

DUNEDIN NEW ZEALAND

The NZDIS Project: An Agent-Based Distributed
Information Systems Architecture

Martin Purvis
Stephen Cranefield

Geoff Bush
Dan Carter

Bryce McKinlay
Mariusz Nowostawski

Roy Ward

The Information Science
Discussion Paper Series

Number 99/17
August 1999

ISSN 1177-455X

University of Otago

Department of Information Science

The Department of Information Science is one of six departments that make up the Division of Com-
merce at the University of Otago. The department offers courses of study leading to a major in
Information Science within the BCom, BA and BSc degrees. In addition to undergraduate teaching, the
department is also strongly involved in postgraduate research programmes leading to MCom, MA,
MSc and PhD degrees. Research projects in spatial information processing, connectionist-based infor-
mation systems, software engineering and software development, information engineering and
database, software metrics, distributed information systems, multimedia information systems and in-
formation systems security are particularly well supported.

The views expressed in this paper are not necessarily those of the department as a whole. The accuracy
of the information presented in this paper is the sole responsibility of the authors.

Copyright

Copyright remains with the authors. Permission to copy for research or teaching purposes is granted on
the condition that the authors and the Series are given due acknowledgment. Reproduction in any form
for purposes other than research or teaching is forbidden unless prior written permission has been ob-
tained from the authors.

Correspondence

This paper represents work to date and may not necessarily form the basis for the authors’ final conclu-
sions relating to this topic. It is likely, however, that the paper will appear in some form in a journal or
in conference proceedings in the near future. The authors would be pleased to receive correspondence
in connection with any of the issues raised in this paper, or for subsequent publication details. Please
write directly to the authors at the address provided below. (Details of final journal/conference publica-
tion venues for these papers are also provided on the Department’s publications web pages:
http://divcom.otago.ac.nz:800/COM/INFOSCI/Publctns/home.htm). Any other correspondence con-
cerning the Series should be sent to the DPS Coordinator.

Department of Information Science
University of Otago
P O Box 56
Dunedin
NEW ZEALAND

Fax: +64 3 479 8311
email: dps@infoscience.otago.ac.nz
www: http://divcom.otago.ac.nz:800/COM/INFOSCI/

The NZDIS project: an agent-based distributed
information systems architecture�

Martin Purvis, Stephen Cranefield, Geoff Bush, Dan Carter,
Bryce McKinlay, Mariusz Nowostawski and Roy Ward

Department of Information Science
University of Otago

PO Box 56, Dunedin, New Zealand
Fax: +64 3 479 8311

E-mail: fmpurvis, scranefieldg@infoscience.otago.ac.nz

Abstract

This paper describes an architecture for building distributed information systems from
existing information resources, based on distributed object and software agent technologies.
This architecture is being developed as part of the New Zealand Distributed Information
Systems (NZDIS) project.

An agent-based architecture is used: information sources are encapsulated as information
agents that accept messages in an agent communication language (the FIPA ACL). A user
agent assists users to browse ontologies appropriate to their domain of interest and to con-
struct queries based on terms from one or more ontologies. One or more query processing
agents are then responsible for discovering (from a resource broker agent) which data source
agents are relevant to the query, decomposing the query into subqueries suitable for those
agents (including the translation of the query into the specific ontologies implemented by
those agents), executing the subqueries and translating and combining the subquery results
into the desired result set.

Novel features of this system include the use of standards from the object-oriented com-
munity such as the Common Object Request Broker Architecture (CORBA) (as a communi-
cations infrastructure), the Unified Modeling Language (used as an ontology representation
language), the Object Data Management Group’s Object Query Language (used for queries)
and the Object Management Group’s Meta Object Facility (used as the basis for an ontology
repository agent). Query results need not be returned within an ACL message, but may in-
stead be represented by a CORBA object reference which may be used to obtain the result
set.

�This project is funded by the NZ government’s Public Good Science Fund

1

1 Introduction

The rapidly increasing extent and availability of electronically stored information the world over
has outstripped all efforts to access and make effective use of it, and it is recognised by many
governments and organisations that improved technology in this area is of strategic importance.
The task is made difficult not so much by the size but by the considerable heterogeneity of the
available information sources: data are stored according to widely differing storage formats, me-
dia types, and organised according to differing semantics. The challenge is to provide suitable
means to integrate such disparate information in a dynamic, open, and distributed environment.
Survival in the increasingly competitive global economic climate may well depend on how or-
ganisations respond to this challenge. This paper describes the initial design work of the New
Zealand Distributed Information Systems (NZDIS) research project, which seeks to develop new
tools and techniques that address this problem

The approach taken by the NZDIS project is to harness the potential to be derived from
combining various information sources by employing a distributed collection of collaborating
software agents. Certainly at the abstract modelling level, the notion of using cooperating agents
has several attractive features:

� Using a collection of problem-solvers makes it easier to employ divide-and-conquer strate-
gies in order to solve complex, distributed problems. Each agent only needs to possess the
capabilities and resources to solve an individual, local problem.

