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Abstract

Variation in fruit maturation can influence harvest timing and duration, post~
harvest fruit attributes and consumer acceptability. Present methods of managing and

identifying lines of fruit with specific attributes both in. cornrnercial fruit production
systems and breeding programs are limited by a laclc of suitable tools to characterise

fruit attributes at diiierent stages of development in order to predict fruit behaviour

at harvest, during storage or in relation to consumer acceptance. Witli visiblemear

infrared (VNIR) reflectance spectroscopy a vast array of analytical information is col~

lected rapidly with a rninirnurn of sample pretreatment. VNIR spectra contain in-

formation about the amount and the composition of constituents within fruit. This

information can he obtained from intact fruit at different stage of development. Spec-
troscopic data is processed using chemometrics þÿ�l�}�Q�C�l�1�1�1�l�C�1�l�_�1 ‹�¢�Ssuch as principal component

analysis (PCA), discriminant analysis and/ or connectionist approaches in order to ex-

tract qualitative and quantitative information for classification and predictive purposes.
ln this paper, we will illustrate the effectiveness of a model, connectionist and hybrid
approaches, for fruit quality classification problems.

Introduction

Variations in fruit development can affect fruit composition, maturity, storage attributes

and sensory properties. \/isil’>le~near infrared (\/NIR) reflectance spectroscopy collects fi
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large volume of data rapidly and non-destructively at any stage of development. Hence,
visible~near infrared (VNIR) spectroscopy is widely used for monitoring the composition
and quality of agricultural and pharrnaceutical products, and food industry.

Qver the last few years the number of papers devoted to connectionist approaches has

increased si gnilicantly in the Held of near infrared (NIR) reflectance and transrnittance spec-

troscopy_ Artificial neural networks (ANNS) have been used to lind non~linear relation-

ships between NIR, reflectance and transmittance spectral data and analyte concentration

([l5, 21, 5,  Most of these efforts have been focused on determining whether eonnee~

tionist approaches could improve upon the traditional calibration methods such as stepwise
regression, principal component regression (PCR) and partia.l least squares (PLS).

Furthermore, while ANNS have been used for quantitative NIR analysis, a limited amount

of work has been carried out on their use for NIR qualitative measurement and hybrid ap-

proaches between neural networks (NNs) and fuzzy logic theory. The synergism of integrating
neural networks and fuzzy logic systems [22]into a functional system provides a new direction

towards the realization of intelligent systems [14], [7], and  
VNlR,bodyreflecta.ncespectrahavebeenusedtocharacterisefruitduringripeningbody reflecta.nce spectra have been used to characterise fruit during ripening

at different stage of development [16, l_7]. The aim of t.he present work was to investigate
the use of full \/’NIR spectra sampled over the 500-IOO0nm to discriminate between kiwilruit

managed to resemble extremes in fruit quality and compositional variation that might be

encountered in practice, and to predict at the time of harvest, the ultimate soluble solids

and dry matter content after full ripening, and the occurrence of storage disorders. In order

to tackle these problems ofthe NIR spectra from kiwifruit, we illustrated two problems and

investigated such various techniques  statistical based discriminant approach, supervised
neural network learning methods, and a hybrid fuzzy neural network.

Firstly, the NIR. spectra from kiwifruit was obtained from the 4 dillerent cane treatments

(C’entrol_,Etfrephone, Foil shade, and Leaf remoi/allduring the diflerent stages of development
for fruit quality and compositional classiiication problem. That is, in ripened kiwiiruit

(Actintdta Deltciese þÿ ��H�a�y�w�a�r�d ��)�,VNIR, spectra can reveal information about treatments

applied before harvest and after storage even though the compositional differences were

small [l7, ll]
Secondly, this paper also illustrates the use of these techniques to characterise changes

in kiwifruit during storage and ripening, and at harvest, i.e., to classify the ripeness stages
for the spectra. We are interested in being able to predict each fruit originately identified

by spectra collected at harvest from spectra collected after storage or after ripening. As

the spectra change after storage and ripening, these changes may be predictable. ln this

case, the same fruit have been measured at the 3 intervals (at harvest, after storage, after

ripening), in which the spectra are the ethcphone treatment,

ln this paper we describe data collection and analysis in section 2. In section 3 a brief

rlescriptioii of neural networks are introduced, and the use of cross validation and the training
procedure are explained. Application examples and experimental results in two classification

problems mentioned in the previous paragraphs: treated kiwifruit and kiwifruit at di1’*I‘erent

ripening stages are given in section 4. Section 5 concludes this paper by giving succinct

summary and future directions ol’ this work.
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2 Data collection and Feature Selection

