Population Density and Spatially Constrained Selection in Evolutionary
Computation

G. DICK, P WHIGHAM
Department of Information Science
University of Otago
P.O. Box 56, Dunedin
NEW ZEALAND
{ gdick,pwhigham} @infoscience.otago.ac.nz

Abstract: - To be completed. ..

Key-Words: - Evolutionary computation, selection, spatial patterns

1 Introduction

Evolutionary computation (EC) uses the basic oper-
ations of biological systems (selection, reproduction

and recombination) as a tool for optimisation and search.

While the paradigm has worked well, the correlation
of the operations to their real-world counterparts is of-
ten unrealistic. For example, a population of individ-
uals is frequently represented as a “bucket” in which
there are no restrictions on which individuals can be
paired for mating. This phenomenon rarely occurs in
nature. Usually, a population is organised in some
way that imposes a restriction on the possible mating
pairs.

This paper extends previous work on spatially con-
strained selection [1]. The spatially constrained selec-
tion paradigm places individuals on a plane and uses
this space to restrict the way that individual pairs can
be selected for reproduction. This mating restriction
emulates some of fundamental theories explored in
population genetics [2].

This paper begins by introducing the spatially con-
strained EC paradigm. A brief introduction into fields
of similar research is also presented. The paper con-
tinues by presenting the results of experiments used
to test the spatially constrained EC paradigm. Finally,
conclusions will be made and future work will be de-
scribed.

2 Spatially-Driven Selection

Most populations in natural systems are distributed
over an area that is many magnitudes of size larger
than their members. It is very rare for individuals
to come into contact with every other member of the
population to which they belong. Although this fea-
ture may at first appear to be detrimental to natural
systems, it is likely that this phenomenon helps to pro-
mote speciation and enhance a population’s ability to
adapt to its environment [2].

Traditional EC systems use populations that have

no spatial structure. Individuals are able to see every
member of the population and are able to pair with
anyone for mating, assuming they are selected. This
model has the benefit of being relatively simple both
in terms of implementation and mathematical repre-
sentation. The downside of this simplicity is that they
may not search the problem domain as efficiently as
systems that use a spatially structured population. The
use of population models from population genetics in
evolutionary computation is a field that is being exten-
sively studied. Cant{-Paz provides an excellent sum-
mary of this research [3].

2.1 Similar systems

There has been a large amount of research into par-
titioning a population spatially within an EC system.
The most common examples are the parallel-executing
evolutionary computation models, more commonly re-
ferred to as the fine-grained and coarse-grained mod-
els.

2.1.1 Finegrained evolutionary computation

Fine-grained models of EC contain a single popula-
tion that is distributed over a grid [4]. The shape of
the grid is often a two-dimensional torus, however
other topologies have been explored [5, 6]. Selec-
tion in this model is constrained by limiting mating
to individuals that are within neighbourhoods. These
neighbourhoods act as multiple subpopulations within
the larger population. Genetic material of the individ-
uals is spread through the population due to the fact
that an individual can belong to more than one neigh-
bourhood. Fine-grained EC is generally more efficient
than a sequential model at searching problems spaces
due to the constraining effect that the neighbourhoods
have on the selection process. However, fine-grained
EC methods are limited in the fact that they required
expensive hardware in order to execute properly [3].

2.1.2 Idland-based evolutionary computation

Island models of EC take several sequential systems
and execute them in parallel [7]. Selection in this



model is constrained by limiting mating to individu-
als that are within the same subpopulation. By divid-
ing the individuals into smaller populations, the sys-
tem can more efficiently search different parts of the
fitness landscape. However, because the subpopula-
tions are smaller, they tend to converge at a less than
optimal solution.

To counter the premature convergence problem,
island-based models incorporate migration. Migra-
tion shifts a portion of a population into a different
one. This injects new genetic information into each
subpopulation, which increases the diversity and al-
lows the search of the problem domain to continue.

