
DUNEDIN NEW ZEALAND

FULSOME: Fuzzy Logic for Software Metric
Practitioners and Researchers

Stephen MacDonell
Andrew Gray
James Calvert

The Information Science
Discussion Paper Series

Number 99/13
June 1999

ISSN 1172-6024

University of Otago

Department of Information Science

The Department of Information Science is one of six departments that make up the Division of Com-
merce at the University of Otago. The department offers courses of study leading to a major in
Information Science within the BCom, BA and BSc degrees. In addition to undergraduate teaching, the
department is also strongly involved in postgraduate research programmes leading to MCom, MA,
MSc and PhD degrees. Research projects in spatial information processing, connectionist-based infor-
mation systems, software engineering and software development, information engineering and
database, software metrics, distributed information systems, multimedia information systems and in-
formation systems security are particularly well supported.

The views expressed in this paper are not necessarily those of the department as a whole. The accuracy
of the information presented in this paper is the sole responsibility of the authors.

Copyright

Copyright remains with the authors. Permission to copy for research or teaching purposes is granted on
the condition that the authors and the Series are given due acknowledgment. Reproduction in any form
for purposes other than research or teaching is forbidden unless prior written permission has been ob-
tained from the authors.

Correspondence

This paper represents work to date and may not necessarily form the basis for the authorsÕ final conclu-
sions relating to this topic. It is likely, however, that the paper will appear in some form in a journal or
in conference proceedings in the near future. The authors would be pleased to receive correspondence
in connection with any of the issues raised in this paper, or for subsequent publication details. Please
write directly to the authors at the address provided below. (Details of final journal/conference publi-
cation venues for these papers are also provided on the DepartmentÕs publications web pages:
http://divcom.otago.ac.nz:800/COM/INFOSCI/Publctns/home.htm). Any other correspondence con-
cerning the Series should be sent to the DPS Coordinator.

Department of Information Science
University of Otago
P O Box 56
Dunedin
NEW ZEALAND

Fax: +64 3 479 8311
email: dps@infoscience.otago.ac.nz
www: http://divcom.otago.ac.nz:800/COM/INFOSCI/

FULSOME: Fuzzy Logic for Software Metric Practitioners and
Researchers

Stephen G. MacDonell, Andrew R. Gray, and James M. Calvert
Department of Information Science

University of Otago, PO Box 56, Dunedin, New Zealand
+64 3 4798135 (phone) +64 3 4798311 (fax), stevemac@infoscience.otago.ac.nz

Abstract

There has been increasing interest in recent times for us-
ing fuzzy logic techniques to represent software metric
models, especially those predicting development effort.
The use of fuzzy logic for this application area offers
several advantages when compared to other commonly
used techniques. These include the use of a single model
with different levels of precision for inputs and outputs
used throughout the development life cycle, the possibil-
ity of model development with little or no data, and its
effectiveness when used as a communication tool. The
use of fuzzy logic in any applied field however requires
that suitable tools are available for both practitioners and
researchers – satisfying both interface and functionality
related requirements. After outlining some of the spe-
cific needs of the software metrics community, includ-
ing results from a survey of software developers on this
topic, the paper describes the use of a set of tools called
FULSOME (Fuzzy Logic for Software Metrics). The
development of a simple fuzzy logic system by a soft-
ware metrician and subsequent tuning are then discussed
using a real-world set of software metric data. The au-
tomatically generated fuzzy model performs acceptably
when compared to regression-based models.

1 Introduction

Fuzzy logic has recently been recognized as a useful ad-
dition to the software metrician’s toolbox for develop-
ing models of the software development process [2]. In
this way it has joined both traditional and robust sta-
tistical techniques, regression and classification trees,
case-based reasoning, and neural networks as part of the
model-based attempt to better manage software devel-
opment [3].

This is of course only one aspect of improving
project management – but it is an important area and one
where fuzzy logic techniques have much to offer. It is
not suggested here that other aspects of software devel-
opment project management are not equally, or more,

important in terms of the potential benefits from im-
provement. However model development is an area that
can be improved without requiring drastic changes to
development practices, and is not limited in terms of the
types of system development projects to which it can be
applied.

