SAPERE *+ AUDE

University of Otago

Te Whare Wananga o Otago
Dunedin, New Zealand

Exploiting the Advantages of Object-Oriented
Programming in the Implementation of
a Database Design Environment

Nigel Stanger
Richard T. Pascoe

The Information Science
Discussion Paper Series

Number 97/08
June 1997
ISSN 1172-6024

University of Otago
Department of Information Science

The Deparnent ofInformation Science isneof six depanmnents thamake up the Diision of Commerceat
the Uniersity of Otago. The deparhent offers courseof study leadirg to amajor in Information Science
within the BCom, BA and BSc degreefn additionto undergradua teaching,the departmentis also
strorgly involved in posgraduate research gp@mmes leadig to MCam, MA, MSc and PhD dgees.
Research pjects in software engineering and softedevelopmentinformationengineeringand database,
softwaremetrics knowledye-basd systams, natural laguage processig, spatial hformation systeans, and
information systems securiy are particuldy well supported.

Discussion Paper Series Editors

Every paper appearing in this Serieshadergone editoriareview within the Departmenof Information
Science. Current members of the tBdal Board are:

Assoc. Professor George Benwell Assoc. Professor Nikoldasabov
Dr Geoffrey Kennaly Dr Stephen MacDonell
Dr Martin Purvis ProfessoPhilip Sallis

Dr Henly Wolfe

The views expressed in thpaper are not necesdsrthe same as thoseltldly memlers of the editorial
board.The accurey of the informatiorpresentedn this paper ishe sole responsibilitof the authors.

Copyright

Copyright remains with the authors. Permissioncaqy for research or teaching purposes is granted on the
condiion that the athors and the Series argiven due aknowledgment. Reproductin in any form for
purpogs aher than research or teachisdarbidden unles prior written permissiorhas been obtaed from

the authors.

Correspondence

This paper represents vkoto date andgnay not necessasilform the basis for the #lvors’ final condusions
relating to this topiclt is likely, however, that the paper will appearsame form in a jourdaor in
conferene proceetéhgs in the nearfuture The authors wdd be pleasedto receive correspondence in
connection withany of the issues raiseidh this paperor for subgquent publication details Pleag write
directly to the autors at the ddress povided below (Details d finaljournal/canference piblication venues
for these papers are also provided on the Depariment’'s publicatons wdé pages:
http://di vcom ot ago. ac. nz: 800/ COM | NFOSCI / Publ ct ns/ hone. ht m. Any other
corresponence concernig the Serieshould be sento the DPSCoordnator.

Depatment ofInformation Science

Universty of Otago

P O Box 56

Dunedin

NEW ZEALAND

Fax: +643 479 8311

email: dps@infoscience.otago.ac.nz

www: ht t p: // di vcom ot ago. ac. nz: 800/ coml i nfo sci/

Exploiting the advantages of object
oriented programming in the
Implementation of a database design
environment

Nigel Stanger
Richard Pascoe

Department of Information Science,
University of Otago
Dunedin, New Zealand.

Email
<nigel.stanger@stonebow.otago.ac.nz>
<rpascoe@commerce.otago.ac.nz>

[Submitted to the Joint 1997 Asia Pacific Software Engineering Conference and International
Computer Science Conference (APSEC '97 and ICSC’97), December 2-5 1997, Hong Kong]

Exploiting the advantages of object
oriented programming in the
Implementation of a database design
environment

Abstract

In this paper, we describe the implementation of a database design environment
(Swift) that incorporates several novel features: Swift’s data modelling approach is
derived from viewpoint-oriented methods; Swift is implemented in Java, which
allows us to easily construct a client/server based environment; the repository is
implemented using PostgreSQL, which allows us to store the actual application code
in the database; and the combination of Java and PostgreSQL reduces the impedance
mismatch between the application and the repository.

1. Introduction

In this paper, we describe the implementation of a database design environment
named Swift, which has these novel aspects:

= Swift’s data modelling approach is derived from viewpoint-oriented methods;

= Swift is built to take advantage of recent developments in object-oriented
programming, in particular the advent of Java; and

= Swift itself will be stored in an underlying database that acts as a repository.

In the remainder of this section, we shall expand briefly upon these three points, the
first in section 1.1 and the remaining two points in section 1.2. In section 2 we discuss
the framework for the implementation of Swift. In section 3 we describe the
implementation as it currently stands. In section 4 we discuss some useful side
effects of our implementation approach, and in section 5 we discuss directions for
future research.

