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1 INTRODUCTION

Over the last decade or so, significant advances have been made in two distinct

technological areas: fuzzy logic and neural networks. The theory of fuzzy logic

(Zadeh, 1965)provides a mathematical framework to capture the uncertainties

associated with human cognitive processes, such as thinking and reasoning. It

provides a mathematical morphology to emulate certain perceptual and linguistic

attributes associated with human cognition.

The neural networks paradigm has evolved in the process of understanding

the learning and adaptive features of neuronal mechanisms inherent in certain

biological species. Neural networks replicate, on a small scale, some of the com-

putational operations observed in biological learning and adaptation. The input-

output mapping capability of multilayer perceptron networks allows for a versatile

data-driven interpolation derived from numerical examples. One of the drawbacks

of such systems is the lack of adequate rule or knowledge extraction (knowledge

acquisition), or explanation facilities. Human experts can typically formulate

rules describing underlying causual relationships involved in the decision-making

process. Traditional neural network-based decision tools, however, do not inher-

ently possess such features. To circumvent these obstacles, integrated techniques

between rule-based systems, fuzzy logic and neural network models are being em-

ployed for extracting linguistic information from trained network models, or from

numerical examples.

The synergism of integrating Fuzzy Logic (FL) systems and Neural Networks

(NNS) into a functional system with learning capability and high-level thin1

ing and reasoning will provide a more suitable tool for solving the behaviour of

imprecisely-defined complex systems. Considerable work has been done to in-

tegrate the greater learning capability of neural networks with fuzzy inference

systems (FIS) for deriving the initial rules of a fuzzy system and tune the mem-
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bership functions (Lin 85 Lee, 1991; Berenji 85 Khedkar, 1992; Horikawa et al.,

1992; Yamakawa et al., 1992; Jang, 1993; Hung, 1993; Ishibuchi et al., 1994;

Shaun & Fu, 1995; Kasabov, 1996; Kasabov et al., 1997; Pal, 1998). These

neuro-fuzzy systems have the potential to capture the benefits of two powerful

paradigms, fuzzy logic and neural networks, into a single capsule and they have

several features that make them well suited to a wide range of knowledge en-

gineering and scientific applications (seefor example, Constantin, 1995). These

strengths include fast and accurate learning, good generalisation capabilities, ex-

cellent explanation facilities in the form of semantically meaningful fuzzy rules,

and the ability to accommodate both data and existing expert knowledge about

the problem under consideration.

In this study, we propose a general method for combining both numerical

and linguistic information into a common framework called HyFIS (Hybrid neural

Fuzzy Inference System),in which a two-phase learning scheme is developed as

illustrated in Fig. 1. In the first phase, realised in the knowledge acquisition

module, a method for deriving fuzzy rules from desired input-output data pairs,

proposed by Wang & Medal (1992), is used to find proper fuzzy logic rules and

the initial structure of the neural fuzzy system. In the second phase, a parameter

learning technique using a gradient descent learning algorithm is applied to tune

membership functions of input~output linguistic variables.

In the HyFIS architecture, the two phases are repeated on any new set of

data, thus making the Hylillls model suitable for incremental, on-line learning of

dynamical systems. An important feature of HyFIS is that it is adaptable where

the membership functions of the fuzzy predicates, as well as the fuzzy rules can

adapt and change according to new training data. The adaptation can take place

in an incremental, on-line mode.

The next section introduces the basic concepts of fuzzy rule based reasoning
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in neural fuzzy inference systems. In Section 3, we discuss a typical modelling

problem that includes structure learning and parameter learning. In Section 4; the

principles and the architecture of HyFIS are described. To illustrate the perfor-

mance and the applicability of the proposed HyFlS model, experimental results

on two Well-explored benchmark data- a chaotic time series of the Mackey~Glass

(Mackey 8/: Glass, 1977),and nonlinear system identification data, the Box and

Jenkins gas furnace data (Box & Jenkins, 1970)-are presented in Section 5.

Conclusions and directions for future research are summarised in Section 6.

2 FUZZY KNOWLEDGE-BASED STRUCTURES

AND FUZZY REASONING

Fuzzy rules are the fundamental part of a knowledge base that resides in a neural

fuzzy inference system. Fuzzy if-then rules are expressions of the form if IE is A

then y is B, where as and y are variables and A and B are labels of fuzzy sets

characterised by appropriate membership functions. Fuzzy if~then rules are often

employed to capture the imprecise mode of reasoning that plays an essential

role in the human ability to make decisions in an environment of imprecision

and uncertainty. Through the use of linguistic labels and membership functions,

a fuzzy if-then rule can easily capture the spirit of the rule of thumb used by

humans.

The inference operations upon fuzzy if-then rules are known as fuzzy reason-

ing. The general steps of fuzzy reasoning performed in a fuzzy inference system

are as follows:

1. Match the input values towards the membership functions in the premise

part to obtain the membership values (or compatibility measures)for each

linguistic label.
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2. Combine through a specific t-norm operator (usually multiplication or min)

the membership values in the premise part to obtain the #ring strength

(weight)of each rule.

3. Generate the qualified consequent value (either fuzzy or crisp) of each rule

depending on the firing strength.

4. Aggregate the qualified consequent values from all rules to produce a crisp

output. (This step is called defuzzification). Since for the purpose of dy-

namic system modelling the output of the decision engine should be a crisp

value, several methods for defuzziiication have been proposed (Lee, 1990).

Among these methods, the centroid method has been shown to be the most

effective (Zadeh,1965; Kosko, 1992).

Fuzzy inference systems are also known as fuzzy-rule-based systems, fuzzy
1 I I’ ’

I’
’ /17] lf) f _ I 11 1 _ 1 1

moaeis, fuzzy assocwtzue memorzes (rfuvr/, or fuzzy controuers wnen used to

control dynamical processes (Lee, 1990; Jang, 1993). The main functional blocks

of a neural fuzzy inference system are depicted in Fig. 2.

