
Opal: A Multi-Level Infrastructure
 for Agent-Oriented Software Development

M. Purvis, S. Cranefield, M. Nowostawski, and D. Carter
Information Science Department, University of Otago, Dunedin, New Zealand

Email: mpurvis@infoscience.otago.ac.nz

ABSTRACT

The Opal architecture for software development is described that supports the
use of agent-oriented concepts at multiple levels of abstraction. At the lowest
level are micro-agents, streamlined agents that can be used for conventional,
system-level programming tasks. More sophisticated agents may be
constructed by assembling combinations of micro-agents. The architecture
consequently supports the systematic use of agent-based notions throughout
the software development process. The paper describes (a) the
implementation of micro-agents in Java, (b) how they have been used to
fashion the Opal framework for the construction of more complex agents
based on the Foundation for Intelligent Physical Agents (FIPA)
specifications, and (c) the Opal Conversation Manager that facilitates the
capability of agents to conduct complex conversations with other agents.

1. Introduction

The task of building complex distributed information systems is a major
challenge facing the software engineering community, and an open networked
environment, such as the Internet, offers additional challenges because of its dynamic
and volatile nature. But whatever the particular circumstances of a given system, the
design and management will be assisted if advantage can be taken of the following
three notions [1]:

Abstraction: encapsulating information by defining modelling “chunks” that
emphasise a few important details and suppress others.

Decomposition: hierarchical refinement by employing the notion of “divide and
conquer”.

Organisation: the process of identifying and managing the interoperation of
complex components.

Over the past fifteen years object-oriented and component-based techniques have
been developed to take advantage of the first two of these notions. More recently,
it has been suggested that the use of techniques associated with the concept of

1

MadKit [9] is a fine-grained agent-building toolkit that includes some ideas
similar to those expressed in this paper, although to our understanding it has some
architectural differences with our approach and has not been used as the basis for
a coarse-grained agent-building infrastructure.

software agents [2,3] are even more suited to the exploitation of the three notions
listed above.

For such an argument to hold in practice, however, it is necessary that there be
a suitable agent-building infrastructure available for software engineers so that they
can employ agent constructs in the various ways that are envisioned. In particular
to support decomposition, it is necessary to be able to use agents at various levels of
modelling detail and refinement. In this way, a designer should be able to consider
a system at any level of desired detail and think of that system in terms of agents
(each of which could, in principle, be composed of smaller, internal agents). And
the use of agent entities should not impose an unsatisfactory performance penalty on
the designer who elects to use them. In addition, to take full advantage of the agent
paradigm, support should be provided for the third of the notions listed above, agent
organisation.

At the present time, however, there does not appear to be any agent-building
toolkit or suitable infrastructural support that completely meets these basic demands
and enables agent-based software engineering in the ideal manner envisioned. The
main publicly available agent-building toolkits discussed in the literature [4-6] are
focussed on the construction of systems whose individual agents have a relatively
coarse degree of granularity and which are not intended to be refined into smaller
agents. These systems may specify the use of interoperable and semantically rich
string-based communication [7] or the support of high-level cognitive modelling [8];
and while valuable for certain situations, the use of such machinery for building
smaller components, such as graphical user interface applications, may be irrelevant
and impractical1.

Existing agent-building toolkit systems are quite complex in their own right and
have been primarily built using object-oriented software technology, rather than
agent-based technology. Consequently they do not have the notion of agents built
into their underlying machinery. The present paper discusses an approach for
building complex software systems, whereby the concept of a modelling agent can
be used at multiple levels of modelling and operational detail. With this approach,
both fine-grained and coarse-grained agents can be employed where desired. In
particular, one can use the approach to design an infrastructural agent toolkit that is
to be used to support the general construction of agent-based systems. We discuss
our work in this connection by describing the design and development of the Otago

Agent Platform, Opal, an agent-building toolkit that has been designed using this
multi-level agent-based approach and includes richer support for agent organisation
by means of a novel agent conversation management module.

2. A Multi–level Agent Architecture

The overall goal of our approach is to use the notion of agency to model and
build systems at any level of abstraction. This is achieved by instantiating the idea
of an agent at the lowest level of operation so that it is practically realisable for
efficient code execution but still retains enough of the features of "agenthood" that
it can sill be considered to be an agent for modelling and design purposes. In order
to facilitate the following discussion, we identify some terms to describe various
aspects of our architecture:

Agent – a persistent entity deployed on a multi-agent system. This can be
considered to be an actor that plays one or more roles in a society of agents.

Micro-agent – a particular type of agent that represents the lowest and most
primitive level of agent instantiation.

Role – a specification of a cohesive set of behaviours, functions, or services in
the multi-agent society. Roles may be played by one or more agents in an agent
system. Each agent playing a role may take a different approach to providing the
role’s services.

Responsive Agent – an agent which does not control its own thread of
execution, but simply reacts to the stimuli from the outside. Upon activation this
agent can nevertheless perform deliberative computations, engage in social
interactions, commit to or refuse to accept a particular goal given to it, or perform
or refuse to perform a particular function assigned to it.

