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This paper describes combined approaches of data preparation, neural network
analysis, and fuzzy inferencing techniques (which we collectively call neuro-fuzzy
engineering) to the problem of environmental modelling.  The overall neuro-fuzzy
architecture is presented, and specific issues associated with environmental
modelling are discussed.  A case study that shows how these techniques can be
combined is presented for illustration.  We also describe our current software
implementation that incorporates neuro-fuzzy analytical tools into commercially
available geographical information system software.

1 Introduction

The increasing availability of large stores of spatial data has led to demands for improved
methods for analysing these data.  In particular there is hope that the use of new analytical
techniques in connection with "data trawling" operations may reveal hidden relationships
that lie buried within these data sets.  In recent years there has been interest in this respect
in the application of artificial intelligence techniques, such as expert systems, artificial neural
networks, fuzzy systems, and genetic algorithms [1].  Each of these approaches has specific
advantages when used in the analysis of large stores of data.  

# For example rule-based expert systems facilitate the input and refinement of expert
knowledge in problem-solving modules.  They also enable straightforward tracing of the
reasoning process by which a particular outcome is achieved.  

# Fuzzy systems extend the notion of ordinary rule-based expert systems to allow for the
treatment of vague and uncertain knowledge in a systematic fashion.  These systems can
be efficiently implemented and can incorporate human-like reasoning concerning
qualitative information.

# Neural networks, in contrast with the above, need not be initially supplied with expert
knowledge and can be applied to virtually any data set without presuppositions
concerning the distribution of the training data [2].  They then can be trained to
approximate any continuos function to any desired accuracy, without a need to specify
its type.  Moreover they can be applied to incomplete or corrupted data and still yield
acceptable results.  For this reason it can be useful to use neural networks in the initial



stages of an empirical investigation, when little may be known about the nature of the
spatial data set at hand.  On the other hand the, the reasoning associated with neural
networks is a "black box" that is hidden from the user.

# Genetic algorithm methods also require little in the way of a priori information and offer
a general optimisation approach.  But they can be difficult to apply effectively and
consume considerable computational resources.

The goal of neuro-fuzzy engineering is to combine these various techniques in a coherent
fashion so that their different strengths can complement each other.  In the context of large
spatial information data sets, the hope is first to perform data trawling without having to
make presuppositions concerning the data, and, at the same time, to extract knowledge that
can be used in subsequent analysis or operations.  Given the large size of these data sets, it
may be advantageous to perform data filtering to reduce the size of the data set prior to
carrying out connectionist computational analysis, and thus spatial data filtering is also a
component of neuro-fuzzy engineering for environmental modelling.

In the following, some basic neuro-fuzzy engineering methods are presented in section 2,
an approach to spatial data filtering is presented in section 3, some illustrative experiments
are described in section 4, and a description of our software implementation of neuro-fuzzy
engineering tools is given in section 5.

2 Neuro-fuzzy engineering

The basic idea behind the neuro-fuzzy engineering approach is to pass the spatial
information through a series of steps:

1. Convert real-valued spatial data into a fuzzified representation of the same
information.

2. Train the fuzzified spatial information with a three-layer multilayer perceptron neural
network.  The output of the neural network is taken to be a fuzzy representation of
the desired output.

3. The output of the neural network in step 2 is then de-fuzzified to produce individual
real values of the desired output. 

After the neural network in step 2 is trained to satisfaction, it is analysed in order to extract
fuzzy rules that can be used in association with the defined fuzzy membership functions used
in steps 1 and 3.  

2.1 Fuzzy neural networks

A fuzzy neural network seeks to blend the elements of these fuzzy and neural network
computations into a single connectionist architecture.  There are several fuzzy neural-
network architectures [1,3,4].  The model we employ (FuNN) [1] consists of five layers:
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Figure 1.  The fuzzy neural network (FuNN) architecture.

