

DUNEDIN NEW ZEALAND

Software Forensics for Discriminating between
Program Authors using Case-Based Reasoning,
Feed-Forward Neural Networks and Multiple

Discriminant Analysis

Stephen MacDonell
Andrew Gray

Grant MacLennan
Philip Sallis

The Information Science
Discussion Paper Series

Number 99/12

June 1999
ISSN 1177-455X

University of Otago

Department of Information Science

The Department of Information Science is one of six departments that make up the Division of Com-
merce at the University of Otago. The department offers courses of study leading to a major in
Information Science within the BCom, BA and BSc degrees. In addition to undergraduate teaching, the
department is also strongly involved in postgraduate research programmes leading to MCom, MA,
MSc and PhD degrees. Research projects in spatial information processing, connectionist-based infor-
mation systems, software engineering and software development, information engineering and
database, software metrics, distributed information systems, multimedia information systems and in-
formation systems security are particularly well supported.

The views expressed in this paper are not necessarily those of the department as a whole. The accuracy
of the information presented in this paper is the sole responsibility of the authors.

Copyright

Copyright remains with the authors. Permission to copy for research or teaching purposes is granted on
the condition that the authors and the Series are given due acknowledgment. Reproduction in any form
for purposes other than research or teaching is forbidden unless prior written permission has been ob-
tained from the authors.

Correspondence

This paper represents work to date and may not necessarily form the basis for the authors’ final conclu-
sions relating to this topic. It is likely, however, that the paper will appear in some form in a journal or
in conference proceedings in the near future. The authors would be pleased to receive correspondence
in connection with any of the issues raised in this paper, or for subsequent publication details. Please
write directly to the authors at the address provided below. (Details of final journal/conference publica-
tion venues for these papers are also provided on the Department’s publications web pages:
http://divcom.otago.ac.nz:800/COM/INFOSCI/Publctns/home.htm). Any other correspondence con-
cerning the Series should be sent to the DPS Coordinator.

Department of Information Science
University of Otago
P O Box 56
Dunedin
NEW ZEALAND

Fax: +64 3 479 8311
email: dps@infoscience.otago.ac.nz
www: http://divcom.otago.ac.nz:800/COM/INFOSCI/

Software Forensics for Discriminating between Program Authors
using Case-Based Reasoning, Feed-Forward Neural Networks

and Multiple Discriminant Analysis

Stephen G. MacDonell, Andrew R. Gray, Grant MacLennan, and Philip Sallis
Department of Information Science

University of Otago
PO Box 56, Dunedin, New Zealand

+64 3 4798135 (phone) +64 3 4798311 (fax)
stevemac@infoscience.otago.ac.nz

Abstract

Software forensics is a research field that, by treat-
ing pieces of program source code as linguistically and
stylistically analyzable entities, attempts to investigate
aspects of computer program authorship. This can be
performed with the goal of identification, discrimina-
tion, or characterization of authors. In this paper we
extract a set of 26 standard authorship metrics from
351 programs by 7 different authors. The use of feed-
forward neural networks, multiple discriminant anal-
ysis, and case-based reasoning is then investigated in
terms of classification accuracy for the authors on both
training and testing samples. The first two techniques
produce remarkably similar results, with the best re-
sults coming from the case-based reasoning models.
All techniques have high prediction accuracy rates, sup-
porting the feasibility of the task of discriminating pro-
gram authors based on source-code measurements.

1 Introduction

In a surprisingly large number of situations there is a
need to investigate the nature of a computer program’s
authorship. By this it is meant, that there is some ques-
tion concerning the authorship of a series of programs
or alternatively the characteristics of program authors
[3].

The most widely known example is plagiarism de-
tection in an academic setting where students’ assign-
ments can be compared to see if some are “suspiciously
similar” [7]. The incidence of highly similar programs
can provide suggestive evidence that one student’s code
may have been derived from another’s. This particular
area of research provided the origins of the ideas that
now make up the field of software forensics – which
is defined here as the study of program characteristics

with the intention of identifying, examining, or discrim-
inating between program authors [1].

Software forensics also includes the areas of au-
thorship characterization, as in psychological studies
of the relationship between programmer attributes and
their code and between programming conditions and
code. The analysis of malicious code (such as com-
puter viruses, software trapdoors, and trojan horses) is
another application area, although this involves more
subjective analysis [6]. Other applications of software
forensics include quality control (through coding stan-
dards for example, cyclomatic complexity or comment
density which can be used as an indicator of internal
documentation quality), author tracking (for example,
determining the author of code of unknown origin),
change control (tracking the authorship of changes and
quality control when making changes), and ownership
disputes.