2.1 Data Collection and Preprocessing
Diiilllse body reflectance \/NIR, spectra are sensitive to the fruit structural, textual and com-

positional changes associated with pre-harvest; influences on fruit quality and composition.
Diffuse body reflectance VNlR spectra (540-1000nm range sampled at about 0.5nrn) were

collected from the equator of intact fruit using a portable miniature fibre optic probe and

charged couple device spectropliotorneter (PS1, Ocean Optics Inc., Florida). Grams 32 soft~
ware (Galatic Industries, Salem, NH) was used to pre-process the raw spectra. The raw

sarnple and reference spectra were processed by a Savitsky»Golay convolution smoothing
algorithms (secondorder polynomial at ten intervals), and the absorption spectra were cal-

culated (Log (reference/sample)).The derivatisation removed any baseline and linear shifts

in the spectra  
ln the first case, Kiwifruit (Actmidiu, deliciosa þÿ ��l�~�I�a�y�w�a�r�d ��)vines were manipulated by

removing leaves, by shading the fruit in aluminium foil, or by spraying the fruit with ethephon
(7 mg/ L) during the developmental phase. Variation in fruit properties at harvest or after

storage have been induced in fruit species (kiwifruit) by applying manipulation treatments

to populations of fruit within a tree during pre-harvest development. The four treatments

were control, plucked leaves, fruit wrapped loosely in aluminium foil to exclude light, and

fruit sprayed ca 70 days after full bloom with ethrel. For each of the 4 treatments for the

sampling date of 143 days (prior to storage) 150 individual fruit spectra collected against
873 wavelengths (data points), i.e., spectra were collected from 150 fruits per treatment at

the time of harvest and again after the fruit had been sto1’ed lor 16 weeks at 0°C and data

was truncated to a 545~‘~095nm range and a second order derivative calculated with a ],0nm

gap, giving a data set of 873 values for each fruit and sampling time.

ln the second problem, kiwifruit were sprayed with ethephone (7 mg/L) 2 weeks prior
to harvest to advance and synchronise maturation. After harvest, 150 fruit were stored for
16 weeks at 0°C’ and then allowed to ripen at ambient for 2 weeks. V NIR spectra of the

equatorial region were recorded using a fibre optic probe at harvest, after storage, and again
after ripening for each fruit. The each raw absorption spectra on the ripeness stages contains

150 spectra with 957 data points, representing the whole of the sample spectra.
The Figures 1 and 2 presented on this section illustrate the NIR. spectra of a large

number of substances of kiwifruit samples for the ’first case at harvest and for the second

case, respectively.

2.2 Feature Selection

Using all data points in a spectra as inputs is a major problem in this study. ’l‘here needs
to be a data reduction step. Using the intensities ofthe mass spectra directly as input data
vectors for the various methods under test showed to be not manageable because of the large
dimensionality ofthe input data space. This problem is called the curse of dimensionality.

ln order to give reasonable training times and to have data sets of comparable size only
small subsets of each class of problems need to be selected. The reduction and transformation

of the input data space by introducing spectral features can greatly enhance the performance
of classihcation. The approach adopted was to reduce and transform the input data space

by using well~established techniques based on principal component analysis (PCA), i.e., the
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Figure 1: Visible-near infrared absorption spectra for kiwifruit at harvest.
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Figure 2: Visible-near infrared absorption spectra for stored kiwifruit.

raw absorption spectra were reduced to Weighted sums of principle component (PC) spectra,

derived from the spectra of all the fruit at all times.

In this way the size of each fruit data set was reduced to a rnuch smaller number of factors

scores which were then used to discriminate the treatrnents and categorise temporal changes.