Several types of fuzzy reasoning in a connectionist structure have been pro-

posed in the literature (Lee, 1990; Kosko, 1992; Lin & Lee, 1996; Kasabov,

1996; Jang, Sun, & Mizutani, 1997). Depending on the types of fuzzy reason~

ing and fuzzy if-then rules employed, most neuro-fuzzy inference systems can

be classified into three types (Jang, 1993):Mamdani type, Tsukamoto type, and

Takagi~Sugenotype. Fuzzy rules with certainty factors (CFS)(Shaun& Fu, 1995;

Kasabov, 1996a; Pal, 1998)as well as generalised fuzzy production rules have also

been utilised (Kasabov,1996a)to capture expert knowledge. These five types of

fuzzy reasoning rules are described below.

Type 1 (Mamdani fuzzy models): The overall fuzzy output is derived by ap-

plying the MAX operation to the qualified fuzzy outputs (eachof which is
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equal to tl1e minimum of firing strength applied to the output membership

functions of each rule). Various schemes have been proposed to choose the

final crisp output based on the overall fuzzy output (Mamdani, 1975). An

example of a multi~input-single-output (MISO) Mamdani fuzzy model can

be expressed as:

R., : ifazis/1,,...,andyisB,,thenz==C’i,

where ar ,,.., y, and z are linguistic variables representing the process state

variables and the control variable, respectively, and A, ,..., Bi, and O,  =

1, 2 ,..., n) are the linguistic values of the linguistic variables as
,..., y, and

z in the universe of discourse U ,..., V, and W, respectively.

Type 2 (Tsukarnoto fuzzy models): This is a simplihed method based on

fuzzy reasoning of Type 1 in which the consequent is required to be mono-

tonic; that is, the output membership functions used in this scheme must be

monotonic functions (Tsukamoto,1979). The overall output is the weighted

average of each þÿ�r�u�l�e ��scrisp output induced by the þÿ�r�u�l�e ��sfiring strength (the

product or minimum of the degrees of match with the premise part) and

output membership functions.

Type 3 (Takagi-Sugeno fuzzy models): This type of fuzzy if-then rules was

proposed by Takagi & Sugeno (1983). The consequent of a fuzzy rule is a

function of input linguistic variables. The output of each rule is a linear

combination of input variables plus a constant term, and the final output

is the weighted average of each þÿ�r�u�l�e ��soutput. The following is an example

of a multi-input-single-output (MISO) Takagi-Sugeno fuzzy model:

R., 1 ifa: is A,, _ _

.,
and y is Bi, then z = f,(:s,...,y),

where f,(:r, _ _ _ ,y)(i : 1, 2, . _ . , n) is afunction of the input variables rr, _ _ _ ,y
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Type 4 (Fuzzy rules with CFS): This type of a fuzzy rule contains a cer~

tainty degree as a certainty factor (CF) (or also called weight), e.g.:

R4 : ifx is A, then y is B (01%),

where CE is the certainty factor of the ith rule. For different interpretations

and applications of this type of fuzzy rules, see Shann & Fu (1995),Lin &

Lee (1996)and Pal (1998).

Type 5 (Generalised production rules): In this type of fuzzy rules several

parameters that capture uncertainty are used; (1) confidence factors or

certainty factors (CFS)attached to the conclusion part; (2) relative degrees

of importance (DI) of the condition elements in the antecedent part; (3)

Noise tolerance and (4) sensitivity factor coefficients (Kasabov,l996a). Two

exemplar fuzzy rules that contain relative degreesof importance (DI) of the

condition elements and certainty _.factors of the conclusion parts are

shown below.

R1 : if :cl is A1 (DIN) and 3:2 is B1 (DIQJ) then y is C1 (0171);

R2 1 if my is A2 (DIL2) and 1:2 is B2 (DIN) then y is C2 (CF2).

This type of fuzzy rules is used in the FuNN model to define the FuNN

structure, to insert rules into this model, and to extract rules from a trained

FuNN (Kasabov, l996a; 1996b; 1996c; Kasabov et al., 1997).

In this study, we have constructed a neuro-fuzzy inference system which is

functionally equivalent to the Type~4 of fuzzy inference systems (FIS).
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3 LEARNING IN NEURAL FUZZY INFER-

EN CE SYSTEMS

Generally, FIS require two major types of learning: structural learning, and para-

metric learning. Structural learning is concerned with the structure of the fuzzy

inference system, i.e., input and output linguistic variables, the membership func-

tions of the terms, the fuzzy rules. Once a satisfactory structure of the FIS

is obtained, the fuzzy model needs to perform parametric tuning, e.g., tuning

parameters of the membership functions, such as centres, widths, and slopes,

and tuning the weights of the fuzzy logic rules. Hence, the main purpose of a

neuro-fuzzy system is to apply neural learning techniques to find and tune the

parameters and structure of neuro-fuzzy systems.

There are several ways that structure learning and parameter learning can

be combined in a neuro-fuzzy system. Existing techniques for parameter learning

and structure learning are described in the next subsections.

3.1 Structure learning for FIS

Identification of fuzzy rules has been one of the most important aspects in the

design of FIS. By structure learning, we mean the extraction of fuzzy logic rules

from numerical training data and the tuning of fuzzy partitions of the input

and output spaces. Generally, construction of fuzzy logic rules from numerical

data consists of two procedures: 1) fuzzy partitioning of the input space and/or

output space, and 2) identification of a fuzzy logic rule for each fuzzy subspace.

In the following, we shall discuss some techniques for knowledge acquisitions from

numerical examples. Most existing techniques can be divided into either of the

following cases:
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1 Fuzzy rule extinction through neural network (NN) techniques. Unsuper-

vised learning, such as self-organising maps (SCMS)(Kohonen,1989)and

adaptive resonance theory (ART) (Carpenter & Grossberg, 1987, 1988,

1990), which construct internal models that capture regularities in the in-

put vector space, is suitable for structure learning in order to find clusters

of data indicating the presence of fuzzy logic rules (Seealso Kosko, 1992).

Supervised learning based on a gradient-descent method (Rurnelhartet al.,

1986),which requires a teacher to specify the desired output vectors, and

competitive learning (Grossberg,1976; Ruinelhart & Zipser, 1985; Kosko,

1990),are also commonly used to determine the fuzzy rules (Kosko, 1992;

Kasabov, 1996a).