While island-based models are essentially an ex-
tension of sequential algorithms, they introduce a con-
siderable amount of complexity. Island-based mod-
els have a topology which defines the direction that
migrating individuals move within the system. The
topology of these systems — that is, the number and
size of the populations involved and how they are con-
nected — can vary greatly, currently there is no well-
defined “best” topology [8, 9].

Another issue that complicates island-based mod-
els is the migration strategy. The frequency of mi-
gration, the number of individuals to migrate and the
selection of individuals to migrate are all parameters
that need to be considered when setting up an island-
based EC system [9].

2.2 Spatially constrained selection

In this section, we introduce the spatially constrained
selection method. This selection scheme attempts to
model the natural phenomena described in §2. The
spatial model used to hold the members of the pop-
ulation is a Euclidean space in two dimensions. The
space is infinite and continuous?. The selection scheme
places individuals on a two dimensional plane and al-
lows them to breed only with individuals on the plane
that are “visible” to them. Spatially constrained se-
lection cannot be used in asexual EC systems (for ex-
ample Evolutionary Programming). This should be
obvious, as there can be no concept of distance when
only one parent is selected.

2.2.1 Individual Placement

An individual in a spatially constrained EC system
has a pair of values that represent its location on a
two dimensional surface. The individuals in the initial
population have their coordinates randomly assigned
so that they fit into a bounded area of unit size. Fig-
ure 1(a) shows a typical distribution of individuals on
the plane.

2.2.2 Selection of Mates
In a spatially constrained selection method, the first

parent is selected from the entire population using whichever

10Of course representing spacein adigital form alwaysimplies
adiscrete representation, however for our purposes this limitation
can beignored.

selection method is being used by the EC system. A
second parent is then selected from the deme that is
visible to the initial parent. This concept of visibility
essentially creates subpopulations based on the loca-
tion of individuals on the surface. Figure 1(b) shows
the selected individual and highlights its visibility ra-
dius. Figure 1(c) shows two individuals that could
possibly be selected for breeding.

It is important to note that spatially constrained
selection does not alter the actual mechanism for se-
lecting an individual (for example. tournament, rank-
based or roulette-wheel). The only difference that spa-
tially constrained selection imposes is that the second
parent is selected from a sub-population which is de-
termined when the first parent is selected.

2.2.3 Offspring Placement

When new individuals are created in the system, they
are placed in a location that maintains the relationship
with their parents’ coordinates. To introduce new off-
spring into the population, one parent is chosen ran-
domly and the new individual is placed randomly at
coordinates which fall within that parent’s visibility
radius.

Initial experiments placed an additional constraint
on placement by only allowing individuals to be placed
on the surface within the boundaries imposed on the
initial population. It has now been determined that
this leads the population to organise itself so that all
of its members can see each other. Figure 2 shows
a graph of the average proportion of the population
an individual can see versus the number of iterations
completed when using bounded space. By approxi-
mately 20% of completed iterations, the population is
organised such that it is entirely visible by all individ-
uals.

For this paper, the boundaries that constrain the
population are removed. This allows a new individ-
ual to be placed anywhere within the full extent of its
parents’ visibility radii as shown in Figure 1(d).

2.24 Additional Parameters

Initial experiments using spatially constrained selec-
tion required two new parameters to be set in order to
adjust the new algorithms used. These parameters are
as follows:

e Sde length: This parameter was used to deter-
mine the boundaries of the plane that the in-
dividuals will “live” on. This parameter was
used primarily in the placement of newly cre-
ated individuals, maintaining a closed area in
which the population was allowed to live on.
This parameter is optional now that the selec-
tion process has been modified to permit a sur-
face that has no boundaries. This parameter is
automatically assigned the value of 1 when an
unbounded space is required.
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Figure 1: Constraining selection with space.
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Figure 2: Population density over time using bounded
space.

o \isihility radius: This parameter determines the
maximum range that two individuals can see
each other when selection takes place. Only
two individuals within this radius can mate. The
parameter is defined as a percentage of v/2 x
I, where [ is the side length used for the ini-
tial population boundaries. When the visibil-
ity radius is set to 100% and the system is us-
ing bounded space, the entire population is visi-
ble by each individual and the population effec-
tively has no spatial distribution.

