
An Adaptive Distributed Workflow
System Framework

Martin Purvis
Maryam Purvis
Selena Lemalu

The Information Science
Discussion Paper Series

Number 2000/12
August 2000

ISSN 1172-6024

University of Otago

Department of Information Science

The Department of Information Science is one of six departments that make up the
School of Business at the University of Otago. The department offers courses of study
leading to a major in Information Science within the BCom, BA and BSc degrees. In
addition to undergraduate teaching, the department is also strongly involved in post-
graduate research programmes leading to MCom, MA, MSc and PhD degrees. Re-
search projects in spatial information processing, connectionist-based information sys-
tems, software engineering and software development, information engineering and
database, software metrics, distributed information systems, multimedia information
systems and information systems security are particularly well supported.

The views expressed in this paper are not necessarily those of the department as a
whole. The accuracy of the information presented in this paper is the sole responsibil-
ity of the authors.

Copyright

Copyright remains with the authors. Permission to copy for research or teaching pur-
poses is granted on the condition that the authors and the Series are given due ac-
knowledgment. Reproduction in any form for purposes other than research or teach-
ing is forbidden unless prior written permission has been obtained from the authors.

Correspondence

This paper represents work to date and may not necessarily form the basis for the au-
thors’ final conclusions relating to this topic. It is likely, however, that the paper will ap-
pear in some form in a journal or in conference proceedings in the near future. The au-
thors would be pleased to receive correspondence in connection with any of the issues
raised in this paper, or for subsequent publication details. Please write directly to the
authors at the address provided below. (Details of final journal/conference publication
venues for these papers are also provided on the Department’s publications web pages:
http://www.otago.ac.nz/informationscience/pubs/publications.htm). Any other cor-
respondence concerning the Series should be sent to the DPS Coordinator.

Department of Information Science
University of Otago
P O Box 56
Dunedin
NEW ZEALAND

Fax: +64 3 479 8311
email: dps@infoscience.otago.ac.nz
www: http://www.otago.ac.nz/informationscience/

http://www.otago.ac.nz/informationscience/pubs/publications.htm
mailto:dps@infoscience.otago.ac.nz
http://www.otago.ac.nz/informationscience/

1

An Adaptive Distributed Workflow System Framework

Martin Purvis Maryam Purvis Selena Lemalu
Department of Information Science

University of Otago
Dunedin, New Zealand

{mpurvis, tehrany, slemalu}@infoscience.otago.ac.nz

Abstract

Workflow management systems are increasingly used
to assist the automation of business processes that involve
the exchange of documents, information, or task execution
results. Recent developments in distributed information
system technology now make it possible to extend the
workflow management system idea to much wider spheres
of activity in the industrial and commercial world. This
paper describes a framework under development that
employs such technology so that software tools and
processes may interoperate in a distributed and dynamic
environment. Key technical elements of the framework
include the use of coloured Petri nets and distributed
object technology (CORBA).

Keywords

Distributed systems, workflow, process modelling

1. Introduction

In recent years developments in networking and
telecommunications have opened up enormous
opportunities for linking up disparate information sources
and computational modules. This has led, on the one
hand, to the development of distributed information
systems that integrate dispersed information sources. On
the other hand, considerable interest has been generated in
the area of software interoperability: the linking of
software modules to carry out complex computational
tasks. An example of this second type of software
integration is that of Workflow Management Systems,
which provide support for the automation of business or
industrial processes involving human and machine-based
activities. By using such systems, organizations can
accelerate throughput, reduce costs, and monitor
performance of common, well-understood operational
processes in their domain.