Training sets consisted of 75 spectra from individual fruit per treatment and time and the

rernaining fruit 75 spectra were then used for the validation sets in both chemornetrics and

hybrid connectionist approaches. In particular, the presence of a birnodal distribution in

the foil treatnient was previously determined and was included in the validation but not in

the training set, in order to test the performance of classification under conditions where

primary features are influenced by secondary factors. The validation spectra were projected
onto the principal components (eigenvectors)derived from the training sets, thus reducing
the size of each fruit data set to a much smaller number of factors scores.

In the first case, the size of each fruit data set was reduced to 13 factors for spectra at

harvest and 21 factors after storage which were then used to discriminate the treatments.
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In the second case, a satisfactory experiment was achieved by using the first 8 PCs. The

extent that the PC weightings were ch.aracteristi.c of the ripeness stage was investigated by
canonical discrimination using the spectra for 75 randomly selected fruit as a training set.

The resulting algorithm. was used to classify the ripeness stage for the spectra from the

remaining fruit, validation set.

3 Methodology of Connectionist Approaches

3.1 Connectionist Approaches

The fuzzy neural network li‘uNN [8, 9, 10] uses a multi-layered perceptron (MLP) network

and a extended .BP training algorithm. In this connectionist structure, the input and o1_11.p\|t
nodes represent the input states and output control /decision signals respectively, and in the

hidden layers, there are nodes functioning as membership functions (l\/IFS)and rules. ’_l‘l1is

eliminates the disadvantage of a normal feedforward 1nulti-layer net which is difiicult for an

outside observer to understand or to modify.
The architecture facilitates learning from data and approximate reasoning, as well as

fuzzy rule extraction and insertion. It allows for the combination of both numerical and

fuzzy data and fuzzy rules to be used in one system, thus producing the synergistic benefits

associated with the two sources. In addition, it allows for adaptive learning in a dynamically
changing environment.

The general FuNN architecture consists of 5 layers with partial fcedforward connections

as shown in Fig. 3. in this connectionist structure a modified þÿ�B�i �training aigorithrn was

developed. Nodes in layer one are input nodes which represent input linguistic variables {23]
and the first and last layer act as the fuzzifier and the defuzzifier, respectively. In the condi-

tion layer, uniformly distributed triangular membership functions are used. Singletons are

applied in between the action and the output layer, as Connection weights, which represent
the centre of a membership functions. Ful\IN is also adaptable where the membership func-

tions ofthe fuzzy predicates, as well as the fuzzy rules inserted before training or adaptation,
may adapt and change according to new training data.
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Figure 3: A FuNN structure for two input variables with two linguistic labels

For details of the supervised learning algorithms of FuNN, see lllll.
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’fable 1: Classification Results at Harvest for the FUNN
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4 Application Examples

4.1 Results In Application To Treated Kiwifruit

Fig. Z5shows a structural outline of the FuNN that was selected for use in this study. The
number of input and output nodes were fixed at 13 and fl at harvest and 21 and 4 after

storage model, respectively, but between 2 and 5 fuzzy suhspaces were tested for input and

output linguistic variables, and from 5 and 15 nodes of the rule layer were trained. The

sigrnoid activation functions for the rule and action layer were used, and the momentum

terms were also implemented in order to accelerate the learning process. \/Vhen training the

MLP, the opportunity arose for selecting two adjustable learning parameters, the learning
rate (U) and the momentum factor (or). FuNN has a speed up mechanism that adjusts
these two parameters dynarnicaiiy. This mechanism introduced two new variables, an upper
bound and an increasing rate for 7) and d. These were calculated from the variations in the

sum-squared error (SSE) measure after each epoch, as this gave an indication of how the

weights changed.
For this study, the network was initialised with small random weights, which were scaled

to unit variance before the scores were fed to the networks. Five rules in the rule layer at

harvest model and ten rules after storage model and three membership functions associated
with each input and output linguistic variables were finally selected for our discussion. After
the training process had been iterated 2000 times, the convergence of the error (Rl\-’lSlE)
decreased to 0.00188 at harvest and to 0.0883 after storage. The resulting models were

tested on the valiclation sets which were not used in the training phase. Table il. and 2 show
the results ofthe classification by the FuNN of each model.

