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Modelling the emergence of speech sound categories in evolving
connectionist systems
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Abstract - We report on the clustering of nodes in
internally represented acoustic space. Learners of
different languages partition perceptual space
distinctly. Here, an Evolving Connectionist-Based
System (ECOS) is used to model the perceptual space
of New Zealand English. Currently, the system
evolves in an unsupervised, self-organising manner.
The perceptual space can be visualised, and the
important features of the input patterns analysed.
Additionally, the path of the internal representations
can be seen. The results here will be used to develop
a supervised system that can be used for speech
recognition based on the evolved, internal sub-word
units.

1. Introduction

Competent speakers of a language hear their
language, not as a continuously changing stream of
sound, but as a succession of discrete, meaning-
bearing units. That is, words, or word-like elements.
The words themselves are heard, not as unique,
globally differentiated patterns of sound variation, but
as structured sequences of smaller sound units, which
are in themselves meaningless. While the set of words
in a language is very large, and potentially open-
ended, the number of sound units, or phonemes, is
quite small, and relatively stable, even across different
accents of the same language. Some languages, such
as M �ri and Japanese, make do with about twenty
phonemes; some languages have well over a hundred.
As the languages of the world go, English, with about
45 phonemes, is about average. As every foreign
language student knows, languages differ significantly
with respect to their phonological organisation --- that
is why it is so difficult for a speaker of one language
to acquire a native-like accent in a foreign language.
Speakers of different languages tend to “hear” the
foreign language sounds through the categories of
their native language.

Although competent speakers of a language hear,
and conceptualise, their language in terms of discrete
units (words and phonemes), the acoustic signal bears
no signs of discrete segmentation into words or

phonemes. Phoneme categories are abstractions some
way removed from the raw acoustic data. At the same
time, given the language specificity of phonological
organisation, it is evident that phoneme categories
have to be acquired on the basis of exposure to the
input language,

1.1 Perceptual Space
Research by Jusczyk [1], Kuhl [2], and others, has
shown that new-born infants are able to discriminate a
large number of speech sounds. In fact, well in excess
of the number of phonetic contrasts that are exploited
in the language an infant will subsequently acquire.
This is all the more remarkable, since the infant vocal
tract is physically incapable of producing adult-like
speech sounds [3]. The ability to discriminate sounds
must therefore be based on purely auditory analysis,
and cannot be attributed to a feedback loop from
articulation (cf. the ‘motor theory’ of perception [4]).
By about 6 months, perceptual abilities are beginning
to adapt to the environmental language, and the ability
to discriminate phonetic contrasts that are not utilised
in the environmental language declines. At the same
time, and especially in the case of vowels,
acoustically different sounds begin to cluster around
perceptual prototypes, which correspond to the
emerging phoneme categories of the target language
[2]. Thus, the ‘perceptual space’ of, for example, the
Japanese or Spanish learner becomes increasingly
distinct from the perceptual space of the English or
Swedish- learner: Japanese, Spanish, English, and
Swedish ‘cut up’ the acoustic space differently, with
Japanese and Spanish having far fewer vowel
categories than English and Swedish. It would appear
that the emergence of phoneme categories is driven
not only by acoustic resemblance. Kuhl's research
showed that infants are able to filter out speaker-
dependent differences, and attend only to the
linguistically significant phoneme categories.

1.2 Self-Organisation
A central issue in language acquisition research
concerns the richness of the initial state. The
dominant view within Linguistics has been that the



general architecture of language is innate, the learner
only requires minimal exposure to data in order to set
the open parameters given by Universal Grammar [5].
Recently, this view has been challenged, with greater
emphasis being placed on the role of a learning
mechanism which generalises over rich arrays of input
data [6,7]. In computational terms, the contrast is
between highly supervised systems with a rich in-built
structure, and minimally supervised, self-organising
systems. Research on the latter is still in its infancy,
and has been largely restricted to modelling
circumscribed aspects of morphology and syntax,
most notably, the acquisition of regular and irregular
verb morphology [8].

The experiments reported here are part of a larger
project, which attempts to model phonological
acquisition under conditions of minimal supervision.
The project aims to test the hypothesis that language
learning takes place through incremental, on-line self-
organisation of natural language input. The initial
state is an unstructured, multi-dimensional internal
acoustic space. Input words are represented as
pathways of nodes through the multidimensional
space. Repeated tokens of a word type are presented
by a band of pathways, while different word types are
presented as differentiated pathways. We hypothesise
that the trajectories representing different word types
may partially overlap, to the extent that different word
types share common phonemic constituents.

In this paper, we report on the clustering of nodes
in internally represented acoustic space. The emerging
nodes correspond to emerging sound types, but may
not necessarily correspond to the phoneme categories.
Research on the internal representation of word types,
and on the emergence of sound categories that may be
comparable to the phonemes, is in progress.

