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Abstract

Accurate effort prediction is often an important factor for
successful software development. However, the diversity
of software development tools observed today has
resulted in a situation where existing effort prediction
models’ applicability appears to be limited. Data-centred
fourth-generation-language (4GL) software development
provides one such difficulty. This paper aims to construct
an accurate effort prediction model for data-centred 4GL
development where a specific tool suite is used. Using
historical data collected from 17 systems developed in the
target environment, several linear regression models are
constructed and evaluated in terms of two commonly used
prediction accuracy measures, namely the mean
magnitude of relative error (MMRE) and pred measures.
In addition, Rz, the maximum value of MRE, and
statistics of the absolute residuals are used for comparing
the models. The results show that models consisting of
specification-based software size metrics, which were
derived from Entity Relationship Diagrams (ERDs) and
Function Hierarchy Diagrams (FHDs), achieve good
prediction accuracy in the target environment. The
models’ good effort prediction ability is particularly
beneficial because specification-based metrics usually
become available at an early stage of development. This
paper also investigates the effect of developers’
productivity on effort prediction and has found that
inclusion of productivity improves the models’ prediction
accuracy further. However, additional studies will be
required in order to establish the best productivity
inclusive effort prediction model.

Keywords: Prediction systems, 4GL, effort, metrics,
empirical analysis

1 Introduction

Accurate effort prediction at an early stage is often an
important factor for successful software development. In
order to predict software development effort, there exist a
number of effort prediction models, including well-known
COCOMO (Boehm 1981,1984) and Function Points
Analysis (FPA) (Albrecht and Gaffney JR. 1983).
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However, these existing models are, in general, empirical
models constructed using historical data collected from a
number of software systems developed in specific
development environments. As a consequence, the
applicability of these models is often limited to systems
developed in those environments.

On the other hand, the increasing number of software
development tools available today enables software
systems to be developed in very different environments.
Some organizations use a data-centred fourth-generation-
language (4GL) software development tool. Data-centred
4GL software development tools enable database-
oriented transaction processing systems (TPSs) and/or
management information systems (MISs) to be developed
in a rapid manner. However, a number of studies have
showed that traditional effort prediction models are not
able to predict development effort accurately when a
data-centred 4GL software development tool is used
(Kemerer 1987, Verner and Tate 1988, Dolado 1997).

The situation described above has prompted researchers
to construct new effort prediction models for data-centred
4GL software development (Tate and Verner 1990, 1991,
Wrigley and Dexter 1991, Verner and Tate 1992,
MacDonell 1997, MacDonell, Shepperd, and Sallis 1997,
Dolado 2000). These effort prediction models are often
linear regression models which consist of software size
metrics collected in environments where a specific data-
centred 4GL development tool was used. The software
size metrics chosen for each of these models are different
but all specification-based, that is, derived from a
software system’s specifications such as Entity
Relationship Diagrams (ERDs) and Function Hierarchy
Diagrams (FHDs). These models achieved good
prediction accuracy in terms of mean magnitude of
relative error (MMRE) and a measure called pred. Both
MMRE and pred are commonly used prediction accuracy
measures among researchers (Fenton and Pfleeger 1997,
Shepperd, Cartwright, and Kadoda 2000).

However, due to the very same reason as mentioned
previously about empirical effort prediction models in
general, the applicability of those new effort prediction
models is limited to a specific development environment
in each case. Consequently, it is necessary to construct a
new effort prediction model when a different
development tool is used. The organization being studied
in this paper started using a data-centred 4GL software
development tool suite, Oracle’s Designer 6i and
Developer 6i, in 2002. This created the need for a new
effort prediction model and raised the following research



question. How can an accurate development effort
prediction model be constructed for this specific data-
centred 4GL software development environment?