Existing workflow management software systems,
however, are practical for only the most straightforward
operational processes and are not necessarily suited for
the current business climate. This is due to the fact that
the current changing, globally competitive business and
engineering environment has led in recent years to
fundamental changes in the ways organizations
themselves are managed and structured. The climate is
increasingly marked these days by the need for rapid
response to changing consumer demands, intense
competition, and a rapidly evolving technical
infrastructure [6]. Organizations that once were vertically
arranged in hierarchical, bureaucratic structures are
becoming increasingly decentralised into geographically
distributed semi-autonomous business units so that they
can respond more quickly and efficiently to changing
market conditions. At the same time, business processes
have become more complex, involving the concurrent
participation of multiple and distributed functional units.
(One example of such a business process is the software
engineering process, itself, and we will discuss this
example further on in this paper.) These changing
conditions have led to the need for improved workflow
management tools that are (a) adaptive to changing
conditions and (b) provide assistance in the area of
horizontal, cross-organizational management. The focus
of this paper is on the development of such workflow
management tools.

We note in general that the management of a business
process has three basic stages: (1) design and creation, (2)
the provision of resources, and (3) enactment. Of course
there are great differences in the range of business
processes, and they might be loosely scaled according to
the following categories:
• Administrative – repetitive, predictable processes with

simple coordination rules
• Ad-hoc – processes that involve more human

judgement, such as a sales process
• Collaborative – processes, such as system design, that

are even less structured and require support for group
work.

2

Existing workflow management systems have
primarily concentrated on administrative workflows, for
which the processes are well-understood, and so these
systems typically only offer support for enactment [12].
As a consequence, such systems often lack support for
both design and for adaptation to the dynamic changes of
resource needs and availability. Furthermore, most
existing systems adopt a centralised architecture and do
not operate across multiple platforms.

The focus of the current work is on the development
and characterisation of dynamic workflows (ad-hoc and
collaborative processes) in a distributed environment. We
contend that the development of distributed, dynamic
workflow systems, by facilitating the interoperation of
tools and mechanisms in a heterogeneous environment,
will be a key factor in the evolving information-intensive
economic environment. Consequently they deserve
significant attention from the software engineering
community.

In this paper the following sections describe:
• the software architecture of the system
• key technical components that are used in connection

with this architecture
• an example workflow, taken from the area of software

engineering
• plans for adaptive workflow modelling, and
• conclusions and future work.

2. System architecture

The Workflow Management Coalition’s Workflow
Reference Model (Figure 1) shows the major components
and interfaces within the architecture of a workflow
management system (WFMS) [16], where a workflow is
defined to be “the computerised facilitation or automation
of a business process, in whole or part.” The Process
Definition component is used by the user to define and
specify the sequence of operations of a workflow.
Typically this will involve the use of some visual
modelling representation. The Workflow Engine is
responsible for the execution of the overall workflow, at
various stages of which individual workflow applications
(Client Applications or Invoked Applications) will be
accessed or executed.

Although the Workflow Management Coalition has
defined a graphical workflow modelling notation as a
proposed standard, we use Petri nets to model workflow
systems, due in part to their sound mathematical
foundation and the fact that they have been used
extensively in the modelling of dataflow mechanisms and
distributed systems [14, 15]. In addition they have a
graphical notation that is both intuitive and rigorous.
Because of their formal properties, there are a number of
techniques available for the quantitative analysis of their
behaviour.

Figure 1. Reference architecture for the
Workflow Management Coalition

Petri nets consist of a net structure and a set of rules
defining the behaviour of the net. We employ coloured
Petri nets, which represent a powerful, high-level
generalisation of conventional Petri nets [8]. The net
structure is a bipartite, directed graph, S = (Ε,P,T,A,E,G),
where
Ε is a finite set of types (colours)
P is a finite set of places
T is a finite set of transitions
A is the set of arcs ()
E is a set of arc expressions that map each arc and

variable value from the scope of its associated
transition into a multiset of typed (from !) values

G is a set of guard functions that map variables in the
scope of a transition into a type boolean.
Petri nets have an initial marking, M0, of the set of

places that indicate typed (coloured) tokens located at
those places. For each transition, arcs directed into that
transition (its “input arcs”) identify places (“input
places”) whose marking contain token values that are
within the variable scope of that transition. The
behaviour of a net is governed by rules that determine
when a given transition can fire. When a transition fires, a
marking of the net, M, is transformed into a new marking,
M', that indicates a new distribution of tokens over the
Petri net places. In general for a transition to fire, its
guard must evaluate to TRUE and its input arc expressions
must evaluate to non-empty colour values. More details
concerning the behaviour of coloured Petri nets can be
found in [8].