Autonomous Agent – an agent which controls its own thread of execution. It
actively pursues and maintains its goals, stimulates other agents, including
responsive agents, and control and manipulate other agents (by playing the
Group role).

Agent Group – a role that provides an environment in which other agents (sub-
agents) exist. This role is used for registration and discovery in a society of
agents. It provides a mechanism for agents to locate each other based on the role
they are playing, a role-based “yellow pages” service for micro-agents. Agents
can register with more than one agent playing the group role.

Agent System – any persistent society of agents. An agent system could have
multiple groups, and specific groups or agents could be introduced, deployed or

Figure 1. Micro-agent system design.

redeployed, or killed at various times during the life of the system. An agent can
be decomposed into smaller sub-agents that work together. When this happens,
we can think of the original agent as having become an agent system.

A UML diagram of the key entities in the Micro Agent System is shown in Figure
1. There are two base elements in the Micro Agent System, agents and roles. Agents
represent actors in the system that can play one or more roles. Roles are interface
specifications of a cohesive set of services that may be provided by one or more
agents, and each agent may take a different approach to providing the role's services
in order to implement that role. An agent group is a role that provides an
environment in which other agents (sub-agents) exist. Because an agent group is a
role, some agents can contain other agents. This can be used as a hierarchical
decomposition method for cases where it is logical to design agents in terms of a set
of sub-agents. All agents belong to at least one agent group (an owner) that they live
in; however top-level agent group does not have an owner, and this is effectively a
recursion termination condition.

2.1 Micro-agents

Micro-agents exist at the lowest-level of agent-based abstraction in this
architecture. In order to be efficience at this fine-grained level, they do not have all
of the qualities often attributed to typical, more coarsely-grained agents. Those
agents that exist at the higher levels of abstraction, such as those based on the
Foundation for Intelligent Physical Agents (FIPA) [10] specifications, typically

engage in agent communication using a declarative representation for their messages
that is based on speech-act theory [11]. Micro-agents, on the other hand, employ a
simpler form of agent communication and, in addition, have more limited flexibility
when compared to higher level agents.

Coarse-grained agents, such as FIPA-based agents, may make reference to
ontologies (which characterise the terms and relationships mentioned in their
messages), and they may reason about such ontologies or even adopt new ontologies
for new agent conversations. Micro-agents, on the other hand, do not have
ontologies in that sense but can be thought of as having an implicit system-level
ontology that cannot be changed or reasoned about.

Micro-agents, being the closest entitiies to the machine platform, must be
implemented on a specially design micro kernel. For example, for the case of the
OPAL system, which is implemented in Java, the micro-agents are implemented by
extending defined packaging and framework constraints, and they communicate via
method calls. As a consequence, the micro-agents behave in strictly-defined and
predictable ways and do not carry out runtime reasoning. Additionally, some micro-
agents are responsive agents and do not own their own thread or threads of control.

Agents may be composed of any number of other agents or micro-agents. Non-
primitive micro-agents are composed only of micro-agents. The same agent-based
modelling approaches apply in the same way to both coarse-grained agents and to
micro-agents – the same design methodology, role-oriented and society-oriented
techniques apply equally to coarse-grained agents as to micro-agents. Agent-oriented
decomposition and role-based modelling are independent of the deployment scale.
All the roles can potentially be played by micro-agents or coarser-grained agents with
a similar result. However the key advantage of micro-agents is that for small-scale
systems they will radically out-perform coarse-grained agents at runtime.

2.2 Communication

For traditional communication in multi-agent systems, peer-to-peer asynchronous
message passing with a formal agent communication language is used [7]. A
message is embedded inside an envelope, which contains routing information,
identification of the receiver and the sender, and the content of the message. The
message content, which can be expressed in one of a number of possible content
languages, makes references to terms formally defined in an ontology, and can be
sent in the context of an ongoing interaction protocol [10] or conversation. A
conversation in this context is a sequence of message exchanges which may span
multiple interaction protocols and multiple agents.

In order to maintain the spirit of inter-agent semantic communication as
expressed in speech-act theory, micro-agents have been designed so that they

communicate using messages of the following types: directives, assertives,
expressives, commissives, permissives and prohibitives [12]. This does not represent
a true implementation of natural language communication, but instead uses names
derived from the discipline. The intention is to enable the developer to employ a
mental model of language-based agent communication when micro-agents are used.

The social aspects of the agent interactions are captured in the SocialRole (Figure
1), which contains all the primitive type of communicative acts discussed above.
The communicative acts (performatives) are implemented as simple method calls
with a special argument list. The performative is represented as the method name
itself, while the sender is identified by the first parameter, and the message content
is represented by the goal argument. Goals together with Roles can be designed in
UML, which then maps directly to the implementation via classes and interfaces.

2.3 Implementation

The current implementation of the micro-agents and the kernel which supports
them is written in the Java programming language. This elevates existing
object-oriented design patterns up to a useful agent-oriented abstraction level.
However the Java programming language imposes some constraints of what can be
done, and consequently some of the patterns that are desirable from the agent-based
perspective cannot be implemented in a straightforward and efficient manner. Some
of the most notable problems are:

An agent dynamically playing different roles maps to a class implementation that
can play several differing interfaces at runtime. This is not possible without the
inefficient dynamic proxy mechanism introduced in Java 1.3.