In order to answer the above question, a study is carried
out with three objectives. The first is to identify a useful
method for constructing empirical effort prediction
models in the target environment. The second is to
construct the models. The third is to evaluate and
compare the models’ prediction accuracy in terms of
some commonly used prediction accuracy measures so
that the most appropriate model(s) can be identified.
Considering the good prediction accuracy achieved by
other data-centred 4GL development effort prediction
models, the study is based on a hypothesis that an
accurate effort prediction model should be able to be
constructed empirically as a linear regression model
consisting of a number of specification-based software
size metrics collected from systems developed in the
target environment. This paper presents the preliminary
results of the study.

The structure of the reminder of this paper is as follows.
Section 2 describes a set of effort prediction models
constructed for the target data-centred 4GL software
development environment and the modelling procedure
used for their construction. Section 3 evaluates and
compares these models’ prediction accuracy using some
commonly used measures. This is followed by Section 4,
where conclusions are presented.

2 Effort Prediction Models
2.1 Empirical Data Collection

2.1.1 Metrics Selection

The first step is to select appropriate candidate metrics.
A useful approach for selecting metrics is the
Goal/Question/Metric (GQM) paradigm (Basili and
Weiss 1984, Basili and Rombach 1988, Oivo and Basili
1992). In the GQM paradigm, users start with a set of
goals, proceed to a set of related questions, and end with
a set of appropriate metrics. This process guides users to
minimize the number of metrics collected by selecting
only those relevant to satisfying the specified goals. In
this study, the GQM process was modified to select
candidate metrics for the models. The process is shown in
Fig.1 and resulting metrics are shown in Table 1. During
this process, the following aspects of the target
development environment were taken account of:

1. The minimal set of specifications completed for
a software system is the ERD and FHD. The
FHD defines functional specifications of the
system’s user interface components.

2. The system’s database is automatically
generated from the ERD. This implies that
differences in the complexity of ERDs, such as
the differences of the numbers of different
types of relationships, would have, in general,
only a negligible effect on development effort
because implementation of the data model does
not require any manual coding.

Goals Accurate Easy to collect Available
model metrics early
82 82 82
Questions What is What type of What is
correlated measure is available
with effort?  easy to collect? early?
82 82 82
Answers Size Counting ERD&FHD
Complexity
Productivity
N2 N4 82 N K N2
Metrics Productivity Forms Entities
Effort Reports Attributes
Graphs
Fig. 1: Modified GQM Approach
for Metrics Selection
Metrics Definitions
ENTITYNUM Number of entities in the
ERD
ATTRIBUTENUM | Number of attributes in the
ERD (The same attribute is
counted only once.)
FORMNUM Number of forms in the FHD
REPORTNUM Number of reports in the FHD
GRAPHNUM Number of graphs in the FHD
ENTITYFORM Total number of entities
accessed by all forms
(The same entity is counted
more than once if required.)
ENTITYREPORT | Total number of entities
accessed by all reports
(The same entity is counted
more than once if required.)
ENTITYGRAPH Total number of entities
accessed by all graphs
(The same entity is counted
more than once if required.)
EFFORT Total hours spent by
development team
PRODUCTIVITY | Average mark awarded to
development team from
a practical development test
TOTALFORM Sum of FORMNUM,
REPORTGRAPH | REPORTNUM and
GRAPHNUM
ENTITYFORM Sum of ENTITYFORM,
REPORTGRAPH | ENTITYREPORT and
ENTITYGRAPH

Table 1: Candidate Software Metrics Definitions

3. A system consists of some or all of three types
of user interface components — forms, reports,
and graphs. Once the related table(s) in the
database is defined, the tool automatically
generates code that ensures the connectivity
between them. This implies that developers’



effort would be primarily spent performing two
tasks: creating each component by using various
ready-made graphical user interface items such
as text boxes and combo boxes, and adding
code to the items.

This modified GQM approach is different from the
original GQM process, as this approach uses answers to
the questions to determine metrics to be collected, instead
of using the questions to determine metrics for the
answers.