Significant reasons for preferring Petri net modelling
in connection with process and workflow modelling over
other notations are [15]:
• Despite their graphical nature, coloured Petri nets have

a formal semantics, which makes the execution and
simulation of Petri net models unambiguous. It can be
shown that Petri nets can be used to model workflow

3

primitives identified by the Workflow Management
Coalition [15]

• Typical process modelling notations, such as dataflow
diagrams, are event-based, but Petri nets can model
both states and events. This enables a clear distinction
between task enablement and execution and makes it
easier to represent the time of task execution in the
model

• The many analysis techniques associated with Petri
nets make it possible to identify 'dangling' tasks,
deadlocks, and safety issues.

2.1. Workflow engine component

We use the Renew (Reference Net Workshop) [9]
modelling tool to represent and execute the workflow
model. Renew employs a variant of coloured Petri nets
(which are called “reference nets”) and supports
“synchronous channels”, which will be described below.
Renew is written in Java and comes with the complete
source code, which has enabled us to make modifications
in order to incorporate it into our system. In Renew, Petri
net arc inscriptions are Java expressions and token types
(colours) can be any Java class. Transition expressions
are also available in Renew, which are Java expressions
that are evaluated at the time of transition firing. A
transition expression, for example, can use the equality
operator, =, to affect the binding of variables within the
variable scope of the transition. An example Renew Petri
net is shown in Figure 2. Petri net places are shown as
circles, and transitions are shown as rectangles.

Figure 2. A coloured Petri net

In Figure 2 [9] a token in the leftmost place has a value
of 42. The leftmost transition takes this token as an input
and deposits a token with a value of 4 and another token
with a value of 2 in two separate places. The succeeding
transitions bind the variables x and xx to the values of the
incoming tokens. Each transition has its own variable
scope, so that x is bound to different values for the two
middle transitions.

When a Petri net is created using the Process
Definition component, a static (Java class) structure is
created. When a simulation is started by the Workflow
Engine, a new instance of that net is created. Two such

instances can communicate with each other by means of
“synchronous channels” [3,9,10,11], which provide a
mechanism for the synchronization of two transitions (in
two separate nets) which fire atomically at the same time.
The initiation (“calling”) transition has a special net
inscription, called a “downlink”, which passes
parameterised information to the designated subordinate
net transition. The downlink expression must make an
explicit reference to the other net instance, so it takes the
form, netexpr:channelname(arg, arg, …). The
designated transition in the subordinate net has an
“uplink” inscription, which is used to serve requests from
downlink calls. The uplink expression has the form
:channelname(arg, arg, …). Hierarchical Petri nets are
(usually) those for which a single transition can be
substituted by an appropriately structured subnetwork.
Although the reference nets of Renew are designated in
[2] to be non-hierarchical, we have implemented
hierarchical coloured Petri nets with Renew by using
synchronous channels. This means that a workflow can
be refined hierarchically in our system, using the Petri net
formalism.

We also distribute subnets across various processors
via the construction of wrapper classes, called “stub
classes”, which are used to access the synchronous
channel mechanism. The pair of channel invocations or
synchronization requests that are required to start a
subnet, and for control to be returned to its top-level net,
are put in the body of a method within the subnet’s
wrapper class. Nets located on different machines can
communicate via method calls and by means of CORBA
(the Common Object Request Broker Architecture) [9,
11].

2.2. Process definition component

The process definition tool in our workflow system
currently uses the Renew net editor, which is based on the
JHotDraw package [9]. A net can be drawn in a drawing
window and saved to a file in a textual format. However
there is no connection between separate drawings, i.e.
there is no “point and click” mechanism for moving
between levels in the hierarchy.