4.1.1 Example 1: At Harvest

ln FuNN environinent, we have constructed a model which is functionally equivalent to a

Gcnemlisation _Production rule type of fuzzy inference system [8, p. l92l. Five fuzzy if-then
rules (fruit at harvest) of the type from l3‘uNl\l were extracted:

l.if isC12.8>andisC11.6>andisA16.2>andisA144>is C 12.8> and isC11.6>andisA16.2>andisA144>is C 11.6> and isA16.2>andisA144>is A 16.2> and isA144> is A 14 4>

and isAi4.5>thenisB13.5>andisC1.0>andisB28>is A i4.5> then isB13.5>andisC1.0>andisB28>is B 13.5> and isC1.0>andisB28>is C 1.0> and isB28> is B 2 8>

and isC12.6>;is C 12.6>;

12. if isC1O.5>andisB11.5>andisC12.2>thenisCis C 1O.5> and isB11.5>andisC12.2>thenisCis B 11.5> and isC12.2>thenisCis C 12.2> then isC is C

7.3> and isB1.3>andisB1O.1>andisB5.7>;is B 1.3> and isB1O.1>andisB5.7>;is B 1O.1> and isB5.7>;is B 5.7>;
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Table 2; Classification Results E_i.ftC1‘Storage for the FUNN
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3. if isA12.2>andisA11.5>thenisB3.5>andisC12.2>is A 12.2> and isA11.5>thenisB3.5>andisC12.2>is A 11.5> then isB3.5>andisC12.2>is B 3.5> and isC12.2>is C 12.2>

and isC4.5>andisB17.9>;is C 4.5> and isB17.9>;is B 17.9>;

4.if isC105>then_isCO.7>andisB12.4>andisC13.3>is C 10 5> then_isCO.7>andisB12.4>andisC13.3>is C O.7> and isB12.4>andisC13.3>is B 12.4> and isC13.3>is C 13.3>

and isB2.2>;is B 2.2>;

5.if isA1.6>thenisCO.4>andisB6.9>andisB8.0>is A 1.6> then isCO.4>andisB6.9>andisB8.0>is C O.4> and isB6.9>andisB8.0>is B 6.9> and isB8.0>is B 8.0>

and isB1.3>,is B 1.3>,

where I and 0 represent input and output \fa.r’ia.b1es,respectively, and A, B, and C denote

fuzzy subspaces like small, medium, and large.

4.1.2 Example 2: After Storage

Ten fuzzy if-then rules of the same type for þÿ�{�‘�1 ��u�i�tafter storage were also extrsctecl fiom

F‘uNN:

1. if isB1.6>andisB1.9>andisB1.7>thenisB1.5>is B 1.6> and isB1.9>andisB1.7>thenisB1.5>is B 1.9> and isB1.7>thenisB1.5>is B 1.7> then isB1.5>is B 1.5>

and isB2.0>andisB2.8>;is B 2.0> and isB2.8>;is B 2.8>;

2.if isB1O.9>andisB5.2>andisB7.0>andisA5.4>is B 1O.9> and isB5.2>andisB7.0>andisA5.4>is B 5.2> and isB7.0>andisA5.4>is B 7.0> and isA5.4> is A 5.4>

and then isB5.0>;is B 5.0>;

3.if isB2.7>andisB2.2>andisC2.1>andisA3.2>andis B 2.7> and isB2.2>andisC2.1>andisA3.2>andis B 2.2> and isC2.1>andisA3.2>andis C 2.1> and isA3.2>andis A 3.2> and

isB2.0>thenisC2.7>andisB2.5>;is B 2.0> then isC2.7>andisB2.5>;is C 2.7> and isB2.5>;is B 2.5>;

4.if isB7.7>andisC5.9>andisA6.6>thenisB6.4>is B 7.7> and isC5.9>andisA6.6>thenisB6.4>is C 5.9> and isA6.6>thenisB6.4>is A 6.6> then isB6.4>is B 6.4>

and isC6.6>;is C 6.6>;