� The mental image of autonomous, human-like agents facilitates the mapping of real-world
problems into a computational domain. It is an intuitive practice to model a complex
process in terms of an intelligent agent.

� The idea of several agents cooperating to solve a problem that none could solve individu-
ally is a powerful metaphor for thinking about various ways that individual elements can
be combined to solve complex problems.

In the last several years there have been a number of research projects pursuing this promising
direction [1–5].

In the following sections, we present several perspectives of the NZDIS agent-based software
architecture. Section 2 provides a brief overview of agent-based software interoperability, and
Section 3 describes why we are adopting some standard technologies as part of the architecture.
The overall NZDIS system architecture is presented in Section 4, and the individual (internal)
agent architecture is described in Section 5. Section 6 covers issues relating to query processing
in distributed information systems. The final section offers some concluding remarks.

2 Multi-agent Systems

The notion of agent-based software interoperability is based on the idea of a loosely-coupled
collection of agents that can cooperate to achieve a common goal. Each individual agent is pre-
sumed to be a specialist for a particular task, and the expectation is that, just as is in the sphere

2

of human engineering, complex projects can be undertaken by a collection of agents, no one
of which has the capability of performing all the required tasks of the project. In addition, if
the system has an open agent architecture, then individual agents can be replaced by improved
models, thereby enabling the system to improve gradually, grow in scope, and generally adapt
to changing circumstances. For such an approach to work so that the agents work together ef-
fectively, all agents, including those newly introduced to the system, must not only possess a
common understanding of possible messages and message types, but also must have an under-
standing of the kinds of dialogues that can take place between two agents or among groups of
agents. For this reason there has been considerable interest in establishing common standards for
agent communication, interaction, and knowledge representation.

Two proposals for standard agent communication languages, Knowledge Query and Manipu-
lation Language (KQML) [6] and the Foundation for Intelligent Physical Agents Agent Commu-
nication Language (FIPA ACL) [7], have been based on speech acts [8], a concept from linguis-
tics theory that associates human speech with certain communication types (‘performatives’),
such as requests, assertions, promises, etc. Each agent message written in such a language iden-
tifies the performative associated with the message content.

Communication, however, typically consists in more than the sending of an isolated mes-
sage — it usually involves the exchange of several messages that take place within the context
of a dialogue. These dialogues frequently follow commonly occurring patterns or ‘conversation
policies’, and communication can be enhanced if the two participants are explicitly aware of the
particular pattern in which they are engaged. Work on conversation policy development is an
active research topic [3,4,9,10], but conversation policy standards have yet to emerge.

In order to understand the range of possible messages that can be received, however, an agent
must also have, in addition to a common means of characterising performatives and conversa-
tion policies, a model of the application domain with which the agent is associated. Such a
model, called an ‘ontology’, characterises the relationships and constraints associated with pos-
sible entities in the given domain. Most work on ontology representation has so far been based
on first-order logic or knowledge representation languages descended from KL-ONE [11], but
our approach follows a different line and will be discussed below.

In general the NZDIS approach to the problem of enhancing open-agent systems is to look
for (suitably powerful) representation and implementation schemes that have already achieved
a wide degree of acceptance in the professional computing arena and that can be effectively
incorporated into the agent-based software interoperability agenda. The next section discusses
some of the specific methods that we have adopted.

3 NZDIS and Object-Oriented Standards

The variety of data collections in New Zealand available for integration efforts covers an assort-
ment of types, and includes many maps and geographically-oriented data sets that have been
assembled by means of automated data acquisition techniques. A large proportion of these col-
lections are not organised according to standard database structuring, but instead are simply
available as flat files. In order to provide software technology that improves access to these var-

3

ious collections, we have chosen to build the NZDIS system using industry standards from the
object-oriented programming community. This usage is in addition to the use of those standards
from FIPA associated with multi-agent system development. The use of object-oriented stan-
dards enables the NZDIS project to take advantage of existing commercial implementations of
the standards and enhances the stability and maintenance prospects for significant components
of the system. The adopted object-oriented ‘standards’ include

� the Object Management Group’s (OMG) Common Object Request Broker Architecture
(CORBA) as a communications infrastructure,

� the OMG’s Unified Modeling Language (UML) for representing ontologies (for describing
models of both the user-level domain and models of data sources),

� the Object Data Management Group’s (ODMG) Object Query Language (OQL) for ex-
pressing queries,

� and the OMG’s Meta Object Facility (MOF) for storing ontologies and models of ontology
modelling languages.

3.1 CORBA as a Communications Infrastructure

The Common Object Request Broker Architecture (CORBA) is an industry standard developed
by the Object Management Group for the provision of object-oriented interfaces between systems
located on separate platforms. The CORBA standard defines

� the architecture for the Object Request Broker (ORB)—if ORBs exist on each of two
separated machines, then objects on the two machines can be accessed transparently;

� the Interface Definition Language for defining platform-independent object interfaces;

� a set of services associated with remote object access.