1 input variable layer

2 condition elements (input fuzzy membership function) layer

3 rule layer

4 action elements (output fuzzy member function) layer

5 output variables layer

These elements are shown schematically in Figure 1.  A bias node can also be included in
this architecture but is not shown in the figure.  Ordinarily, we employ triangular
membership functions for the 2nd and 4th layers.  In the simplified scheme shown in Figure
1, each of the two inputs can be fuzzified in the condition layer by showing the degree of
their membership in a fuzzy set (such as the degree to which they are HIGH or LOW).  The
number of fuzzy values need not be the same for the various inputs.  Thus one input could
be connected to two condition layer nodes, and another input could be connected to four
condition layer nodes.

2.2 Adaptive training of FuNNs

When the FuNN fuzzy neural network is trained, the connection weights are modified in
order to achieve the desired performance.  During this process, the method of adjusting the
weights for the middle layers (layers 2, 3, and 4) is backpropagation [1].  The weights
connecting the outer layers are also adjusted during training, but this is a separate process.
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Figure 2.  Initial and adjusted membership functions for a fuzzy
variable used in a FuNN fuzzy neural network.

Adjustment of these output layers means that the triangular membership functions that are
used in a FuNN to represent fuzzified descriptions of the input variables in the condition
elements layer (layer 2) are adjusted during the training of the net in order to arrive at the
best performance.  

Figure 2 shows the initial membership functions (solid lines) of a variable x and the
asymmetrical membership functions (dotted lines) after adaptation.  These adjustments may
be performed for both inputs (weights connecting layers 1 and 2) and outputs (weights
connecting layers 4 and 5). 

There are several ways in which the fuzzy membership functions could be adjusted during
training of a FuNN.  We have adopted an approach based on genetic algorithms (GA),
adapted from [5].  Since triangular membership functions are employed, only the centres
need to be represented in the chromosome of the GA module, making the computation not
too expensive.  We also restrict the permitted amount of movement of these centres by
setting fixed limits along the horizontal axis (Figure 2).  

Usually the magnitude of these adjustments during training is small compared with the
weight changes occurring in the middle layers.  The overall result is that all the weights in
a the five-layer FuNN are adjusted during training to obtain optimal results.

2.3 The extraction of fuzzy rules using REFuNN

The 3rd layer of the FuNN architecture is used for the insertion and extraction of structured
information in the form of rules.  There are several ways to extract rules from this



architecture.  A simple one (REFuNN) works as follows:

 (I) All the connections that contribute significantly (above a certain threshold) to the
activation of a neuron Ak and their corresponding rule-layer nodes, Rj, are grouped
for subsequent analysis.

(ii) Condition element nodes, Ci, that support the activation of node Rj will be used in
the antecedent part of a rule.  

(iii) The weights of the connections between the condition-element nodes, Ci, and the
rule node Rj are taken as initial relative degrees of importance of the antecedent
fuzzy propositions.  

(iv) The weights of the connections between rule node Rj and output node Ak define the
value for the certainty degree CFk.  

For each real input value, only one fuzzy predicate (the most significant) is allowed in the
antecedent part of a rule; less significant predicates are discarded.  This results in a set of
weighted rules, such as

   If <income is HIGH, 0.6> and <savings is LOW, 0.57> 
Then <credit-risk is MEDIUM, 2.73>

If among this collection of rules, there are several weighted rules that have the same
condition elements and the same consequent elements, subject only to different degrees of
importance, they are aggregated into a single rule.

The REFuNN algorithm then proceeds to extract simply fuzzy rules from the set of
weighted rules.  This is achieved by simply removing the weights from the condition
elements.  Some condition elements, however, have sufficiently large degrees of importance
(above some chosen threshold) that they can trigger a rule without support from other
condition elements.   Such condition elements are used to form additional, separate rules.
For example, if we start with an initial weighted rule

If <x1 is A, 8.3> and <x2 is B, 1.2> 
Then <y is C>

and the threshold for separate rules is set at 5.0, then two separate simple fuzzy rules will
be formed:

If x1 is A and x2 is B Then y is C
If x1 is A Then y is C

In its simplest form REFuNN does not incorporate predicates representing logical negation.
However an option exists to consider negation by including the cases of links with negative
weights whose absolute values are above a chosen threshold.  In this case the associated
input labels in the formed simple fuzzy rules are listed with a "NOT" connective in front. 



