks suffer however from differ-
ent levels of incompatibilities because they all provide their
own customized implementation of message transport and
dispatching. Opal differs from its predecessors agent frame-
work in this respect, by employing the an emerging industry
standard for lower-level standard services, JAS.

JAS, which stands for Java Agent Services, is an effort to
define an industry standard specification and API for the
development of network agent and service architectures (for
more details see www.java-agent.org)’. Opal employs a mod-
ular implementation approach to transport services not of-
fered currently by any other agent framework. Transport
services are pluggable and thus new transport implementa-
tion can be seamlessly integrated into the platform when
needed. By default, Opal provides implementations of the
two main transport protocols used by FIPA platforms, namely:
FIPA JAS RMI-based and FIPA2000 ITOP-based transports,
which can be plugged in and used in any JAS -complient
platform.

4.3 Interaction Manager

Opal implements several standard FIPA interaction proto-
cols, and there is a special entity which handles dispatching
and switching the state of a conversation based on the type
and properties of received and sent messages. We refer to
this module as interaction manager, as distinguished from
conversation manager which will be described in the follow-
ing section.

1JAS does not have a formal specification yet, but there
exists a preliminary proposed API set and reference imple-
mentation which Opal currently follows. Opal development
efforts will continue to follow closely JAS efforts in order
to maintain compatibility with it and ensure up-to-date an
implementation

The basic abstract role is an Interaction Tracker, which is
specialized by concrete roles from all predefined FIPA in-
teraction protocols, like FIPARequestTracker, FIPAQuery-
Tracker, etc. Other agents can use the concrete instantia-
tions of those roles, which are played by the dynamically
created agents. The actual InteractionManager is responsi-
ble for starting, monitoring and controlling all those instan-
tiations.

The system is flexible enough to cope with different aspects
during runtime, for example a specialized Interaction Man-
ager could be used to monitor and reschedule priorities of
the ongoing interactions, keep track of exceptions and dele-
gate them to specialised units elsewhere in the system.

4.4 Conversation Manager

A conversation is an ongoing sequences of messages which
can span multiple agents and multiple interaction protocols.
There are many aspects which need to be addressed, includ-
ing tracking individual interaction protocols and their viola-
tions, keeping track on the context and the subject, timing
out late responses, allocating resources to more important
tasks, etc. To manage the complexity of these conversations,
a special infrastructural component must be modelled, im-
plemented and deployed.

Our approach to this dynamic and complex task is to de-
compose the overall architecture into decoupled and rela-
tively self-contained modules. This employs the same de-
sign philosophy that we have used in other parts of the sys-
tem, whereby a “divide-and-conquer” approach is applied to
the separation of concerns so that tasks are partitioned into
small tractable modules. This enables us to benefit from all
the positive features of agent-oriented decomposition and
decoupling. All the elements are pluggable and there is no
single machinery hardwired to any other one. In case of fail-
ure, it gives the flexibility and capability to switch to other
working resources. In case of specialization and system evo-
lution, it gives a natural separation of concerns: a change in
one part of the system will introduce only minimal changes
to other parts of the system.

We employ a three-layer architecture for modelling conver-
sations, which expands on previous approaches that employs
two abstractions of protocols and conversations, by adding
an additional notion, that of policy (or strategy). The policy
layer guides the participating agents during the course of a
conversation and can be used to deal with conversational
components that are directed to be about the current con-
versation in progress or that can serve to reroute the current
conversation in a new direction. This new additional level
helps to keep conversation-specific logic close to the con-
versation models, which improves encapsulation and helps
conversation debugging and the verification process.

All three layers are modelled as specialized roles that are
played by instantiated agents. Usually the Policy Manager
will monitor all existing conversations and react to some
meta-level heuristics. There are a great many enhancement
possibilities, and much of the reasoning, for obvious reasons,
is not actually implemented in Opal, but left to the specific
domain and system developer to be implemented. The main
purpose is to provide scalable and flexible infrastructure for

developing complex strategies in the context of inter-agent
communication.

4.5 Deliberation and Task Scheduling

A high-level part of the Opal architecture is a set of standard
agents to perform scheduling and planning for other agents,
however this element of the Opal framework is in the early
experimental stages.

All micro-agents and ordinary agents are inherently goal-
driven and role-oriented. The micro-agent platform built on
top of micro-kernel provides set of standard agent services to
perform hierarchical goal reasoning and planning, following
Procedural Reasoning Systems [8, 12] traditions. This is
currently in the design phase and will be described in future
publication.

Developers can use all the lower level machinery to perform
simple task and goal decomposition and program appropri-
ate scenarios to be used as a role implementations. Further,
the developer can provide some meta-level reasoning agents
and capabilities which will typically span most of the exist-
ing system components.