There are now commercial implementations of the CORBA standard available on virtually
all computer platforms and for most of the widely-used programming languages. Thus CORBA
provides a mechanism for linking distributed objects over the Internet, as long as the interfaces
can be described precisely. By using CORBA as the transport layer for a distributed, multi-agent
system, it is possible to combine the high-level agent model with robust commercial implemen-
tations of distributed information exchange.

3.2 UML as an Ontology Representation Language

The most common formalisms used to represent ontologies are the Knowledge Interchange For-
mat (KIF) [12] and KL-ONE style knowledge representation languages [11].

KIF provides a Lisp-like syntax for expressing sentences of first order predicate logic and also
provides extensions for representing definitions and meta-knowledge. KIF is a highly expressive

4

but low-level language for representing ontologies; however, the Stanford University Knowledge
Sharing Laboratory’s ontology editing tool, Ontolingua [13], allows users to build KIF ontologies
at a higher level of description by importing predefined ontologies defining concepts such as sets,
standard units, time and simple geometrical functions.

Much of the research on ontology design and use is performed by researchers using knowl-
edge representation tools descended from KL-ONE [11]. KL-ONE was the basis for much work
in the field of knowledge representation. It implemented “structural inheritance networks”: net-
works containing descriptions of named concepts with generalisation/specialisation links be-
tween them. Descendants of KL-ONE include Loom [14] and a family of logics calleddescrip-
tion logicsor terminological logics1 [15,16].

Knowledge representation (KR) systems such as Loom are large and complex systems with
a steep learning curve and are little known outside AI laboratories. Instead of using such tech-
nology, the authors are investigating the rapidly growing and more mainstream arena of object-
oriented technology to construct a distributed information retrieval and processing system. Cur-
rently there is no counterpart for the deductive capabilities of KR systems in current object-
oriented technology; however, for distributed information systems these capabilities are not nec-
essarily needed. Many of the benefits of KR systems occur during the process of designing
an ontology. This support is undoubtedly useful, but in the object-oriented world there is also
much support available for the design of models, with mature and commonly used languages,
methodologies and tools available.

The other function of KR systems — to store highly structured data and answer queries about
it — is not an issue in distributed information systems. The point of distributed information sys-
tems technology is to allow disparate databases and other information sources to be integrated.
Nothing can or should be assumed about the underlying databases and information storage sys-
tems. In particular, it cannot be assumed that the information sources will be implemented using
KR systems.

The ontology representation formalism used in the NZDIS project is a subset of the Unified
Modeling Language (UML) [17] from the Object Management Group (OMG) [18], together
with its associated Object Constraint Language (OCL) [19, 20]. Benefits of using UML and
OCL include the following:

� UML has a very large and rapidly expanding user community. Users of distributed infor-
mation system infrastructures will be more likely to be familiar with this notation than KIF
or description logics. This issue should not be overlooked for its importance in gaining
acceptance of distributed information systems technology amongst new end-user commu-
nities.

� Unlike description logic formalisms, there is a standard graphical representation for mod-
els expressed in UML. Such a graphical representation is important to allow users of dis-

1In a description logic, concepts can be introduced by simply naming them and specifying where they fit in the
generalisation/specialisation hierarchy. Concepts may be specialised by operations such asvalue restriction, where
the possible values of some conceptrole (effectively an attribute) are restricted to be instances of a certain class, and
number restriction, where the operatorsatleast andatmost are used to restrict the possible number of values that
a given role may have.

5

tributed information systems to browse an ontology and discover concepts that can appear
in their queries. In contrast, a description logic has a linear syntax but no standard graph-
ical representation. Although UML currently has no standard linear syntax, the OMG is
in the process of adopting XMI (XML Model Interchange) as a standard for stream-based
model interchange [21].

� The Object Constraint Language (OCL) is powerful and allows the expression of con-
straints that cannot be described using description logic. (Of course, there is a trade-off
between the expressive power of a language and the computational complexity of reason-
ing about it.)

UML defines several types of diagram that can be used to model the static and dynamic
behaviour of a system. We have chosen to model an ontology as a static model consisting of a
class diagram to depict the classes in the domain and their relationships, and an object diagram
to show particular named instances of those classes (see [22] for more details).

3.3 The Object Query Language

As we have chosen the object-oriented modelling language UML to represent ontologies, it fol-
lows that queries involving concepts in these ontologies would be best represented using an
object-oriented query language. The ODMG’s Object Query Language (OQL) [23] is an indus-
try standard for expressing queries over an object-oriented data model and we have therefore
chosen it as the query language for our system.

3.4 A MOF-based Ontology Repository

A single ontology representation language is not necessarily convenient for modelling all do-
mains. It may be useful to have several ontology representation languages available to the on-
tology designer. The Infosleuth project has an interesting approach to addressing this issue by
supporting multiple modelling languages [1]. A simple frame-based language is used to define
specific ontology representation languages such as object models and entity-relationship dia-
grams. The actual ontologies are then expressed as instances of these languages. This is a three
layer model, with the frame layer acting as a meta-metamodel, the definitions of the ontology
representation languages being metamodels and the ontologies themselves being models.