While the idea of dissenting the structure and na-
ture of programs to discern some information about the
likely author or authors and/or their characteristics may
appear somewhat esoteric, perhaps even unrealistic, it
has been shown that such activities are feasible, at least
under certain circumstances [2]. In fact many measure-
ments can be difficult for programmers to change [6].
An open question is how such models should be con-
structed to best represent the mappings between pro-
gram features, authors, and the authors’ characteristics.

In this paper the focus will be on the area of de-
veloping models that are capable of discriminating be-
tween several authors using source-code based mea-
surements. The measurements that are preferred here
are those that can be automatically extracted from
source code by pattern matching algorithms since the
volumes of data needed for these applications will gen-
erally surpass convenient human measurement. Appli-
cations for such authorship discrimination procedures

include plagiarism detection, ownership disputes, and
the psychological study of programmers.

2 Techniques for authorship dis-
crimination

2.1 Neural networks

There are a vast number of neural network architectures
and training algorithms contained within the literature.
The most commonly used architecture for most applica-
tions is that of a feed-forward neural network (FFNN),
which is still generally trained using some form of the
back-propagation algorithm.

The main issues when using this approach concern
selecting the optimal architecture for the network and in
stopping the training (usually by using data set splitting
and stopping training when a validation data set error is
minimized). The use of data set splitting can be seen
as a disadvantage, since this reduces the amount of data
available for the network to learn the relationships.

More sophisticated approached that do not require
hold-out samples are not investigated here as they are
likely to be less accessible to researchers in applied
fields.

2.2 Discriminant analysis

Multiple discriminant analysis (MDA) is a statistical
technique that separates observations into two or more
groups based on several orthogonal linear functions of
the independent variables. The technique assumes a
reasonable degree of multivariate normality, with logis-
tic regression an alternative where this is not the case.
However ordinary logistic regression is more suited to
binary outcomes, and will not be discussed further here.

A significant advantage of discriminant analysis as
a technique is the easy availability of stepwise proce-
dures for controlling the entry and removal of variables.
By working with only those necessary variables we in-
crease the chance of the model being able to general-
ize to new sets of data. In addition, the data collection
costs can be reduced, sometimes significantly, by work-
ing with a smaller set of variables.

Another advantage of the technique is that it pro-
vides probability information for the predictions, both
in terms of the conditional probability of an observa-
tion belonging to a particular class given its classifica-
tion and the conditional probability that a particular ob-
servation will be classified as belonging to a particular
class given its real class. In a legal setting such infor-
mation would certainly be required if software forensic
results were to be accepted as evidence.

2.3 Case-based reasoning

Case-based reasoning (CBR) is a method for modeling
the relationship between a series of independent vari-
ables and one or more dependent variables by storing
the cases (observations) in a database. When presented
with a new observation, the cases that are similar in
terms of the independent variables are retrieved and the
dependent variables calculated from them using some
form of “averaging” process.

CBR has the advantages of not requiring any distri-
butional assumptionsper sebut does require the specifi-
cation of a distance metric (for finding the closest exem-
plars to the presented case and calculating their similar-
ity). Scaling (if any is used) when measuring similarity
can be based on ranges or standardized values if some
distributional assumptions are made. The other aspect
that requires some thought is the selection of a method
for combining the cases. Again, a simple weighted av-
erage approach can be used once the distance metric has
been decided on, with perhaps some power of distance
used to increase the influence of closer observations and
reduce the influence of outliers. In most implemen-
tations a threshold of similarity or a limit of “related”
cases is used to prevent all stored cases influencing all
predictions.

One particular case-based reasoning system that has
been previously used for software metric research is
the ANGEL system [5]. ANGEL has also been im-
plemented as part of the IDENTIFIED system that was
used in this paper for the measurement extraction, and
CBR and FFNN models [1, 4]. The ANGEL system
also allows for the automatic selection of relevant vari-
ables (at some considerable computational cost), al-
though here no attempt will be made to select any opti-
mal subset of variables when using this technique.

3 Authorship data set

The data that we have chosen to illustrate the author dis-
crimination problem exhibits many of the characteris-
tics that present some of the most perplexing difficulties
found when undertaking such analyses. The data con-
tains programs from seven authors with widely vary-
ing amounts of data and from three basic source types.
26 measures were extracted for each program using the
IDENTIFIED tool (Table 1).

All programs were written in standard C++. The
source code for authors one, two, and three are
from programming books; authors four, five, and six
are experienced commercial programmers; and author
seven’s code is from examples provided with a popu-
lar C++ compiler. The choice of program sources may
appear unusual, but it was felt that the usual source of
student programs was no more realistic.