5. if isB14.3>andisA8.1>andisA5.2>andisA9.0>andis B 14.3> and isA8.1>andisA5.2>andisA9.0>andis A 8.1> and isA5.2>andisA9.0>andis A 5.2> and isA9.0>andis A 9.0> and

isB1O.7>andisA10.1>andisB2O.1>andisB29.4>andisA7.3>andisA7.8>andisC7.2>andisA3O.5>thenisB4.2>andisC4.1>;is B 1O.7> and isA10.1>andisB2O.1>andisB29.4>andisA7.3>andisA7.8>andisC7.2>andisA3O.5>thenisB4.2>andisC4.1>;is A 10.1> and isB2O.1>andisB29.4>andisA7.3>andisA7.8>andisC7.2>andisA3O.5>thenisB4.2>andisC4.1>;is B 2O.1> and isB29.4> is B 29.4>

and isA7.3>andisA7.8>andisC7.2>andisA3O.5>thenisB4.2>andisC4.1>;is A 7.3> and isA7.8>andisC7.2>andisA3O.5>thenisB4.2>andisC4.1>;is A 7.8> and isC7.2>andisA3O.5>thenisB4.2>andisC4.1>;is C 7.2> and isA3O.5> is A 3O.5>

then isB4.2>andisC4.1>;is B 4.2> and isC4.1>;is C 4.1>;

6. if isA6.0>andisB5.3>andisA11.2>thenisB1.1>is A 6.0> and isB5.3>andisA11.2>thenisB1.1>is B 5.3> and isA11.2>thenisB1.1>is A 11.2> then isB1.1>is B 1.1>

and isC4.5>andisB3.4>;is C 4.5> and isB3.4>;is B 3.4>;

7.if isB9.1>andisA10.6>thenisC4.5>andisB4.5>;is B 9.1> and isA10.6>thenisC4.5>andisB4.5>;is A 10.6> then isC4.5>andisB4.5>;is C 4.5> and isB4.5>;is B 4.5>;

8. if isB7.7>andisC6.5>andisB7.2>thenisCO.8>is B 7.7> and isC6.5>andisB7.2>thenisCO.8>is C 6.5> and isB7.2>thenisCO.8>is B 7.2> then isCO.8>is C O.8>

and isBO.7>andisCO.’7>;is B O.7> and isCO.’7>;is C O.’7>;

7



Table 3: Classification Results at different Ripening Stages for the Ii‘uNN
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After ripening 0 O 75

""%‘Bns¢1aSSisØB‘ 5.33
‘

0
‘

0
"1  

if isC4.3>andandisB6.5>thenis C 4.3> and

and isB6.5>thenis B 6.5> then

9.

lU.if isC6.5>andis C 6.5> and

isA5.0>andis A 5.0> and

isB3.0>,is B 3.0>,

is B 4.6> and isC8.1>andisA11.1>C4.5>andisB4.2>;is C 8.1> and isA11.1>is A 11.1>

C4.5>andisB4.2>;C 4.5> and isB4.2>;is B 4.2>;

is C 8.7> and isB8.0>andisB6.3>andisA9.0>thenisC3.6>andisB3.5>andis B 8.0> and isB6.3>andis B 6.3> and

is A 9.0> then isC3.6>andisB3.5>andis C 3.6> and isB3.5>andis B 3.5> and

where 1 and 0 also represent input and output variables, 1’espectively,and A , B, and C denote

fuzzy subspsees like sinall, medium, and large. It should be noted that the eoeflieients after

each fuzzy predicate denote the degree Ol’lIIl[)OITl1B,Il(IC(DI) and confidence factor (CF)  

4.2 Results In Application To Kiwifruit At Different Ripening
Stages

ln this experiment, the number of input and output nodes were lixed at 8 and 3, respectively,
but 3 trizmgulfu membership functions were tested for input and output linguistic V&‘LI‘lZ1.l3l(‘:S,
and 11 nodes of the rule layer were trained. The network was also initialised with simmll

random weights, which were sealed to unit variaince before the scores were fed to the networks.

11 rules in the rule layer for the model and three membership functions associated with

each input and output linguistic varia.hles were finally selected for the experiment. After

the ll1‘?1.lTll1’1gprocess had been iternted 5000 times, the convergence of the error (RMSIS)
decreased to 0005. The resulting models were tested on the validation sets which were not

used in the trziiniiig phase.

