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Abstract: In a consensus ensemble all members must agree before they clas-
sify a data point. But even when they all agree some data is still misclassi-
fied. In this paper we look closely at consistently misclassified data to inves-
tigate whether some of it may be outliers or may have been mislabeled.

1 Introduction

Using the results of several classifiers is a technique which has been shown
to give more accurate classification than a single classifier [1], [2], [3]. The
resulting classifier is known as an ensemble.

The most popular methods of constructing ensembles are bagging [4]
and boosting [5]. Both methods generate multiple classifiers by resampling
the training data. Bagging (bootstrapping aggregates) trains the compo-
nent classifiers using independent samples drawn with replacement from
the training data. Boosting creates a succession of classifiers by giving
greater weight to data points misclassified by previous classifiers.

In an ensemble constructed by bagging, the ensemble may classify a
data point by averaging or voting. When averaging is used, the predictions
of the component classifiers are averaged to make the ensemble classifica-
tion. With voting, each component classifier votes for a category and the
ensemble category is the category with the most votes. These methods may
be modified by weighting the classifiers according to their individual accu-
racy.

The most popular method for ensemble classification is unweighted av-
eraging [4], [6], typically with the outputs of each component classifier
being normalized. Part of the reason that voting is not as popular is that it
does not use all of the information available. It does not distinguish be-
tween a weak and a strong preference by the component classifier. Voting,
however, does give the opportunity not to make decisions where there is
insufficient agreement. This can increase the accuracy of classification
where a decision has been made. There is thus a trade off between the pro-
portion of data for which a decision is made and the proportion of that
data which is correctly classified. Cox, Clark and Richardson [7] explored
this trade off. In particular, they investigated using consensus ensembles –
ensembles which only make a decision when all members of the ensemble
agree. Figure 1 shows the effect of the trade off for the Diabetes data [8].

Cox et al found that the data can be split into data on which all classifi-
ers agree and data in which there is some disagreement. We refer to them
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as consensus data and non-consensus data respectively. A further finding
was that although the prediction rate on consensus data did indeed in-
crease, it did not reach 100%. (The Cancer data set [8] was the exception.)
That is, there are data on which each of 40 classifiers made the same mis-
take. For most of the data sets examined in their study, the proportion of
this data was between 5 and 10%, although it was 17% for the difficult
Abalone data [12] and 0% for Cancer.

The presence of data misclassified by a large number of classifiers raises
the question of whether the classifiers were all inaccurate, or whether the
data itself was atypical. This study attempts to answer this question.

Figure 1 : Consensus data, Diabetes

Aim of the study

This study focuses on incorrectly classified consensus data. That is, data
which all 40 classifiers in an ensemble have misclassified. It identifies these
data to see what proportion of them are potential outliers or potentially
mislabeled. It compares these proportions to those of the remainder of the
data. If the proportions of “bad” data in the incorrectly classified consen-
sus data are significantly higher than those in the remainder of the data,
then it is suspect. Once suspect data is identified it can be examined for
patterns such as a high proportion originating from a particular instrument
or labeled by a particular labeler.
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What this study does not do. This study does not suggest that identifying
incorrectly classified consensus data is a tool for statistical analysis, or that
it should replace normal preprocessing of data. For instance a statistical
analysis of data would use a cutoff level appropriate to a particular data
set’s distribution rather than using the same value for all data sets. Instead,
this study acknowledges that some of the data presented to a classifier to
use in training may be suspect, and it provides a means of identifying sus-
pect data for closer scrutiny.

Terminology

We shall use the following terms in this paper.
Misclassified data are data which have been misclassified by a trained

classifier. That is, the category determined by the classifier is not the label
category.

Potential outliers are data which appear statistically inconsistent with the
remainder of the data in their labeled categories. (See “Outliers” below.)

Potentially mislabeled data are data which appear statistically inconsis-
tent with their labeled categories, but which appear consistent with another
category.

Suspect data are data which are potential outliers or potentially misla-
beled.

Typical data are data which are neither potential outliers or potentially
mislabeled. Thus all data are either typical or suspect (potential outliers or
potentially mislabeled).

Data may also be classified (correctly) by some classifiers or consis-
tently misclassified by all classifiers. Table 1 shows these concepts as ap-
plied to the Diabetes data.

2 Outliers

In any data set some of the data will be “bad”. Hampel [9] comments
“Altogether 5-10% wrong values in a data set seem to be the rule rather
than the exception”.