2. Fuzzy rule extraction by using fuzzy techniques. A simple method proposed

by Wang & Mendal (1992)for generating fuzzy rules from numerical input-

output training data is a ene»pass build-up procedure. It avoids the time-

consuming training procedures typical for NNS. It has been also shown that

this approach to building fuzzy rule systems is capable of approximating

any real, continuous function on a compact set.

When SOMS are used for rule extraction, the learned clusters of the input

patterns are substantially overlapped. As a result, achieving the necessary deci-

sion accuracy becomes diiiicult. Learning vector quantisation (LVQ) techniques

are used to refine the near-optimal decision borders, which can provide fine-tuning

of SOMS and enhance the decision process.

A hybrid learning scheme that combines SOM and competitive learning for

learning fuzzy rules was proposed by Lin and Lee (1991& 1996).Some heuristics

for rule reduction and combination were also provided. Shann et al. (1995)and

Pal et ol. (1998)proposed a learning procedure for acquiring fuzzy rules using

error backpropagation (EBP) learning algorithm, which is based on a gradient
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descent search in the network: the first phase is a training phase, and the second

phase is a rule-pruning phase, i.e., after the error backpropagation training, a

rule-pruning process is executed to delete redundant fuzzy rules and obtain a

rule base with much smaller size than the initial one.

3.2 Parameter learning for FIS

Here, by parameter learning We mean tuning of membership functions and other

parameters of fuzzy rules in a FIS. There are several learning methods for parame-

ter learning: gradient-descent-based learning algorithms (e.g.,the error backprop-

agation algorithm) (Lin & Lee, 1991; Horikawa et al., 1992; Hung, 1993; Shann

& Fu, 1995; Kasabov et al., 1997); reinforcement learning (Berenji & Khedkar,

1992),which requires only a single scalar evaluation of the output; approximate

least square estimator (LSE) (Jang, 1993),which is compatible with an extended

K alman filter algorithm. The parameter learning method adopted in the HyFIS

system is the supervised learning one, with the error backpropagation algorithm.

There are different parameter learning techniques depending on the types

of the fuzzy logic rules: 1) fuzzy logic rules with singleton consequents; and 2)

Takagi-Sugeno-Kang (TSK) fuzzy rules. Here several neuro-fuzzy techniques for

parameter learning of these two types of fuzzy rules are referenced:

1. Parameter learning in multi-input-single-output (MISO) systems is based

on the l\/lamdani fuzzy rules (Type 1). In this case the output membership

function is usually bell shaped, triangular, or trapezoidal (Lin & Lee, 1991;

Berenji KL Khedkar, 1992; Kosko, 1992). The fuzzy response of each rule is

defined by its output membership function weighted by its firing strength,

and the centroid of the responses is calculated to generate the appropriate

output. A defuzzification procedure involves taking the output value with

the maximum membership degree as the crisp response of each rule and
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then aggregating these responses to produce the appropriate output (Lee,

1990). Almost all existing neuro-fuzzy models for parameter tuning of FIS

deal with this type of rules (Horikawaet al., 1992; Hauptmann, 8; Heesche,

1995; Kasabov 1996a).

2. The other approach in parameter learning is to let the consequent parame-

ter be a linear function of the input variables, instead of a simple constant.

In the Takagi-Sugeno-Kang (TSK) fuzzy rule format the response of each

rule is a linear combination of the values of the input variables. The re-

sponses are then weighted and summed according to the firing strengths to

obtain the final output. The consequent of each rule becomes a fuzzy sin~

gleton when all the coefficients in the consequent part become zero. That

is, when f is a constant (SeeType 3 in Section 2), it becomes a zero-order

TSK fuzzy model, which can be viewed either as a special case of the Mam-

dani fuzzy model (Type 1), in which each þÿ�r�u�l�e ��sconsequent is specified by

a fuzzy singleton, or a special case of the Tsukamoto fuzzy model (Type2),

in which each þÿ�r�u�l�e ��sconsequent is specified by a membership function of a

step function centre at the constant. This type of fuzzy rules is dealt with

in several neuro-fuzzy systems for FIS parameter learning, but it combines

optimising the premise membership functions by gradient descent with op-

timising the consequent equations by linear least squares estimation (Jang,

1993 & 1997 

In the HyFIS model presented in the next section, the fuzzy logic approach to

generating fuzzy rules from input-output data pairs is used and implemented in

the knowledge acquisition module in Fig. 1. After a set of fuzzy rules is extracted,

the neural network structure is established, and the second learning phase is

performed to adjust the parameters of the membership functions optimally.
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4 HyFIS: HYBRID NEURAL FUZZY INFER-

EN CE SYSTEM

The learning procedure iI1 HyFIS consists of two phases. The first phase is the

structure learning (rule finding) phase using the knowledge acquisition module.

The second phase is the parameter learning phase for tuning membership func-

tions to achieve a desired level of performance. Gne advantage of this approach

is that it is very easy to modify the fuzzy rule base as new data become available

(Wang & Mendal, 1992). When a new data pair becomes available, a rule is

created for this data pair and added to the fuzzy rule base (SeeFig. 1). In the

second learning phase, the neuro-fuzzy model in the HyF IS uses a multi-layered

perceptron (MLP) network based on a gradient descent learning algorithm. The

architecture facilitates learning from data and approximate reasoning, as well

as knowledge acquisition. It allows for the combination of both numerical data

and f‘uzzy rules, thus producing the synergistic benefits associated with the two

sources. In addition, it allows for adaptive learning in a dynamically changing

environment. A brief introduction of the structure of the proposed HyFIS system

and the functions of each layer is presented in the following subsections.