Measurement Description
WHITE Proportion of lines that are blank
SPACE-1 Proportion of operators with whitespace on both sides
SPACE-2 Proportion of operators with whitespace on left side
SPACE-3 Proportion of operators with whitespace on right side
SPACE-4 Proportion of operators with whitespace on neither side
LOCCHARS Mean number of characters per line
CAPS Proportion of letters that are upper case
LOC Non-whitespace lines of code
DBUGSYM Debug variables per line of code (LOC)
DBUGPRN Commented out debug print statements per LOC
COM Proportion of LOC that are purely comment
INLCOM Proportion of LOC that have inline comments
ENDCOM Proportion of end-of-block braces labelled with comments
GOTO Gotos per non-comment LOC (NCLOC)
COND-1 Number of #if per NCLOC
COND-2 Number of #elif per NCLOC
COND-3 Number of #ifdef per NCLOC
COND-4 Number of #ifndef per NCLOC
COND-5 Number of #else per NCLOC
COND-6 Number of #endif per NCLOC
COND Conditional compilation keywords per NCLOC
CCN McCabe’s cyclomatic complexity number
DEC-IF if statements per NCLOC
DEC-SWITCH switch statements per NCLOC
DEC-WHILE while statements per NCLOC
DEC Decision statements per NCLOC

Table 1: The 26 variables used

For the purposes of testing the various models to be
developed inx4.1, 4.2, and 4.3, the available data was
split (as shown in Table 2) with stratification (as equally
as possible) across authors. The split was approxi-
mately 25% in the Training 1 set, 25% in the Training
2 set, and 50% in the Testing set.

In some cases, especially for authors 4 and 5, very
little data is available, but this can be seen as a use-
ful test of a situation certain to arise in practice. The
only concern here is that the prior probabilities from
the Training set match the posterior probabilities in the
Testing set. In a simulation-based study the use of re-
sampling would appear a better choice to assess the
techniques. However since this study involves only

one split of the data set, the use of stratification seems
preferable to the increased effects of chance bought on
by resampling.

4 Results

4.1 Neural network

The ultimately selected FFNN was a 26-9-7 network,
with the logistic transfer for both hidden and output lay-
ers. The best network found was trained for 250 epochs
using the backpropagation algorithm (learning rate 0.2,
momentum 0.9). All 26 variables provided were used.
Half of the training data (Training 1) was used for the

Author
Data set 1 2 3 4 5 6 7 Total
Training 1 17 29 7 3 1 11 21 89
Training 2/Validation 17 28 6 3 2 10 21 87
Testing 34 57 13 6 2 21 42 175
Total 68 114 26 12 5 42 84 351

Table 2: Data set splits

actual training, while the remainder (Training 2) was
used to stop training and select the best architecture.

Table 3 shows the confusion matrix for the net-
work’s predictions on the testing set. Those programs
that were correctly classified are shown as boxed entries
on the main diagonal. As can be seen the network has
a high classification rate of 81.1%. Authors two and
three are obviously distinct from all others, while the
small amount of data available for author five seems
likely to be responsible for all of those programs being
misclassified.

Since this technique was the only one that required
splitting the training data, all other techniques were de-
veloped using both training data sets (Training 1 and 2)
and just the first 50% (Training 1). The other model-
ing techniques when tuned using both training data sets
could be expected to enjoy an advantage over the neural
network model in terms of the greater number, and thus
richness, of cases available. While in the second case
the neural network models should have an advantage
since they are tuned on the same data set whilst having
their generalisability encouraged by the use of the val-
idation set.x4.4 shows the performance of all models
on all (sub)sets of data.

4.2 Multiple discriminant analysis

The MDA was a stepwise MDA (Wilk’s lambda was
used for entry and exit of variables). Prior probabilities
were obtained from the data and within group covari-
ance matrices were used. As discussed inx4.1 both sets
of training data were used as part of the model param-
eter tuning since no model selection process was used.
Another model was developed using only the Training
1 data set (50% of the training data). Seex4.4 for these
results.

Table 4 shows the confusion matrix for the pre-
dictions made on the with-held testing data. As with
the neural network model the performance accuracy is
81.1% when using all training data. The patterns of
confusion are similar for authors four, six, and seven
but rather different for the other authors.

4.3 Case-based reasoning

The case-based reasoning model was developed using
the ANGEL algorithm, with 5 analogies and weighted
means for case aggregation. Tie resolution was also
used. All variables were normalized in order to main-
tain a comparable scale.

All 26 variables were used, with two models devel-
oped – one using only 50% of the training data (Train-
ing 1) and another using all training data (Training 1
and 2). Seex4.4 for a discussion of the performance of
this reduced-data model.

Table 5 shows the confusion matrix for the testing
data set. There is a considerably higher level of accu-
racy compared to the neural network and discriminant
analysis models, with 88.0% accuracy achieved when
using all training data.

4.4 Comparison

Table 6 shows the results for all five models developed.
Note that the “training set” errors for the CBR models
are leave-one-out since the case to be predicted should
obviously not be in the training set. As can be seen
the results for the FFNN and MDA models are quite
remarkably almost identical (the FFNN and full-data
MDA are in fact identical). However, each of these
models made rather different patterns of confusion on
all data sets.