The Renew system assists in the construction of
syntactically correct models by (a) making an immediate
syntax check whenever an inscription is added or
changed, (b) by providing menu options that when
selected run extra checks (e.g. syntax checking and
detecting naming conflicts), and (c) by not allowing the
user to draw an arc between two places or two transitions.

2.3. Invoked workflow applications

When an individual Petri net transition is fired during
the course of a model execution by the workflow engine,

int

42

42

4

2

x x

x

x
x

xx

y

x=xx

x

4

an application program may be accessed to carry out a
particular task. This may involve, for example, the saving
of information to a database, the presentation and
collection of information to and from a client's computer
terminal, or the sending of some email messages. For
those applications not already written in Java, we
construct Java wrappers and access the wrappers by
means of method calls (an action method) when a
transition fires. Applications resident on remote
computers are accessed by means of CORBA calls to the
remote Java programs that provide the relevant services.
Consequently application programs may be distributed
across a network and accessed at the appropriate time by
the workflow engine during workflow execution.

We illustrate h ow an application can be invok ed by
means of CORBA by a s imple example (to increm ent a
num ber on the s erver) descr ibed in Listings 1 and 2 and
Fig ure 3.

Listing 1. Server class

package Incrementer;
public class IncrementImpl extends
 Incrementer._IncrementImplBase{
 private int sum;

 public IncrementImpl(java.lang.String name){
 super(name);
 sum = 0;
 System.out.println("Initial value of sum: "
 + sum);
 }
 public IncrementImpl(){
 super();
 }
 public int increment(){
 sum++;
 return sum;
 }
 public void sum(int val){
 sum = val;
 }
 public int sum(){
 return sum;
 }
 public static void main(String[] args){
 try{
 org.omg.CORBA.ORB orb =
 org.omg.CORBA.ORB.init();
 org.omg.CORBA.BOA boa = orb.BOA_init();
 Increment increment = new
 IncrementImpl("MyObject");
 boa.obj_is_ready(increment);
 System.out.println("Press return to exit
 server");
 try{
 System.in.read();
 }catch(Exception e){
 System.out.println(e);}
 boa.deactivate_obj(increment);
 orb.shutdown();
 }catch(Exception e){
 e.printStackTrace();}
 }
}

Listing 2. Client class

package Incrementer;
public class IncrementClient{
 public IncrementClient(){
 }
 public static int incrementExecute(){
 String[] args = {""};
 org.omg.CORBA.ORB orb =
 org.omg.CORBA.ORB.init(args, null);
 Increment incrementer =
 IncrementHelper.bind(orb, "MyObject");
 for(int i=0;i<1000;i++){
 incrementer.increment();
 };
 return incrementer.sum();
 }
}

num

[]

action client = new Incrementer.IncrementClient();
action num = client.IncrementExecute();

Figure 3. Increment net

3. An example workflow

We consider an example application in the area of
software engineering itself – the software development
process and workflows associated with it. We are aware
of the existence of tools that have been developed
specifically to support the modelling and management of
software development processes e.g. the commercial,
Petri net-based environment, Process Weaver [5], but the
focus of this paper is not limited to the software
engineering domain alone. Software engineering is an
interesting workflow problem area, because software
development is a difficult, human-intensive activity that
often involves distributed, concurrent activities, and
processes are often subject to changing circumstances,
such as changing requirements or available technology.

3.1. The software change process

For our example, we consider one component of
software development: the software change process,
which we have adapted from [1]. The underlying process
involves the modification of a program unit (for example,
a Delphi unit which is divided into interface and
implementation sections) caused by changes in the global
specification of a system. Our top-level net shown in
Figure 4 has a single task called Change unit, which
serves as the driver for the subnet shown in Figure 5. It is

5

in the subnet that the actual change process takes place.
Additional tasks from the maintenance and enhancements
phase of the overall system development life cycle could
be added to the top-level net, and each task implemented
by an additional subnet.