A similar facility is offered by the OMG’s Meta Object Facility (MOF) [24–26] The MOF
defines a standard for CORBA-based services to manage meta-information in a distributed envi-
ronment. It defines a model (in fact a meta-meta model) that can be used to describe modelling
languages such as UML. It also defines interfaces that can be used to populate and query repos-
itories of models defined using various languages. We intend to use this framework to build an
ontology server agent with similar capabilities to those of the Infosleuth project.

6

4 System Architecture

A schematic representation of the NZDIS system architecture is shown in Figure 1. All of the
solid, directed lines shown in the figure represent agent messages expressed in FIPA ACL. Not
shown in this figure is the System Facilitator which maintains a directory of all agents in the
system and with which each agent must register when it is incorporated into the system.

���������
���������
���������

���������
���������
���������

���������
���������
���������

���������
���������
���������

���������
���������
���������

���������
���������
���������

������
������
������

������
������
������

������
������
������

������
������
������

�������
�������
�������

�������
�������
�������

Metadata
Data and

Metadata
Data and

Metadata
Data and

Resource Broker

Resource Broker

Resource Broker

Translator

Translator

Translator

R
ef

. t
o

an
sw

er
 o

bj
ec

t

1. Initial query
4. Refine query

5. OQL Query

2.
 Q

ue
ry

 k
ey

w
or

ds

Possible request for query redefinition

3.
 O

nt
ol

og
ie

s

Resource services

���������
���������
���������
���������

���������
���������
���������
���������

Ontology Agent

Ontology Directory

Translation Directory

Ontology Services

Query processing subsystem

Worker WorkerWorker

Data Source
Agent

Data Source
Agent

Data Source
Agent

Computational
Module

Computational
Module

Query QueryQuery

Cache

Query
0. Registration

0.
 R

eg
is

tr
at

io
n

User Agent

Executor

Translation
Broker

Potential Sources
Chooser

Query Cache
Manager

Query
Planner

Preprocessor
Query

Figure 1: The system architecture

For example, suppose there are two separate data collections available:

� one collection containing questionnaire responses pertaining to asthma incidence and in-
cluding geographical location in NZ Map Grid coordinates of respondents (described by
the AsthmaOnt ontology)

� and another collection containing climatological information with respect to geographical
location (described by the ClimateOnt ontology).

A user may be interested in collecting records for all the people who suffer from asthma and who
live in areas with average humidity greater than 70%. This query is entered via a dialogue with
the User Agent which interacts with the Ontology Agent in order to get references to relevant
ontologies. A query message is then sent to the Query Preprocessor (using FIPA ACL) where
the message content is the following OQL query:

7

select p

from AsthmaOnt:person as p, ClimateOnt:Environment as e

where e.humidity > 70

and p.Response.hasAsthma = true

and e.northing = p.northing

and e.easting = p.easting

The Query Preprocessor constructs an initial representation of the parsed query and passes
this to the Potential Sources Chooser agent, which identifies possible data sources that have
been registered with a Resource Broker agent. References to the potential data sources are then
passed to the Query Planner, which generates an appropriate plan for processing the query. The
potential data sources may have data that do not match precisely the form requested in the query
but which are related to the requested form by means of a known transformation. In that case a
Translator agent which can perform this transformation may already have been registered with
the Translation Broker. The Query Planner checks with the Translation Broker to determine
whether any Translator agents are to be used in connection with the query processing. (In the
simple query given above, it is assumed that no translations between ontologies are needed).

When the plan for query processing has been constructed, it is passed to the Executor. The
Executor generates one or more Query Workers, which operate in their own threads and interact
with Data Source Agents that are responsible for a given data source. Typically, Data Source
agents serve as wrappers for existing databases. For the example given above, one Data Source
Agent is associated with the environmental data and another Data Source Agent is associated
with the survey-questionnaire data.

When the Query Worker agents obtain CORBA object references to individual query re-
sponses requested of individual Data Source Agents, these references are passed back to the
Executor, which merges the information in a form appropriate to the original query and passes
a reference to this merged information back to the User Agent. The User Agent can check this
reference to see what methods the answer object has available for transferring or processing the
data. References to the information obtained by the Query Worker agents are also maintained by
the Query Cache Manager agent for possible reuse in subsequent queries.

In some circumstances an information system query could require further computation to be
performed on available data. In that case a Query Worker agent can make use of the services
performed by a Computational Module agent (bottom right corner, Figure 1), rather than a Data
Source Agent. A Computational Module agent provides a wrapper for a module that performs
some specialist computation, such as statistical or connectionist analysis.

Note that Figure 1 shows that the system architecture can accommodate multiple instances
of many of the agent types, such as the various broker agents. These multiple instances are
all registered with the System Facilitator and may be located anywhere across the distributed
environment.