The resulting rules are somewhat more complicated but can offer better performance when
interpreted by a fuzzy inference engine [1].

2.4 Other rule extraction approaches

Another rule extraction approach is to associate each rule layer node with a single fuzzy
rule.  The strongest positive connection from a condition element node for an input variable
to the given rule node, along with the neighbouring condition element nodes, are
represented in the corresponding rule.  The connection weights of these connections are
interpreted as degrees of importance attached to the corresponding condition elements.  The
connection weights from the rule layer to the action element layer represent the degree of
certainty that the given rule will contribute to the given fuzzy output value. 

Because each rule layer node is associated with a single rule,  there can be more than one
element in the consequent part of the rule, and the resulting rules are more complicated than
those extracted by REFuNN.  An example of rule extracted by this approach is the
following:

If <input1 is A, 2.88> and <input1 is not B, 5.69> and <input2 is not A, 1.57>
and <input2 is  B, 1.66> and <input2 is not C, 1.06> 

Then <output1 is not A, 2.21> and <output1 is not B, 3.98> and <output1 is C,
2.08>

An example of how this approach works in practice, along with some variations, will be
presented in more detail with the case study discussion is Section 4.

2.5 Fuzzy rule insertion

The FuNN fuzzy neural network can be initialised by inserting known rules and membership
functions, and this feature can be used to advantage.  Since the training method of a FuNN,
like that of multilayer perceptrons, is a local optimisation procedure, the FuNN can become
trapped in an unsatisfactory local minimum that results in inadequate performance for the
problem at hand.  Initialising a FuNN with known rules can be used to avoid operating
regions where known and unsatisfactory local minima exist.

In general, it should be possible to add or modify rules by means of human expert
knowledge and then insert these new rules into a FuNN prior to training.  The objective
would be to "seed" or shift the FuNN into a more favourable operating region by
incorporating human experts in the neuro-fuzzy engineering loop. 

3 Spatial data filtering

The goal of data filtering in this context is to reduce the size of a large data space (so that
neuro-fuzzy engineering computation can be more efficiently performed) without sacrificing
the discriminating power of the original data.  There are two areas where reductions can be
made: 



# If the data elements are highly correlated, it should be possible to reduce the number
of data elements under consideration.  This is likely to be true with spatial data sets,
where neighbouring locations are likely to contain correlated information.  With
neural computations this should result in a reduction of the size of the training set.

# If the individual features associated with each data element are correlated, it should
be possible to consider a subset of the features and still retain sufficient
discriminating power.  This should lead to smaller neural net architectures and hence
speedier computation.  The danger is that if some model-based assumptions
concerning the data are made in order to perform feature selection, some relevant
attributes may be omitted from the data set under analysis [6].

There are several techniques that have been developed to address these matters [7,8,9].  We
have recently adopted the approach of Liu and Setiono [9], which appears to offer promise
in both of the above areas for spatial data preparation.  In addition, their method performs
automatic discretisation, which can help lead to an appropriate selection of the number of
condition-layer elements in a FuNN fuzzy neural network.

The method of Liu and Setiono is oriented around the ?2 statistic and consists of two phases.
In the first phase each attribute i is associated with some significance level, say 0.5 at the
outset.  The data values of this attribute are sorted, and each value is considered to be
resident of a (initially single-valued) interval.  Then the ?2 value is calculated for each pair
of adjacent intervals.  Starting with the lowest ?2 value, adjacent intervals are merged until
all pairs of intervals have ?2 values greater than the ?2 associated with the current
significance level for the given attribute.  This is done for each attribute.  These merged
intervals now represent a discretisation of the data set.  With the reduced number of
intervals, it is possible that there are now inconsistencies (two identical data elements
associated with different output class values) in the data set.  If the number of observed
inconsistencies remains below a user set value, d, the above process is repeated with a
decremented significance level for the attributes (and hence a larger tolerated ?2 value).  At
the end of the first phase, the data set is discretised, and the number of data elements has
been reduced

In the second phase of Liu and Setiono's method, each attribute i is associated with an
individual significance level, sigLevel[i], and takes turns for merging.  Consistency checking
is conducted after each attribute's merging; if the consistency constraint is exceeded,
attribute i will not participate in further merging.  At the end of the second phase, no
attributes can be further merged.  If during this process an attribute has been merged to a
single interval, then it means that attribute is not useful for discrimination and can be
dropped from further consideration.  Therefore feature selection has been achieved.