1.1 A brief review of viewpoint concepts

The underlying philosophy of Swift is based on the concepts of perspectives,
viewpoints, representations, techniques and schemes, as shown in Figure 1, and
suggested by Finkelstein (1989), Easterbrook (1991a) and Darke and Shanks (1995).

A perspective is a description of some real-world phenomenon that has internal
consistency and a specified focus (Easterbrook 1991). During the requirements
definition phase of systems analysis, developers often encounter many different
perspectives on the problem being modelled. Perspectives may overlap, or even
conflict with each other, and part of the process of database design is deciding how
to deal with these multiple perspectives. This is an active area of research that has
been discussed by several authors (Leite and Freeman 1991; Easterbrook, Finkelstein
et al. 1994; Kotonya and Sommerville 1996).

Real-world phenomena

viewed from several

Perspective Perspective Perspective
[
/ expres;ed asa x
Viewpoint Viewpoint Viewpoint
. I
Viewpoint integration using onT or more
. . X .
Representation Representation Representation
Technique Technique Technique
[E-R modelling] T [Relational] T [Functional dep.]
,,,,,,,, N S| - iRl
Scheme Scheme Scheme
[Martin ERD notation] [SQL] [FD diagram]

Database design environment using multiple viewpoint representations
Figure 1. Perspectives, viewpoints and representations.

A viewpoint is a formatted expression of a perspective (Finkelstein, Goedicke et al.
1989). Darke and Shanks (1995) define two main types of viewpoint, user viewpoints
and developer viewpoints. These viewpoints may be described using various
representations, each of which comprises a technique expressed in some notation or
scheme. A technique may have one or more associated schemes, but we define each
combination of a technique and a scheme to describe a viewpoint to be a distinct
representation. For example, the relational model (RM) is a technique, with SQL and
QUEL being two possible schemes, but the combinations RM + SQL and
RM + QUEL form two distinct representations. Figure 1 does not show techniques
with multiple schemes for the sake of clarity.

The use of a particular representation to describe a viewpoint can be said to form
a description of that viewpoint. In general, no single representation will be adequate
to fully describe all types of viewpoint, and indeed, the current plethora of
modelling techniques suggests that a single representation is inadequate to fully
describe even a single viewpoint. The approach taken by Swift is to use multiple
representations to form multiple descriptions of a single viewpoint, which, when
combined, result in a more complete description of the viewpoint than that formed
using a single representation. This approach conceptually mirrors the idea of using
multiple viewpoints to describe a phenomenon, but at a lower level.

Much of the research into viewpoints has been from a software engineering
perspective. Our work started in the area of data modelling and the main focus
remains there, but we have found that the viewpoint concepts described above
provide a useful framework for our work.

The use of multiple representations within a particular viewpoint is an area that
has only recently begun to receive attention (Darke and Shanks 1995). One
interesting aspect of Swift is that it allows the developer to perform transformations
between different representations (and by extension, descriptions), for example,
from functional dependencies to an entity-relationship diagram (ERD). This

provides some useful advantages in terms of re-use of existing models, and potential
improvements in the integrity of the overall design (Stanger and Pascoe 1997).

1.2. General overview of Swift

Swift consists of two main parts: a Java applet front end and a PostgreSQL (formerly
known as Postgres95) repository. Java is a recent development in object-oriented
programming, and use of this language provides us with some useful benefits:

= Swift is potentially fully cross-platform, as the applet may be run in any Java-
capable browser or other Java run-time environment.

= Swift can be implemented as a client/server system, that is, the applet acts as
a client to the repository. Ideally, the front end will run on a separate machine
from the repository.

Java is designed around the idea of small classes that may move around on a
network. One immediate benefit this provides is the ability to extend the client to
support a new representation by adding classes at the server end that implement the
new representation. These classes are loaded at run-time by the client. This is
conceptually somewhat similar to the approach taken by Informix’s DataBlades
(Informix Software 1996; Keeler 1996).

This leads us to the repository, which is built using PostgreSQL. PostgreSQL was
chosen because of its object capabilities (particularly in the handling of large objects),
its temporal features and ready availability. PostgreSQL’s ability to handle complex
object types is also useful in reducing the impedance mismatch between the client
applet and the repository, that is, the data structures used in the repository closely
mirror those used by the client. We shall discuss this further in section 4.

