UNIVERSITY

OTAGO

Elementary Structures in Entity-relationship
Diagrams as a Diagnostic tool in Data Modelling
and a Basis for Effort Estimation

Geoffrey Kennedy

The Information Science
Discussion Paper Series

Number 2000/18
December 2000
ISSN 1177-455X

University of Otago
Department of Information Science

The Department of Information Science is one of six departments that make up the
School of Business at the University of Otago. The department offers courses of study
leading to a major in Information Science within the BCom, BA and BSc degrees. In
addition to undergraduate teaching, the department is also strongly involved in post-
graduate research programmes leading to MCom, MA, MSc and PhD degrees. Re-
search projects in spatial information processing, connectionist-based information sys-
tems, software engineering and software development, information engineering and
database, software metrics, distributed information systems, multimedia information
systems and information systems security are particularly well supported.

The views expressed in this paper are not necessarily those of the department as a
whole. The accuracy of the information presented in this paper is the sole responsibil-
ity of the authors.

Copyright

Copyright remains with the authors. Permission to copy for research or teaching pur-
poses is granted on the condition that the authors and the Series are given due ac-
knowledgment. Reproduction in any form for purposes other than research or teach-
ing is forbidden unless prior written permission has been obtained from the authors.

Correspondence

This paper represents work to date and may not necessarily form the basis for the au-
thors’ final conclusions relating to this topic. It is likely, however, that the paper will ap-
pear in some form in a journal or in conference proceedings in the near future. The au-
thors would be pleased to receive correspondence in connection with any of the issues
raised in this paper, or for subsequent publication details. Please write directly to the
authors at the address provided below. (Details of final journal /conference publication
venues for these papers are also provided on the Department’s publications web pages:
http:/ /www.otago.ac.nz/informationscience/pubs/publications.htm). Any other cor-
respondence concerning the Series should be sent to the DPS Coordinator.

Department of Information Science
University of Otago

P O Box 56

Dunedin

NEW ZEALAND

Fax: +64 3 479 8311
email: dps@infoscience.otago.ac.nz
www: http:/ /www.otago.ac.nz/informationscience/

Elementary Structuresin Entity-relationship Diagrams as a Diagnostic tool
in Data Modelling and a Basisfor Effort Estimation

Geoffrey J. Kennedy

Department of Information Science
University of Otago, Dunedin, New Zealand
Email: gkennedy @infoscience.otago.ac.nz

Abstract

Elsewhere Kennedy describes three elementary structures to be found in entity-relationship
diagrams. Here, each of these structures is considered in the context of a transaction process-
ing system and a specific set of components that can be associated with the structure is
described. Next, an example is given illustrating the use of elementary structures as an analyt-
ical tool for data modelling and a diagnostic tool for the identification of errorsin the resulting
data model. It is conjectured that the amount of effort associated with each structure can be
measured. A new approach for the estimation of the total effort required to develop a system,
based on a count of the elementary structures present in the entity-relationship diagram, is
then proposed. The approach is appealing because it can be automated and because it can be
applied earlier in the development cycle than other estimation methods currently in use. The
question of a suitable counting strategy remains open.

Keywords
Data modelling, Design Tools and Techniques, Entity-relationship model, Software Metrics

ELEMENTARY DATA STRUCTURESIN ENTITY-RELATIONSHIP
DIAGRAMS

Figure 1 shows the three elementary structures to be found in entity-relationship diagrams as

identified by Kennedy (1992). A, B and C represent three entities® each containing two or
more attributes. The attribute a isthe key of entity A (indicated by underline), b isthe key of B
and c of C. It isassumed that the model will be implemented by means of arelational database
whereby relationships between entities will be represented by means of appropriate foreign
keys (indicated by the use of parentheses). The three diagrams given exhaust the distinct possi-
bilitiesinvolving non-cyclic arrangements of three such entities. Kennedy |abels the three pos-
sibilitiesas Type |, Type Il and Type I11 structures respectively.

In this paper it will be demonstrated that when considered in the context of a transaction pro-
cessing system each structure has associated with it certain system components that will be
required for any such information system. It will be further demonstrated that the recognition
of these structures proves useful as an aid in data analysis and in the identification of errorsin
the resulting data model. Finally it will be argued that since each of these components absorbs
a measurable amount of effort, the possibility presents itself of using counts of elementary
structures as the basis for the estimation of effort required to devel op the information system.