4.2.1 Example 3: Different Ripening Stages

Table 3 shows the results of the classification by the FuNN and 11 fuzzy itlthen rules of the

same type ior different ripening stages were extracted:

l.if isB4.9>andisC156>andisC4.4>andisB4.8>andisA3.5>andisC8.7>andisA3.9>andisA2.1>thenis B 4.9> and isC156>andisC4.4>andisB4.8>andisA3.5>andisC8.7>andisA3.9>andisA2.1>thenis C 15 6> and isC4.4>andisB4.8>andisA3.5>andisC8.7>andisA3.9>andisA2.1>thenis C 4.4> and isB4.8>andis B 4.8> and

isA3.5>andisC8.7>andisA3.9>andisA2.1>thenis A 3.5> and isC8.7>andisA3.9>andisA2.1>thenis C 8.7> and isA3.9>andisA2.1>thenis A 3.9> and isA2.1>thenis A 2.1> then

isC2.7>andisA1.5>;is C 2.7> and isA1.5>;is A 1.5>;

2.if isB1.9>andisB7.0>andisA1.95>andisA3.3>andisB1.2>andisC3.0>andisAO.2>andisA2.4>thenis B 1.9> and isB7.0>andisA1.95>andisA3.3>andisB1.2>andisC3.0>andisAO.2>andisA2.4>thenis B 7.0> and isA1.95>andisA3.3>andisB1.2>andisC3.0>andisAO.2>andisA2.4>thenis A 1.95> and isA3.3>andis A 3.3> and

isB1.2>andisC3.0>andisAO.2>andisA2.4>thenis B 1.2> and isC3.0>andisAO.2>andisA2.4>thenis C 3.0> and isAO.2>andisA2.4>thenis A O.2> and isA2.4>thenis A 2.4> then

isC1.0>andisA2_7>andisAO.3>;is C 1.0> and isA2_7>andisAO.3>;is A 2_7> and isAO.3>;is A O.3>;

3.if isB14.5>andisB1.7>andisC5.9>andisA5.9>andis B 14.5> and isB1.7>andisC5.9>andisA5.9>andis B 1.7> and isC5.9>andisA5.9>andis C 5.9> and isA5.9>andis A 5.9> and

12.5> andisB is B

and isB0.004>;is B 0.004>;

is A 5.2> then isB0.004>andisB0.004>is B 0.004> and isB0.004>is B 0.004>
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if isC3.0>andisA5.7>andisA1.3>andisA4.6>andisC3.7>andisB4.4>andisB3.1>andisA1.8>thenis C 3.0> and isA5.7>andisA1.3>andisA4.6>andisC3.7>andisB4.4>andisB3.1>andisA1.8>thenis A 5.7> and isA1.3>andisA4.6>andisC3.7>andisB4.4>andisB3.1>andisA1.8>thenis A 1.3> and isA4.6>andis A 4.6> and

isC3.7>andisB4.4>andisB3.1>andisA1.8>thenis C 3.7> and isB4.4>andisB3.1>andisA1.8>thenis B 4.4> and isB3.1>andisA1.8>thenis B 3.1> and isA1.8>thenis A 1.8> then
isAO3>;is A O 3>;

if isC32.4>andisC8.3>andisC11.5>andisA3O.7>andisC8.7>andisB9.9>andisB14.2>andisA9.0>is C 32.4> and isC8.3>andisC11.5>andisA3O.7>andisC8.7>andisB9.9>andisB14.2>andisA9.0>is C 8.3> and isC11.5>andisA3O.7>andisC8.7>andisB9.9>andisB14.2>andisA9.0>is C 11.5> and isA3O.7>is A 3O.7>

and isC8.7>andisB9.9>andisB14.2>andisA9.0>is C 8.7> and isB9.9>andisB14.2>andisA9.0>is B 9.9> and isB14.2>andisA9.0>is B 14.2> and isA9.0>is A 9.0>

