

DUNEDIN NEW ZEALAND

Automated Scoring of Practical Tests in an
Introductory Course in Information Technology

Geoffrey Kennedy

The Information Science
Discussion Paper Series

Number 99/19

September 1999
ISSN 1177-455X

University of Otago

Department of Information Science

The Department of Information Science is one of six departments that make up the Division of Com-
merce at the University of Otago. The department offers courses of study leading to a major in
Information Science within the BCom, BA and BSc degrees. In addition to undergraduate teaching, the
department is also strongly involved in postgraduate research programmes leading to MCom, MA,
MSc and PhD degrees. Research projects in spatial information processing, connectionist-based infor-
mation systems, software engineering and software development, information engineering and
database, software metrics, distributed information systems, multimedia information systems and in-
formation systems security are particularly well supported.

The views expressed in this paper are not necessarily those of the department as a whole. The accuracy
of the information presented in this paper is the sole responsibility of the authors.

Copyright

Copyright remains with the authors. Permission to copy for research or teaching purposes is granted on
the condition that the authors and the Series are given due acknowledgment. Reproduction in any form
for purposes other than research or teaching is forbidden unless prior written permission has been ob-
tained from the authors.

Correspondence

This paper represents work to date and may not necessarily form the basis for the authors’ final conclu-
sions relating to this topic. It is likely, however, that the paper will appear in some form in a journal or
in conference proceedings in the near future. The authors would be pleased to receive correspondence
in connection with any of the issues raised in this paper, or for subsequent publication details. Please
write directly to the authors at the address provided below. (Details of final journal/conference publica-
tion venues for these papers are also provided on the Department’s publications web pages:
http://divcom.otago.ac.nz:800/COM/INFOSCI/Publctns/home.htm). Any other correspondence con-
cerning the Series should be sent to the DPS Coordinator.

Department of Information Science
University of Otago
P O Box 56
Dunedin
NEW ZEALAND

Fax: +64 3 479 8311
email: dps@infoscience.otago.ac.nz
www: http://divcom.otago.ac.nz:800/COM/INFOSCI/

292-072 -1-

Proceedings of the IASTED International Conference
Computers and Advanced Technology in Education
May 6-8, 1999, Cherry Hill, New Jersey USA

Automated Scoring of Practical Tests
in an Introductory Course in Information Technology

Geoffrey J. Kennedy1

Computer & Information Science
University of Otago, Dunedin, New Zealand

gkennedy@commerce.otago.ac.nz.

Abstract

In an introductory course in information technology at
the University of Otago the acquisition of practical skills is
considered to be a prime objective. An effective way of
assessing the achievement of this objective is by means of
a ‘practical test’, in which students are required to accom-
plish simple tasks in a controlled environment. The assess-
ment of such work demands a high level of expertise, is
very labour intensive and can suffer from marker inconsis-
tency, particularly with large candidatures.

This paper describes the results of a trial in which the
efforts of one thousand students in a practical test of word
processing were scored by means of a program written in
MediaTalk. Details of the procedure are given, including
sampling strategies for the purpose of validation and
examples of problems that were encountered.

It was concluded that the approach was useful, and
once properly validated gave rise to considerable savings
in the time and effort.

Key words: Computer-aided learning, automated scoring,
computer education, test validation

1. Introduction: The Assessment Problem
The problem of assessing practical tests in computing

courses with large candidatures faced by many tertiary
institutions cries out for some automated approach. A few
reports of automated assessment have been published, for
example Summons et al. [1] who have used macros to
assess work carried out with Excel spreadsheets. This
work describes an attempt to automate the task of examin-
ing word processor documents and allocating marks for
the presence of specified features.

The course entitled Introduction to Information Tech-
nology at the University of Otago, New Zealand, in the
first semester (March - June) 1998 attracted an enrolment
of just over one thousand. The stated objectives of the

course are that, by the end of the course, students will:

(1) have acquired an understanding of the general
concepts of computing and be familiar with both
the Macintosh and PC-compatible platforms,

(2) be able to demonstrate useful skills with a variety
of software packages, and

(3) display appropriate attitudes towards the use of
computers in a range of applications and
environments.