The client and repository communicate via JavaPostgres95 (McLean, Medeiros et
al. 1997), which was originally developed as a Java implementation of PostgreSQL’s
libpg programming interface (Yu and Chen 1995), but has recently evolved into a full
JDBC driver. This allows Java programs to easily access data stored in a PostgreSQL
database.

The combination of Java and PostgreSQL’s large object features gives us the
opportunity to store all of Swift’s code in the database itself. This is particularly
useful for the classes that define a particular representation’s behaviour, as these are
not loaded until they are actually needed, but it is equally feasible to store other
parts of Swift in the repository as well. Using PostgreSQL’s large object support, we
can store compiled Java classes as attributes within the repository. In addition, Java
applets are usually accessed through an HTML page, and this page could also be
served directly from the repository.

2. Conceptual framework

The main feature that differentiates Swift from other database design tools is the
ability to transform between representations/descriptions. This approach provides
two main advantages (Stanger and Pascoe 1997):

= existing descriptions may be re-used by transforming them into other
representations; and

< transformations can be used to verify the integrity of a design by
transforming different descriptions to use the same representation and then
comparing them.

A description in one representation can be transformed to another representation
as a starting point for documenting different aspects of the same data model. Note
that both share a common basis, thus forming a cohesive model containing different
descriptions. For example, a developer might create a FDD, then transform that into
a partial ERD that they can then use as a foundation for further work. Because the
ERD is based on the original FDD, there is a greater likelihood that the two will be
consistent with each other.

Now consider a situation where we have several descriptions of the same
viewpoint, and we want to be sure that the these descriptions are consistent with
each other. In other words, we want to check the integrity of the combined
description. Re-using existing descriptions helps to some extent, as described above,
but we may also have descriptions that were produced “from scratch”. One way of
checking consistency is to transform the descriptions to be compared so that they all
use the same representation, for example, we could transform a FDD into an ERD so
that it can be compared with an existing ERD. If the two ERDs are not consistent,
then there may be a problem with the integrity of the design.

2.1 Implementing transformations

One possible approach to implementing these transformations is to attempt to define
a uniform representation that acts as a kind of “interchange format”, otherwise
known as the interchange interfacing strategy (Pascoe and Penny 1990). All
information is described using this representation, and it is transformed to other
representations as required. The main disadvantage is that the uniform
representation may become a “moving target” — as new representations are added,
the uniform representation must be updated to handle them. This can lead to a
proliferation of incompatible versions of the uniform representation that hinders
transformations between different representations.

Another argument against this strategy is that it represents a kind of
“representation integration” step, which is analogous to the objectivist approach of
unifying all viewpoints into a single “correct” viewpoint (Klein and Hirschheim
1987). In other words, we are conceptually moving away from the viewpoint-based
approach.

Also consider that the end result of the database design process is usually the
generation of a database schema. If we are going to take our multiple representations
and transform them into a single representation anyway, it seems somewhat
unnecessary to introduce yet another representation into the mix, especially if the
“target” representation is one of the original set of representations (for example,
SQL).

A better approach in this case seems to be to perform transformations between
representations as needed, an approach known as the individual interfacing strategy
(Pascoe and Penny 1990). The total number of transformation “engines” required
increases, but adding a new representation does not impact upon existing
transformations. Also, as stated above, this approach is analogous to the way in
which viewpoints are handled.

Figure 2 illustrates a framework that follows this strategy. The transformations
between representations are represented by the grey arrows; T; and T, correspond to
the similarly labelled arrows in Figure 1. Each representation is placed into its own

conceptual “module”, which handles all the needs of that representation. This
modular approach makes the environment much easier to extend.

Each module has a technique component, which deals with storage issues, and a
scheme component, which deals with the user interface. Technique components can be
shared across representations, as shown by the relational technique in Figure 2,
which is shared across two relational representation modules, one that uses SQL and
another that uses QUEL.

Representation modules

technique ERM Relational FD
”””” <> RUEL

scheme [Martin ERD

A

\ > Schema

generation

Database

N

Figure 2. Conceptual framework for the database design environment.

3. Implementation architecture

There are four distinct parts to the Swift environment: a modelling applet, a
transformation processor, a repository and a schema generator. We shall discuss
each of these parts in turn in this section, apart from the schema generator which is
briefly discussed in the future research section of this paper.