IMPLEMENTATION CHARACTERISTICSOF ELEMENTARY
STRUCTURES

Each of the elementary structures shown in Figure 1 can be identified with familiar real world
situations. By considering each structure as part of a typical transaction processing system it
can be seen that they will, in general, have associated with them a well-defined set of system

1. Strictly these should be referred to as ‘entity classes' but the term ‘entity’ will be used interchangeably here.

T a A a 7 a
l T I (b)
VR
2 & 2| @ 8]
a a

I\ 7T X

c| ¢ c| c C

— ® — — b
Typel Typell Typelll
Hierarchy Many to many Parallel linkage

Figure 1. Elementary structuresin entity-relationship diagrams

components necessary for the capture and retrieval of data contained in the system database. In
some cases there will also be some specific data processing requirements. The implementation
characteristics of each of the structures in turn are described in the following examples.

Typel Sructure

The Type | structure can be recognised as atypical hierarchy, in which each ‘child’ occurrence
is associated with one and only one ‘parent’ occurrence. One example, shown in Figure 2, is
the familiar triple CUSTOMER - ORDER - ORDER_LINE data model. Other easily recognisable
examples are:

CITY - SUBURB - STREET
DIVISION - DEPARTMENT - EMPLOYEE

CUSTOMER
ORDER
ORDER_LINE

Figure2: Typel structure - simple hierarchy

When this structure is considered in the context of a typical transaction processing system it
can be seen that in most circumstances the following screens (or forms) will be required.

(i) A file maintenance screen for the parent entity, the CUSTOMER entity in the
example given. This screen will be used to create records for new customers and to
modify existing occurrences. The screen will require some mechanism for
selecting the required parent record, such as a drop-down list box. The
maintenance screen may display either a single occurrence, or alow severa
records to be viewed at atime.

(i) A screento list al dependent records of a selected parent. In the example given it
will display all ORDER records belonging to a selected customer (see Figure 3). It

will usually also need to access the ORDER_LINE tablein order to display totals! for
each order. Implementation of the parent-child screen illustrated, or ‘ one-to-many’

as it is sometimes called, is specifically supported in many system development
packages. Alternatively, the same functionality may be implemented astwo related
screens, one for ORDERS for example, and the other for associated ORDER_LINES,
sometimes referred to as a subscreen. In any case the subscreen will receive values
of the parent record passed to it from its master screen. It will also need to be able
to scroll or in some way display multiple dependent records page by page.

(iii) A screen permitting each child of the parent record to be ‘exploded’ to display its
dependent records. This can be accomplished, for example, by double clicking on
the record selected. In the example, details of Order No. 46 may be viewed by
double clicking on the required record in the parent screen (Figure 3) resulting in
the screen display given in Figure 4. Once again, parent record values will be
passed from the master screen to the subscreen.

Customer No 177: Order No 46: 20/3/2000

John Adams "Customer No 177: John Adams
Order No 21: 14/2/2000 Item 11: Coat 345.00
Order No 27: 26/2/2000 Item 33: Socks 17.00
Order No 35: 01/3/2000 / Item 24: Gloves 67.00
Order No 46: 20/3/2000 429.00

Figure3: CUSTOMER - ORDER screen Figure4: ORDER - ORDER_LINE screen

In addition to the demands of screen design most information systems also have user require-
ments for reports. These can be either screen based or paper based. Some users demand even
simple listings of their data, for example an alphabetical list of customers, but effective reports
usually involve some sort of summarising, aggregation or exception reporting. For the orders
example we might expect an exception report for customers with unfulfilled orders. In general,
the information contained in a report differs from that possible in a screen (or form) because
advantage can be taken of a greater variety of possible data processing options.

For the Type | structure report generation is quite straight forward in terms of dataretrieval. In
most cases data is retrieved starting from a particular parent record, working down the hierar-
chy. Joins over each foreign key in turn result in the formation of a data complex containing all
the related data necessary for reporting. The amount of effort required will depend on the
report generation capabilities of the development tool and/or database management system in
use, but in principle the task is straight forward. It is also possible to begin retrieval with a spe-
cific occurrence of the ‘middie’ child entity, here for example a specific order, from which the
single parent and multiple dependent records can be found. Again, thisis straight forward.

Most of the effort involved with reportsisin the layout design. Whilst crucial from the point of
view of the user, it is not affected by the underlying data structure and will be the same no mat-
ter what elementary structure isinvolved.