An agent will often need to identify the sender of a message, but using Java it is
impossible to identify the caller of a method without using an additional formal
argument in the method.

Java reflection, needed to discover runtime agent capabilities, is inefficient.

Despite these constraints, we believe that there are good reasons to implement
an agent based system in the Java language, and we also believe that we have
successfully implemented most of the features which lie at the heart of
agent-oriented software engineering. The intention has been to provide a
micro-agent and kernel framework which is as efficient as possible so that the
micro-agent message operation involves little more overhead than a normal virtual
method call in Java.

Figure 2. ‘Hello World’ example.

2.4 An illustrative example

To demonstrate the use of micro-agents from the Java developer’s perspective
we have developed a simple "Hello World" example. The Hello World agent system
consists of four agents, the User agent, HelloPrinter, Dumper, and DataCollector,
which are organized into two groups, as shown in Figure 2. The User agent is a
social agent which wants the Hello World data to be printed. HelloPrinter is a social
agent which can achieve the goal of printing “Hello World”. Dumper is a responsive
agent which can dump data to a system output port, and DataCollector is a simple
responsive agent which can provide data, and in this scenario it provides the static
"Hello World" string.

By separating these four different aspects of the system, different agents
implementing the same roles can be plugged in without affecting the rest of the
system. This allows us to have the following collection of agents,

Dumper agents, which dump to the screen, to a file, or to some GUI-based
output.

Several DataCollector agents, one collecting data from the user sitting in front
of the console, others from a file, telephone or GUI applications.

These extensions could be added during runtime by plugging in different agents
dynamically, without affecting the rest of the system.

Implementation Time (ms.)

Java 550

Opal Micro-agents 600

MadKit 15,000

JADE 122,000

Table 1. Performance for 10,000 ‘Hello World’ iterations.

Setting up the Hello World system in Java could look like this:

public static void main(String[] args) {
 // the process of loading and creating new agents
 // performs registration and initialisation
 Agent hello = SystemAgentLoader.loadAgent(new
 HelloPrinterImpl());
 Agent user = SystemAgentLoader.loadAgent(new
 UserAgent());
 // add subagents to hello agent
 Group group = hello.getGroup();
 AgentLoader loader = group.getAgentLoader();
 loader.loadAgent(new DumperAgent());
 loader.loadAgent(new DataCollectingAgent());

 // go!
 Goal g = HelloPrintedGoal.instance();
 hello.want(user, g);
}

// Hello Printer Role Implementation
public class HelloPrinterImpl
 extends DefaultSocialRoleImpl
 implements HelloPrinter {

 public void want(Agent a, HelloPrintedGoal g){
 // machinery to achieve goal
 }
}

The code above shows an example of a top level main method which sets up agents
in different groups. One group is the top level agent group containing the User agent
and HelloPrinter agent. The second group is contained within the HelloPrinter agent
– it controls and manipulates a DataCollector agent and a Dumper agent.

Figure 3. An initial agent-oriented model of a robot.

To demonstrate the merit of the micro agent approach four different Hello
World implementations have been developed and timed. The first implementation
was a simple call to the Java method {System.out.println("Hello
World"); and the second the micro-agent implementation as described above. The
third was an implementation using the the same agent-decomposition as the
micro-agent example, but with the MadKit [9] agent toolkit. The fourth was a
similar implementation using the JADE [4] agent toolkit. The results of timing
10,000 Hello World requests are shown in Table 1.

The JADE agents actually did not perform any message processing or parsing
during the tests, and there was no data conversion performed for a given transport.
It ran on single virtual machine and all message passing was done via a simple Java
RMI mechanisms. This shows that coarse grained agents may in some cases be 200
times slower than our micro-agent implementation and confirms that FIPA-like
agents are not likely to be suitable for fined-grained, simple and efficient system
components.

2.4 Micro-agent Applications

In this subsection we discuss how the micro-agents can be used to build
applications using an agent-oriented approach. In Section 3 this discussion is carried
further by describing the development of the Opal system using micro-agents.

An initial agent-oriented model of a robot is shown in Figure 3. This model
identifies the role of an robot, interacting with an environment and receiving
instructions from a human operator. It would be possible to go from this model
directly to an implementation of the robot as a coarse-grained agent. This
implementation would be monolithic, and it is likely that further design, possibly
using object-oriented methodologies, would be required to provide a decomposition
from this high-level model to implementation level components.

Figure 4 shows a more detailed decomposition of the robot. Several
autonomous, concurrently running and communicating sub-roles are identified, a
sensory processor, task scheduler, and meta-level processor. Three independent
effectors are also identified, the arm and the left and right wheels. These components

Figure 4. A refined agent-oriented model of a robot.

may themselves be further decomposed, the figure shows only the decomposition of
the task scheduler. Three reactive components of the task scheduler are identified:
a command analyser, action planner and action executor. An example scenario could
be the operator asking the robot to move to a particular location. This directive
would be processed by the command analyzer, then the planner would create a plan
to reach the location, and then the executor would send instructions to the wheels
and arm to move to the location.