then isA2.6>andisC7.1>andisB0.03>;is A 2.6> and isC7.1>andisB0.03>;is C 7.1> and isB0.03>;is B 0.03>;

if isB8.2>andisA16.2>andisB1.1>andisCO.6>andisCO.6>andisA9.5>andisB1.4>thenisA2.8>andis B 8.2> and isA16.2>andisB1.1>andisCO.6>andisCO.6>andisA9.5>andisB1.4>thenisA2.8>andis A 16.2> and isB1.1>andisCO.6>andisCO.6>andisA9.5>andisB1.4>thenisA2.8>andis B 1.1> and isCO.6>andis C O.6> and

isCO.6>andisA9.5>andisB1.4>thenisA2.8>andis C O.6> and isA9.5>andisB1.4>thenisA2.8>andis A 9.5> and isB1.4>thenisA2.8>andis B 1.4> then isA2.8>andis A 2.8> and

isCO.4>andisB0.03>;is C O.4> and isB0.03>;is B 0.03>;

if is is

isC is C

isC is C

if is is

A1.¢1> and isC1.7>andisA7.8>andisB18.2>and5.2>andisC12.3>andisA3.4>thenisA5.1>andis C 1.7> and isA7.8>andisB18.2>and5.2>andisC12.3>andisA3.4>thenisA5.1>andis A 7.8> and isB18.2>andis B 18.2> and

5.2> and isC12.3>andisA3.4>thenisA5.1>andis C 12.3> and isA3.4>thenisA5.1>andis A 3.4> then isA5.1>andis A 5.1> and

5.98>;

B 12.8> and isB11.8>andisB9.95>andisB6.9>is B 11.8> and isB9.95>andisB6.9>is B 9.95> and isB6.9> is B 6.9>

and isC1.1>andisA7.4>andisA6.1>andisC10.03>is C 1.1> and isA7.4>andisA6.1>andisC10.03>is A 7.4> and isA6.1>andisC10.03>is A 6.1> and isC10.03>is C 10.03>

then isB0.03>andisA3.04>andisCO.13>;is B 0.03> and isA3.04>andisCO.13>;is A 3.04> and isCO.13>;is C O.13>;

if isC133>andisA4.1>andisA7.3>andisA2.4>andisC3.5>andisC3.4>andisB1_3>andisA3.3>thenis C 13 3> and isA4.1>andisA7.3>andisA2.4>andisC3.5>andisC3.4>andisB1_3>andisA3.3>thenis A 4.1> and isA7.3>andisA2.4>andisC3.5>andisC3.4>andisB1_3>andisA3.3>thenis A 7.3> and isA2.4>andis A 2.4> and

isC3.5>andisC3.4>andisB1_3>andisA3.3>thenis C 3.5> and isC3.4>andisB1_3>andisA3.3>thenis C 3.4> and isB1_3>andisA3.3>thenis B 1_3> and isA3.3>thenis A 3.3> then

isB0.05>andisA2.6>andisAO.2>;is B 0.05> and isA2.6>andisAO.2>;is A 2.6> and isAO.2>;is A O.2>;

if isB1.2>andisA4.2>andisAO.7>andisA0.9>andisC1.04>andisA0.5>andisAO.4>andisA1.7>thenis B 1.2> and isA4.2>andisAO.7>andisA0.9>andisC1.04>andisA0.5>andisAO.4>andisA1.7>thenis A 4.2> and isAO.7>andisA0.9>andisC1.04>andisA0.5>andisAO.4>andisA1.7>thenis A O.7> and isA0.9>andis A 0.9> and

isC1.04>andisA0.5>andisAO.4>andisA1.7>thenis C 1.04> and isA0.5>andisAO.4>andisA1.7>thenis A 0.5> and isAO.4>andisA1.7>thenis A O.4> and isA1.7>thenis A 1.7> then

isA1.6>andisA2.5>andisC3.04>;is A 1.6> and isA2.5>andisC3.04>;is A 2.5> and isC3.04>;is C 3.04>;