[]

New unit

action task =
new ChangeUnit()

task

spec spec

task

action unit =
task.startChangeUnit(spec)

Change spec
doc

Task
subnet

Change unit

Figure 4. The software change process Petri net
(top-level view)

Assume that a document specifying a required change
to be made to the global system specification has been
received, and the specific unit that is affected by this
change has been identified (Figure 4). The refinement of
the Change Unit process is shown in Figure 5. This is an
example of hierarchical Petri net refinement and presents
six basic tasks: Design the change, Propose

interface change, Unit coding, Generate test cases,
Compile and Run tests.

The communication between the two nets shown in
Figures 4 and 5 is conducted via synchronous channels.
A wrapper class was created for the subnet of Figure 5,
using the Renew StubGenerator and StubCompiler. The
interface to the wrapper class contained a single triggering
method specifying the type of the arguments to be passed
in (a document) and out (a unit). Two synchronization
requests (downlink inscriptions) were placed in the
method body to synchronize the invoking transition
(Change Unit) in the top-level net (Figure 4) with the
initial transition in the subnet (Figure 5) via the channel,
startChangeUnit, and with the final transition in the
subnet via the channel result. The second channel is
needed to make the Change unit transition wait until the
method call completes and produces a token to deposit in
the New unit output place. An explicit method call
identifier (instance) is recommended (but not required)
in both synchronization requests to handle concurrent
method calls.

It is assumed that during the Design the Change task,
there will always be a change to the software unit
implementation and that it will involve a change to the
code. A copy of the interface must be extracted so that
test cases can be generated from it. The distinction
between whether the Design the Change task modifies
the interface of the original unit or not, is made because a
modified interface must be routed to the Propose
Interface Change task, a composite task whose

implementation is not shown here (it concerns the
requirement that all designers who use a given unit agree
on any new interface definition for the unit before a
change operation can proceed).

spec

spec

unit

unit

Interface

New unit

Exec
unit

:startChangeUnit(spec)

:result(unit)

Propose
interface change
(composite task)

Generate
test cases

Test cases

Run tests

Tested unit

Failed
tests

Passed
testsCompile

succeeded
Compile
failed

Compile

Compiled
unit

Coded unit

Unit

Unit
coding

Modified
interface

Design the
change

Change spec
document

Figure 5. The unit change process refinement
subnet accessed from net of Figure 4

If the re-coded unit is compiled successfully, the test
cases are executed in connection with that compiled unit.
Otherwise, the unit is returned to the Unit Coding task to
be re-coded.

The change process is terminated when the unit passes
the test.

4. Towards adaptive workflow

In many situations processes, resources, and the
constraints associated with various businesses and
organizations that we are trying to model are changing
frequently. The architecture of workflow systems should
be sufficiently flexible to cope with these unpredictable
changes. Since a change in one component of the system
can have some impact on the rest of the process, these

6

changes should be explicitly represented on the overall
process model which could be viewed by all the
participants of the system. In a distributed workflow
system, where each section of an organization might be in
a different geographical location, designated regional
representatives should be able to modify some aspects of
their sub-process if they need to do so. At the same time
the interaction between various sub-processes should be
managed by maintaining an overall organizational model
that provides dynamic links to distributed, changeable
sub-processes. This resulting overall model can reveal
any inconsistencies or any other problems which can arise
due to resource conflicts.

Changes to the workflow can be either static or
dynamic. Static changes refer to those changes made to
the workflow while it is not being executed. Modification
can be made to various elements of workflow, such as the
process, the available resources, as well as the changes
that can be made to the resource allocation mechanism.
Dynamic changes refer to those changes made to the
active instances of the workflow [13].

In the workflow literature, various categories of
adaptability have been defined [13] such as flush, abort,
migrate, adapt, and build, with each of these terms
representing a respective increase in the extent to which
the system adapts to change. In flush mode situations all
current instances are allowed to complete according to the
old process model, but new instances are planned to
follow the new model. For the other four modes, the
existing, active instances of the workflow can be
impacted by the change. In the abort mode the current
active instances are aborted, in the migrate mode, the
execution of the workflow continues while the new
changes are integrated into the process, in the adapt mode
the process must be altered for individual instances in
order to accommodate some exceptional cases, and in the
build mode the whole process can be rebuilt at runtime so
that the appropriate process model that corresponds to the
particular situation at hand can be created.