Barnett and Lewis [10, pp. 33, 34] identify three sources of variability in
data sets, namely inherent variability, measurement error and execution
error. Inherent variability depends on the distribution of the data. Some
data sets are naturally more variable than others. For example, people’s
salaries are more variable than their height. Measurement errors are caused
by inadequacies in the measuring instrument. It includes rounding and
transcription error as well as instrument malfunction. Execution errors can
arise if the selection of the data is imperfect, such as by the sample being
biased in some way. In the case of a classification problem where the clas-
sifier is trained in a supervised mode, a further source of measurement
errors is that observations may be mislabeled.
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Unrepresentative data are referred to as outliers. Barnett and Lewis de-
fine an outlier as “an observation (or subset of observations) which ap-
pears to be inconsistent with the remainder of that set of data” [10, p 7].
They give two characteristics of an outlier, “engendering surprise owing to
its extremeness and … being statistically unreasonable in terms of some
basic model” [10, p 269].

For much continuous data, the basic model is often normal or near
normal. Huber observes that “Typical ’good data’ samples in the physical
sciences appear to be well modeled by an error law of the form
F x x x( ) ( ) ( ) ( / )= − +1 3ε εΦ Φ , where Φ is the standard normal cumulative,
with ε in the range between 0.1 and 0.01.” He further comments that “this
may just be a convenient description of a slightly longer-tailed than nor-
mal distribution.” [11, p 2].

The identification of outliers in continuous univariate data is relatively
straightforward. Where the underlying distribution is normal, an observa-
tion which is two standard deviations from the mean occurs in less than 5%
of the population.

With multivariate data the identification of outliers is not straightfor-
ward. An observation may indeed “stick out” in one or more of its com-
ponents, but there may be other data which are outliers because of a com-
bination of components, none of which would be sufficient of itself to
warrant being considered an outlier. Unlike in univariate data, no unique
total ordering is possible. Sub-orderings are possible, based on particular
distance measures. Where the basic model is multivariate normal, Barnett
and Lewis recommend ( ) ( )x V xT− −−µ µ1 , where µ is the mean and V is the
variance covariance matrix. We will refer to this as the inverse covariance
measure. Other possibilities include using a single component of the data,
thereby treating it as univariate and using the maximum of the single com-
ponents.

If the data is continuous then an approximately normal distribution is
typical. This is not the case with binary data. For example, for a binary
valued attribute if 20% of the population has one value and 80% the other,
the 20% will all be two standard deviations from the mean. These are by no
means outliers. Carelessly applying a “two standard deviations” rule could
result in up to 20% of the data being labeled as outliers. Where the data are
binary multivariate, the problem of identifying outliers is exacerbated
when the components are highly skewed. For instance, in the Card data 45
of the 51 components are binary. Of these, 19 have fewer than 0.2%
“ones”. It is far from clear what a basic model should be in a case like
this. Any identification of possible outliers needs to take into account the
pattern of values over all of the binary components.

Measurements used in this study

For the purpose of our study we identify an observation as a possible
outlier if one or more of its components is more than three standard devia-
tions from the component mean for its labeled category. If an observation
has been identified as a potential outlier, we identify it as being potentially
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mislabeled if none of its components is three standard deviations from the
mean for an alternative category. We will refer to this as the maximum z
score measure. We use three rather than two standard deviations because of
the Huber’s comment that physical data can be modeled by a slightly
longer-tailed than normal distribution. But the choice of three standard
deviations is not critical. The same pattern of results occurs over a range of
values.

We also analysed the data using the inverse covariance measure, but
found that it was highly correlated with the maximum z score measure.

The Heart and the Card data have binary valued attributes. We did not
use these in our identification of suspect data as in both data sets the pat-
tern of binary values was unique for about half of the data. There did not
seem to be any measure that would not suggest that a disproportionate
amount of the data was suspect.

3 Methodology

The members of the ensembles were standard feedforward neural net-
works trained using the backpropagation algorithm. Matlab was used to
analyse the data and its backpropagation neural network algorithm was
used to populate the ensembles. The ensembles were bagging ensembles.

The analysis for each data set is as follows:
1. Train an ensemble of 40 classifiers. Classify all of the data with each

member of the ensemble.
2. Split data into consensus and non-consensus data.
3. Combine non-consensus data with correct consensus data. This is the

data which has been correctly classified by some classifiers. The re-
mainder of the consensus data is the data which has been consis-
tently misclassified.

4. For each datum in the two subsets of the data, use the maximum z
score measure to categorise it as typical, a potential outlier or poten-
tially mislabeled. Aggregate these statistics.

4 Result for Diabetes

In this section we examine closely the results of the Diabetes data. In the
Diabetes data set [8], 8 measurements are used to predict whether a Pima
Indian individual is diabetes positive. A single backpropagation classifier
correctly classifies about 75% of the data.

There were 578 points in the data set, 433 of which were used for train-
ing and the remainder for validation.

Of the 145 points used for validation, 99 were consensus and 46 non-
consensus. Of the consensus data 79 were correct. Hence 20 data points
were misclassified by all classifiers, while the remaining 125 data points
were classified by at least one classifier.