8

5 The Internal Agent Architecture

Individual agents in the NZDIS system have an architectural organisation whose common el-
ements are depicted schematically in Figure 2. This figure describes an abstract, high-level

Input

Output

Role
Memory Ontologies

Conversations

Agent
Executive

Conversation
Protocols

Goals

Plans

Capabilities

Plan
Executive

Figure 2: The internal agent architecture

architecture which may vary somewhat with individual agents within the system. The Agent
Executive is in control of the agent. A message handler operates one or more input and output
queues of the agent and makes them available to the Agent Executive. The Ontologies compo-
nent stores information about domain and data source ontologies that concern the agent2. The
Memory component contains the agent’s current state in a declarative form. It also can con-
tain a record of the capabilities of the agent (individual agents may optionally also be equipped
with special operational capabilities, which is a potential component shown at the bottom of Fig-
ure 2). Separate Conversation components also exist, each of which maintain the state of one of
the agent’s current conversation dialogues in accordance with a conversation policy appropriate
to the agent’s role in that conversation.

When an agent receives a message, it will execute a ‘plan’ in order to respond to the message.
For some simple agents, the plan can be hard-coded into the agent, but in general, the plan can be
considered to be a script that will be interpreted by the Plan Executive component of the Agent.
On the left side of Figure 2 are three components that are collectively designated to be a ‘role’
for the agent. A role comprises a conversation policy, a set of goals to be fulfilled, and the plans

2Note that there is also a service-level ontology that is to be distinguished from the domain-level ontologies
and which describes the terminology for relationships and constraints associated with the agents in the NZDIS
architecture. This service-level ontology is currently fixed in the architecture, i.e. not stored in the Ontologies
structure and is not accessible to the scrutiny of an agent.

9

required to achieve those goals. For example when an agent registers with a broker agent, it
performs the role ‘registrant’.

An agent can have more than one role, but at the present time these roles are fixed in NZDIS
agents. However, we are investigating the utility of allowing agents to adopt new roles at runtime,
and so the notion of a role is being maintained as a potentially modifiable architecture element.
If our service-level ontology is modified appropriately in the future, an Agent Executive will be
able to accept messages that cause it to install new goals or plans for a given role, or even install
new roles for the agent.

6 Query Processing

The query processing subsystem is responsible for accepting OQL queries from the user agent,
creating and optimising a query plan involving multiple data source agents, and controlling the
execution of that plan to generate the resulting data set. It must also translate terms from the
user’s domain ontologies into the ontologies representing the data source agents, and then trans-
late the resulting data back into the original ontologies. This is a complex process and is currently
the least developed part of our architecture. The current query processing subsystem has limited
functionality designed to support our current prototype and is not intended as a final solution.

This section briefly overviews the query processing techniques used in related research, by
classifying these systems along a number of key architectural dimensions, and discusses how
well these techniques fit with our own needs. It should be noted that the systems discussed
cannot be directly compared as competing solutions to the same problem, as they have differing
aims, some being intended as fully-functional federated database systems, some as flexible and
easily extensible information retrieval systems, and some as components within a single database
implementation.

Ontology representation and translation A fundamental design decision in any distributed
information retrieval system is the formalism used to describe the individual data sources (the
export schemasordata source ontologies) and the user-level domain model(s) (global schemasor
domain ontologies). Generally, individual data sources represent their knowledge using different
ontologies, which means that a mechanism must be provided for translating subqueries from
the domain ontology (or ontologies) into the appropriate data source ontology, and then in turn,
translating the resulting dataset back into the ontologies used in the query.

Ontology languages used in existing projects include AI representation languages such as
Loom (SIMS [27]) and description logic (OBSERVER [28]), a datalog-like language (Infomas-
ter [2]) and the Object Data Management Group’s Object Definition Language (ODL) (DISCO
[29], MIND [30, 31]). The Infosleuth project [1] uses a meta-modelling approach to allow new
ontology representation languages to be defined and used to model data sources.

One approach to the ontology translation problem (orschema integration) problem is to ini-
tially define a global schema integrating the schemas of all data sources, and to define views
mapping from various sets of data source schemas to the global schema [32]. The decomposition
of queries into subqueries on individual data sources is essentially hardwired into the system. The

10

MIND system takes this approach, using ODL to define the global schema as a view over data
source schemas. This has the disadvantage of requiring the domain model and query process-
ing system to be regenerated whenever a data source is changed or added. The DISCO system
includes a number of mechanisms that alleviate but do not eliminate this problem.

An alternative approach, used in SIMS, assumes the prior existence of a domain model and
symbolically represents mappings from data source models to the domain model. This informa-
tion is then used dynamically by the query planner to decompose queries. If a data source is
added or modified, the models and mappings of other data sources are unaffected, thus trading
off increased complexity of query planning for greater ease of system extension. The limited
expressiveness of Loom concept definitions (compared to object-oriented modelling techniques)
simplifies the types of mappings required and helps to make this approach viable.

The OBSERVER system (based on description logic) uses a different approach. Rather
than assuming the existence of a completely defined mapping from data source models to a do-
main model, OBSERVER includes a component called the Interontology Relationships Manager
(IRM)—a repository for relationships between pairs of terms in different ontologies. Relation-
ships supported are synonym, hyponym, hypernym, overlap, disjoint and covering. These rela-
tionships are used during query planning and transformer functions are also provided to convert
query results from from one ontology to another.