4.1 The Architecture of I-IyFIS

The proposed neuro-fuzzy model in the HyF‘IS is a multilayer neural network-

based fuzzy system. Its topology is shown in Fig. 3 and the system has a total

of five layers. In this connectionist structure, the input and output nodes repre~

sent the input states and output control /decisionsignals respectively, and in the

hidden layers, there are nodes functioning as membership functions (MFS) and

rules. This eliminates the disadvantage of a normal feedforward multi-layer net

which is difiicult for an observer to understand or to modify.
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Nodes in layer 1 are input nodes that directly transmit input signals to

the next layer. Nodes in layer 2 and 4 are term nodes that act as membership

functions (MF) to express the input / output fuzzy linguistic variables. Bell-shaped

MF functions are used here, in which the mean value c and the variance 0 is

adapted through the learning process. The fuzzy sets defined for the input/ output

variables in Fig. 3 are large (L), medium (M), and small  But sometimes more

granularity is required in some applications such as large positive (LP), small

positive (SP), zero (ZE), small negative (SN), and large negative (LN). Each node

of layer 3 is a rule node and represents one fuzzy rule. The connection weights

between layers 3 and 4 represent certainty factors (CFS)of the associated rules,

i.e., each rule is activated to a certain degree controlled by the weight values.

In the following, special emphasis is placed on how to adapt the parame-

ters that represent the bell-shaped MF for each node in layer 2 and 4 through

learning and a detailed description of the components of the HyFlS þÿ�r�n�o�d�e�l ��sstruc-

ture and functionalities, and the philosophy behind this architecture are given.

Throughout the simulation examples presented in this paper, all the MF used are

bell-shaped (Gaussian)functions defined in Eq. (1):

a:-c
2

;tA(w) = Gaussian(m;c,0) = e’ U2
, (1)

A Gaussian membership function is determined by c and 0’: c represents the

centre of the MF; and 0 determines the width of the MF.

The semantic meaning and functions of the nodes in the proposed network

are as follows. We use indices t,j,k, and l for nodes in layers 2, 3, 4, and 5,

respectively. The output from the nth node of layer m will be denoted by ygh

Layer 1: Nodes in layer one are input nodes that represent input linguistic vari~

ables as crisp values. The nodes in this layer only transmit input values to

the next layer, the membership function layer. Each node is connected to
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only those nodes of layer 2 which represent the linguistic values of corre-

sponding linguistic variable.

Layer 2: Nodes in this layer act as membership functions to represent the terms

of the respective linguistic variables. The input values are fed to the layer

2 which calculates the membership degrees. This is implemented using

Gaussian membership functions with two parameters, centre (or mean, c)

and width (or variance, 0). Initially a connection weight in this layer is

the unity and the membership functions are spaced equally over the weight

space, although if any expert knowledge is available this can be used for

initialisation.

The output function of this node is the degree to which the input belongs

to the given membership function:

:n-c
2

yf = þÿ�@�"�£�T ��L�, (2)

where 0 and c are the parameters. As the values of these parameters change,

the bell-shaped functions vary, thus exhibiting various forms of membership

functions on linguistic label. Parameters in this layer are referred to as

precondition parameters. The input weight represents the centre for that

particular MF, with the minimum and maximum determined as the adjacent

membership centres.

Layer 3: Each node in layer 3 represents a possible IF-part of a fuzzy rule. The

weights of the links are set to unity. The nodes in this layer perform the

AND operation. Thus, all the nodes in this layer form a fuzzy rule base.

Hence the functions of the layer are as follows.

fy?= 1;1Ei§(1/fl, (3)

where I j is the set of indices of the nodes in layer 2 that are connected to

node j in layer 3, and yf is the output of node i in layer 2.
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Layer 4: A node in layer 4 represents a possible THEN-part of a fuzzy rule

and each node of this layer performs the fuzzy OR operation to integrate

the field rules leading to the same output linguistic variables. The nodes

of layer 3 and layer 4 are fully connected. In this layer links define the

consequences of the rules a11d a node represents a fuzzy label from the

fuzzy quantisation space of an output variable. The activation of the node

represents the degree to which this membership function is supported by

all fuzzy rules together. The connection weights wkj of the links connecting

nodes lc in layer 4 to nodes j in layer 3 represent conceptually the certainty

factors (CFS)of the corresponding fuzzy rules when inferring fuzzy output

values. The initial connection weights of the links between layer 3 and 4

are randomly selected in the interval [~1,+l].

The functions of this layer are expressed as follows:

1/fi= 1§g}§(y§1v§;), (4)

where Ik is the set of indices of the nodes in layer 3 that are connected

to the node k in layer 4. Actually these connecting links function as a

connectionist inference engine, which avoids the the rule-matching process.

Each of the rules is activated to a certain degree represented by the squared

weight values.

Layer 5: It represents the output variables of the system. These nodes and links

attached to them act as a defuzzifier. A node in this layer computes a crisp

output signal. Here the Centre of Gravity (COG) or Centre of Area (COA)

method was used. The centre of area defuzziiication scheme, in which the

fuzzy centroid constitutes the output signal, can be simulated by

E ’!/2Cfu¢Cu¢
lcEI1

:ff = -_- 5þÿ �

2 Q/za
þÿ � þÿ �l

þÿ�k ‹�I�;�,
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where I; is the set of indices of the nodes in layer 4 which are connected to

the node l in layer 5 and clk and oy, are respectively the centroid and width

of the membership function of the output linguistic value represented by

the lc in layer 4. The Weights of the links from the nodes in layer 5 to the

nodes in layer 4 are unity. Thus the only learnable weights in the network

are wkjs between layer 3 and layer 4.

4.2 Hybrid Learning Algorithms for HyFIS

In this section we present the two-phase hybrid learning scheme for the proposed

HyFIS model. In phase one, rule finding phase, fuzzy techniques are used to iind

the rules. In phase two, a supervised learning scheme based on gradient descent

learning is used to optimally adjust the MF for desired outputs. To initiate the

learning scheme, training data and the desired or guessedcoarse of fuzzy partition,

i.e., the initial size of the term set of each input /output linguistic variable, must

be provided from the outside world.

4.2.1 A general learning scheme for HyFIS

The following procedure outlines the adaptive, incremental training of the HyFlS

model:

Step 0: lnitialise the neuro-fuzzy model in the HyFIS. To initiate the learning

scheme, training data and the desired or guessedcoarse of fuzzy partition,

i.e., the size of the term set of each input-output linguistic variables, are

given. The initial weights of the links between layer 3 and 4 are randomly

selected in [-1,4-ll.

Step 1: Extract a set of fuzzy rules from input-output data set using the first-

plrase learning method as described in the next section.
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Step 2: Update the rules and if necessary, add new fuzzy rules into the neuro-

fuzzy structure: for each fuzzy rule, check if the rule is already represented

in the network structure, if yes, then update it; if not, then add this rule to

the network structure.