As will be seen in §4.1, it is possible that both of
these parameters can be removed from the system.

2.25 Computational Overheads
The spatially constrained selection process requires
additional overheads maintain the visibility descrip-

tions. In order to maintain a relationship between vis-
ible individuals it is necessary to calculate the distance
between them. This calculation can be performed at
either the selection stage, or when an new individual
is created. For this paper, we chose the latter, as is
simplifies the population density counting that is per-
formed in §3.2.

In §3.1, it will be demonstrated that the computa-
tional overhead required by spatially constrained se-
lection is offset by the reduction in the number of it-
erations required to find an equivalent solution when
using selection methods that do not incorporate a spa-
tially structured population.

3 Experimental Results

The test problem run for this paper was the Travelling
Salesman Problem (TSP). The system parameters as
described in Table 1. The tests were run with visibil-
ity settings of 5%, 25%, 50% and 100%. The tests
were run at each visibility setting 100 times and the
final results were averaged out over these runs. The
tests were run using a steady-state genetic algorithm.
The choice of a steady-state model rather than a gen-
erational one is discussed in §5.1.2.

Population Size | 625.

Visibility 5%, 25%, 50% and 100%.
Base Selection | Tournament Selection with a
tournament size of 6.
Iterations 62500.

Cities 30.

Table 1: The parameters used in the tests

3.1 Fitness Comparisons

Figure 3 shows the average fitness of the individuals
against the number of completed iterations. The “con-
trol” is the plot of the results produced by a genetic al-
gorithm that does not incorporate spatially constrained
selection. A lower fitness value indicates that the in-
dividuals of the population have been more successful
in solving the problem. As can be seen, the popu-
lation is slightly more successful at finding fitter so-
lutions when spatially constrained selection is used.
More importantly, the population requires far fewer
iterations to achieve the equivalent level of fitness than
when a non-spatial parent selection mechanism is used.
Examining Figure 3 it can be seen that after approx-
imately 1/3 of the iterations for the non-spatial ap-
proach, the average fitness using spatial selection have
reached to within 95% of the final result. This sta-
tistically significant improvement for convergence to
a solution highlights the benefits of spatial selection
EC. Although this is for a single example, similar im-
provements have been observed for a number of other,
unpublished, examples.



It is interesting to note that adjusting the visibility
parameter does not appear to alter the behaviour sub-
stantially. This observation will be discussed in §4.
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Figure 3: Average fitness results of experimentation.

3.2 Population Density

Figure 4 shows the average proportion of the popu-
lation an individual can see against the number of it-
erations completed. There is a marked change in be-
haviour when compared with the results shown in Fig-
ure 2. The population converges to a point where its
members can see approximately 25% of the other in-
dividuals. The population remains in this state until
approximately 15000 iterations are complete, at which
point there is a slow decay in the average number of
individuals seen by the population’s members.

The population density results show a similar trend
to the results seen in §3.1. The value that the visibility
parameter is set to has very little impact on the popu-
lation density that is observed. An explanation for this
effect will be offered in §4.
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Figure 4: Population density results of experimenta-
tion.

4 Discussion
The results in §3 demonstrate that spatially constrained
selection alters the behaviour of an EC system. The

use of space as a constraining mechanism allows the
population to more efficiently search the problem do-
main, finding better solutions on average and in fewer
iterations. In addition to the improvement in search-
ing the fitness landscape, there are two two notable
properties of the system that are discussed below.

4.1 Visbility and Scale

The value of the visibility parameter appears to have
little demonstratable effect on the results shown in §3
and §4. In both cases, the population quickly adapts
to a uniform state that was independent of the visi-
bility setting. This appears to be a side-effect of us-
ing unbounded space. Earlier experimentation used
bounded space and the problems explored with this
configuration favoured particular visibility settings [1].