Figure 3 shows how these different parts fit together. We can relate this
architecture back to the framework of Figure 2 as follows:

< The combination of the modelling applet with a particular R corresponds to
one of the representation module boxes of Figure 2.

= The combination of the transformation processor with a particular T
corresponds to one of the transformation arrows T; of Figure 2.

= Schema generation is not shown in Figure 3, as stated above.

These parts could be implemented either as a single integrated module, or as
separate modules that communicate with each other. Since Swift is intended to run
in client/server mode across a network, we have chosen to implement the parts as
separate modules. The modelling applet is designed to run within a browser on the
client machine, and communicates with the repository on a server machine that may
be elsewhere on the network The transformation processor may run on either the
client machine or the server machine, or even both, depending on user preference
and prevailing conditions.

Transformation

processor Modelling applet
user interface user interface
“engine” “engine”
\ }\ f \
JDBC

—
—/
. 1
descriptions @
transformations representations

Repository

Figure 3. The implementation architecture.

3.1 The modelling applet

The modelling applet is used to manipulate and display constructs of a particular
representation, and can be implemented in two ways:

= create a customised module for each representation; or

= create a single, generic modelling module and create separate “plug-ins” for
each representation.

The first approach has been implemented in several CASE tools, for example
Sybase’s Deft (O’Brien 1992), and has the advantage of allowing us to tailor the front
end (in particular the user interface) for each representation, but it is only really
practical if there are a small number of representations, as writing a custom module
for each new representation is likely to be a labour-intensive task. It is also possible
that adding a new module may require modifications to existing modules to allow it
to “fitin”. The end result is an architecture that is less easy to extend.

The second approach, by contrast, allows us to more easily extend the
environment’s capabilities, and is an approach that has also been implemented in
several CASE tools, for example, Evergreen Software’s EasyCASE (Evergreen
Software Tools 1995). In the case of Swift, we can use the inheritance and
specialisation aspects of the object-oriented paradigm to implement this approach. In
particular, aspects of a specific representation are implemented as subclasses of a
collection of abstract representation classes, which allows us to add a new
representation without having to rewrite existing code. Instead, the modelling applet

gets the representation-specific information (such as terminology and notation) from
the representation subclass and uses this to specialise its behaviour accordingly.

This architecture is more flexible and extensible than one based on the first
approach, and is the approach we have taken for Swift — the modelling applet has a
collection of abstract representation classes that are overridden by representation-
specific subclasses that are loaded from the repository. These subclasses know how
to manipulate and draw the elements of that particular representation.

Figure 4 shows two screenshots of a very early version of the modelling applet
running in the HotJava browser. The screenshots show two different partial
descriptions of the same viewpoint, a functional dependency diagram on the left,
and an entity-relationship diagram on the right.

A testing testing 1-2-3 o] { testing testing 1-2-3 =153
File Edit View Plsce: File Edit Wisw Place Hel

< Help =
alelclelalalelc) - CwoOwE@ [2
aga ac. nzi B8 nstanger javassui P Sui . w [‘ Place: | nttp:-/sage.otago. se.na: 808, “nstanger/ javassuif t/Suift. i

S e

sssss

cccccccc

aaaaaaaaaaaaaaaa

Figure 4. Screenshots of the modelling applet.

3.2 The transformation processor

We can also apply the subclass/specialisation approach to the transformation
processor, which is used to initiate and control transformations between
representations. Indeed, the subclass/specialisation approach is even more
applicable in this case, as each new representation requires the addition of a
potentially large number of new transformations. That is, if we have n existing
representations, and we add a new representation, we must potentially create n new
transformations. The subclass/specialisation approach would seem to be the most
effective way of implementing this. Each transformation description would consist
of a set of rules describing how to transform objects of the source representation into
objects of the destination representation.

This is the approach that we have taken for Swift — transformations are
implemented by a collection of Java classes that specialise the behaviour of abstract
transformation classes. Each element of a representation has a “transform” method,
so the transformation “engine” tells each element to transform itself in turn, and
then collects and assembles the results for display by the modelling applet.

As stated earlier, the transformation processor could run on either the client
machine or the server machine. The user interface for initiating and controlling

transformations must obviously run on the client, but the actual transformation
process itself could be carried out anywhere.

3.3 The repository

The repository is a persistent data store for all data relating to a particular viewpoint,
storing everything from the representation used by a description, to the structure or
syntax of a particular description (which may include such things as entities, data
flows, attributes and so on). Ultimately, it is intended that the repository will also
store Swift itself.