Step 3: Apply parameter learning on the data set as well as on old data if

available or if necessary. This step may not be performed on each individual

new data item, but on a set of data depending on the frequency of the

incoming data stream.

Step 4: Repeat from Step 1.

4.2.2 Rule Finding Phase

We consider a simple and straightforward method proposed by Wang 85 Mendal

(1992)for generating fuzzy rules from numerical input/output training  

The task here is to generate a set of fuzzy rules from the desired input/ output

pairs and then use these fuzzy rules to determine the structure of the Neuro-Fuzzy

system in the HyFIS environment. To illustrate this method, suppose we are given

a set of desired input / output data pairs: (:c§,;v§;y1),(mf,wg;yz),... , where :rl and

rg are inputs and y is the output. It is straightforward to extend this method to

general multi-input-multi-output (MIMO) cases. A set of desired input-output

data pairs, the simple two-input one-output case is chosen in order to emphasise

and to clarify the basic ideas of the methodology. This approach consists ofthe

following three steps:

Step 1: Divide the input and output space into fuzzy regions. After the number

of membership functions associated with each input and output are fixed,

the initial values of parameters are set in such a way that the centres of

the membership functions are equally spaced along the range of each input
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Step

and output variable. Moreover, these membership functions satisfy the

condition of 6-completeness (Lee, 1990) with e = 0.5, which means that

given a value rr of one of the inputs in the operating range, we can always

lind a linguistic label A such that ,uA(x) 2 e. In this manner, the fuzzy

inference system can provide smooth transitions and suiiicient overlap from

one linguistic label to another. So, one has to choose the intervals for the

linguistic values of each input and output linguistic variable in such a way

that they do overlap and also cover the entire space of the corresponding

input-output linguistic variables.

For instance, assume that the domain intervals of :r1,:1:2, and y are [-1,1],

Divide each domain interval into N regions and assign each region a fuzzy

membership function. Figure 4 shows an example where the domain interval

of 331, 1132,and y are divided into five regions. Of course, other divisions of

the domain regions and other shapes of membership functions are possible.

2: Generate fuzzy rules from given data pairs. First, determine the degrees

of given data pairs in different regions. For example, suppose we are given

the following set of desired input-output data pairs:

(oe, -0.2, 02), (o.4,0; o.4), - -- (6)

where the first two numbers (:r1,a:2)are inputs and third one (y) is the

output for each data pair. For example, m{in Fig. 4 has degree0.8 in SP,

degree 0.2 in LP, Similarly, mghas degree 1 in ZE and smaller degrees

than  in all other regions. Second, assign at§,x§,and yi to a region with

rnaximum degree: for example, :ri in Fig. 4 is assigned to SP and 1:3in

Fig. 4 is assigned to Z E. Finally, obtain one rule from one pair of desired

input/ output data, ior example,

(:1:},a:§;yi) ==> [r1:}(0.8in SP),a:§(0.6in ZE), y1(0.6in ZE)],

o RI: if :cl is SP and :rg is ZE, then y is ZE;



H 5/FIS: Adaptive Neuro-Fuzzy Inference Systems 19

(w¥,:c§;y2) ==> [:1cf(0.8inSP),z§(1 in ZE),y2(0.8 in SP)],

s RQ: if :rl is SP and arg is ZE, then y is SP.

Step 3: Assign a degree to each rule. To resolve a possible conflict problem, i.e.,

rules having the same IF-part but a different THEN-part, and to reduce

the number of rules, we assign a degree to each rule generated from data

pairs and accept only the rule from a conflict group that has a maximum

degree. In other words, this step is performed to delete redundant rules for

obtaining a concise fuzzy rule base and the effects of these rules are that

each of the rules is activated to a certain degreerepresented by the weight

value (the certainty factor) associated with that rule.

The following product strategy is used to assign a degree to each rule: The

degree of the rule denoted by

R, : if xl is A and :ng is B, then y is C (wi),

is defined as

wi = Ha(931)Mb(?U2lM¢(?Jl- (7)

For example, R1 has a degree of

wi = MSPUU1)/1zE(1F2lMzE(Z/l

x 0.8 >< 0.6 >< 0.6

= 0288,

and R2 has a degree of

1112 = þÿ�/�1�s�P�( ‹�C�1�l�»�U�»�z�E�(�1�U�2�)�/�J�s�P�(�Z�/�l

= 0.8 x 1 >< 0.8

= 0.54.

Note that if two or more generated fuzzy rules have the same preconditions

and consequents, then the rule that has maximum degree is used. In this
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way, assigning the degree to each rule, the fuzzy rule base can be adapted or

updated by the relative weighting strategy: the more task-related the rule

becomes, the more weight degree the rule gains. As a result not only is the

conflict problem resolved, but also the number of rules is greatly reduced.

4.2.3 Parameter Learning Phase

After the fuzzy rules are found, the whole network structure is established, and the

network then enters the second learning phase to adjust optimally the parameters

of the membership functions.

Let dl be the target output of the node Z in layer 5 for an input vector

X = (;z:1,a:2,..., :1:,,).We now derive the learning algorithm for the HyFIS with

node functions defined in the previous section using a gradient descent learning

algorithm to minimise the error function,

1 11

E =

5 22 ei - tax
X l=1

where q is the number of nodes in layer 5 and ci; and yi are the target and actual

outputs of the node l in layer 5 for an input X.

Assuming that the weight wk, is adjustable parameter in the node k in layer 4

to the node j in layer 3 (e.g., c and 0’ in this learning phase),the general learning

rule used by a gradient descent learning is

5E
w~(¢+1)= w (fl r U(-), (9)

where 77> 0 is the learning rate, and the chain rule is described as follows:

GE
__ Q 33/,Q

awkj
_

 awkj

= ?§ @ 6.9;_ (10)
ay? ay/dlawkj

To illustrate the learning rule for each parameter, we shall describe the com-

putations of %, layer by layer, starting at the output nodes, and we will use
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Gaussian membership functions with centres (c) and widths (0) as adjustable

parameters for these computations.