The achievement of objective (1) is assessed by
means a 120 item multiple choice test instrument, but the
assessment of attainment of computing skills and attitudes
is best carried out by means of a practical tests carried out
in a controlled laboratory environment. Three such tests
are administered throughout the semester, two of them on
the PC-compatible platform, one on Macintosh.

Tasks for the first PC practical test involve the manip-
ulation and formatting of documents using Microsoft

Word2. A controlled environment is provided by a labora-
tory equipped with eighty PC-compatible machines sup-
ported by Novell networking software.

Students register under special laboratory ‘logins’,
which permits authentication of students as being enrolled
in the course and also identifies the particular machine
being used. For the duration of the test students are
granted access rights to a specific area of the file server
associated with their unique student identification number.
Before and after the test they are denied any access to the
work area. During the practical test, machines in the labo-
ratory are under the control of a specially tailored network
policy and access is limited to only that software permitted
for the test, thereby reducing risk of cheating or collusion
to a minimum.

Prior to 1998 tutors were required to access the work
‘by hand’, opening each test document in turn and award-
ing marks, which were then recorded in a database. Even
with special software to automate the location and opening
of the test documents and recording of the marks awarded,

1. The author acknowledges the assistance of Gordon Yau who
wrote the marking program and of Andrew Marr, Chris Henry
and James Irwin, who carried out the manual marking and col-
lated the results for the validation exercise

2. Currently th Microsoft Office 1997 suite is the software pro-
vided by the laboratory network

-2-

the task of assessing this work was long and arduous. The
more tutors employed, the greater became the problems of
quality control and consistency. If only full-time staff were
employed the task becomes overwhelming, and in any
case takes too long, bearing in mind how anxious students
are to receive their results.

Facing the prospect of assessing one thousand stu-
dents in 1998 and the inevitable subsequent increase in
student numbers in the future it became imperative that the
automation of the task be attempted.

2. Proposed Solution
When scored manually, each document has to be

opened and scanned visually by the marker looking for
expected features. The marker can award partial marks for
partially correct work. Sometimes even when a feature is
present it may not have been achieved in the desired man-
ner, for example, applying bolding to text rather than an
appropriate paragraph style, so this must be determined.
Sometimes minor errors can be ignored by the marker if it
is clear that the student has grasped the principle being
examined.

Table 1 details the features in the document that were
being assessed and the marks to be awarded in each case.

In order to automate the process, the first step is to
reduce each document to some format which includes all
relevant formatting information but can be processed by
program. This can be achieved by requiring students to
save their document in rich text format (rtf), a facility con-
veniently provided by Word. The next step is to employ a
computer program to scan this text to determine the pres-
ence or otherwise of specific required features. If evidence
of the feature is found, the program should allocate a mark
and write this to the results file, otherwise writing a diag-
nostic comment. The program should also be able to
award marks for partially correct work.

3. Constructing the Program
In order to build a prototype marking program the

product Oracle Media Objects (OMO) by Oracle™ Corp
was chosen. It is a multimedia authoring tool running
under Windows and supports a scripting language called
MediaTalk, which features convenient user interface capa-
bilities and provides a wide range of functions for file
access and searching for specified text within files. The
tool facilitated rapid development of a prototype and
allowed relatively easy modification of the program dur-

ing the testing and validation process.

A function was built for each of the features to be
assessed and as each student’s work file was opened these
functions were executed in turn. The output from each was
written to a tab delimited text file, which could be later
used to update the student assessment database. The mod-
ular construction of the program necessitates multiple
passes through each input file, but given that program effi-
ciency is not an issue for a prototype, this was acceptable.
The code for three of these functions is listed in Appendix
A. The way in which marks are awarded for partial
answers can be seen.

4. Validating the Program
In order to validate the program it was necessary to

mark by hand a cross-section of test documents and to
compare this with the marks awarded by the program. To
ensure maximum confidence in the results for minimum
cost of data collection, some form of stratified sampling
was indicated (see for example, Som [3]).