1.1 Survey

In a recent survey of software developers in New
Zealand, it was found that a surprisingly high 31 out
of the 44 information system managers who responded
had heard of fuzzy logic. Of the 36 managers who were
actively involved in managing development projects,
11 were interested in using fuzzy logic techniques, 23
stated that they would need to know more about the
technique before making a decision, and only two did
not think that fuzzy logic techniques would be useful to
them. See Table 1 for more details.

Three advantages of fuzzy logic were proposed to
readers of the survey and they were asked to indicate
their interest or disinterest in each feature. These were
being able to use expert knowledge for model devel-
opment, using linguistic labels before numerical values
are known, and having less precise estimates from the
model. Interestingly, those expressing some interest in
the use of fuzzy logic found each of the three advan-
tages equally appealing (Table 1). The percentages do
not sum to one hundred since most respondents selected
more than one advantage.

No relationships were found between the organiza-
tion’s software development department size in terms of
equivalent full-time personnel (six levels for full-time
equivalent employees) and type (commercial, govern-
ment, and software-house), and their knowledge or in-
terest in fuzzy logic. These associations were all ini-
tially tested using�2 tests at the 0.05 level.

While the survey results reported above certainly re-
flect a self-selected sample since many surveys were not
returned, they are encouraging in that they suggest that
a significant number of project managers are prepared

Respondents Number Percentage
Respondents 44 —
Heard of fuzzy logic 31 71%
Actively managing projects 36 82%
Of those actively managing projects
Interested in using fuzzy logic 11 31%
Would need to know more about fuzzy
logic

23 64%

Not interested in fuzzy logic 2 6%
Advantages of fuzzy logic to those interested or potentially
interested in using fuzzy logic
Using expert knowledge for model de-
velopment

19 56%

Linguistic inputs in place of numerical
values

19 56%

Linguistic outputs in place of numeri-
cal values

21 62%

Table 1: Results of a survey on fuzzy logic for project management

to use such a technique. Some of these organizations
are now being approached to evaluate the FULSOME
system, as described below, in a more practical setting.
Such feedback will be essential to the development of
a truly usable system for practitioners. They will also
be involved in developing a set of standard practices for
the use of fuzzy logic for software metric model devel-
opment.

1.2 Adoption of fuzzy logic

Despite the high level of interest that was shown in
fuzzy logic, only one organization responding to the
survey was currently using fuzzy logic models as part
of its software development management practices and
another had done so in the past. One possible reason
for this imbalance between interest and practice could
be the lack of guidelines for metrics practitioners using
fuzzy logic and accessible software packages.

One strength of Function Point Analysis (FPA) [1],
the most commonly used software metric technique for
effort estimation, is that it is well documented with qual-
ity control achieved through accreditation exams. Sup-
porting software is also widely available and this soft-
ware is often integrated into the development process.
These two features – software and guidelines – are seen
as essential for the adoption of fuzzy logic techniques in
this field (as with any other technique).

Of course the software would need to satisfy many
non-technical criteria as well as supporting the inference
process itself. A user-friendly interface with built-in
support for a generic development process model would
be necessary for widespread usage. Ideally it would also
be capable of communicating with standard analysis and

design, source code editing and generation, and project
management software. In this way many of the cur-
rently used fuzzy inference systems are unsuitable for
non-specialists and would also fail to support features
of modern large scale software development.

2 Project management

Traditionally, software metric models for predicting de-
velopment effort have involved using some size mea-
sure(s) for the system which are then used in a simple
linear regression model for estimating development ef-
fort. In some cases the size measure is transformed be-
forehand, as in COCOMO, but often the models ignore
any economy (or diseconomy) of scale effects. In other
cases, some assessment of complexity is used to pro-
duce a reweighted size, as in FPA [1].

These models have all failed to achieve even the
seemingly unambitious goal of predicting effort us-
ing system specification based measures (available be-
fore coding has begun proper) to within�25% for at
least 75% of the systems (this is often referred to as
pred(25) � 0:75). In fact, most published results fail
to achieve this level even onfitted samples.

This inadequacy of model performance in terms of
predictive accuracy is, perhaps unexpectedly, seen as
encouraging towards the use of fuzzy logic for this
application area. For what is essentially a predictive
task, exact results are not realistically expected, nor are
they necessarily required, let alone feasible in any case.
This allows for the use of intuitive systems that provide
“rough” estimates without having to resort to the all-too-
common excessive tuning of fuzzy logic systems that
trade off interpretability in favor of numerical accuracy.