When the method of Liu and Setiono was applied to the well-known iris data set [10], which
consists of 150 example of irises represented by four attributes that are to be classified into
one of three types, 75 elements of the set were selected and a 5% inconsistency in the final
data set was allowed.  The result was a discretised set comprising only two of the original
four attributes, and each of the two remaining attributes was discretised into four intervals.
These four intervals for the two attributes could then be used as fuzzy membership values



Figure 3.  Solution set for golf course
suitability (produced by human expert).

for training on a FuNN fuzzy neural network.

A preliminary example of this method of data filtering to a spatial data example is presented
in the next section (4.2).

4 Examples

For illustrative purposes we consider some contrived problems that are conceptually simple,
but that can involve some significant computation.  They are based on the problem of
determining suitable sites for public golf courses in the South Island of New Zealand.  

4.1 Using a FuNN fuzzy neural network

For the first example, it is assumed that a suitable location can be determined from the
observed data of mean summer temperature, mean annual rainfall, mean altitude, and the
distance to the nearest of four principle urban centres of the South Island.  Each of the
153,036 1 km2 blocks of the South Island was taken to be a candidate location for a golf
course, and for each block, values for the four attributes were determined and placed in a
data set.  In order to provide an evaluation mechanism, an artificially "correct" classification
value was determined based on a set of plausible rules (refer to [11] for a description of this
rule set).  The output parameter of golf course suitability was taken to have five possible
values, ranging from 0 (very unsuitable) to 4 (very suitable), and a map of the solution set
is shown in Figure 3.  Note that because of the rigid boundaries of the rules, the solution set
is only piece-wise differentiable.
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Figure 4.  Membership function for the annual rainfall input variable.

Figure 5.  Evaluation of fuzzy neural
network over the entire data set.

A FuNN fuzzy neural network was then constructed to explore the degree to which
information could be extracted from this data set.  The intention was to consider each of the
four input variables to have five linguistic fuzzy values.  A typical fuzzy membership
function is shown in figure 4.  

The FuNN had 4 input nodes, 20 condition layer nodes, 20 hidden layer nodes, 5 action
layer nodes, and one output layer node.  It was trained with 1,000 fuzzified, randomly
chosen samples over 400 training epics.  (For this experiment, genetic algorithm adjustment
of the outer layer weights was not performed.)  After evaluation over the entire data set, the
FuNN was found to classify 85.6% of the blocks correctly and another 14.2% were only off
by one membership class.  The misclassifications were mostly along the boundaries of the
classes.  Results are shown in Figure 5.



4.2 Rules extraction

Several methods for extracting rules were applied to this fuzzy neural network and
compared.  The first method used was the REFuNN method.  An example of an extracted
rule by means of this process is the following (fuzzy values are here taken to range among
A, B, C, D, or E, with A the lowest and E the highest value):

If <altitude is B> and <rainfall is D> and <temperature is A> and <distance is B>
Then <suitability is B>.

When these simple fuzzy rules were evaluated using a min-max fuzzy inference method,
40% of the South Island blocks were classified correctly and 50% were off by one class. 

Although such derived rules from REFuNN are relatively simple, the method can yield an
unwieldy number of rules.  In this case there were 254 rules extracted by the REFuNN
method. 

In order to arrive at a more manageable number of rules and achieve better performance,
a second  procedure was attempted:

(i) All node connections in the middles layers of the fuzzy neural network that had a
negative weight value were set to zero, and the fuzzy net was then retrained.  (This
process can be repeated, if necessary).