Table 1 below summarises the results for the Diabetes data.
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Table 1: Diabetes data
maximum z score measure, cutoff 3 standard deviations

Typical Suspect data Total
data Potential

outlier
Potentially
mislabeled

Classified by some
classifiers

107
(86%)

12
(10%)

6
(5%)

125

Misclassified by all
classifiers

12
(60%)

2
(10%)

6
(30%)

20

The difference between the consistently misclassified data and the re-
mainder is evident from the table, and is clearly significant. 40% of data
which was consistently misclassified is suspect, as opposed to 14% in the
remainder. The hypothesis “the proportions of suspect data misclassified
by all classifiers and classified by some classifiers are equal” was tested.
The numbers in Table 1 give a Chi Square value of 7.7 which (with one
degree of freedom) is large enough to reject the hypothesis at the 1% level.

To test how sensitive the results were to the choice of outlier cutoff, we
repeated the experiments using values of 1.5, 2, 2.5, 3 and 3.5 standard
deviations. The results are shown in Table 2. They show the same pattern
as in Table 1, but with the number of suspect observations decreasing with
the cutoff level.

Table 2: Diabetes data, varying cutoff level
maximum z score measure

Classified by some classifiers Misclassified by all classifiers
Typical Suspect Typical Suspect

Cutoff
level

Poten-
tial out-
lier

Poten-
tial
mislabel

Poten-
tial out-
lier

Poten-
tial
mislabel

1.5
2.0
2.5
3.0
3.5

68
96

105
107
111

49
23
16
12

9

8
6
4
6
5

1
8

11
12
15

9
3
2
2
1

10
9
7
6
4

To test whether the results depended on the choice of outlier measure,
the inverse covariance measure was used at varying cutoff levels. Table 3 is
the equivalent of Table 2, using the inverse covariance measure in place of
the maximum z score measure. The results in Table 3 show the same gen-
eral pattern as those in Table 2.
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Table 3: Diabetes data, varying cutoff level
inverse covariance measure

Classified by some classifiers Misclassified by all classifiers
Typical Suspect Typical Suspect

Cutoff
level

Poten-
tial out-
lier

Poten-
tial
mislabel

Poten-
tial out-
lier

Poten-
tial
mislabel

8.5
9.0
9.5

10.0
10.5

85
105
118
122
124

23
13

5
2
1

17
7
2
1
0

8
10
11
12
16

5
3
2
1
0

7
7
7
7
4

Finally the Diabetes data was examined further by ranking it according
to the maximum z score measure. Figure 2 shows the proportion of con-
sistently misclassified data in each decile. It shows that the consistently
misclassified data is over-represented in the higher deciles. This does not
of itself indicate that they are outliers. After all some data has to come at
the ends in any ranking. Nevertheless it does illustrate that the consistently
misclassified data tend to be extreme, even though the extremeness may
not be statistically unreasonable.

Figure 2: Distribution of suspect Diabetes data by decile
maximum z score
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Note that not all data with a high z score will have been misclassified.
This is to be expected. One of the strengths of neural networks as classifi-
ers is their ability to construct highly non-linear non-convex discriminants.
If statistical tests such as the maximum z score or the inverse covariance
measure were sufficient to classify data, there would be no point in using
neural networks.

5 Results on several data sets

The analysis of the Diabetes data described above was applied to several
data sets, namely Diabetes, Card and Heart [8], Abalone [12] and Glass,
Wine and Mortgage [13].
Table 4 summarises the results over these data sets. The binary attributes in
the Card and Heart data were used in training and classification but not in
the identification of suspect data. The cutoff for the Wine data was 2.5.

Table 4: Several data sets, maximum z score, cutoff level = 3

Data Classified by some classifiers Misclassified by all classifiers
Typical Suspect Typical Suspect

Poten-
tial out-
lier

Poten-
tial
mislabel

Poten-
tial out-
lier

Poten-
tial
mislabel

Diabetes 107 12 6 12 2 6
Card 224 9 9 9 2 7
Heart 287 7 19 24 1 7
Abalone 547 3 10 170 1 64
Glass 34 1 1 11 2 3
Mortgage 22 0 0 0 1 0
Wine 76 10 1 1 0 1

The results in Table 4 show a pattern of data which has been consistently
misclassified having a higher proportion suspect than data which has been
correctly classified by at least one of the classifiers in the ensemble. The
results also indicate that the misclassification may have been due to the
data being mislabeled. Whilst the numbers in the Wine and Mortgage sets
are too small to stand alone, they are included as they show the same be-
haviour.

6 Conclusions

The evidence in this paper suggests that data which is consistently mis-
classified by a large number of classifiers is not typical of data in its la-
beled category. The results indicate that a significant proportion of the
data may be outliers or may have been mislabeled. These results are not
sensitive to the threshold for deciding on whether or not data is typical.
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Nor are they dependent on the particular measure used to identify data
which is suspect. Consistently misclassified data is suspect and should be
identified for closer external scrutiny. The use of consensus ensembles
provides a tool for identifying suspect data.
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