The learning rules of each layer are derived below:

Layer 5: From Eq.(8) we get,

5E

%§= þÿ ��(�d�z�-�l�/�f�l (11)

Hence, the error to be propagated to the preceding layer is

6E

þÿ�5�i�5�= ��-�5�°�g�L�g�=�d�z�-�3�/�?�-(12)

Using Eq. (10), the adaptive rule of the variance (width, 0) is derived as:

3E 6E 0y5
..._ = _3.___L._ (13)
80% Gy,30]/,,

Recalling Eq.(5), þÿ�y�f �= (y;y;7’§"3’°),we obtain:

4 4

5 Zykfffzk’ ylk: Clk
_ ZZ?/k’Ulk’Clk’yzk

ay:
Z

u
g

k’
gg

0m 4

2

E ?/M71/C’
kr

4
,

4 ,

yzk (Clk yk’0’lk’)þÿ �  y;¢f0zk’Czk’>)
__

kf
g

kf _

__

2
_ (14)

E vim
kv

Here þÿ�k �is the index of a node in layer 4 which is connected to a node l in

layer 5.

Using Eq.(11), and (14), We can write Eq.(13) as

UE
__ _Eg þÿ�d�y�f �

aalk
in

59? 301k

yzk (Zyl/;fUlk’)"" y;fUlk’Clk’>>(Zyl/;fUlk’)""  y;fUlk’Clk’>>
= *(d¢~y?)

þÿ ��°

~~;°e  »

 (15)

E yli;’Ul/5’
ki
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Hence, the 0 parameter is updated by

yut (Clk þÿ�y�I ��:�’�0 ��l�k ��)þÿ �  yz’U’lIc’Clk’))
0‘g}¢(t’l’ 1) = U’gk(t)þÿ ��l�" 

k
~-*W 2k .  

4

Z yldglk’
kr

Similarly, the adaptive rule of the mean (centre,c) is derived as

3E 6E 63/f
5522

I

55%
0 þÿ�y �

= -(dz -2/?l*iL£’;~ (17)
Z Um?/pc

lc

Hence, the C parameter is updated by

, 4

Clk(t+ 1) = C;k(t)"l°’   
Z Um?/k

k

Layer 4: The error for nodes in this layer is calculated based on fuzzification of

desired outputs and activation of each node. Only the error signals need to

be computed and propagated. Hence we have

5E 0E 0y554 = __ = _-_+ 19þÿ ��°
Hyii 52/?ay/3

( )

From Eq.(8) we get,
6E ,

-- = ~~ UI -

°
2

From Eq. (5) We get,

6?/5
Uzk (Clk L/il;/Ulm)_  þÿ�y�)�i�’�0�’�l�k�’�C�l�k ��)�)z kf fe

= 2 as 

. (21)
4D2 4 D2it//efflk’

kr

Hence, using Eqs. (11) and (21), we can write the error signal of Eq. (19)

as

out (Clk(Zyifvue)- (2yiffvutfci/¢f))
62= (dz~ if/F)

k

gk H

- (22)

Z H2101/e
ki
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Layer 3: As in layer 4, no parameters need to be adjusted in this layer, and only

the error signal needs to be computed and propagated backwards. The

error signal 6?is derived as following:

as as ay; as
þÿ �

HyØ5".u§3?/ii,HyØ5".u§ 3?/ii,
= ag. (23)

Layer 2: If input values lie in the fuzzy segment, then the corresponding pa-

rameters should be increased directly proportional to the propagated error

from the previous layer, because the error is caused by these parameters.

Using (10) and (2), the adaptive rule of ci is derived as in the following:

@ _ @%
3%

_

ay?5%

= QQ þÿ�2�_�_�_�2�( � �þÿ � þÿ ��f�l
(24)1/ ,

53/3
þÿ �

U?

Where from (3)

25. _ §§£9_?i
_(25)

_

(25)(25)
(25)

where from Eq. (23)
6E

_-T = 53
6,3 J we

and from Eq.(3) and Eq. (23)

r = Arg gIØ§§1(@/3), (27)

Then,

3E
. .

Q
=

 z f ’L = r

= 0 otherwise. (28)

So the mean  of the input membership functions can be updated by

0E 2 -i

an + ii = Cm +  
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Similarly, using (10) and (2), the adaptive rule of of is derived as

QE _ i9§?E-ti
80]

_

 80;
3E 22(;v-- c,)2

M

31/3
yi

U?
’ (30)

Hence, the variance (oi) of the input membership functions now become

8E 2 - ,2
0i(f+1) = me +  eu

5 APPLICATION TO N ON LIN EAR DYNAM-

ICAL SYSTEMS

Non~1inear dynamical time-series modelling is a generic problem which permeates

all fields of science. Applications of time-series prediction can be found in the ar-

eas of economic and business planning, inventory and production control, weather

forecasting, signal processing, control, and lots of other fields. The increased in-

terest in nonlinear systems is also related to the discovery of chaos, as chaos

can readily occur in all natural and living systems where nonlinearity is present.

Hence, chaos is currently one of the most exciting topics in nonlinear systems

research. This section describes two applications of the proposed methodology.

5.1 Example 1-Nonlinear System Identification of the Box-

Jenkins Time Series

System identification uses a techniques that permits to build mathematical mod-

els of dynamical systems based on input-output data. In this subsection we apply

the HyFIS to nonlinear system identification, using the well-known Box and Jenk-

ins gas furnace data (Box & Jenkins, 1970). This data set was recorded from a

combustion process of a methane-air mixture. During the process the portion
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of methane was randomly changed, keeping a constant gas flow rate. This is a

time~series data set for a gas furnace process with gas flow (the inlet methane)

rate, u(t), as the furnace input, and CO2 concentration in outlet gas, y(t), as the

furnace output. We assume that the task of the model is

(UU - ri), 1/(if- nl) => 11/(If), (32)

where delays T1 and T2 should be determined beforehand.

5.1.1 Experimental Design

The task of the HyFIS model is to provide an identification for the CO2 concen-

tration y(t) given the methane gas portion from four time steps before u(t - 4)

and the last CO2 concentration y(t - 1). Fig. 5 shows a schematic diagram for

the process of identification using the HyFIS for the case where the fuzzy sets

defined for the input-output variables are S (small),M (medium);and L (large)

in this case.