Our approach is to use the migrate mode. Each
workflow is an instance of a workflow template (a Java
class). When a new workflow (template) is produced, old
instances are allowed to execute to completion if their
tokens occupy places that have been changed under the
new arrangement. Otherwise a new instance of a model is
produced and the tokens are inserted into the appropriate
places. The system keeps track of multiple models to
accommodate both old and new workflow instances and
their job tokens. In such a scenario the old model is
linked with the new model by means of sharing the same
resources. As the old job tokens are completed old model
instances can be discarded.

An example of how the migrate mode works is shown
in Figure 6.

Figure 6. An adaptive Petri net example

Figure 6 (a) shows an existing workflow associated
with the receipt of an order and its processing (adapted
from [4]). Shipping of merchandise and billing are
carried out in parallel. It is subsequently decided to carry
out billing and shipping sequentially. At the time that this
change is made to the model, we may have some existing
tokens that are already in the parallel segment of the old
model. In order to accommodate this change
dynamically, we must include the existing tokens in the
old part of the model as a part of the new, combined
model until their tokens complete their transit through the
workflow (as in the case of flush mode), as shown in
Figure 6 (c). This is achieved by making sure that
separate workflow instances are coupled by means of
synchronous channels.

However if there are existing tokens only in the “early”
part of the model that is unaltered in the new model, then
we just “migrate” to the new model. This migration is
accomplished by saving the state information of the
existing instance of the workflow and importing that
information into a new instance of the new model which
has the sequential arrangement of the Billing a n d
Shipping tasks.

Rejection Letter

Billing

Shipping

ArchivingApproval

Credit
Check

Inventory
Check

Evaluation

Order
Entry

Rejection Letter

Billing

Shipping

ArchivingApproval

Credit
Check

Inventory
Check

Evaluation

Order
Entry

Approval

Billing Shipping

Archiving

Billing

Shipping

ArchivingApproval
Billing

Shipping

ArchivingApproval

Approval

Billing Shipping

Archiving

The Old Region The New Region

Figure 6 (a)

Figure 6 (b)

Figure 6 (c)

`

`

7

5. Conclusion

This paper describes a framework for a distributed
adaptive workflow system. A prototype of the system has
been developed where the process definition can be
represented by means of a Petri net formalism. The
workflow engine employs coloured Petri nets and uses the
Renew implementation as a system component that links
with workflow applications by means of CORBA
technology, enabling access to remote clients and servers.

We are planning to extend the current system with the
following capabilities:
• Use CORBA services such as the Naming, Trading,

Event, and Persistent Services in order to maintain a
flexible system architecture

• Provide timed tokens in order to measure the
performance of the system and examine the extent to
which the process deadlines have been met

• Provide utilities for graphically monitoring system
status and performance throughput.
Further research activities involve:

• Exploring the possibility of using third party tools for
analyzing the properties of the model such as
reachability, boundedness, deadlocks, and liveness

• Using agent technology in order to adapt the process in
response to various agents which can be made
responsible for monitoring the system from different
points of view, such as resource allocation.
We emphasise that the work described here will apply

not just to workflow management systems as they are
currently applied in the business community, but to the
larger scheme of adaptive, distributed software process
execution, where growing software interoperability means
that complex tasks may be executed across a distributed
environment. It is for this reason that distributed agent
technology is likely to play an increasingly important role
in the development of workflow architectural frameworks
such as described in this paper.

Acknowledgements

The work reported in this paper has been funded by an
Otago Research Grant entitled “Adaptive Workflow
Modelling in a Distributed Environment”. We wish to
acknowledge the practical and theoretical support we
have received from Olaf Kummer, an authority on Renew,
and the contribution of Dr Stephen Cranefield as a project
advisor.