(ii) Weighted fuzzy rules were then extracted.  Rule components were only retained
from node connections that had weight magnitudes above a chosen threshold value
(4.0 in this case).  As a threshold is increased in value, there will be fewer retained
rule components in the extracted rules and decreased performance when the rules
are interpreted.

(iii) For the inference procedure, a rule fires only if the sum of the weighted
contributions from all its inputs is positive.

(iv) The degree to which an output membership value is inferred is determined by
calculating the weighted sum (using confidence factors) from all activated rules.
In other words, the rules fire "in parallel".

A sample extracted rule using this method is

If < altitude is A, 13.0703> or < altitude is not B, 16.0718> or 
< rainfall is not B, 6.27021> or < rainfall is not C, 5.64556> or 
< rainfall is E, 10.7956> or < distance is not A, 7.04855> or 
< distance is C, 5.62503> or < distance is not D, 4.60254>

Then < suitability is A, 6.51655> and < suitability is not B, 14.7015> and
< suitability is C, 14.5121> and < suitability is not E, 5.76596> 



The extracted rules are much more complicated than those obtained by the REFuNN
method, but they are fewer in number: only 20 rules were derived this time.  When this
evidential inference method described in step (iv) above was applied, 61% of the blocks
were classified correctly and 28% were off by one class.

In order to generate a rule set that involved simpler rules, a third rule extraction procedure
was investigated:

(i) Once again the fuzzy neural network was repeatedly retrained.   This time only the
(positive) maximum element from each data group of the fuzzy neural network
along with its neighbouring elements were retained for the next training step; other
connection weights were set to zero.

(ii) Rule extraction was similar to the previous approach, but this time only elements
above a threshold absolute magnitude were retained.

(iii) Inferencing was similar to that of steps (iii) and (iv) of the previous method.

A sample extracted rule is the following:

If <altitude is A, 16.48> or 
<rainfall is C, 2.19> or <rainfall is E, 2.42> or 
<temperature is A, 12.59> or <temperature is B, 5.10> or 
<distance is not C,  8.57> or <distance is D, 5.02>

Then <suitability is A, 13.47> and <suitability is not B, 19.50>

Again there were 20 rules extracted, but they were somewhat simpler than those extracted
with the previous method, since they had fewer antecedent components.  This rule is
relatively simple to interpret, since it says that if the altitude is not very low or the rainfall
is high or the temperature is low or the distance to an urban centre is great, then the
suitability is very low.  When these rules were interpreted, 56% of the blocks were classified
correctly and 26% were off by one class.  The resulting performance does not quite match
the previous method, but the simpler structure of the rules may make them more valuable
for human interpretation, since the  ultimate goal is to extract rules such that a human expert
can possibly derive knowledge or insight from the extracted information.  Such added
insight may enable the human expert to suggest new or altered rules that can lead to another
iteration of neuro-fuzzy information processing and ultimately to improved performance.

4.3 Spatial data filtering

The analyses performed so far have involved computations at each localised geographical
point but have not involved the cross-referencing of multiple points in a region.  In order to
investigate this latter alternative, we considered a slightly altered version of the golf course
siting problem.  The previous solution rule set involved only a consideration of the altitude
at the given site: a high (local) altitude resulted in a low "altitude suitability" and thus had
a negative impact on overall site suitability.  This time it was determined that an evaluation



Figure 6.  Region of
blocks under analysis.

should be made of the difference between the altitude of the block in question and that of
its eight neighbouring blocks.   Let alt_diff be the maximum difference in altitude between
the given block and its eight nearest neighbours.  Then the "altitude suitability",
alt_suitability, (a component of the overall site suitability) was set according to the
following conditions:

If alt_diff >= 377.8 then alt_suitability = 0
If alt_diff >= 276.3 and alt_diff <= 377.8 then alt_suitability = 1
If alt_diff >= 188.4 and alt_diff <= 276.3 then alt_suitability = 2
If alt_diff >= 100.5 and alt_diff <= 188.4 then alt_suitability = 3
If alt_diff >= 0    and alt_diff <= 100.5 then alt_suitability = 4

In other words, a level region was considered likely to be good for golf course siting,
irrespective of whether the region was a plateau or a lowland.  A new "overall golf course
suitability" rule set was then used that, for simplicity, did not involve the distance to a major
urban centre of the South Island; it was only a function of the local rainfall, the local
temperature, and the altitude difference as described above.  Thus to evaluate the suitability
of a given block, it would be necessary to evaluate the attributes of that block and those of
its eight nearest neighbours.