Typell Structure

This structure reflects a many to many relationship between entities A and C in Figure 1. The
entity B is sometimes referred to as an associative entity. In most cases the entity B can be
associated with some real world object or event, but it may be an artificial entity, required by
the relational model ssmply to implement the many to many association. So far asimplementa-
tion is concerned, these two situations are indistinguishable, and so do not require distinct

1. Thetotal for each order is not stored, since it can be derived by summing the detail lines.

treatment. The familiar ORDER - ORDER_LINE - PRODUCT data model, shown in Figure 5, isone
example. An important feature of this structure is its symmetry. Unlike the Type | structure
described above, access to records from either direction is usually required. Other obvious
examples are:

STUDENT - ENROLMENT - COURSE
EMPLOYEE - ASSIGNMENT - PROJECT

ORDER

ORDER_LINE

PRODUCT

Figure5: Typell structure - many to many association

In atypical transaction processing system containing a Type |1 structure it is probable that the
following screens will be required.

(i) A file maintenance screen for one or both of the parent entities. In the orders
example, a file maintenance screen will be required for the PRODUCT entity only,
since ORDER and ORDER_LINE records will normally be created at the sametime as
transactions. However, in the other two examples given, maintenance screens will
be required for both parents, that is for STUDENTS and COURSES and for
EMPLOYEES and PROJECTS respectively. As in the case of the Type | structure, file
maintenance screens will be used to create new records or to modify existing ones,
displaying either single occurrences or several records at atime.

(i) A ‘parent-child’ screen to append or list dependent records of the first parent. In
the orders example it will be identical to the screen in the Type | example for
displaying ORDER_LINE records belonging to a selected ORDER (compare Figure 4
and Figure 6). As before, parent data will be passed to the subscreen.

(iii) A second ‘parent-child’ screen displaying child records of the other parent record.
In the orders example thiswill show all orders containing a selected PRODUCT (see
Figure 7). As for al such cases, a mechanism for selecting a particular parent
record (product) is required and data is passed to the subscreen.

Order No 46: 20/3/2000 .
Order No 18: 11/2/2000
Customer No 177: John Adams Order No 29: 14/2/2000
Order No 46: 20/3/2000
[tem 11: Coat 345.00
Item 33: Socks 17.00 Item 24: Gloves, leather
Item 24: Gloves 67.00 Stock on hand: 12 Cost: 64.00
429.00
Figure 6: First parent ORDER - ORDER_LINE Figure 7: Second parent PRODUCT -

ORDER_LINE

Just as for the Type | structure, report generation with Type Il structure is straight forward in
terms of data retrieval. Once again, joins over the foreign keys result in data complexes con-

taining all the data necessary for reporting. Some report generators simplify matters by permit-
ting joinsin either direction, but it is not a crucia factor in the production of reports.

Typelll Sructure

This third elementary structure (see Figure 1) occurs in situations where a parent entity B is
associated with more than one dependent entity, each of which can have multiple occurrences.
Occurrences of entities A and C, whilst separately related to B, are not in any way related to
each other. It issometimesreferred to asaparallel linkage. One example, shown in Figure 8, is
the case of a CUSTOMER at a bank, for whom we wish to record a history of DEPOSITS and
WITHDRAWALS. The point to remember is that there is no relationship implied between a par-
ticular deposit record and any withdrawal. It is this feature which distinguishes the Type Il|
structure.

The structure is probably more easily recognised when arranged as shown in Figure 9, showing
the two ‘child’ entities, each dependent on the same ‘parent’ but independent of each other.
Other possible examples are:

TRAINING - EMPLOYEE - LEAVE
RECEIPT - PRODUCT - SALE

DEPOSIT
CUSTOMER

WITHDRAWAL

|

Figure 8: Typelll structure - parallel linkage

Screen requirements for a transaction processing system containing a Type Il structure are
similar to those described aready for the Type | (hierarchical) structure.

(1) A file maintenance screen for the parent entity. In the example given this would
again be the CUSTOMER table. Asin previous cases this form will be used to create
records for new customers and to modify existing occurrences.

(i) A screen for the first of the dependent records, displaying records related to a
selected parent. In the bank example illustrated in Figure 9 this screen would
display DEPOSIT records belonging to a selected customer. It will be similar in
appearance to that shown in Figure 3. As before, data values will be passed from
the master screen and the subscreen must be able to display multiple child
occurrences page by page.