There are two ways of implementing such a repository: either internally, that is,
build a set of custom data structures and files for storing the repository data; or
externally, that is, use pre-existing DBMS software to store the repository data. The
latter is the preferable option, as it reduces the amount of work required to
implement the repository. The only real disadvantage is that the performance of a
DBMS-based repository may not be quite as good as that of a custom-built
repository that is tuned specifically for handling this kind of data, but this is far
outweighed by the implementation advantages gained. It is also worth noting that
some CASE tools already follow this approach. For example, EasyCASE stores its
repository data in dBASE |11 Plus database files (Evergreen Software Tools 1995).

Four choices were available for implementing the repository: Oracle 7.2 running
under Windows NT; PostgreSQL or Interbase running under Solaris; and Rdb 6.2
running under OpenVMS. The choice of Java as the implementation language
immediately removed Rdb from the list, as there was no infrastructure in place for
communicating between a Java applet and Rdb. The next best options were Oracle
and PostgreSQL. PostgreSQL was chosen over Oracle because of its object
capabilities (as noted earlier) and the availability of source code, which allows the
potential for further tailoring of the DBMS in addition to PostgreSQL’s abstract data
type facilities. Interfaces were also readily available to allow Java to communicate
with PostgreSQL.

The repository itself is currently designed to be as generic as possible.
Representation-specific information is encapsulated within the representation
classes, and it is up to the modelling engine to make sense of the repository data
based on the rules encoded within these classes. This makes the repository capable
of holding information for a new representation without having to alter its structure.
In other words, the repository stores only the syntax of a description — the semantics
is provided by the representation class. Figure 5 shows an entity-relationship
diagram of the repository structure.

The repository stores data about four main types of object:

= Projects, which are just a means of grouping together a collection of related
objects (descriptions, items, and so on) into single logical unit.

= Descriptions, which were discussed in the introduction, for example, an entity-
relationship diagram expressed using Martin notation, or a collection of
functional dependencies written in the standard A - B notation.

= Graphic items, which are the “visual” elements of a representation (for
example, entities, data flows and attributes). Graphic items are a
specialisation of the generic Item class, and may be specialised further into
three subclasses: symbols (for example, entities or data stores); connectors (for
example, data flows or relationships) that connect symbols together; and text
blocks.

Project -H—O-< Description

Text
Representation
A1 Symbol
A Graphic |
Item
Iltem Sourc Destination
Glossary
D Link Connector

Iltem —|—T
Dictionary

Iltem

!

Description Constraint Domain Attribute

Figure 5. Logical structure of the repository.

< Dictionary items, which are the “non-visual” elements of a representation (for
example, attributes, domains, constraints). Dictionary items are also a
specialisation of the Item class, and may be specialised into at least the
following subtypes: attributes, domains, constraints and descriptions. Currently
the environment only implements attributes.

4. Reducing impedance mismatch

Three languages were considered for implementing Swift: C++, Java and Tcl/Tk.
Each of these had its strengths and weaknesses, but we have chosen Java for the
following reasons:

= itisrelatively less complex to develop in than in C++;

= Java s truly cross-platform (there are some compatibility issues with
different virtual machines, but we do not consider this a major problem);

= Java is sufficiently similar to C++ that the learning curve is relatively
small,

= using Java allows us to make Swift a client/server application, as
discussed earlier; and

= the combination of Java and PostgreSQL has the useful side effect of
reducing the impedance mismatch between the client applet and the server
database.

Impedance mismatch comes about because the way data is structured and
manipulated in a DBMS usually differs from the way data is structured and
manipulated in typical programming languages such as C++ (Cattell 1991). The
combination of Java and PostgreSQL used to implement Swift has had the useful
side effect of reducing the impedance mismatch between the modelling applet and
the repository, as PostgreSQL’s object capabilities allow us to build a data structure
that is very similar to that used in the modelling applet.

As briefly noted in the previous section, the repository does not currently
implement representation-specific subclasses, although this is under investigation.
The inclusion of representation-specific subclasses would further reduce the
impedance mismatch between the modelling applet and the repository. The class
structure in the modelling applet is currently more complex than that in the
repository, which requires more work on the part of the modelling applet to
decipher the repository contents.

If the repository data were already specialised into subclasses appropriate to a
particular representation, the modelling applet’s logic could be simplified, resulting
in a “thinner” client than at present. This does have the disadvantage, however, of
making it more complicated to add a new representation to the repository — we
must add the appropriate PostgreSQL subclasses (that is, alter the repository
structure) in addition to the Java classes for the representation.