The level of detail expressed in this model would not be practical to implement
using traditional coarse-grained agents – as the Hello World example has shown this
would be too inefficent. Although the initial model for the coarse-grained
implementation was agent-oriented, further refinement of such a model using
traditional agent development technologies would likely require alternative design
methods to be used. On the other hand, using the micro-agent approach described in
this paper, a more-detailed level of design can be achieved with agent modelling
employed all the way down to the implementation level.

Figure 5. Micro-agent roles used by the Opal system.

3. Opal: the Otago Agent Platform

As discussed in Section 2.1, micro-agents are presented without much of the
coarse-grained machinery often associated with "intelligent" agents. While
micro-agents have been found appropriate for closed systems, such as those
discussed in the previous section, many interesting agent-related research areas
involve open systems, where the agents are typically coarse-grained, heterogeneous
entities that make use of different languages and ontologies.

The Foundation for Intelligent Physical Agents (FIPA) is developing open
specifications for such coarse-grained agent systems [10]. A key part of this work
has been the FIPA Abstract Agent Architecture (FAA), which is an abstract
specification of the infrastructure necessary to provide a suitable platform on which
such agents can exist.

This section discusses the Otago Agent Platform (Opal) which provides a
concrete instantiation of the FAA, as well as other tools and utilities useful for the
development of agent-based systems. Opal is a system which is based on and uses
the underlying micro-agent kernel implementation. There is considerable amount
of infrastructure specified by FIPA for coarse grained agents that does not exist in
the micro-agent system as we have described it. To provide this additional
capabilities for FIPA-type agents, specialised micro-agents need to be introduced.
The Opal system is therefore designed to be a combination of these specialised
micro-agents, that together provide for FIPA functionality.

Figure 6. The Opal FIPA platform and Opal agents.

3.1 Opal Architecture

An important concept of the FAA is the idea of an Agent Platform (AP) – this
provides environmental support and the basic services for the agents deployed on it
and it also provides a directory service to agents outside the AP. The Opal AP is
implemented as a micro-agent playing the Agent Platform Role (see Figure 5). The
key services that the AP provides are inter-platform message transport via the
Message Transport System (MTS), agent management and a white-pages directory
via the Agent Management System (AMS), and yellow-pages directory services via
the Directory Facilitator (DF). These three logical capability sets are implemented
in the Opal AP as separate micro-agents.

The AP Role implementation does not itself perform the bulk of the processing
required for the actions of the AP Role (see Figure 5), rather its tasks are delegated
to the three contained micro-agents. To register an agent, the MTS needs to know
about the agent so it can receive messages for it, the AMS needs to add the agent to
its white-pages directory and the DF needs to add the agent to its yellow-pages
directory.

Figure 7. Example of an Opal system.

It is convenient for developers to specify the receiver of a message using a
simple name. For the platform to send the message the transport-level address, which
might be a CORBA IOR, Java RMI address or even an email address, it must first
be found using the AMS, and then the MTS is used to send the message. When
performing an action, the Agent Platform agent has the responsibility for ensuring
that the correct sequence of sub-actions gets performed, but does not perform any of
these sub-actions itself.

Aside from the micro-agent role representing the agent platform, an Opal system
needs to contain the higher-level coarse-grained FIPA agents that exist on the Agent
Platform. The micro-agent roles representing FIPA agents can contain a variety of
sub-agent roles. An agent that contains no sub-agents is provided with only the
ability to send and receive messages. Figure 6 shows a single FIPA agent that uses
a conversation controller micro-agent role to keep track of conversations that the
agent is involved in. The conversation controller requires that some micro-agent
exists that is able to play the message dispatcher role. Another FIPA agent may
require the Belief-Desire-Intention micro-agent role to enable it to be developed
using the BDI model.

Figure 8. Opal Management Console: AMS.

Figure 9. Opal Management Console: Message Log.

A complete Opal Agent System with associated FIPA-specified services is
depicted in Figure 7. Individual Opal Agents of the type shown in Figure 7 can all
access an Opal Platform Agent. The Opal Platform Agent contains individual
micro-agents that implement the FIPA-specified services of the Message Transport
System (MTS), the Directory Facilitator (DF), and the Agent Management System
(AMS). The Opal Management Console, which facilitates user monitoring and
control of the Directory Facilitator, agent messages, and the AMS, is shown in
Figures 8 and 9.

2

 JAS does not have a formal specification yet, but there exists a preliminary
proposed API set and reference implementation which Opal currently follows.
Opal development efforts will continue to follow closely JAS efforts in order to
maintain compatibility with it and ensure an up-to-date implementation.

3.2 Message Transport and Dispatching

Transport services are the lowest level services provided usually by the Agent
building toolkit or framework, to enable inter-agent communication and message
passing. Most of the existing agent frameworks suffer, however, from different
levels of incompatibilities, because they all provide their own customized
implementation of message transport and dispatching. Opal differs from its
predecessor agent frameworks in this respect, by employing the emerging industry
standard for lower-level standard services, JAS.