Below some of the main advantages of fuzzy logic
in software metric model building are discussed in turn.
These are the use of a single model, the ability to cope
with small or nonexistent data sets, robustness to data
quality, and the use of fuzzy logic as a means of com-
municating project management issues.

2.1 Using a single model

One of the most appealing benefits of fuzzy logic for
software metric models is the opportunity to use a single
model (consisting of membership functions and rules)
throughout the entire software development process. Ta-
ble 2 from [4] shows one particular system for selecting
the levels of precision across the development life-cycle.
This is of course only one particular possibility, and oth-
ers may be necessary depending on organization charac-
teristics and practices.

Initially, at the analysis stage, very little informa-
tion is available beyond using such terms as “large” and
“high” for the system data model size and functional
complexity, say. Later, at the design stage, more pre-
cise estimates can be made, for example “about 300”
entities. Finally, during coding, fairly exact estimates
can be made, such as 285 entities.

In order to cope with this gradual buildup of in-
formation most software metric models have required
managers to make “guestimates” of the numerical inde-
pendent variables both early in the life-cycle and sub-
sequently. This discourages the use of such models
since managers know that their earlier estimates are un-
likely to be close to correct, and causes wild fluctuations
in predictions as more information becomes available.
There is a predictable reluctance by managers to pro-
vide values with an accuracy beyond their capabilities.

FPA, the most commonly used software metric for
effort estimation, has been adapted for earlier use by
lowering the information requirements. However this
limited approach leads to multiple models that may or
may not be entirely consistent. The fluctuation problem
can again emerge, and managers are required to provide
more information (with precise definitions) through the
process.

In the same way, the effort predictions from a fuzzy
logic model can be made with different levels of pre-
cision at different stages of the development life-cycle.
For example, early estimates may be strictly linguis-
tic (“high” effort, “medium” risk); later estimates may
use fuzzy numbers (“about 1500” person-hours); and fi-
nally standard numerical estimates may be used (1525
person-hours).

2.2 Data availability and quality

For a variety of reasons, software metrics data is diffi-
cult to collect and quickly become out-of-date as devel-

opment technologies and methodologies change. Fur-
ther, organizations are seldom willing to share their data
with other organizations (and when they do it is without
much of the necessary detail regarding the development
process required to calibrate the results to a different en-
vironment). These features of software metric data leave
the software metrician with in general only small quan-
tities of data with which to develop a model, if any at
all.

Fuzzy logic models can be easily constructed with-
out any data whatsoever, or with a small sample used
to validate the model. This is another striking advan-
tage when compared to data-driven model building tech-
niques such as neural networks, regression, and case-
based reasoning. As such fuzzy logic provides a useful
argument to the often encountered criticism of software
metric models that data collection is too difficult and ex-
pensive.

Similarly, by reducing the reliance on data to derive
the model some of the problems with data quality can be
overcome. This leads to the issue of model robustness
as discussed next.

2.3 Model robustness

Software metric data is often contaminated by unusual
systems that are impossible to identify based on the
measured variables, leading to strong robustness re-
quirements for any automated model building tech-
nique. In order to reduce the risk of influence from these
observations, robust statistical methods can be used and
the final model can be examined for plausibility. This
is one reason why statistical models have remained sim-
ple in their structure and a significant disadvantage of
neural network and other “black box” type techniques.

Since fuzzy logic models are easily interpreted they
can be, comparatively speaking, easily checked for rea-
sonableness with experts. This provides some protec-
tion from influential points adversely affecting the em-
pirical model building process.

2.4 Communication

Another useful feature of fuzzy logic models is as a
communication tool for management. Equations de-
rived from regression models are not always easy to
explain if interactions and transformations are present.
Neural network models are even worse in this respect.
With a rule-based system this interpretability can be
maintained with a relatively powerful mapping mech-
anism. The only other technique used here that provides
such transparency in reasoning is case-based reasoning,
which suffers greatly from high data requirements.