One additional approach, taken by Infosleuth, is to leave ontology translation to be the re-
sponsibility of the data source wrappers [33]. In Infosleuth, each information agent advertises
which part of the domain ontology it supports and it is the responsibility of the wrapper to trans-
late between that ontology subset and the schema of the underlying data source.

Our choice of UML as an ontology representation language provides us a richer domain
model than the projects discussed above, making a general approach to translation based on fully
defined mappings an unrealistic goal. Instead we plan to adapt the idea of OBSERVER’s Interon-
tology Relationships Manager to allow multiple ontology translation agents to be registered with
a broker, each having the expertise for translating particular pairs of ontologies. This framework
will also allow us to support user queries containing terms from more than one domain ontology.

Query representation language The choice of a query language is an important determinant
of the techniques used for query processing. Distributed information systems using OQL include
MIND and DISCO. Alternative query languages used by other systems include programs in a
datalog-like language (Infomaster), description logic expressions (OBSERVER) and conjuncts of
atoms referring to concepts and relationships defined in an AI knowledge representation language
(SIMS). The query processing techniques used by these systems are not directly applicable to
our architecture, although they have identified the important components and problems to be
addressed in such a system.

As queries must be decomposed into subqueries over single data sources and then optimised,
it is important to choose an appropriate intermediate format that supports these processes and
into which the initial OQL query can be parsed. Because OQL queries commonly include path
expressions (denoting one or more navigations from one object to another via references) and
may include nested queries, query optimisation is an important consideration and many query

11

algebras have been proposed to represent object oriented queries, most based on extensions to the
nested relational algebra (see, e.g. [34] for a discussion). The ability of OQL queries to represent
sets, bags or lists adds additional problems and has led to the development of representations
such as the monoid comprehension calculus [34, 35] that provide a canonical representation for
OQL queries and a uniform treatment of operations that apply to all three collection types.

Internal plan representation While most work represents a query plan as a tree over some
appropriate query algebra, with the flow of data represented by the links from nodes to their
parents, the SIMS project takes the alternative approach of using a general-purpose AI nonlin-
ear planner to generate partially ordered plans comprising operators representing actions such
as joins and data transfer. This is a powerful technique but the implicit representation of data
flow (compared to algebraic expressions) may make it difficult to apply some of the algebraic
optimisations commonly used for object-oriented query processing.

Currently we have adopted an algebraic representation of query plans but we are investigating
the alternative approach taken by SIMS.

Query optimisation Techniques discussed in the literature for optimising queries are moti-
vated by various aims. Work on object-oriented query optimisation addresses the problem of
finding the optimal algebraic form of a query (e.g. by eliminating nested subqueries and com-
bining joins, function applications and grouping operations into a single operator) [34]. Cost
functions are generally used to make a final translation into a physical algebra representing the
operations that can be performed by a database. A common technique for this process is by using
rewrite rules on algebraic structures with extra cost information attached to nodes [35–37]. Var-
ious search strategies have been used, including special-purpose algorithms and combinations
of branch and bound search with random techniques such as random walk, iterative improve-
ment and simulated annealing [38]. SIMS also uses rewriting techniques to optimise its partially
ordered query plans [39].

When queries need to be split across multiple databases there are two additional consider-
ations in query optimisation. First, the query processor may have information about the ca-
pabilities of the individual component databases that can be used to optimise the subqueries
sent to them. For example, DISCO requires database wrappers to provide information about
the algebraic query expressions they support (this is in the form of a grammar) and optional
cost information about the algebra operators supported. Multidatabase systems assume that the
component databases are autonomous and do not share such information, but techniques have
been developed to estimate the costs of queries to local databases based on measurements from
previous queries [31].

The second issue in optimising distributed query plans is estimating and reducing the net-
work costs of transferring intermediate result sets between hosts. In distributed database sys-
tems, semi-joins are commonly used to minimise the data transferred across the network in order
to join data from different databases [40]. A semi-join is executed by projecting one relation
over the common join attribute, shipping the projection to the site of the other relation and then
performing a join of the projection with that relation. This eliminates tuples that cannot be in the

12

result. The final join is then computed at one site using the reduced data set. Various heuristics
have been developed for finding an efficient schedule of semi-join operations for general queries
(an NP-hard problem).

Another possible goal for query optimisation is to ensure the result set is accurate within some
user-specified limit. This is necessary where answers can be obtained from multiple data sources
with different degrees of quality, or when information may be lost or altered when translating
between ontologies [28].

As the potential data sources to be linked into NZDIS include large data sets of environmental
information, minimising network costs will be a crucial goal for our system. Our optimisation
efforts will therefore focus on this concern.