Stratification was accomplished by separating the one
thousand candidates into nine equal strata, based on the

Feature Description Mark

CD text Text correctly copied from online help 4

File/Spell All spelling errors corrected 3

Template Correct template attached 2

Styles Correct styles applied as required 4.25

MovePara Paragraph correctly relocated 2

Picture Graphic correctly inserted in document 1

Quotation New “Quotation” style created and applied correctly 4

Tabs Tab settings defined and used correctly 4

Table Table defined and used correctly 2

TOC Table of contents created 1

PageBreak Hard page break inserted 1

Total 28.25
Table 1 Features of document to be assessed

-3-

order of merit listing produced by the first run of the auto-
matic marking program. From each stratum a simple ran-
dom sample of four students was taken. This set of 36
cases was then used as the sample for benchmarking. Each
of the 36 test documents was scored manually by two
tutors, who in collaboration agreed to the mark to be
awarded for each of the eleven features listed in Table 1.
The set of marks so obtained then became the target to be
achieved by the automated marking.

The objective was to produce results for which the
differences between the manually obtained scores and
those generated by the program satisfied two criteria:

(i) that the mean of the differences in scores
should be no more than five percent of the
total mark, and

(ii) that the difference in any specific case
should be no more than ten percent.

It was also decided that a discrepancy beyond these
limits could be tolerated if the automated results were con-

sistently higher than the target, but not lower.

5. Results
The scores obtained manually for the benchmark sam-

ple together with the progressive results of three runs of
the marking program are given in Appendix B. In the first
run (Run 1) it can be seen that though the mean difference
(-1.0) is within the desired tolerance limit there are some
rather large individual discrepancies, including one 31%
below the target. Each exception was investigated and the
marking program modified to correct the discrepancy.
Results in the second run (Run 2) are generally better,
though in two cases the computer generated result is still
more than 10% below the manual score. After further
adjustments the third run (Run 3) generated results that
satisfied the stated criteria; the mean of differences (3.2%)
is less than 5% and no mark is more than 10% below the
target mark, though on the whole computer generated
marks are higher

In order to control for possible variability of the mark-
ing program between tests, the manual mark and the com-
puter generated score in each case can be treated as
‘matched pairs’. Consideration of the distribution of their
differences about zero then results in a more powerful sta-
tistical test than simply a t-test comparing the difference in
the means of the two sets separately (Baroudi, [2]). The
mean of the differences between the manual mark and the
final Run 3 scores is 0.91 with a standard deviation of
2.00. This yields a t-test value of 2.73, which, with 35
degrees of freedom, can occur by chance with a probabil-

ity of 0.01. This allows us to conclude at 1% level of con-
fidence that the differences are drawn from a population of
values whose mean is zero, that is that the scores gener-
ated by the program are from the same population as the
manual scores.

As can be seen from the scatter diagram in Figure 2
the results produced by the program tend to be consistently
higher than those awarded manually by the markers. This
is possibly because the program allocates small fractions
of a mark for partially correct work more often than the
markers did. The effect is most pronounced in low scoring

Figure 1 Progressive refinement of automatic marking program

Progressive Refinement

0.0

5.0

10.0

15.0

20.0

25.0

30.0

Manual Run 1 Run 2 Run 3

Benchmark Series

S
co

re

-4-

cases. It was felt that this was a satisfactory outcome, par-
ticularly as this test was near the beginning of the semester
and intended more for formative purposes and encourage-

ment than for summative evaluation. The solid line in Fig-
ure 2 represents the ideal case while the dotted line shows
the “10% below” criterion.

Five cases of gross error were reported by students
complaining that the mark awarded, in these cases lying
between 2 and 4, did not appropriately reflect their ability.
On checking manually it was found that they had indeed
performed better, yielding scores from 12 to 20. Because
such errors were glaring, they caused little trouble. These

discrepancies are thought to result from the way in which
the .rtf file is generated, particularly in cases where stu-
dents make an abnormally large number of changes. Some
difficulties in file management were created by the sheer
size of the .rtf files, but these were satisfactorily over-
come.

Generally the situation was thought to be better that
experienced in previous years when marking had been car-
ried out by a team of senior student tutors. Consistency
was certainly better than for manually marked work and
time savings were estimated to be well over forty hours.
This figure takes into account the time taken for bench-
marking and will be greater when the automated marking

program is reused.