Phase Inputs Outputs
Analysis fuzzy label fuzzy label
Design fuzzy number fuzzy number

Coding
crisp value or

fuzzy number
fuzzy number

Testing crisp value fuzzy number
Maintenance

crisp value fuzzy number
(small project)

Table 2: Suggested levels of precision across the life-cycle when estimating development effort (from [4])

3 FULSOME

FULSOME provides the software metric model devel-
oper with a series of tools that include data entry and
importing facilities, membership function construction,
rule creation, inference (including tracing and visuali-
sation), and online explanations of fuzzy logic. Addi-
tional tools include a basic initial system generator that
uses fuzzy c-means clustering to derive initial member-
ship functions and rules (with the automatic member-
ship functions or ones that have been already created),
and a model performance evaluator.

Figure 1 shows the base components of the system
which would generally be used from top to bottom, left
to right. The information in each of these modules
is stored in separate files, which can be collected to-
gether within a single “system file”. Standard options
such as a variety of membership functions (triangular,
trapezoidal, Gaussian, bell, and sigmoidal), t-norm and
t-conorm options, and defuzzification strategies are all
provided.

3.1 Generating systems

One algorithm for automatically generating member-
ship functions is simply to select the desired number
of functions and make the centers of each function the
center of a data cluster. This simple approach is imple-
mented in FULSOME by using fuzzy c-means cluster-
ing (with standard adjustable parameters). The simplic-
ity of this approach is also consistent with the goal of
making the model development process both transpar-
ent and convincing for managers.

1. select an appropriate mathematically defined
function for the membership functions of the vari-
able of interest (i), sayfi(x)

2. select the number of membership functions that
are desired for that particular variable,mi func-
tions for variablei

3. call each of themi functionsfij([x]) wherej =
1 : : :mi and [x] is an array of parameters defin-
ing that particular function (usually a center and

width parameter are defined, either explicitly or
implicitly)

4. using one-dimensional fuzzy c-means clustering
on the data set find themi cluster centers,cij from
the available data

5. sort the cluster centerscij into monotonic (gener-
ally ascending) order for the giveni

6. set the membership function center forfij , gen-
erally represented as one of the parameters in the
array[x], to the cluster centercij

7. set the membership function widths forfij in [x]
such that

Pmi

n=1 fin([cin; : : :]) = 1, or as close as
possible for the chosenf(x) where this can not
be achieved exactly (for example for triangular
membership functions each function can be de-
fined using three points,a, b, andc wherea is the
center of the next smaller functions andc is the
center of the next larger function)

Similarly, rules can be extracted from data by using
the same process of clustering with multiple dimensions
(the number of dimensions matching the number of an-
tecedents).

1. start with known membership functionsfij([x])
for all variables, both input and output, wherej
represents the number of functions for variablei

and[x] is the set of parameters for the particular
family of function curves

2. select the number of clustersk (which represents
the number of rules involving thek � 1 indepen-
dent variables to estimate the single output vari-
able)

3. perform fuzzy c-means clustering to find the cen-
ters (i dimensional) for each of thek clusters

4. for each clusterk with centerck

(a) determine thekth rule to have the an-
tecedents and consequentfij for each vari-
able i wherefij(ck) is maximized over all
j.

(a) System screen (b) Data editor

(c) Membership function editor (d) Rule editor (e) Output screen

Figure 1: Structure of the FULSOME system

(b) weight the rule, possibly as
Qi

n=1 fij(ck))

or
Pi

n=1 fij(ck))

5. combine rules with same antecedents and conse-
quents, either summing, multiplying, or bounded
summing rule weights together

6. (optionally) ratio scale all weights so that the
mean weight is equal to 1.0 to aid interpretabil-
ity

The automatic extraction of systems from data is
seen here as an essential feature to encourage use of
fuzzy logic. Organizations who are simply presented
with a software package may not be, at least initially,
comfortable creating a system from scratch and so
this provides them with an opportunity for incremental
learning.

4 Case study

For this section a set of size and effort data from a pub-
lished study [5] was used to initialize a simple fuzzy
logic system. The data consists of three size-related
measures available from the system specifications and
an effort measure for 48 systems. One of these systems

was removed since it is by far the largest on all three
measures and would not be used for model development
in practice and nor would it have predictions made for
it using a model developed with any of the other obser-
vations. This was presumably the motivation behind its
inclusion in a paper testing the worthiness of robust re-
gression techniques.