2. Evolving Neural Systems

2.1 The ECOS paradigm
ECOS are systems that evolve in time through
interaction with the environment; That is, an ECOS
adjusts its structure with a reference to the environ-
ment [9-11]. ECOS are multi-level, multi-modular
structures where many modules have inter-and intra-
connections. The evolving connectionist system does
not have a clear multi-layer structure. It has a modular
open structure. The functioning of the ECOS is based
on the following general principles [9-11]:
(1) fast learning from a large amount of data, e.g.

through one-pass training;
(2) adaptation in an on-line mode where new data is

incrementally accommodated;

(3) ‘open’ structure where new features (relevant to
the task) can be introduced at any stage of the
system's operation, e.g., the system creates “on
the fly” new inputs, new outputs, new modules
and connections;

(4) memorising data exemplars for a further
refinement, or for information retrieval;

(5) learn and improve through active interaction with
other IS and with the environment in a multi-
modular, hierarchical fashion;

(6) adequately represent space and time in their
different scales; have parameters that represent
short-term and long-term memory, age,
forgetting, etc.;

(7) deal with knowledge in its different forms (e.g.,
rules; probabilities); analyse itself in terms of
behaviour, global error and success; “explain”
what the system has learned and what it “knows”
about the problem it is trained to solve; make
decisions for a further improvement.

2.2. Evolving fuzzy neural networks for supervised
and unsupervised learning
EFuNNs are introduced in [9-11]. EFuNNs are
models for evolving supervised learning from data
that have five-layer structure where nodes and
connections are created/connected as data examples
are presented (see Figure 1). An optional short-term
memory layer can be used through a feedback
connection from the rule (or 'case') node layer. The
third layer of neurons (rule nodes) in EFuNN evolves
through either supervised  (EFuNNsu) or
unsupervised (EFuNNun) learning. In the
experiments presented in this paper we use EfuNNun.

3. Experiments

3.1 Method
To create the clustered model for New Zealand
English, several speakers from the Otago Speech
Corpus [12] were selected to train the system. Here,
18 speakers (9 Male, 9 Female) spoke 128 words each
three times. Thus, approximately 6912 utterances
were available for training.

inputs
output

rule(case) nodes

Figure 1: Structure of ECOS system



During the training, a word example was chosen at
random from the available words. The waveform
underwent a Mel-scale cepstrum (MSC)
transformation to extract 12 frequency coefficients,
plus the log energy, from segments of approximately
23.2ms of data. These segments were overlapped by
50%. Additionally, the delta and delta-delta values of
the MSC coefficients and log energy were extracted,
for an input vector of dimensionality 39.

3.2 Results
The system was trained until the number of rules was
constant for over 100 epochs. A total of 12000 epochs
were performed. The parameters were set to Sthr of
0.85. The aggregation threshold was allowed to
change, with a target number of rule nodes of 100.
The other parameters were as their default values.

Figure 2 shows three representations of a spoken
work from the corpus. Firstly, the word is viewed as a

waveform (Figure 2, middle). This is the raw signal as
amplitude over time.

The second view is the MSC space view. Here, the
12 frequency components are shown (Figure 2,
bottom). This approximates a spectrogram.
The third view (Figure 2, top) shows the activation of
each of the rule nodes over time. In this system, 70
rule nodes were created. Darker areas represent a high
activation. Additionally, the winning rules are shown
as circles. Numerically, these are: 1 1 1 1 1 1 2 2 2 2
22 2 2 11 11 11 11 11 24 11 19 19 19 19 15 15 16 5 5
16 5 15 16 2 2 2 11 2 2 1 1 1...

Some further testing showed that recognition of
words depended on not only the winning rule node,
but also the path of the recognition. Additionally, an
n-best selection of rule nodes may increase
discrimination.

3.3 Trajectory plots
The trajectory plots, shown in Figures a, b, and c, are
in three dimensions of the 39 possible. Here, the first
and seventh MSC are used for the x and y co-
ordinates. The log energy is represented by the z-axis.

A single word, ‘sue’, is shown in Figure 3. The
starting point is shown as a square. Several frames
represent the hissing sound, which has low log
energy. The vowel sound has increased energy, which
fades out toward the end of the utterance.

Two additional instances of the same word,
spoken by the same speaker, are shown in Figure 4.
Here, a similar trajectory can be seen. However, the
differences in the trajectories represent the intra-
speaker variation.

Inter-word variability can be seen in Figure 5,
which shows the ‘sue’ from Figure 2 (dotted line)
compared with the same speaker uttering the word
‘nine’. Even in the three-dimensional space shown
here, the words are markedly different.

Figure 2: Representation of a spoken word: ‘zero’
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Figure 4: Two utterances of the word ‘sue’
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Figure 3: Trajectory of a spoken word: ‘sue’



The final trajectory plot (Figure 6) is of two
similar words, ‘sue’ (dotted line) and ‘zoo’ (solid
line) spoken by the same speaker. Here, there is a
large overlap between the words, especially in the
latter section, the vowel sound.

4. Future work

The ECOS paradigm is appropriate to modelling
emergence of acoustic sound clusters. The next step
of the project is to evolve these clusters in a
supervised mode of learning with the use of EFuNNsu
when words are used as desired outputs for the system
to learn.  The evolved system will be used as a word
recognition system. It will follow the principles for
building adaptive speech recognition systems given in
[13,14].
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Figure 6: The words ‘sue’ and ‘zoo’0.2
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Figure 5: Trajectories of ‘sue’ and ‘nine’