2.1.2  Software Systems

The next step is to identify software systems from which
the metrics data are to be collected. In this step, a total of
19 small or medium sized TPSs and/or MISs developed
in the target environment were identified. These systems
were developed during a period of 13 weeks in 2002 as
part of a university course. Each system was developed
by a group of four developers (and in one case, a group of
three), who were final year undergraduate students taking
computer and/or information science as a major. These
systems were developed for clients outside the university.

2.1.3 Data Collection Procedure

The next step is to collect metrics data from the systems.
In the target environment, all software systems developed
were accompanied by final documentation. This
documentation contained an ERD and FHD for the final
system and effort data recorded by each developer in the
group. All forms, reports and graphs in the final system
and the database were also stored in a repository provided
by the development tool suite. The required metrics data
were collected from those sources. During this process,
two systems were eliminated due to the incomplete effort
data. This resulted in the remaining 17 systems being
used in this study, all of which have the same number of
developers. The productivity metric was calculated by
using the average mark of the developers in each team
from a practical development test undertaken in the target
environment.

2.2 Data Analysis

2.2.1 Descriptive Statistics

The next step is to analyse the collected metrics data.
Descriptive statistics of the data are shown in Table 2.
The effort data are measured in hours. The differences
observed between the medians and means, and the values
of the skewness statistic in this table show that the data
are skewed. Therefore, in the following exploratory
analysis, non-parametric techniques, which do not require
the normality assumption, are used.

2.2.2  Correlation Analysis

In order to examine the existence of the potential linear
relationships between the specification-based software
size metrics and development effort, and the degree of
linear association between the specification-based
software size metrics themselves, correlation analysis was

performed. Spearman’s rank correlation coefficient was
used in this analysis. The results are shown in Table 3.

A number of significant correlation coefficients in the
first column of Table 3 (a) show that ATTRIBUTENUM,
FORMNUM, ENTITYFORM, and ENTITYFORMREPORT-
GRAPH are highly correlated with EFFORT. Two negative
correlation coefficients appear in the same column,
although they are not at a significant level. These do not
appear intuitive as they indicate that a larger REPORTNUM
and ENTITYREPORT require less effort. A possible
explanation of these counter-intuitive coefficients is as
follows. Due to the limited amount of time allowed for
development, it seems that teams with similar
productivity resulted in developing systems whose
TOTALFORMREPORTGR A P H, that is, the sum of
FORMNUM, REPORTNUM and GRAPHNUM, is similar. In
addition, the limited development time resulted in
systems with more forms having less reports, as forms
are, in general, created before reports in order to allow
entering sample data into the system. Consequently, the
combination of these two factors create the unique
interaction between the number of forms and that of
reports in a system, where increasing the number of
reports often leads to decreasing the number of forms.
This presumption is supported by the significant negative
correlation coefficient between FORMNUM and
REPORTNUM shown in Table 3 (a). On the other hand, in
the target environment, developing a form, in general,
requires more effort than developing a report. This is
because forms require more manual coding in order to
process input data, for example, to implement validation
rules; to display error, warning and confirmation message
boxes/dialogs; and to perform various calculations. Given
the unique interaction between forms and reports, and the
anticipated smaller contribution of reports to development
effort than forms in general, it would be possible for
REPORTNUM and ENTITYREPORT to have a small negative
correlation with EFFORT.

A total of 13 significant correlation coefficients observed
between the specification-based software size metrics in
Table 3 indicate that these pairs are correlated. When
correlated metrics are included in a regression model,
multicollinearity can cause some difficulty for users in
interpreting some partial correlation coefficients and
increases the standard errors of the predicted values.
Thus, when constructing a multivariate regression model,
it is recommended to include software size metrics which
are not highly correlated with each other. Principal
component analysis (PCA) can be used to construct
independent variables using linear transformations of the
original input variables. However, PCA is not used in this
study as neither the difficulty in interpretation nor the
problem of the errors is identified in the models.