Only a subset (31 observations) of the data was used
for the “training” procedure. The remainder (16 obser-
vations) was withheld for validating the developed mod-
els. The data is from a series of systems developed by
a single organization in a relatively homogeneous en-
vironment, so this should provide a reasonably realistic
test of the model building techniques.

Table 3 shows the results of a least squares regres-
sion model and the weighted fuzzy system on both the
training and validation data. The error measures used
here are the mean magnitude of relative error (MMRE)
and thepred() measure which is the proportion of ab-
solute relative errors which are less than the threshold
(25%, 50%, and 100%).

Three membership functions were first extracted us-
ing one-dimensional clustering for each of the four vari-
ables. These membership functions were used to ex-
tract 11 unique rules from 30 cluster centers. The fuzzy
system was unable to make predictions for all observa-

Technique Data MMRE Pred(25) Pred(50) Pred(100)
Regression models

Least squares regression
Training 0.96 0.32 0.52 0.74
Testing 1.00 0.13 0.25 0.50

Fuzzy clustering with 30 clusters (11 unique rules)
Replacing missing values with
training set mean

Training 1.52 0.26 0.35 0.68
Testing 2.27 0.31 0.38 0.50

Omitting missing values
Training 1.58 0.28 0.38 0.66
Testing 1.87 0.31 0.38 0.54

Table 3: Results for the automatically generated fuzzy systems

tions due to insufficient rule coverage – leading to either
using the mean effort from the training data as a “best
estimate” or omitting the five missing observations (two
from the training set and three from the testing set) when
evaluating the system.

The results from the automatically generated fuzzy
system are rather worse than the regression results ac-
cording to the MMRE measure, but compare well us-
ing thepred() measures, outperforming the regression
model at the lower levels on the validation set when us-
ing mean values for the missing predictions. It is there-
fore difficult to rank one model as better than another.
The regression model is more consistent overall, but the
fuzzy model is better on some systems and much worse
on others. As such this automatically generated model
would be a useful first draft for an expert to extend.

It should also be noted here that the fuzzy logic
model was not augmented with any expert knowledge.
We are not familiar with the projects in question be-
yond the published descriptions, and such knowledge
could have been used to tune the rules beyond the au-
tomated extraction stage if available. Presumably this
would have improved performance, or at least not have
led to any deterioration. Rules for the uncovered regions
in the input space would have been useful in this respect.

5 Conclusions

In this paper we have briefly discussed the benefits of us-
ing fuzzy logic modeling techniques for software metric
models, specifically those for predicting development
effort. These benefits, coupled with the results from the
survey, suggest that there is considerable worth in the
techniques discussed here being applied to this field. In
addition, we have described a supporting suite of appli-

cations for the development of such fuzzy logic models
and demonstrated a simple model development process
using a real-world data set.

We are currently beginning a program of collabora-
tion with three New Zealand organizations to investigate
their use of fuzzy logic onlive projects. The feedback
from this will be used to develop the next generation
of FULSOME along with more concrete guidelines for
using fuzzy logic for software metric models.

References

[1] N. E. Fenton and S. L. Pfleeger.Software Metrics:
A Rigorous & Practical Approach. PWS, 1997.

[2] A. Gray and S. MacDonell. Applications of fuzzy
logic to software metric models for development ef-
fort estimation. InProceedings of the 1997 Annual
meeting of the North American Fuzzy Information
Processing Society - NAFIPS’97, pages 394–399.
IEEE, 1997.

[3] A. Gray and S. MacDonell. A comparison of model
building techniques to develop predictive equations
for software metrics. Information and Software
Technology, 39:425–437, 1997.

[4] A. Gray and S. MacDonell. Fuzzy logic for soft-
ware metric models throughout the development
life-cycle. InProceedings of the 1999 Annual meet-
ing of the North American Fuzzy Information Pro-
cessing Society - NAFIPS’99. IEEE, 1999.

[5] Y. Miyazaki, M. Terakado, K. Ozaki, and
N. Nozaki. Robust regresison for developing soft-
ware estimation models.Journal of System and
Software, 27:35–16, 1994.