(i) A second screen, similar to (ii), will display occurrences of the other dependent
entity, in this case WITHDRAWALS.

Besides the screen requirements described above, the Type I11 structure has associated with it
special data processing requirements necessary for the production of reports. A report contain-
ing data from both dependent entities associated with occurrences of parent records in a Type
I11 structure is more complicated than for Type | or Type Il structures, for instance, in the bank
example, a ‘statement’ listing deposits and withdrawals for each customer in date order (see
Figure 10). Not only are the dependent tables (deposits and withdrawals) unrelated, meaning
that they cannot be joined directly to produce the required output, but as well they usually have

Statement
customert Customer: 983501 Date: 30/10/99
p s L = ki3 Shane BROWN
CUSTOMER | name 12 North East Valley Rd
address etc.
/ \ Opening Balance 4139.00 CR
Date Reference Details Amount
DEPOSIT WITHDRAWAL 03/10/98 02322 ATM 140.00
07/10/98 11994 Cheques 23500 CR
. . 14/10/98 12020 Salary 315000 CR
@pgit# y %a’@'# 19/10/98 03102 T 1600.00
(customer) (customer#) 25/10/98 03152 Autopay Rates 1300.00
dep_amount etc. wd_amount etc.
Closing Balance 4484.00 CR

Figure9: Example of a Type Il Structure Figure 10: Output from a Type Il structure

different structures (i.e. non-homogeneous). Therefore such areport calls for the creation of an
intermediate data structure (temporary table) and requires two or more passes through the data-
base to extract the necessary data. The temporary table itself is not necessarily in third normal
form. It smply stores the data extracted from each of the tables forming the Type Il structure
and provides a homogeneous structure suitable for report generation.

The Type 11 structure can be extended to include any number of ‘child’ entities, each depen-
dent upon the parent, but mutually independent of each other. Each pair of childrenin turn can
be thought of as forming a Type Il structure with the parent.

RECOGNITION OF ELEMENTARY STRUCTURESASA DIAGNOSTIC
TOOL

Having characterised the elementary data structures described above, the intention of this
paper is now to demonstrate the value of recognising of these structures as an analytical and
diagnostic tool in data modelling. In much the same way that an organic chemist can make use-
ful predictions about an unknown compound by recognising the presence of phenol, ketone,
aldehyde or other identifiable structures in its molecular structure diagram, consideration of
elementary structures in an entity-relationship diagram can assist the system designer in sev-
era ways.

(i) it promotes a better understanding of the data model and of the application which it
Isintended to support,

(i) it facilitates, even without detailed knowledge of the application, the identification
of errorsin the datamodel, such asincorrect, redundant or ambiguous relationships
between entities, and

(iii) it draws attention to likely processing complexity in the implementation phase.

At the University of Otago groups of final year students in the information science major
tackle information system problems proposed by clients from the local community. Over the
past eleven years, working in conjunction with these clients, the author has dealt with over one
hundred and fifty transaction processing applications. Consideration of the elementary struc-
tures present in entity-relationship diagrams produced by students has been found to be useful,
either in confirming that the data model will satisfy the requirements of the application or in
detecting anomalies, redundancies or errors. The following example illustrates the approach.

Example: Asset Management Application

A problem proposed by the visual arts department of a local polytechnic concerned the man-
agement of bookings and loans of a range of Assets belonging to the department, such as
35mm cameras, video cameras, telephoto lenses, tripods, and so on. Assets are classified into
various Categories. When student Borrowers have completed relevant Units of study, they are

thereby authorised to borrow items in one or more categories. Saff are also authorised to bor-
row items. Sometimes equipment is withdrawn from circulation for the purpose of mainte-

nance.

The entity-relationship diagram in Figure 11 shows the initial model proposed by a group of
students. The discussion following illustrates how consideration of the elementary structures
present in the diagram can help to promote understanding of the application and to identify
some design errors in the data model proposed, even without a deep understanding of the
application.