JAS, which stands for Java Agent Services, is an effort to define an industry
standard specification and API for the development of network agent and service
architectures (for more details see http://www.java-agent.org)2. Opal employs a
modular implementation approach to transport services not offered currently by any
other agent framework. Transport services are pluggable, and thus new transport
implementations can be seamlessly integrated into the platform when needed. By
default, Opal provides implementations of the two main transport protocols used by
FIPA platforms, FIPA JAS RMI-based and FIPA2000 IIOP-based transports, which
can be plugged in and used in any JAS-compliant platform.

3.3 Interaction Manager

Opal implements several standard FIPA interaction protocols, and there is a
special entity which handles dispatching and switching the state of a conversation
based on the type and properties of received and sent messages. We refer to this
module as the interaction manager, as distinguished from the conversation manager
which is described in the following section.

The basic abstract role is an Interaction Tracker, which is specialized by
concrete roles from all predefined FIPA interaction protocols, like
FIPARequestTracker, FIPAQueryTracker, etc. Other agents can use the concrete
instantiations of those roles, which are played by the dynamically created agents.
The actual InteractionManager is responsible for starting, monitoring and controlling
all those instantiations.

The system is flexible enough to cope with different aspects during runtime, for
example a specialized Interaction Manager could be used to monitor and reschedule

3

Note that the terminology used by us does not necessarily match the terminology
from other publications in the field, where protocol, policy, and conversation are
very often used interchangeably. In particular the notion of conversation policy
from [13] is equivalent to conversation protocol in our terminology.

priorities of the ongoing interactions, keep track of exceptions and delegate them to
specialised units elsewhere in the system.

4. Opal Conversation Manager

A conversation is an ongoing sequences of messages which can span multiple
agents and multiple interaction protocols. To manage the complexity of these
conversations, a special infrastructural component must be modelled, implemented
and deployed. There are many aspects which need to be addressed, including
tracking individual interaction protocols and their violations, keeping track on the
context and the subject, timing out late responses, allocating resources to more
important tasks, etc. For the purposes of the following discussion, we identify some
fundamental terms used when discussing agent interactions3:

communicative act – a special action type in the speech act theory that
represents a basic building block of the dialogue between agents and has a
well-defined semantics independent of the content of the action. There are
currently two major specifications, the FIPA Agent Communication
Language and the Knowledge Query and Manipulation Language (KQML)
[14].

protocol (interaction or conversation protocol) – the template of the
communicative acts sequence.

conversation – an instance of a conversation, a particular sequence of
communicative acts.

policy (interaction or conversation policy) – strategies, guidelines and
constraints guiding a conversation.

From our experience we have observed that agent conversation modelling can
be decomposed into several separate layers. The first, most basic layer, is a protocol
layer. A conversation protocol is a template of sequences of expected
communicative acts organised into roles. This definition is compatible with the
definition of a protocol specified by FIPA as: “a common pattern of dialogues used
to perform some generally useful task; the protocol is used to facilitate a
simplification of the computational machinery needed to support a given dialogue

task between agents; simply: a dialogue pattern” [10].

On top of that layer another layer is constructed: the conversation layer. A
conversation is a particular instance of a protocol or set of protocols; it is an ongoing
sequence of messages exchanged between two or more agents. This definition also
complies with the one defined by FIPA: “an ongoing sequence of communicative
acts exchanged between agents relating to some ongoing topic of discourse” [10].
However, we exclude from our usage the possibility of conversations being
constructed from arbitrary chosen acts not conforming to a formal protocol.

The final, third layer is called the policy layer. This is the layer which would,
with other approaches, be left to the agent application to coordinate and not be
included explicitly in the conversation modelling process. However we feel that it
is more appropriate to treat it as closely related to the conversation layer. A
conversation policy is a collection of rules and interaction specifications that guide
a particular path or trajectory in a conversation space. A policy defines the details
concerning the conversation is handled by interested parties. Thus each protocol
defines a space of possible sequences of communicative acts; each conversation
follows one trajectory from this space, and a policy guides a particular conversation.

For example: imagine one protocol defining two roles, buyer and seller, and a
sequence of acts for the buyer: ask (ask a seller for a particular goods delivery), then
accept (accept the price and buy goods) or reject (reject goods, do not buy). And for
a seller, the possible answers to the buyer ask action could be: propose (propose the
goods price) then sell when accepted or do nothing when rejected. This simple
specification is a protocol. Two participants have to follow a protocol to form a
conversation. One possible policy (strategy) for the buyer would be to ask for goods
from several other agents concurrently, and accept the lowest price and reject all the
other proposals. That would dynamically create a relatively complex conversation
involving several selling agents and a single buying one. A simpler strategy would
be to ask only one selling agent, and accept or reject the proposal given by this agent,
then start over a new conversation by issuing yet another ask to another potential
seller for a proposal if the first iteration was finished without making a deal.