The original data set consists of 296 [u(t), y(t)] data pairs that were converted

so that each training data point consists of  - 4),y(t - 1);y(t)] which reduces

the number of data points to 292. For this specinc problem, we use the MF shown

in (ci) in Fig. 8. Each domain interval was divided into five linguistic labels, and

the fuzzy regions denoted by VS (very small), S (small), M (medium),L (large),

and VL (very large). We used the three~step procedure of Section 4 to generate

the fuzzy rule base, based on 292 examples. The fuzzy rules generated from the

desired input-output pairs and their corresponding degrees are given in Table 1.

After the fuzzy logic rules have been found, the network structure is established

as in Fig. 6.

In this example we consider the situation where neither linguistic fuzzy rules

alone nor desired input~output pairs alone are suflicient for a successful prog-

nosis to a desired accuracy. A combination of linguistic fuzzy rules and fuzzy
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rules generated from the desired input-output data pairs is, however, suflicient to

successfully predict the level of CO2 to the desired level of accuracy.

5.1.2 Experimental Results

We consider two cases where the first part of the information comes from desired

input-output pairs, whereas the second part of the information comes from lin-

guistic rules. To do this we firstly selected 200 data pairs randomly and used

them to generate the fuzzy rule base, which is the same as Table 1 except that

there are no rules in the Table outlined by the þÿ ��=�4�W�i�t�h�t�h�e�s�e�f�u�z�z�y�l�o�g�i�c�r�u�l�e�s�t�h�eWith these fuzzy logic rules the

network structure is established as in Fig. 6 except that there are no connections

illustrated by the empty circles (o). The fuzzy rule base of linguistic rules for the

remaining 92 data pairs was chosen to have only two rules marked by þÿ ��>�¢�= �in Table

1. In this case, the whole network structure is showed only with the connections

illustrated by the empty circles (0) in Fig. 5.

We simulated the following three cases: 1) 200 training data examples were

used to construct the fuzzy rule base and the HyFIS model is structured by this

fuzzy rule base, and the parameter learning phase is applied; 2) the fuzzy rule

base of selected linguistic rules from 92 data pairs and the structure of the HyFlS

is established with only this fuzzy rule base, and the parameter learning phase

is applied; and 3) the fuzzy rule base which combined the fuzzy rule bases of 1

and 2 cases is used to establish the whole network structure, and the initialised

network is trained to tune the parameters of the model optimally to achieve a

desired level of performance. For each of the cases, the data were partitioned in

200 data points as the training set, the remaining 92 points as the test set for

validation.

The experiment results for the first two cases are shown in Fig. 7. After

200 epochs of training, root mean square errors of RM SE¢1°ain = 0.0382 and
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RM SE,est = 0.0588 were obtained. The initial and final membership functions

are shown in Fig. 8 and 9, respectively. Finally in Fig. 10 and 11, the third

case was described. We see very clearly from these figures that, for the first and

second cases the system cannot be predicted the level of CO2 to the desired level

of accuracy, whereas for case 3 we successfully identihed the desired nonlinear

systems dynamics with an RMSE = 0.02()5.

5.2 Example 2-Prediction of the Mackey-G1ass Chaotic

Dynamics

The chaotic time series used in our simulation is generated by a delay differential

equation
dx(t) crx(t - T)

l = ----- - Bw t 33
dt 1 -I- x7(t - T)

( ) ( )

that was first investigatedby Mackey and Glass (Mackey85 Glass, 1977).Keeping

the parameters aj and fy fixed at or =,U.2,,6 = 0.1 and fy = 10 leaves T as the

only adjustable parameter. The behaviour of the Mackey & Glass equation (33)

as a function of the delay parameter (T) has been studied extensively and is

reported by Farmer (1982).As T is varied, the system exhibits either iixed»point,

limit cycle, or chaotic behaviour. Choosing T = 17 yields chaotic behaviour,

and a strange attractor (Gtt, 1981),with a fractal dimension of approximately

2.1, i.e., :v(t) is quasi-periodic and chaotic with a fractal attractor dimension

of 2.1. The characteristic time constant of  is 50, which makes difficult to

forecast :r;(t+ At) with At > 50. Meanwhile, T = 30 yields a strange attractor

with the fractal dimension of approximately 3.5. Higher values of T yield higher

dimensional chaos. Note that because of the delay, m(t-T), the phase space of this

system is infinite dimensional. However, as time progresses the system collapses

onto the low dimensional strange attractor. Other infinite dimensional chaotic

systems, such as nonlinear partial differential equations, also display collapse
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onto low dimensional attractors. Thus, the Mackey-Glass equation (33) exhibits

in the simpler setting of nonlinear, differential equations behaviour that occurs in

much more complicated systems such as nonlinear partial differential equations.

A detailed analysis of the chaotic properties of equation (33) may be found in

Ott (1981) & Farmer (1982).

5.2.1 Experimental Design

The goal is to take a set of values of  at discrete times in some time window

containing times less than t, and use the values to accurately predict x(t + At),

where At is some prediction time step into the future. One may fix At, collect

statistics on accuracy for many prediction times t by sliding the window along

the time series, and then increase At and again collect statistics on accuracy. It

can be observed how an average index of accuracy changes as At is increased.

The fundamental nature of chaos dictates that prediction accuracy will decrease

as At is increased. This is due to inescapable inaccuracies of finite precision

in specifying the :c(t) at discrete times in the past that are used for predicting

the future. Thus, all predictive methods will degrade as At is increased. The

standard method for this type of prediction is to create a mapping from D points

of the time series spaced A apart, that is, (:v(t - (D - 1)A) ,..., þÿ�a ��(�t- A),a:(t)),

to a predicted future value ac(t+ At). Embedding a set of time~series values in

a state vector is common to several approaches, including those of Lapedes &

Farber (1987), and Moody XL Darken (1989). The prediction of future values

of this time series is a benchmark problem which has been also considered by a

number of connectionist researchers (Lapedes& Farber, 1987; Moody & Darken,

1989; Casdagli, 1989; Crowder, 1990; Weigend, 1990).