‘ ARTiDEPTisECTION4 | STUDENT_CAT | | LOAN_HEADER | T T

LOAN_ITEMS

BORROWER_CATEGORY

D

BOOKING_ITEMS
> -

(0
SVa¥ N

\
BORROWER —'—‘—4 BORROWER_UNITS |

X A
AINTENANCE_LINEP) MAINTENANCE_HEAD-S T

ASSET_CATEGORY

Figure 11: Initial data model proposed for the polytechnic asset management system

(i)

(i)

(iii)

The Type | structure (hierarchy) Borrower - Loan_Header - Loan Items clearly
duplicates that involving Borrower - Booking_Header - Booking_ltems. Only one
such structure is necessary. The change in status from ‘booked’ to ‘loaned’ should
be indicated simply by a change in value of a suitable attribute. In fact, further
investigation reveaed that a ‘loan’ never involves more than one item, meaning
that both structures should be omitted altogether and replaced by the single
Booking_Loan entity shown in Figure 12.

The presence of the Type Il structure Units - Unit_Asset - Asset suggests a many to
many relationship between assets and units. In fact, students become €ligible to
borrow awhole category of assets by virtue of a completed unit, so the relationship
is between Unit and Asset_Category as shown in Figure 12. The associative entity
Unit_Asset Cat has been introduced to reflect this relationship.

The cyclic structure involving Borrower - Maintenance Head - Maintenance Line
appears confused and contradictory. Since Maintenance Line records in the
hierarchy will always be retrieved via a Maintenance_Head occurrence, the link
between Borrower and Maintenance Line is not needed and should be omitted.
The simple Type | structure Borrower - Maintenance_Head - Maintenance Line
seen clearly in Figure 12 correctly models the situation. In general, the presence of

cyclic structures can lead to ambiguous data retrieval statements and often can be
removed.

(iv) The Type Il structure Borrower _Units - Unit - Unit_Asset warns of likely
complexity in producing reports. A similar situation is also seen in the final model
with the Type |1l structure involving Borrower_Units - Unit - Unit_Asset Cat.
This means that it is not possible to list directly al the Unit_Asset Categories
associated with particular Borrower_Units, as requested by the user. Any output
requiring data from both of these tables will require two passes and cannot
therefore be included in a screen as a dropdown list, for example.

A corrected model addressing each of the issues raised above is given in Figure 12. The dia-
gram also serves to illustrate how appropriate reorganisation in layout can help to emphasise
the structures involved, which in turn can aid understanding of the data model and of the appli-
cation itself.

ART_DEPT_SECTIONS BORROWER_CATEGORY STUDENT_YEAR

L

BORROWER_UNITS)—'— BORROWER BOOKING_LOAN

; T =

UNIT MAINTENANCE_HEAD >_|_ ASSET

T =

MAINTENANCE_LINES

| ASSET_CATEGORY

UNIT_ASSET_CAT |

N\

Figure 12: Final data model for the polytechnic asset management system

ELEMENTARY STRUCTURESASA BASISFOR EFFORT
ESTIMATION

Thetask of estimating the effort required to devel op an information system is an important one
but one which always proves difficult. Several approaches have been described in the literature
(see for example MacDonell, 1994 or Pengelly, 1995) but when applied the estimates are often
poor (Kitchenham, 1992). The approach proposed here draws upon aspects of the ‘ property-
based’ approach discussed by Briand et al. (1994) and as well aspects of the ‘function point’

method of Symons (1991). The intention is to base an estimate on factors that can be known as
early as possible in the system development cycle. Since the entity-relationship model com-
monly serves as a starting point for the development of transaction processing systems it pro-
vides the earliest possible basis for estimation.

The three elementary structures found in entity relationship diagrams have been identified and
characterised. It is obvious that any entity-relationship diagram can be thought of as a network
of such elementary structures. When taken in the context of a transaction processing system
each of these elementary structures has been associated with awell-defined set of system com-
ponents, as described in Section 2. It should be possible then to determine experimentally the
average amount of effort required to implement each of these basic components, and hence of
each of the elementary structures. The actual effort measured will of course depend on the

development tool used and the skill and experience of the developer and so will need to be
recalibrated for each new system development situation.

The final task is to count the number and type of elementary structures in the underlying data
model and to attribute to each the corresponding amount of effort. The approach does of course
make assumptions about the additive nature of effort associated with elementary structures.

One advantage of this proposed method of estimation is that it is more synthetic than the
regression approach and therefore relies less heavily on collecting quality effort data. Further-
more, if we assume that the entity-relationship diagram is stored in computer readable form,
then it should be possible to automate the method.

The final problem to be addressed is the question of counting the elementary structures.
Kennedy has reported some empirical results using what he refers to as an ‘ exhaustive struc-
ture count’ which was obtained directly from a computerised entity-relationship diagram
(Kennedy, 1996). As an example, structure counts resulting from the application of the exhaus-
tive counting strategy to the entity-relationship diagram in Figure 12 are given in Table 1.