Policies may be implemented simply by set of rules, or, in more complex cases,
they may have their own complex protocols that exist and change state in parallel
with the immediate context of an ongoing conversation. Under these more complex
circumstances, there might be a "policy-level interaction protocol" (another protocol,
but at the policy level). It is under these conditions that we can benefit from having
another modelling layer at the policy level, above that of the ordinary conversational
modelling layer. The two layers can be joined together by representing them both
as a coloured Petri Net (see Section 5).

Suppose, for example, we have a conventional conversation protocol involving

two players playing a game of chess in a chess tournament. There are possible rules
for legal moves and legal responding moves by the opposing players, which would
be described by this conversation protocol. But existing above that level of
abstraction is another level of discourse that can take place during the game.
Suppose one of the players has a question concerning the official rules of the game
and wants to have a ruling made by one of the tournament judges. Or suppose one
of the players at some point wants to take time out from the game and halt play so
that he or she can drink water or attend to some personal needs. These kinds of
'interrupt' or 'exception' are common to many kinds of interactions and can take place
at almost any time. The discourse involved in these interrupts are usually "off-topic"
from the context of the immediate conversation, and in fact they are often about the
conversation that is taking place (such as the chess player who may accuse his
opponent of breaking the conversation protocol rules associated with playing the
game of chess). Since they are likely to be "off-topic" and can occur at any moment,
it can be tedious to include these kinds of conversational strands in the given
(domain-specific) conversation protocol. To do so would "clutter" the visual
simplicity of the original conversation protocol and would lessen the value in
providing a easy-to-comprehend visual modelling representation of the interaction.
On the other hand, to leave out the possibility of representing such events is to ignore
the possibility of their occurrence and consequently means that there is a failure to
model the world adequately so that its essentially contingent nature is recognised.
Our solution is to model these kinds of interactions that can guide, interrupt, or
redirect existing conversations by representing them as another, parallel modelling
layer above that of the existing conversation layer. This idea was suggested in [15]
for specific types of conversation, but we have generalised the notion and
incorporated it into a Petri Net representation. Thus a conversation is a combination
of protocols being instantiated and manipulated by a particular policy.

4.1 Conversation modelling

A number of modelling techniques have been employed to keep track of agent
conversations, including Deterministic Finite Automata [13,16], Enhanced Dooley
Graphs [17], and extended UML [18]. We use coloured Petri nets [19,20], because
their formal properties facilitate the modelling of concurrent conversations and
policies in an integrated fashion. Coloured Petri nets are similar to ordinary Petri
nets in that they comprise a structure of places, transitions, and arcs connecting those
two types of elements. In addition, coloured Petri nets have structured tokens and
a set of net inscriptions (arc expressions, guards, and place initialisations) which can
be evaluated to yield new net markings when transitions are fired. In the context of
agent conversations, Petri net tokens represent messages, arcs represent message
passing and delivery mechanisms, and transitions represent message processing
units. Agent roles are organized into subnets, and roles are represented graphically
by separating them with horizontal dashed lines. Arcs crossing role boundaries, i.e.
arcs which cross dashed lines, represent physical message passing actions (the

Figure 10. Petri net with conversation and policy levels.

process of sending and receiving a single message in the agent system). The arcs
within roles are left up to the implementation and usually, for efficiency purposes,
are implemented as method calls. Places represent message containers or
intermediate containers, and usually do not map in the implementation to anything
in particular, unless the Petri Net model is mapped directly to a Petri Net
implementation (as in the case of Opal). Then a place is an abstraction of a message
folder, containing processed or being-processed messages.

There is always one initiator of a conversation, a role which starts the
conversation by issuing the very first message, and this role (and only this role)
always has the Start place, which enables the very first transition to fire. All roles
have separate dedicated Terminated places, which collect the tokens when no further
message processing is scheduled to occur.

A conversation is a whole Petri Net composed of a set of subnets (i.e.
protocols), where at least one role has the Start place (initiator) and is connected to
an arbitrary number of other conversation participants. A conversation state is a
current net marking. A conversation policy may, in straightforward cases, be
encoded via arc inscriptions and guards inside roles of existing conversations. In
more complicated cases, a conversation policy can be encoded as a parallel Petri Net
that lies above the existing conversation protocol and represents exceptional, or
"off-topic" conversational elements that may take place at various times during the
ordinary conversation. See Figure 10 for an example of such a policy-level Petri Net.

Figure 11. The FIPA request protocol.

It is natural to compose more complex conversation models out of simpler
conversations or sets of protocols by connecting appropriate elements by arcs. It is
important to note that complex conversations do not change the semantics of the
protocols (subnets). For consistency, all basic act exchange schemas are defined via
protocols, even if only a single communicative action is executed between two
agents (single act without a response). That means that all communicative acts
defined in an Agent Communication Language (ACL) (such as FIPA ACL or KQML
have at least one protocol defined for them .