At 7’ = 17, :1:(t)appears to be quasi-periodic and the power spectrum is

broadband with numerous spikes due to the quasi-periodicity. At T = 30, av(t)is
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even more irregular. Fig. 12 shows a plot of ;v(t) ’versus time (t) for a time span

of 1000 time steps for T = 17. lf A is a time delay, and m is an integer, then our

goal is to use the neuro-fuzzy model to construct a function

ja/(t+ At) = f(m(t),:c(t - A), ;z:(t- 2A), _ _ . ,;c(t - mA)), (34)

where At is a prediction time into the future and f is a map. This may be

viewed as an m +1 dimensional space. Thus, the embedding dimension is defined

to be m + 1. y(t -1- At) is the output of a single node in the output layer, and ac

is inputs that take on :r(t), :r(t - A) ,..., :1:(t- mA). y(t + At) takes on the value

me+ At).

We have not yet specified what m and A should be. An important theorem

of Takens (Takens,1981)states that if the dimension of the fractal attractor is

defined to be, df, then an embedding dimension, de lies in the range df < de <

2df + 1. We therefore choose de = 4, for 1’ = 17. Takens provides no information

on A and the time span we want to forecast into the future is At = 6 for T 2 17.

We extracted 1000 input-output data pairs which consist of four past values

of fI)(1f),i.e.,

[:z:(t- 18),:1:(t- 12),:v(t - 6),a:(t); ;z:(t+ 6)], (35)

where t = 118 to 1117. There are therefore 4 inputs to the neuro-fuzzy system,

representing these values of :1c(t),and one linear output representing the value

;t(t + At). The first 500 (from 93(1)to x(500)) pairs was used for estimation as

the training set, while the remaining 500 pairs (from :r(501)to :v(1000))were used

for validating the identified model as the test set. The number of membership

functions (MPS) assigned to each input and output was initially set to 3: S

(small); M (medium);and L (large).
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5.2.2 Experimental Results for On-line Adaptive Learning

We conducted two experiments. In the first experiment, 500 training data were

used to construct a fuzzy rule base and then a HyFIS model is structured accord-

ingly. The HyFIS model was then trained to fine-tune the membership functions

to achieve a desired level of performance.

In the second experiment, a fuzzy rule base was generated from the first 500

data points; then the network is trained to tune the parameters and used for

a prediction of the next data points a:(50l); the estimated value of the :v(501)

data point is then used to update the fuzzy rule base. The updated network

structure is then used to predict ;v(502),etc. This adaptive procedure continued

until m(1000).

The updated fuzzy rule base is shown in Table 3. The number of rules are

same as in Table 2, but the degreesof each rule and one rule which was illustrated

by the þÿ ��>�»�= �are changed. The results are shown in Fig. 13. The smallest RMSE

value for training is 0.0112, whose curve is depicted in F ig. 13 (a). Comparing

(b) and (cl) in Fig. 13 we see that the prediction was greatly improved when we

used the adaptive fuzzy rule base procedure. One of the advantage of the HyF‘IS

model is that it is easy to modify the fuzzy rule base and the network structure as

new data become available. Wllen a new data pair becomes available, we create a

rule for this data pair and update the fuzzy rule base and the network structure.

The updated network is trained on new data. Then, the neuro-fuzzy system is

used to predict future values. Fig. 14 also shows the initial membership functions

for each input and output variables, and the final membership functions for input

and output variables, respectively, after the network was trained with the fuzzy

rule base generated from the first 500 training data.
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6 CON CLUDING REMARKS

ln this paper, we developed two-phase neuro-fuzzy system called HyFIS to resolve

problems of the traditional fuzzy models and neural networks. In the first phase,

the knowledge acquisition module using fuzzy techniques can generate proper and

concise fuzzy rules from numerical data. This module can be used to combine

both numerical and linguistic information into a fuzzy rule base. This fuzzy rule

base then provides the initial structure of a neural network. After the structure

of the network is established, the network enters the second learning phase to

adjust the parameters of the membership functions to achieve a desired level

of performance. We applied our new hybrid neuro-fuzzy system to nonlinear

dynamical systems, including a chaotic time-series prediction problem.

The main features and advantages of the HyFlS developed in this paper

are: 1) It is a general framework that combines two technologies, namely neural

networks and fuzzy systems; 2) By using fuzzy techniques, both numerical and

linguistic knowledge can be combined into a fuzzy rule base; 3) A combined fuzzy

rule base comprises the knowledge of the network structure so that structure

learning techniques can be easily accomplished; 4) Fuzzy membership functions

can be tuned optimally by using a gradient descent learning method.

Advantages of the two-phase neuro-fuzzy hybrid techniques in the HyFlS

model also include their non-linearity, the capability of fast learning from numer-

ical and linguistic knowledge, and the adaptation capability. Furthermore, the

availability of dedicated neuro-fuzzy processors (Chiaberge,1995)would permit a

very fast processing in H5/FIS that would allow its use for real-time applications.

Although the neuro-fuzzy approach provides good performance for nonlinear

dynamical systems, it cannot always satisfy all the requirements of real-world

applications. ln such cases, the chosen modelling strategy must be integrated

with other approaches so that the designers of a hybrid intelligent system can
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choose among several other paradigms, including evolutionary computing, Hnite

state automata, and conventional Al systems (expert system) according to the

system requirements and to what form of knowledge is avaliable about the target

system.

The list of potential applications of HyFIS includes: real-time adaptive con-

trol; on-line financial data analysis and prediction; real-time adaptive speech and

image processing; decision making in a changing environment (e.g., moving ob-

jects.) These applications are the subject of our on-going research projects.
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Figure 12: The Mackey-Glass time Series at fr = 17 exhibits a chaotic behaviour
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Figure 13: Generalisation test of the HyFIS model for the Mackey & Glass time-

series: (a) training RMSE curves for the model; (b) the desired (solid) and pre-

dicted (dashed)time series;  prediction error from 501 to 1000 when 500 train-

ing data are used; (d) the desired (solid) and predicted (dashed)time series; (e)
prediction error for data items from 501 to 1000 using adapted fuzzy rule base.
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