7 Conclusions

The NZDIS architecture is designed to provide an open, agent-based environment for the inte-
gration of disparate sources of information. The intended use of the system is expected to lie
between two ends of a spectrum of possible data gathering applications: at one end are tightly-
integrated database systems, where existing distributed database system techniques could be
used, and at the other end are information sources distributed so widely that only web-based
information discovery systems are practically feasible. Since many of the information sources
to be integrated in the New Zealand context are expected to consist of flat or unstructured data
files, the system does not presume to be a distributed database system and does not perform op-
timisations based on such an assumption. Instead, the NZDIS system offers the infrastructural
components for integrating heterogeneous data sources with known, but differing, collections of
data and metadata.

The system is designed to use existing, commercially-tested object-oriented technology wher-
ever possible and so be accessible to a wide range of potential adopters in New Zealand.

References

[1] R. J. Bayardo, Jr., W. Bohrer, R. Brice, A. Cichocki, J. Fowler, A. Helal, V. Kashyap,
T. Ksiezyk, G. Martin, M. Nodine, M. Rashid, M. Rusinkiewicz, R. Shea, C. Unnikrishnan,
A. Unruh, and D. Woelk. Infosleuth: agent-based semantic integration of information
in open and dynamic environments. In Joan Peckham, editor,Proceedings of the ACM
SIGMOD international conference on management of data, SIGMOD Record 26(2), pages
195–206, June 1997.

[2] O. M. Duschka and M. R. Genesereth. Query planning in infomaster. InProceedings of the
12th Annual ACM Symposium on Applied Computing (SAC’97), 1997. http://logic.stanford.
edu/people/duschka/papers/Infomaster.ps.

[3] H. Nwana, D. Ndumu, L. Lee, and J. Collis. ZEUS: A tool-kit for building distributed
multi-agent systems.Applied Artifical Intelligence, 13(1):129–186, 1999.

13

[4] R. S. Cost, T. Finin, Y. Labrou, X. Luan, Y. Peng, I. Soboroff, J. Mayfield, and A. Boughan-
nam. Jackal: A Java-based tool for agent development. In J. Baxter and B. Logan, editors,
Software Tools for Developing Agents: Papers from the 1998 AAAI Workshop, number WS-
98-10. AAAI Press, 1998.

[5] C. A. Knoblock and J. L. Ambite. Agents for information gathering. In J. Bradshaw, editor,
Software Agents. AAAI/MIT Press, 1997.

[6] M. R. Genesereth and S. P. Ketchpel. Software agents.Communications of the ACM,
37(7):48–53, July 1994.

[7] FIPA 97 specification documents. http://drogo.cselt.stet.it/fipa/spec/fipa97/fipa97.htm,
1997.

[8] J. R. Searle.Speech Acts. Cambridge University Press, Cambridge, 1969.

[9] M. H. Nodine and A. Unruh. Constructing robust conversation policies in dynamic agent
communities. Technical Report MCC-INSL-020-99, Microelectronics and Computer Tech-
nology Corporation, 1999.

[10] M. Greaves, H. Holmback, and J. M. Bradshaw. What is a conversation policy? In
M. Greaves and J. M. Bradshaw, editors,Proceedings of the Autonomous Agents ’99 Work-
shop on Specifying and Implementing Conversation Policies, 1999.

[11] R. J. Brachman and J. G. Schmolze. An overview of the KL-ONE knowledge representation
system.Cognitive Science, 9(2):171–216, April 1985.

[12] Knowledge Interchange Format specification. Working Draft, ANSI X3T2 Ad Hoc Group
on KIF, March 1995. http://logic.stanford.edu/kif/specification.html.

[13] Adam Farquhar, Richard Fikes, and James Rice. The Ontolingua Server: a tool for col-
laborative ontology construction. InProceedings of the 10th Knowledge Acquisition for
Knowledge-Based Systems Workshop (KAW’96), 1996.

[14] Information Sciences Institute. Loom project home page. http://www.isi.edu/isd/LOOM/
LOOM-HOME.html, 1998.

[15] F. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Reasoning in description logics. In
G. Brewka, editor,Principles of Knowledge Representation and Reasoning, Studies in
Logic, Language and Information, pages 193–238. CLSI Publications, 1996.

[16] Bernd Owsnicki-Klewe. A general characterisation of term description languages. In K.-H.
Bläsius, U. Hedtst¨uck, and C. Rollinger, editors,Sorts and Types in Artificial Intelligence,
number 418 in Lecture Notes in Artificial Intelligence, pages 183–189. Springer-Verlag,
1990.

14

[17] James Rumbaugh, Ivar Jacobson, and Grady Booch.The Unified Modeling Language Ref-
erence Manual. Addison-Wesley, 1998.

[18] Object Management Group. OMG homepage. http://www.omg.org/, 1998.

[19] Object Management Group. Object Constraint Language specification. ftp://ftp.omg.org/
pub/docs/ad/97-08-08.pdf, September 1997.

[20] Jos B. Warmer and Anneke G. Kleppe.The Object Constraint Language: Precise Modeling
With UML. Addison-Wesley, 1998.

[21] Distributed Systems Technology Centre. XMI spec recommended. News item on Meta-
Object Facility Information Web Page, http://www.dstc.edu.au/Meta-Object-Facility/, Jan-
uary 1999.