Figures 2 and 3 show the distribution of marks
awarded by tutors in 1997 those produced by the auto-
matic marking program in 1998. The form of the test was
identical in both cases and the group of students compara-
ble in size (920 in 1997, 1003 in 1998) and ability. The
program can be seen to be more “generous” but apparently

Figure 2 Scatter graph showing results of final computer run (Run 3)

Scatter Graph

0.0

5.0

10.0

15.0

20.0

25.0

30.0

0.0 5.0 10.0 15.0 20.0 25.0 30.0

Manual Score

A
ut

o
S

co
re

10% belo

Figure 3 Manual scoring, 1997 Figure 4 Automatic scoring 1998

-5-

less able to discriminate between different quality docu-
ments than the human assessors.

6. Conclusion
The possibility of assessment of practical exercises

involving Microsoft Word has been demonstrated. Though
the program developed is no more than a prototype, its suc-
cess should be a great source of relief to many academics
facing the prospect of assessing practical tests for courses
involving large numbers of students.

In the prototype program the scoring rules have been
hard coded, expressed in the form of functions with rules for
assigning marks. Use of this version is therefore restricted to
one specific form of the test. In order to develeop a more
general solution each feature for assessment would need to
be represented in some standard form that can be stored sep-
arately as data, and read in by the program to generate the
corresponding rules for awarding marks in any particular
case.

An important aspect of this work has been the bench-
marking approach used to validate the program. For any
method of automated marking some similar process must be
employed and this must be repeated when either the form of
the test or the program is altered. If a more generalised
approach can be developed, in which rules for marking are
stored separately from the program, then this will help to
reduce the extent of the validation task.

7. References
[1] P.F. Summons, J. Coldwell, F. Henskens, and C.Bruff, Auto-

mated Evaluation of Spreadsheet Concepts - Excel in Action,
Proceedings of 2nd Annual NSW Symposium on Information
Technology and Information Systems SITIS’97, University of
New South Wales, Sydney, Feb, 1997

[2] Jack J. Baroudi and Wanda J. Orlikowski, The Problem of
Statistical Power in MIS Research, MIS Quarterly, March,
1989, 87-106

[3] Ranjan K. Som, Practical Sampling Techniques, (New
York:Marcel Dekker, Inc. 1996)

Appendix A

function tagOfStyle whatStyle
-- Since the exact tag for a particular style varies from document to document
-- this fucntion returns the appropriate tag for the requested style "whatStyle"

put offset(whatStyle&";", cd fld CurrentFile) into endPos
if endPos is empty then return "NoStyleOfType'"&whatStyle&"'here"
put the number of words of char 1 to endPos of cd fld CurrentFile into numWords
put empty into retVal

repeat with count = 1 to 30
put word numWords - count of cd fld CurrentFile into tempWord
if tempWord contains "{" then

 -- in case it over laps onto next line
put word numWords - count+1 of cd fld CurrentFile after tempWord

 put offset("{", tempWord) into startPos
 if char startPos+2 of tempWord = "s" then
 -- we have found a style tag
 else
 next repeat
 end if
 put "\s" into retVal
 repeat with inner = startPos+3 to startPos + 20
 if char inner of tempWord = "\" then
 exit repeat
 else
 put char inner of tempWord after retVal
 end if
 end repeat
 exit repeat

end if
end repeat

 return retVal
end tagOfStyle

function CDtitleCorrect
-- Checks if the style CD title is correct or not. The student is asked to copy,
-- from the online Help screen some text about playing audio CD's on the computer.
-- A style, Heading 1, must then be applied to the heading which reads
-- "Using CD Player".
-- We check whether the text has been pasted
global retReason
global heading1Style, heading2Style, bodytextStyle, listNumberStyle, _

listBulletStyle, titleStyle, quotationStyle

put offset("Using CD Player", cd fld CurrentFile) into endPos1
add 10 to endPos1
put offset("Using CD Player", char endPos1 to 32000 of cd fld CurrentFile) _