if isA2.7>andisA12.9>andisA2.8>andisA6.1>andisC5.7>andisA4.5>andisB2.4>andisB1.2>thenis A 2.7> and isA12.9>andisA2.8>andisA6.1>andisC5.7>andisA4.5>andisB2.4>andisB1.2>thenis A 12.9> and isA2.8>andisA6.1>andisC5.7>andisA4.5>andisB2.4>andisB1.2>thenis A 2.8> and isA6.1>andis A 6.1> and

isC5.7>andisA4.5>andisB2.4>andisB1.2>thenis C 5.7> and isA4.5>andisB2.4>andisB1.2>thenis A 4.5> and isB2.4>andisB1.2>thenis B 2.4> and isB1.2>thenis B 1.2> then

isA1.4>andisA1.2>andisC1.4>.is A 1.4> and isA1.2>andisC1.4>.is A 1.2> and isC1.4>.is C 1.4>.

5 Conclusion and Future Directions

Both statistically based methods  principal component (PC) and linear discrimination

analysis), and artificial neural networks (ANN s) have been used to find relationships between

NIR reflectance and transrnittance spectral data for multivariate quantification of physical
properties and for qualitative classification. The majority of work has been done using the

statistical approach, and the efforts with ANNS have focused on determining whether such

counectionist approaches could improve upon the traditional calibration methods, particu-
larly in systems where substantial nor1~linearity is expected  

In this study, spectroscopic data was processed by using a hybrid fuzzy neural approach.
Using the spectra from kiwifruit treated during the preharvest development and kiwifruit
at the different ripening stages, the classification performance ofthe fuzzy neural network

(FuNN) approach was demonstrated for each problem.
Neural networks give to fuzzy logic systems fault tolerance, distributed representation

properties, and the learning abilities, while fuzzy logic systems provide a structural frame-

work with higlulevel fuzzy if-then rules thinking and reasoning to the neural networks. In
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general this synergism is cornplementary rather than competitive. For this reason, it is fre-

quently advantageous to use neural networks and fuzzy logic in combination rather than

exclusively, leading to so-called hybrid intelligent systems. They share the common abil-

ity to improve the intelligence of the systems working in an uncertain, imprecise and noisy
environment.

As a result, VNIR. diffuse body reflectance spectroscopy was able to categorise ripened
kiwifruit (Actimdm deliciosn þÿ ��H�a�y�w�a�r�d ��)by preharvest treatment l17, 11] more effectively
than other properties such as mass, hue, dry matter and soluble solids. Also V N IR spectra
can be used to discriminate between kiwifruit at different ripeness stages. This was achieved

without recourse to otlr measurrnentss, such as tactile firmness, which would exhibit more

characteristic of ripening.

5.1 Future Directions

Diffuse reflectance and transrnittance spectra of agricultural products contain inforrnation

about the chemical composition ol’ the product because each of the components has specilic
absorption properties. A spectrum is a sampling of a continuous friction at a set of fixed

wavelengths or energies. It is desirable to use a fine sampling in order not to lose information

on the detailed structure of the spectrum. However, the fine sampling will give a large
correlation between adjacent points in the spectrum.

Using the intensities ofthe mass spectra directly as input data. vectors for the various

methods under test showed to be not manageable because of the large dimensionality of

the input data space. Another drawback of using intensities directly can be round in the

weak correlation between mass spectral peaks and structural properties for different classes

of compounds. Former research on the classification of mass spectra revealed that the re--

duction and transformation of the input data space by spectral features can greatly enhance

the performance of classification. The selection of the optimum set oi’ features for each

classification problem is a major consideration. It can be resolved in a several ways:

1. by chemometrics, a well~established standard technique embracing the methods þÿ�o�l �

rinciale comnonent re ression PCR and iartial least sr nares PLS þÿ �

l I i

9 by signal processing techniques, such as Fli"1‘ transformations, Wavelet transformation;

3. by genetic algorithms (GA) in wavelength selection in infrared spectroscopy.

ln the future work, using a variety of source oi’ historical information, such as a single
sampling time series and multiple sampling in time, and information from seasonal sycles
of climate rules, a connectionist model, based on time series analysis ’lor predicting and

forcasting fruit properties a.t different stages ol’ development from V NIR spectra, is expected
to be developed that employs appropriate feature extraction. There are a number of possible
extensions and applications and they are currently under investigation.
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