It is possible that using unbounded space effec-
tively creates a “scaleless” population. When using
unbounded space, an initial population (when number
of iterations = 0) that uses visibility parameter set to
5% may have a similar structure to the same popula-
tion if it had used a larger visibility setting and was
allowed to run for a number of iterations.

Since adjusting the visibility parameter appears to
have little effect on the behaviour of the system, it
would be reasonable to eliminate this parameter and
have visibility based on an arbitrary value.

4.2 Space and Selection Pressures

The results in §3.2 shows a steady decrease in popula-
tion density that begins after approximately 25% into
a run. This is similar to the results observed in §3.1,
where the average fitness of the population levels out
in approximately the same amount of time. When the
average fitness reaches this state, the selection of par-
ents would be more evenly distributed over the indi-
viduals of the entire population, therefore the selec-
tion pressure will reduce. This could indicate that
there is a relationship between the selection pressure
present in the system and the density of the popula-
tion.

Figure 5 shows the comparison of population den-
sities when a selection pressure is present and when
parents are picked at random in the absence of a se-
lection pressure. When there is no selection pressure
present, the population density steadily adapts itself
into a position where the individuals of the popula-
tion can see 4-5% of the other members. This occurs
regardless of what value is used to set the visibility
parameter.

When selection takes an individual’s fitness into
consideration, a selection pressure is produced. The
behaviour of the population changes when this hap-
pens. The population quickly adapts to a structure that
allows individuals to see approximately 25% of the
other members. This happens regardless of the value
used for the visibility parameter. The number of iter-
ations required for the population to adjust itself also



appears to be independent of the visibility parameter.

The increase in the average number of visible indi-
viduals for the population occurs when there are vari-
ations in fitness between members of the population,
and in particular when individuals are improving in
fitness. Once the population has converged the selec-
tion pressure decreases, and the population’s spatial
structure acts as if selection is random (see Figure 5).
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Figure 5: Population density with differing selection
pressures.

5 Conclusion

The selection scheme plays an important role in evo-
lutionary computation systems. It needs to efficiently
bias selection towards fitter individuals while ensuring
that sufficient diversity to solve the problem remains
in the population. This paper presented work on ex-
tending the spatially constrained selection paradigm.
The experimental results indicate that using this tech-
nique helps to improve the efficiency of evolutionary
computation systems.

5.1 Futurework

This paper has introduced some extensions to the spa-
tially constrained selection technique. The results pre-
sented indicate that these extensions have improved
spatially constrained selection and its ability to en-
hance EC systems. The following section describes
possible directions that future work in this field could
take to further improve the spatially constrained selec-
tion paradigm.

5.1.1 Population dynamics

5.1.2 Paralld implementation

The work presented in this paper was executed using
a serial genetic algorithm. The spatially constrained
selection algorithm used in this paper distributed the
individuals at a conceptual level. This algorithm lends
itself well to extensions that would additionally dis-
tribute the individuals at the physical/logical level. A
parallel implementation of spatially constrained se-
lection would require a steady-state algorithm. This

is the justification for using steady-state genetic al-
gorithms for this paper. Initially, it was thought that
a parallel implementation would require a bounded
population so that the population could be distributed
evenly over the processors [1]. An alternative imple-
mentation is to organise the processors radially around
a point and have each processor maintain the individ-
uals that lie within the segment that it owns. Figure 6
shows an example of how the system may work with
ten processors controlling the population.

Figure 6: Possible method for partitioning population
onto processors in a parallel implementation.

In addition to the processors controlling the pop-
ulation, there would need to be a master controller
that would know the location of each individual in the
system. The master’s primary role would be to over-
see the selection process, while the other evolution-
ary processes (crossover, mutation, reproduction...)
would be handled by the processors that are manag-
ing the the population plane.

A parallel version of of the spatially constrained
selection method could essentially produce a parallel
EC paradigm that introduces no additional parameters
over a standard sequential EC system?.
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