As noted earlier, we also intend to store Swift itself in the repository, which mean
that the server not only serves data, but also the application that manipulates that
data.

5. Summary and future research

In this paper we have discussed the implementation of a database design
environment called Swift. The novel features of Swift are:

= Swift implements a viewpoint-oriented approach, in particular the ability to
use multiple representations to describe a viewpoint, and to transform
between these representations;

= Swift takes advantage of various object-oriented features; and

= Swift itself is stored in an object-relational DBMS.

There are many issues arising from Swift’s implementation that will require
further research. These issues include:

= A useful feature of many object DBMS'’s is the ability to store data about
multiple versions of an object. We intend to use PostgreSQL’s temporal

10

features to implement this capability in Swift. This will allow us to do such
things as track the lineage of a particular description as it evolves over time.

= Our current research is limited to using multiple representation within a
single viewpoint. It is hoped that we can eventually scale the work done with
multiple representations up to multiple viewpoints.

= The process of schema generation from multiple “source” descriptions is very
interesting. “Traditional” schema generation generally involves only a single
source description, so we must determine how multiple descriptions may be
applied to generate a schema.

To conclude, we have found that the object-oriented paradigm has provided
many advantages that allowed us to rapidly develop a client/server database design
environment.

6. References

Cattell, R. G. G. (1991). Object Data Management. Addison-Wesley, Reading,
Massachusetts.

Darke, P. and G. Shanks (1995). Viewpoint development for requirements definition:
Towards a conceptual framework. In Proceedings of the 6th Australasian Conference on
Information Systems (ACIS "95), Perth, Australia, pages 277-288.

Easterbrook, S. M. (1991). Elicitation of requirements from multiple perspectives. PhD
thesis, Imperial College of Science Technology and Medicine, University of London,
London.

[http://research.ivv.nasa.gov/~steve/papers/thesis/thesis.ps]

Easterbrook, S. M., A. C. W. Finkelstein, J. Kramer and B. A. Nuseibeh (1994). Co-
ordinating distributed ViewPoints: the anatomy of a consistency check. Journal of
Concurrent Engineering: Research and Applications, 2(3).

Evergreen Software Tools (1995). EasyCASE® User’s Guide, Evergreen Software
Tools, Inc., Redmond, Washington, version 4.2.

Finkelstein, A. C. W., M. Goedicke, J. Kramer and C. Niskier (1989). ViewPoint
oriented software development: Methods and viewpoints in requirements
engineering. In Proceedings of the Second Meteor Workshop on Methods for Formal
Specification, Springer-Verlag.

Informix Software (1996). Developing DataBlade® modules for INFORMIX®-Universal
Server. White paper.
[http://www.informix.com/informix/corpinfo/zines/whitpprs/databld/21360f0.h
tm]

Keeler, M. (1996). Database of all trades. Database Programming & Design, 9(11): 34-42.

Klein, H. K. and R. A. Hirschheim (1987). A comparative framework of data
modelling paradigms and approaches. The Computer Journal, 30(1): 8-15.

11

Kotonya, G. and I. Sommerville (1996). Requirements engineering with viewpoints.
Software Engineering Journal, 11(1): 5-18.

Leite, J. C. S. P. and P. A. Freeman (1991). Requirements validation through
viewpoint resolution. IEEE Transactions on Software Engineering, 17(12): 1253-12609.

McLean, B., J. Medeiros and P. T. Mount (1997). JavaPostgres95, version 0.3.
[http://www.demon.co.uk/finder/postgres/index.html]

O’Brien, D. (1992). Deft Editors and Utilities, Sybase, Inc., Emeryville, California,
version 4.2.

Pascoe, R. T. and J. T. Penny (1990). Construction of interfaces for the exchange of
geographic data. International Journal of Geographical Information Systems, 4(2): 147-
156.

Stanger, N. and R. Pascoe (1997). Environments for viewpoint representations. In
Proceedings of the Fifth European Conference on Information Systems (ECIS ’97), Cork,
Ireland.

Yu, A. and J. Chen (1995). The POSTGRES95 User Manual, Computer Science
Division, Department of Electrical Engineering and Computer Sciences, University
of California at Berkeley.

[http://www.eol.ists.ca/~dunlop/postgres95-manual /]

12