References

[1] S. Bandinelli, A. Fuggetta, C. Ghezzi and L. Lavazza,
“SPADE: An environment for software process analysis,
design, and enactment”, Software Process Modelling and
Technology, A. Finkelstein, J. Kramer and B. Nuseibeh,

(eds.), pp. 223-247, Research Studies Press, Taunton,
England, 1994

[2] R. Bastide, D. Buchs, M. Buffo, F. Kordon and O. Sy,
Questionnaire for a taxonomy of Petri net dialects
<http://www-src.lip6.fr/homepages/Fabrice.Kordon/
PN_STD_WWW/Qresult.html>

[3] S. Christensen and N. Damgaard Hansen, “Coloured Petri
nets extended with channels for synchronous
communication”, LNCS 815, Application and Theory of
Petri Nets 1994, Proc of 15th International Conference,
Zaragoza, Spain, June 1994, R. Valette (ed.), pp. 159-178,
Springer-Verlag, Berlin, 1994

[4] C.A. Ellis, K. Keddara and G. Rozenberg, “Dynamic
change within workflow systems”, Proc of Conference on
Organizational Computing Systems (COOCS’95), Milpitas,
CA, August 1995, pp. 10-21, ACM Press, New York, 1995

[5] W.H. Ett and S.A. Becker, “E valuatin g the effectiven ess o f
Process Weav er as a pro cess man agement too l: A case stu dy”,
19 94
<http://source.asset.com/stars/loral/pubs/pw94/pw.htm>

[6] M. Hammer and J. Champy, Reengineering the
Corporation, Harper Business, New York, 1993

[7] Y. Han, A. Sheth and C. Bussler, “A taxonomy of adaptive
workflow management”, 1998 ACM Conference on
Computer Supported Cooperative Work (CSCW-98),
Seattle, WA, November 1998
<http://ccs.mit.edu/klein/cscw98/paper03>

[8] K. Jensen, Coloured Petri Nets – Basic Concepts, Analysis
Methods and Practical Use, Vol. 1: Basic Concepts,
Springer-Verlag, Berlin, 1992

[9] O. Kummer and F. Wienberg, Renew – User Guide,
Release 1.3 University of Hamburg, Department for
Informatics, Theoretical Foundations Group and Distributed
Systems Group, September 2000
<http://www.informatik.uni-hamburg.de/TGI/renew/>

[10] O. Kummer, “Simulating synchronous channels and net
instances”, 5. Workshop Algorithmen und Werkzeuge für
Petrinetze, J. Desel, P. Kemper, E. Kindler and A.
Oberweis (eds.), pp. 73-78, Forschungsbericht Nr. 694,
Universität Dortmund, Fachbereich Informatik, October
1998

[11] O. Kummer. “Tight integration of Java and Petri nets”, 6.
Workshop Algorithmen und Werkzeuge für Petrinetze, J.
Desel and A. Oberweis (eds.), pp. 30-35, J.W. Goethe-
Universität, Institut für Wirtschaft-informatik, Frankfurt am
Maim, October 1999

[12] P.D. O’Brien and W.E. Wiegand, “Agent based process
management: applying intelligent agents to workflow”, The
Knowledge Engineering Review, 13(2):1-14, June 1998

8

[13] S.W. Sadiq, O. Marjanovic and M.E. Orlowska, “Managing
change and time in dynamic workflow processes”,
International Journal of Cooperative Information Systems,
9(1-2):93-116, World Scientific Publishing Company,
2000-09-13

[14] W.M.P. van der Aalst, “The application of Petri nets to
workflow management”, The Journal of Circuits, Systems
and Computer, 8(1):21-66, 1998

[15] W.M.P. van der Aalst, “Three good reasons for using a
Petri-net-based workflow management system”, Proc of
International Working Conference on Information and
Process Integration in Enterprises (IPIC’96), S. Navathe
and T. Wakayama (eds.), pp. 179-201, Camebridge,
Massachusetts, November 1996

[16] Workflow Management Coalitition, The Workflow
Reference Model, Document No. TC00-1003, Issue 1.1,
1995