Entities 12
Relationships 12
Type | structures 6

Type |l structures

Type Il structures 3
Table1l: Structure countsfor diagram in Figure 12

Applying the exhaustive counting method and using effort data obtained from several groups
of students undertaking a range of transaction processing system projects, Kennedy attempted
to determine regression coefficients relating the numbers of each type of elementary structure
to the total effort expended. The results were disappointing. A major stumbling block was
thought to be the poor quality of the effort data. Students were required to keep a ‘diary’ of
time expended on development tasks and, although the response rate was good, inaccuraciesin
recorded times and obvious inconsistencies between groups tended to render the effort data
unreliable.

A second problem identified was with the counting strategy itself. The exhaustive counting
method considers each entity in turn, counting every elementary structure in which it partici-
pates. Because some entities participate several elementary structures, for example the Bor-
rower entity in Figure 12, they are likely to be over represented. The question of a suitable
counting strategy remains open. One approach already considered was to make use of so-
called *hot’ entities (Kennedy and Hay, 2000). Other suggestions have also been investigated,
such as excluding ‘lookup’ tables from the counting procedure. ‘Lookup’ tables are those
employed simply for data validation. With certain development tools they are very simple to
implement and therefore should be treated separately.

CONCLUSION

Kennedy has previoudly identified three elementary data structures into which any entity-rela-
tionship diagram can be decomposed. In this paper it has been demonstrated that in the context
of atypical transaction processing system each structure can be associated with particular sys-
tem components. An example has been given illustrating how the recognition of these elemen-
tary structures can be a useful aid to the understanding of a data model and a valuable
diagnostic tool for the identification of anomalies or errors in the entity-relationship diagram.

Finally, a novel approach has been proposed for estimation of the effort required for the devel-
opment of transaction processing systems. The approach assumes that the development effort
required for individual system components can be determined experimentally and attributed to
corresponding elementary structures in the entity-relationship diagram. The question of an
appropriate counting strategy remains open for future research.

REFERENCES

Briand, L., Morasca, S. and Basili, V.R. (1994) Property-based Software Engineering Mea-
surement, CSTR-3368, UMIACS TR-94-119, University of Maryland, Computer Sci-
ence Technical Report, November, 28 pages

Kennedy, GJ. (1992) A Systematic Approach to the Specification and Evaluation of an Infor-
mation Systems Devel opment Methodology, Ph.D. thesis, University of Otago, Dunedin,
NZ

Kennedy, GJ. (1996) Elementary structures in entity-relationship diagrams. a new metric for
effort estimation, Proceedings. Software Engineering: Education & Practice, Dunedin,
January 24-27, IEEE Computer Society, Los Alamitos, 86-92

Kennedy, GJ. and Hay, GC. (1997) Elementary structures as a basis for effort estimation in
information system development projects, Proceedings: Software Engineering: Educa-
tion & Practice, Dunedin, January 26-28, |EEE, Los Alamitos, 246-251

Kennedy, GJ. and Hay, G.C. (2000) Identification of Principal Entities in Entity Relationship
Diagrams Using Elementary Structure Counts, Proceedings. Eighteenth IASTED Inter-
national Conference on Applied Informatics, February 14-17, Innsbruck, Austria

Kitchenham, B.A. (1992) Empirical studies of the assumptions underlying software cost esti-
mation models, Information and Software Technology, 34, April, 211-218

Macdonell, S.G. (1994) Comparative review of functional complexity assessment methods for
effort estimation, Software Engineering J., 9, 3, 107-116

Pengelly, A. (1995) Performance of effort estimating techniques in current development envi-
ronments, Software Engineering Journal, September, 162-170

Symons C.R. (1991) Software Szing and Estimating Mk I FPA, John Wiley & Sons, England

COPYRIGHT

Geoffrey J. Kennedy (c) 2000. The author assigns to ACIS and educational and non-profit
ingtitutions a non-exclusive licence to use this document for personal use and in courses of
instruction provided that the article is used in full and this copyright statement is reproduced.
The author aso grant a non-exclusive licence to ACIS to publish this document in full in the
Conference Papers and Proceedings. Those documents may be published on the World Wide
Web, CD-ROM, in printed form, and on mirror sites on the World Wide Web. Any other usage
is prohibited without the express permission of the author.