4.2 Conversation examples

FIPA has defined a collection of simple interaction protocols, which can be used
in separation or in conjunction with other protocols. We first consider a simple FIPA
interaction protocol, request. For an informal outline of the protocol, we have
chosen a notation based on FIPA-97 specifications. FIPA used a notation (in its
previous specifications) based on Deterministic Finite Automata, represented
graphically simply as connected boxes. Boxes with double edges represent
communicative actions, which can also be treated as states; white boxes represent
actions performed by initiators; shaded boxes represent actions performed by other
participants in the protocol. Connections between boxes can be interpreted as
transitions. (For simplicity we have skipped not-understood responses, which
can be sent in response to virtually any communicative act.) For the purposes of
simplicity and clarity of the Petri net diagrams, we have only shown the names of
places and transitions and have left the inscriptions, guards and marking unspecified.

4.2.1 FIPA request protocol
The FIPA request protocol simply allows one agent to request an action to be

performed by another agent. The action request can be rejected or accepted, and once

Figure 12. Petri net representation of the FIPA request protocol.

Figure 13. A custom contract-net protocol (FIPA notation).

accepted can be finished with a success or failure. The schematic representation of
this protocol is shown on Figure 11.

The Petri-Net-based model of a simple request conversation is drawn in Figure
12. As discussed in Section 4.1 all the arrows (transitions) crossing the role
boundaries represent message exchange between two agents (roles). We can call the
upper role from the diagram, an employer, and the other role, a contractor. The
conversation formally specifies where and how the interaction between two
interested parties occur, and what communicative acts are allowed in particular
stages of the conversation.

4.2.2 Contract-net protocol
We use here a modified version of the FIPA contract-net protocol, where the

manager wishes a task to be performed by one or a group of agents according to
some arbitrary function which characterises the task. The manager issues the call for
proposals, i.e. the cfp act, and other interested agents can send proposals. In contrast
to the original FIPA contract-net protocol, there is no need to do anything if an agent

Figure 14. A contract net with three contractors in Petri net notation.

playing a role of a potential contractor is not interested in submitting a proposal.
That means that our contract-net model from the very beginning relies on the notion
of timeout, i.e. some actions need to be performed in the event of a lack of enough
proposals, or even in the case of a complete lack of proposals.

The proposals are collected by the manager, and then they are rejected or
accepted. The accepted proposals can be cancelled, either by the manager via a
cancel action, or by the contractor via a failure action. In case of cancellation, other
submitted proposals can be reconsidered, or a completely new call for proposals can
be issued. The schematic representation in the FIPA notation is presented in Figure
13, and the Petri Net model is shown in Figure 14. The contract-net initiator is a
manager and all other participants are contractors. In the Petri Net case, we have
depicted an example conversation based on the contract-net protocol between a
manager and three contractors.

The actual behaviour of the manager and contractors is not specified by the
example net shown: this information is encoded inside arc inscriptions and guards.
Consider two potential strategies, i.e. conversation policies, the manager can follow
during the course of the conversation:

1. Wait for the first two proposals, accept the best one, and reject the other one,
and all other late proposals. If the chosen proposal fails, reissue the cfp again
and follow this approach all over again until the task is successfully
accomplished.

2. Wait for the first two proposals, accept the best one, but do not reject the
second one – keep collecting incoming proposals instead. If the chosen one has
finished successfully, reject all other proposals. If the chosen one fails, choose
the next best, and iterate through the process until successful, or in the case of
no more proposals waiting, reissue the cfp.

One can build more complex conversations based on the manager and contractor
roles, and it is possible to combine two or more protocols into a single conversation
model. It is also possible for a contract-net protocol to work together with request
and inform protocols.

For the case of complex interaction schemas it is possible, but not necessarily
desirable, to reuse the net models and structures for concurrent unrelated
conversations, as the net is already being used in a concurrent fashion by a single
concurrent conversation. (In such a case the creation of separate structures for each
of the conversation instances would be suggested for the sake of simplicity, and this
is the approach that we follow). With coloured Petri Nets, it is possible to use a
single net structure even in those complex concurrent cases, but in such cases an
appropriate additional matching based on conversation identifiers is necessary inside
the arc expressions and transition code.

5. Deliberation and Task Scheduling

A high-level part of the Opal architecture is a set of standard agents to perform
scheduling and planning for other agents. All micro-agents and ordinary agents are
inherently goal-driven and role-oriented. The micro-agent platform built on top of
micro-kernel provides set of standard agent services to perform hierarchical goal
reasoning and planning, following Procedural Reasoning Systems [21] traditions.
This is currently in the design phase and will be described in future publications.

Developers can use all the lower level machinery to perform simple task and
goal decomposition and program appropriate scenarios to be used as a role
implementations. Further, the developer can provide some meta-level reasoning
agents and capabilities which will typically span most of the existing system
components.

The principle idea is not to cope with the big task in a single centralized place
(such as inside a large coarse-grained agent), but rather to reuse different bits and
pieces distributed throughout the system. This is where the entire system can benefit
from the micro-agent infrastructure. One of the main goals of Opal is to provide
uniform modelling abstractions and operational techniques, which can be used for
dealing with different scales and different granularity of components. A loosely
coupled, but interconnected network of such components, an agent system, should
be able to solve in a flexible and robust different complex systems.