The principle idea is not to cope with the big task in a single
centralized place (like inside a big coarse-grained agent), but
rather to reuse different bits and pieces distributed through-
out the system. This is where the entire system can benefit
from the micro-agent infrastructure. One of the main goals
of Opal is to provide uniform modelling abstractions and
operational techniques, which can be used for dealing with
different scales and different granularity of components. A
loosely coupled, but interconnected network of such com-
ponents, an agent system, can in a flexible and robust way
solve different complex systems.

5. DISCUSSION

This paper has presented an approach to agent-oriented soft-
ware development that seeks to employ the notion of agent
modelling at multiple levels of abstraction. With this ap-
proach, a high-level abstract representation of a system can
be successively refined to lower and more detailed levels of
implementation, so that agent-oriented concepts can be used
throughout the software development process. In support
of this approach, we have developed an agent-based infras-
tructure that uses base level agents, which we have called
micro-agents, as the fundamental building blocks for the de-
sign and construction of agent-based systems. The micro-
agent and supporting kernel implementations that we have
developed in Java enable the software engineer to develop
agent-based systems and components that are much more ef-
ficient than those developed by conventional coarse-grained
agent technology.

Using the micro-agent-based infrastructure, we have built
the Opal agent-based framework that offers support for the
development higher-level agents that conform to the FIPA
specifications. With Opal it will be possible to design FIPA-
based agent systems and also employ agent-based compo-
nents for virtually all aspects of a software system, includ-
ing finer-grained components that are not normally imple-
mented in terms of agent constructs for reasons of efficiency.
It is our contention that the approach and infrastructure de-

scribe here supports scalable agent-based solutions, because
one can employ agent-based concepts over a wider range
of software engineering activities and still produce efficient
software implementations.

We are continuing to add more services and functionality to
the Opal agent framework and will make the source code for
this infrastructure publicly available in the near future.

6. REFERENCES
[1] F. Bellifemine, A. Poggi, and G. Rimassa. JADE - A
FIPA-compliant agent framework.
http://sharon.cselt.it /projects/jade, 2000.

[2] G. Booch. Object Oriented Analysis and Design with
Applications. Addison Wesley, 1994.

[3] FIPA. FIPA Spec 2 - 1999. Agent Communication
Language. Draft, Version 0.1,
http://www .fipa.org/specifications/index.html, 16
April 1999.

[4] FIPA. Foundation For Intelligent Physical Agents
(FIPA). FIPA 2000 specifications.
http://www.fipa.org/specifications/index.html, 2000.

[6] M. Georgeff and A. S. Rao. A Profile of the Australian
Artificial Insititute. IEEE Ezxpert, pages 89-92,
December 1996.

[6] O. Gutknecht and J. Ferber. Madkit: Organizing
heterogeneity with groups in a platform for multiple
multi-agent systems, December 1997. Technical Report
97188, LIRMM, 161, rue Ada - Montpellier - France.

[7] O. Gutknecht and J. Ferber. MadKit Agent Platform
Architecture, May 2000. Technical Report
R.R.LIRMM 000xx, 161, rue Ada - Montpellier -
France.

[8] F. Ingrand and M. Georgeff. Procedural Reasoning
System, User Guide. 1991. Australian Artificial
Intelligence Institute, 1 Grattan Street, Carlton,
Victoria 3053, Australia.

[9] N. R. Jennings. Agent-oriented software engineering.
In Proceedings of the 12th International Conference on
Industrial and Engineering Applications of Al, pages
4-10, 1999.

[10] N. R. Jennings, K. Sycara, and M. Wooldridge. A
roadmap of agent research and development.
Autonomous Agents and Multi-Agent Systems,
1(1):7-38, 1998.

[11] N. R. Jennings and M. Wooldridge. Agent-oriented
software engineering. In J. Bradshaw, editor, Handbook
of Agent Technology. AAAI/MIT Press, 2000.

[12] J. Lee, M. J. Huber, P. G. Kenny, and E. H. Durfee.
Um-PRS: An implementation of the procedural
reasoning system for multirobot applications. In
Conference on Intelligent Robotics in Field, Factory,
Service, and Space (CIRFFSS), pages 842-849,
Houston, Texas, 1994.

(13]

(14]

(15]

(16]

H. Nwana, D. Ndumu, L. Lee, and J. Collis. ZEUS: A
Tool-Kit for Building Distributed Multi-Agent
Systems. Applied Artifical Intelligence Journal,
13(1):129-186, 1999.

S. Poslad, P. Buckle, and R. Hadingham. The
FIPA-OS agent platform: Open source for open
standards. In Proceedings of the 5th International
Conference and Ezhibition on the Practical
Application of Intelligent Agents and Multi-Agents,
pages 355-368, 2000.

J. R. Searl. Speech Acts: An Essay in the Philosophy
of Language. Cambridge University Press: Cambridge,
England, 1969.

M. P. Singh. Agent communication languages:
Rethinking principles. In IEEE Computer, 0018-9162,
pages 40-47. December 1998.