Now to make this a more realistic data trawling experiment, we supposed that the analysts
for this problem did not know the size of the region that should be considered around each
block for analysis.  So we had them set the size of the region to be 25 blocks as shown in
Figure 6.  

This 25-block region then will represent a window on the spatial data set that is located
appropriately whenever a given block (the black square in Figure 6) is to be considered for
site suitability.  Only the grey-shaded blocks come into play for the determination of
"altitude suitability".  Thus only the grey-shaded blocks are used to determine the solution
set, but the hypothetical analysts do not "know" this.

With the 25-block region for each site under consideration, there are now 75 attributes to
be evaluated.  This would necessitate a large neural network with significant computational
implications.  In order to lessen the computational burden that this implies, we applied the
data filtering technique of Liu and Setiono described in Section 3.
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Figure 7.  Attributes merged by the data filtering procedure.  Merged attribute indices are
shown in shaded circles.

1,500 blocks were randomly chosen from a central portion of the South Island, and
associated with each block was a region like that shown in Figure 6.  The inconsistency
tolerance (d) was set to be 0.5%, so that up to 7 inconsistent elements would be allowed
before attribute merging would be halted.  The results are shown in Figure 7.

The attributes are labelled with indices from 0 to 74 and are distributed among the 25 blocks
as shown in the figure.  For each individual block, the altitude attribute is associated with
the first index, followed by the rainfall and temperature indices.  After discretisation, 104
of the 1,500 original data elements were found to be redundant, so the original data set
could be reduced to 1,396.  52 of the original 75 attributes were merged away (discarded),
leaving 23 features necessary for classification of the 1,396 data elements to 99.5%
accuracy.  

The data filtering operation correctly identified the central block's temperature attribute as
essential (index 38), but also retained two outer temperature attributes.  This can happen
due to correlations among the data values and can be reduced if more data elements are
considered for the training set.  This problem is more evident with the rainfall attribute,
which played a relatively small importance in the overall site suitability rule set.  Also the
variation in rainfall over the portion of the South Island considered for this experiment was
relatively uniform.  

For the altitude attribute, the central block's attribute was correctly identified as irrelevant,
while  5 of the 8 neighbouring blocks's altitude attributes were retained.  However 3
presumably essential blocks were discarded by the filtering procedure, and some altitude
attributes for blocks outside the neighbouring region were retained.  Again, the correlations
in the smoothly varying data attributes enabled the data filtering procedure to classify the
discretised data set to 99.5% accuracy with the 23 attributes it selected, even though not all



Figure 8.  Otago Spatial Information Toolbox in a GIS environment.

of the attributes were the ones that we expected.  They are still sufficient to achieve
satisfactory classification and offer a greatly reduced data set for subsequent neuro-fuzzy
analysis.

5 Neuro-fuzzy engineering with geographical information systems

In order to carry out neuro-fuzzy engineering for environmental modelling, we have
integrated our spatial information toolbox with ARC/INFO geographical information system
software [12] (Figures 8 & 9).  This enables the user to view raster-based map data using
ARC/INFO's visualisation tools and to perform toolbox operations from the ARC/INFO
interface.



Figure 9.  Portion of Otago Spatial Information Toolbox menu for fuzzy rule interpretation
callable from within ARC/INFO.

Plans for expansion of the toolbox include provisions for various neural net adaptation
mechanisms and additional neural net rules extraction approaches that have been reported
in the literature [13,14].

As more experience is gained with neuro-fuzzy engineering tools, we believe that they will
become increasingly useful for environmental modelling and analysis.
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