[22] S. Cranefield and M. Purvis. UML as an ontology modelling language. InProceedings of
the Workshop on Intelligent Information Integration, 16th International Joint Conference
on Artificial Intelligence (IJCAI-99), 1999. (to appear).

[23] R.G.G. Cattell, D. Barry, D. Bartels, M. Berler, J. Eastman, S. Gamerman, D. Jordan,
A. Springer, H. Strickland, and D. Wade, editors.The Object Database Standard: ODMG
2.0. Morgan Kaufmann, 1997.

[24] Object Management Group. MOF specification. http://www.omg.org/techprocess/
meetings/schedule/TechnologyAdoptions.html#tblMOF Specification, 1997.

[25] Stephen Crawley, Simon McBride, and Kerry Raymond. Meta-Object Facility tutorial
(draft). http://www.dstc.edu.au/Meta-Object-Facility/Tutorial.html, 1997.

[26] Distributed Systems Technology Centre. Meta Object Facility frequently asked questions.
http://www.dstc.edu.au/Meta-Object-Facility/MOFAQ.html, 1998.

[27] Y. Arens, C. A. Knoblock, and W.-M. Shen. Query reformulation for dynamic information
integration.Journal of Intelligent Information Systems, 6(2/3):99–130, 1996.

[28] E. Mena, A. Illarramendi, V. Kashyap, and A. Sheth. OBSERVER: An approach for query
processing in global information systems based on interoperation across pre-existing on-
tologies.Distributed and Parallel Databases, 1999. (to appear).

[29] A. Tomasic, L. Raschid, and P. Valduriez. Scaling access to heterogeneous data sources
with disco. IEEE Transactions on Knowledge and Data Engineering, 10(1), 1998.

[30] A. Dogac, C. Dengi, E. Kilic, G. Ozhan, F. Ozcan, S. Nural, C. Evrendilek, U. Halici,
B. Arpinar, P. Koksal, N. Kesim, and S. Mancuhan. METU interoperable database system.
ACM SIGMOD Record, 24(3), September 1995.

15

[31] F. Ozcan, S. Nural, P. Koksal, C. Evrendilek, and A. Dogac. Dynamic query optimization
on a distributed object management platform. InProceedings of the 5th International Con-
ference on Information and Knowledge Management (CIKM’96), 1996. ftp://ftp.srdc.metu.
edu.tr/pub/mind/papers/cikm96.ps.Z.

[32] A. P. Sheth and J. A. Larson. Federated database systems for managing distributed, hetero-
geneous, and autonomous databases.ACM Computing Surveys, 22(3):183–236, September
1990.

[33] B. Perry, M. Taylor, and A. Unruh. Information aggregation and agent interaction patterns
in infosleuth. Technical Report MCC-INSL-104-98, Microelectronics and Computer Tech-
nology Corporation, 1998. http://www.mcc.com/projects/infosleuth/publications/TR98/
INSL-104-98.pdf.

[34] T. Grust, J. Kroeger, D. Gluche, A. Heuer, and M. Scholl. Query evaluation in CROQUE:
Calculus and algebra coincide. In C. Small, P. Douglas, R. Johnson, P. King, and N. Martin,
editors,Proceedings of the 15th British National Conferemce on Databases (BNCOD15),
Lecture Notes in Computer Science, number 1271, pages 84–100. Springer, 1997. http://
wwwdb.informatik.uni-rostock.de/ jo/bncod15.ps.gz.

[35] L. Fegaras. An experimental optimizer for OQL. Technical Report TR-CSE-97-007, Uni-
versity of Texas at Arlington, 1997. http://lambda.uta.edu/oqlopt.ps.gz.

[36] J. A. Blakeley, W. J. McKenna, and G. Graefe. Experiences building the open OODB query
optimizer. In P. Buneman and S. Jajodia, editors,Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data, pages 287–296. ACM Press, 1993. ftp://
ftp.cs.pdx.edu/pub/faculty/graefe/papers/OpenOODB.ps.

[37] M. Cherniak and S. B. Zdonik. Rule languages and internal algebras for rule-based opti-
mizers. InProceedings of the ACM SIGMOD International Conference on Management of
Data, 1996.

[38] J. Kröger, R. Illner, S. Rost, and A. Heuer. Query rewriting and search in CROQUE.
Preprint CS-15-98, Computer Science Department, University of Rostock, 1998. http://
wwwdb.informatik.uni-rostock.de/ jo/CS-15-98.html.

[39] J. L. Ambite and C. A. Knoblock. Planning by rewriting: Efficiently generating high-
quality plans. InProceedings of the 14th National Conference on Artificial Intelligence
(AAAI’97), 1997.

[40] J. M. Morrissey, S. Bandyopadhyay, and W. T. Bealor. A heuristic for minimizing total
cost in disributed query processing.Journal of Computing and Information, 1(2):736–758,
1995. Special Issue: Proceedings of the 7th International Conference of Computing and
Information (ICCI’95).

16