into endPos
if endPos = 0 then

put endPos1-10 into endPos
else

put endPos+endPos1 into endPos
end if
put the number of lines of char 1 to endPos of cd fld CurrentFile into lineNum
put line lineNum-3 to lineNum+2 of cd fld CurrentFile into titleLines
if titleLines contains heading1Style then

put "Correct Style used for Title"&return after retReason
return 2

end if
if titleLines contains "\fs" or titleLines contains "\s" then

put "A Style was used for the title, but it was incorrect."&return _
after retReason

return 1
end if
put "No suitable style used for the Title."&return after retReason
return 0

end CDtitleCorrect

function pageBreaks
-- Checks whether the correct page breaks have been inserted or not.
global retReason

put return&return&"Page Breaks"&return after retReason
if cd fld CurrentFile contains "\page" then

put "One or more Page Breaks found in document as required."&return _
after retReason

return 1
else

put "No page breaks used in this document."&return after retReason
return 0

end if
end pageBreaks

-6-

Appendix B

 Benchmarking Results

Id
Manual

Mark
Auto Mark

Run 1 % Diff
Auto Mark

Run 2 % Diff
Auto Mark

Run 3 % Diff

1 27.8 24.9 -10.2 26.3 -5.3 26.3 -5.3

2 19.0 17.0 -7.1 17.5 -5.3 20.3 4.4

3 22.3 26.1 13.7 26.1 13.7 26.6 15.5

4 28.3 27.8 -1.8 27.8 -1.8 27.8 -1.8

5 25.0 16.3 -31.0 25.5 1.8 25.5 1.8

6 11.3 15.0 13.3 14.5 11.5 15.0 13.3

7 22.5 21.8 -2.7 21.8 -2.7 21.8 -2.7

8 27.5 26.4 -4.0 26.4 -4.0 26.4 -4.0

9 20.3 18.9 -4.9 18.0 -8.0 21.9 5.8

10 15.3 20.3 17.7 20.3 17.7 20.3 17.7

11 27.8 25.0 -9.7 25.0 -9.7 25.0 -9.7

12 19.8 12.5 -25.7 18.9 -3.1 18.9 -3.1

13 28.0 27.8 -0.9 27.8 -0.9 27.8 -0.9

14 25.5 21.0 -15.9 26.0 1.8 26.0 1.8

15 25.8 24.1 -5.8 24.1 -5.8 24.1 -5.8

16 27.3 26.1 -4.0 26.1 -4.0 26.1 -4.0

17 6.5 8.3 6.2 8.3 6.2 9.3 9.7

18 26.8 27.5 2.7 27.5 2.7 27.5 2.7

19 18.8 21.8 10.6 21.8 10.6 21.8 10.6

20 24.3 22.0 -8.0 25.5 4.4 25.5 4.4

21 24.0 25.8 6.2 25.8 6.2 25.8 6.2

22 0.5 4.0 12.4 4.0 12.4 4.0 12.4

23 23.8 22.4 -4.9 19.1 -16.4 23.4 -1.3

24 24.3 24.8 1.8 21.6 -9.3 24.8 1.8

25 9.0 11.9 10.2 11.9 10.2 11.9 10.2

26 2.5 5.0 8.8 5.0 8.8 5.0 8.8

27 27.8 27.8 0.0 27.8 0.0 27.8 0.0

28 21.5 18.8 -9.7 18.8 -9.7 18.8 -9.7

29 17.3 15.9 -4.9 13.0 -15.0 15.9 -4.9

30 14.8 16.5 6.2 14.3 -1.8 16.5 6.2

31 23.5 23.5 0.0 23.5 0.0 23.5 0.0

32 16.8 19.8 10.6 19.8 10.6 20.8 14.2

33 20.0 17.8 -8.0 22.3 8.0 22.5 8.8

34 10.8 13.3 8.8 11.5 2.7 13.3 8.8

35 21.3 22.0 2.7 22.0 2.7 22.0 2.7

36 22.8 20.5 -8.0 19.9 -10.2 23.1 1.3

Mean 20.3 20.0 -1.0 20.4 0.5 21.2 3.2

Max 28.3 27.8 17.7 27.8 17.7 27.8 17.7

Min 0.5 4.0 -31.0 4.0 -16.4 4.0 -9.7