The best performing technique in all cases is case-
based reasoning. In terms of predictive performance on
the test data set, its predictions were almost 7% bet-
ter which appears to be a useful increase in perfor-
mance. Even with the reduced training data set, the
case-based reasoning model outperformed the neural
network model by 5.2%.

This is suspected to be a result of the fact that pro-
grammers have more than one style of programming
leading to several multi-dimensional “clouds” of points.
Some sets of programs for a given programmer are ap-
parently within other programmer’s “clouds” of met-
rics, preventing simple explicit classification bound-
aries from properly classifying the systems.

5 Conclusions

The use of the proposed set of metrics for discrimi-
nating between seven authors shows promising results,
especially when using the case-based reasoning tech-
nique. All techniques however provided accuracy be-
tween 81.1% and 88.0% on a holdout testing set would
be certainly encouraging for the software forensics field
as a whole.

It is tentatively suggested here that the nature
of class boundaries for forensic applications is more
amenable to modeling using case-based reasoning than
partitioning approaches. The idea of multiple clusters
suggests that other neural network architectures such as
variants of LVQ could be fruitfully applied here.

We are now comparing the performance of differ-
ent sets of forensic metrics, both structural and stylistic
to determine which are the most useful in certain cir-
cumstances. Since stylistic metrics are easier to fake
than structural, the ability of the latter to discriminate
authorship is more useful.

Another area of interest is how each technique per-
forms given certain quantities of data. Whilst the CBR

Predicted author number
1 2 3 4 5 6 7 Total

Actual
author
number

1 20 1 6 1 1 5 34
2 57 57
3 13 13
4 2 4 6
5 2 0 2
6 1 2 1 17 21
7 4 3 4 31 42

Total 25 67 24 5 0 18 36 175

Table 3: Confusion matrix for testing data predictions from FFNN model using all training data

Predicted author number
1 2 3 4 5 6 7 Total

Actual
author
number

1 26 1 3 1 3 34
2 2 52 1 2 57
3 1 2 10 13
4 2 4 6
5 1 0 1 2
6 2 2 1 16 21
7 3 3 2 34 42

Total 34 62 13 6 3 19 38 175

Table 4: Confusion matrix for testing data predictions from MDA model using all training data

Predicted author number
1 2 3 4 5 6 7 Total

Actual
author
number

1 28 1 2 3 34
2 57 57
3 13 13
4 2 4 6
5 1 1 2
6 5 16 21
7 1 5 2 2 32 42

Total 29 71 17 6 1 16 35 175

Table 5: Confusion matrix for testing data predictions from CBR model using all training data

Model Training 1 Training 2 Training 1 and 2 Testing
MDA (using 50% training) 98.9% 79.3% 89.2% 84.6%
MDA (using 100% training) 93.3% 85.1% 89.2% 81.1%
CBR (using 50% training) 87.6% 81.6% 84.7% 86.3%
CBR (using 100% training) 88.8% 80.6% 84.7% 88.0%
FFNN (using 100% training) 98.9% 79.3% 89.2% 81.1%

Table 6: Results for discriminating models

models were better here it would seem likely that their
performance would suffer more from losing data when
compared to models using actual classification bound-
aries.

References

[1] A. Gray, P. Sallis, and S. MacDonell. Identi-
fied (integrated dictionary-based extraction of non-
language-dependent token information for forensic
identification, examination, and discrimination): A
dictionary-based system for extracting source code
metrics for software forensics. InProceedings of
SE:E&P’98 (Software Engineering: Education and
Practice Conference), pages 252–259. IEEE Com-
puter Society Press, 1998.

[2] I. Krsul and E. H. Spafford. Authorship analysis:
Identifying the author of a program.Computers &
Security, 16(3):233–256, 1997.

[3] P. Sallis, A. Aakjaer, and S. MacDonell. Soft-
ware forensics: Old methods for a new science.

In Proceedings of SE:E&P’96 (Software Engineer-
ing: Education and Practice), pages 367–371.
IEEE Computer Society Press, 1996.

[4] P. Sallis, S. MacDonell, G. MacLennan, A. Gray,
and R. Kilgour. Identified: Software authorship
analysis with case-based reasoning. InProceed-
ings of the Addendum Session of the 1997 Interna-
tional Conference on Neural Information Process-
ing and Intelligent Information Systems, pages 53–
56, 1998.

[5] M. Shepperd and C. Schofield. Estimating software
project effort using analogies.IEEE Transactions
on Software Engineering, 23(11):736–743, 1997.

[6] E. H. Spafford and S. A. Weeber. Software foren-
sics: Can we track code to its authors?Computers
& Security, 12:585–595, 1993.

[7] G. Whale. Software metrics and plagiarism detec-
tion. Journal of Systems and Software, 13:131–138,
1990.