6. Summary

This paper has described the Opal system which seeks to employ the notion of
agent modelling at multiple levels of abstraction by using micro-agents. The
micro-agent and supporting kernel implementations that we have developed in Java
enable the software engineer to develop agent-based systems and components that
are much more efficient than those developed by conventional coarse-grained agent
technology. With Opal it is possible to design FIPA-based agent systems and also
employ agent-based components for virtually all aspects of a software system,
including finer-grained components that are not normally implemented in terms of
agent constructs for reasons of efficiency. Opal also supplies an Agent Conversation
Manager that incorporates the notion of higher-level ‘policies’ for guiding and
constraining agent interactions. It is our contention that the approach and
infrastructure described here supports a more scalable approach to agent-based
solutions, because one can employ agent-based concepts over a wider range of
software engineering activities and still produce efficient software implementations.

We are continuing to add more services and functionality to the Opal agent
framework and will make the source code publicly available in the near future.

References

 [1] G. Booch. Object Oriented Analysis and Design with Applications. Addison
Wesley, 1994.

 [2] N. R. Jennings. Agent-oriented software engineering. In Proceedings of the
12th International Conference on Industrial and Engineering Applications of
AI, pages 410, 1999.

 [3] N. R. Jennings and M. Wooldridge. Agent-oriented software engineering. In.
J. Bradshaw, editor, Handbook of Agent Technology. AAAI/MIT Press, 2000.

 [4] F. Bellifemine, A. Poggi, and G. Rimassa. Developing multi-agent system with
FIPA-compl ian t agen t f r amework . (31) :103128 , 2001 .
http://sharon.cselt.it/projects/jade.

 [5] H. Nwana, D. Ndumu, L. Lee, and J. Collis. ZEUS: A Tool-Kit for Building
Distributed Multi-Agent Systems. Applied Artifical Intelligence Journal,
13(1):129 186, 1999.

 [6] S. Poslad, P. Buckle, and R. Hadingham. The FIPA-OS agent platform Open
source for open standards. In Proceedings of the 5th International Conference
and Exhibition on the Practical Application of Intelligent Agents and
Multi-Agents, pages 355368, 2000.

 [7] FIPA. FIPA ACL Message Structure Specification. X00061,
http://www.fipa.org/specs/fipa00061/, 17 August 2000.

 [8] M. Georgeff and A. S. Rao. A Profile of the Australian Artificial Insititute.
IEEE Expert, pages 8992, December 1996.

 [9] O. Gutknecht and J. Ferber. MadKit: Organizing heterogeneity with groups in

a platform for multiple multi-agent systems, December 1997. Technical
Report 97188, LIRMM, 161, rue Ada - Montpellier - France.
http://www.madkit.org.

[10] FIPA. Foundation For Intelligent Physical Agents (FIPA). FIPA 2000
specifications. http://www.fipa.org/specifications/index.html, 2000.

[11] J. R. Searle. Speech Acts: An Essay in the Philosophy of Language.
Cambridge University Press: Cambridge, England, 1969.

[12] M. P. Singh. Agent communication languages: rethinking the principles. In
IEEE Computer, 0018-9162, pages 4047. December 1998.

[13] J. B. Mark Greaves, Heather Holmback. What is a conversation policy?
Mathematics and Computing Technology, The Boeing Company P.O. Box
3707, Seattle, WA, USA.

[14] T. Finin, Y. Labrou, and J. Mayfield. KQML as an agent communication
language In Software Agents, 1997, also at
http://www.cs.umbc.edu/kqml/papers/kqmlacl.pdf.

[15] R. Elio and A. Haddadi. On abstract task models and conversation policies. In
Working Notes of the Workshop on Specifying and Implementing
Conversation Policies, pages 89-98, May 1999.

[16] T. Wagner, B. Benyo, V. Lesser, and P. Xuan. Investigating interactions
between agent conversations and agent control components. In Agents 99
Workshop on Conversation Policies. 1999.

[17] H. V. D. Parunak. Visualizing agent conversations: Using Enhanced Dooley
graphs for agent design and analysis. In Proceedings of the Second
International conference on Multi-Agent Systems ICMAS'96.

[18] J. Odell, H. V. D. Parunak, and B. Bauer. Extending UML for agents. In E. Y.
Gerd Wagner, Yves Lesperance, editor, Proceedings of the Agent-Oriented
Information Systems Workshop at the 17th National conference on Artificial
Intelligence, pp. 3-17, 2000. http://www.jamesodell.com/ExtendingUML.pdf.

[19] K. Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and
Practical Use, volume 1: Basic Concepts. Springer-Verlag, Berlin, 1992.

[20] S. Cost, Y. Chen, T. Finin, Y. Labrou, and Y. Peng. Using colored petri nets
for conversation modeling, 1999. Available online at
http://www.csee.umbc.edu/~jklabrou/publications/ijcai99acl.ps.

[21] F. Ingrand and M. Georgeff. Procedural Reasoning System, User Guide. 1991.
Australian Artificial Intelligence Institute, 1 Grattan Street, Carlton, Victoria
3053, Australia.