2.3 Linear Regression Analysis

2.3.1 Univariate Regression Models

The final step is to perform linear regression analysis in
order to construct a number of candidate effort prediction
models for the target environment. The significant
correlation coefficients between some specification-based



software size metrics and EFFORT shown in the first
column of Table 3 suggest that some or all of univariate
linear regression models consisting one of these
specification-based software size metrics may be able to
predict development effort accurately for the target
environment. The specification-based size metrics with
the highest correlation coefficient with EFFORT,
ENTITYFORM was chosen to construct the following
univariate linear regression model:

EFFORT =212.171 + 5.643 ENTITYFORM 2.1

This model’s R* value was 0.550, indicating that this
model can explain 55.0% of the variance in EFFORT.

Another univariate effort prediction model of particular
interest was the model consisting of FORMNUM. This is
because FORMNUM has the second highest correlation
coefficient with effort, and may be more useful than
ENTITYFORM as FORMNUM requires less time and effort
to collect. The model was constructed as:

EFFORT = 218.298 + 14.347FORMNUM
This model achieved an R? value of 0.364.

2.2)

2.3.2 Multivariate Regression Models

Although univariate models are the simplest, and in most
cases, the easiest to collect data for, they may not
necessarily achieve good effort prediction accuracy for
the target environment. One possible way to achieve
better prediction accuracy is constructing multivariate
regression models which consist of a larger number of
influential variables. There are a number of methods to
select influential variables in multivariate regression. In
this paper, two commonly used methods, stepwise
selection and backward elimination, were used.

Stepwise selection was performed using an entry criterion
of 0.05 for the F-statistic’s p-value and a removal
criterion of 0.10. This resulted in the same ENTITYFORM
univariate model as shown in Equation 2.1.

Backward elimination starting with all specification-
based software size metrics and using a removal criterion
0f 0.10, resulted in the following multivariate model:

EFFORT = 119.560 + 8.954 FORMNUM
+4.695 ENTITYFORM
+0.738 ENTITYREPORT
—5.023 ENTITYGRAPH

This model’s adjusted R* value was 0.569.

2.3)

Other multivariate models of particular interest were the
model consisting of FORMNUM, REPORTNUM and
GRAPHNUM, and the model consisting of ENTITYFORM,
ENTITYREPORT and ENTITYGRAPH, as each of these
models took account of combining the influence of three
different user interface components on effort. However,
the model consisting of FORMNUM, REPORTNUM and
GRAPHNUM was not significant (p-value for F statistic
was 0.052).

The model consisting of ENTITYFORM, ENTITYREPORT
and ENTITYGRAPH was:

EFFORT = 190.396 + 6.040 ENTITYFORM
+0.530 ENTITYREPORT
- 3.365 ENTITYGRAPH

This model’s adjusted R* value was 0.486.

2.4)

2.3.3 Influence of Developers’ Productivity

The productivity of highly skilled developers is up to 30
times higher than low-skilled developers (Glass 2001).
This implies that developers’ productivity may be an
important factor in development effort prediction, and
taking account of the influence may improve models’
prediction accuracy. In order to examine this possibility
further, the following three approaches were taken:

1. Regression modelling including productivity as
an independent variable

2. Regression modelling including effort times
productivity (EFFORTXPRODUCTIVITY) as the
dependent variable

3. Regression modelling using data from only
systems developed by developers whose
productivity is considered to be the same

The first approach considers the influence of productivity
as a linear adjustment of effort. The second considers the
influence as a weighting factor of effort. The third
attempts to remove the influence by creating a subset, in
which the difference of productivity would be considered
to be negligible. All three approaches were taken, as it
was anticipated that they would each produce a different
model due to the different handling of the influence of
productivity on effort.

Regression analyses including developers’ productivity as
an independent variable were performed using stepwise
selection and backward elimination. Stepwise selection
produced a bivariate model:

EFFORT=431. 808 + 5.452 ENTITYFORM
— 3.705 PRODUCTIVITY

This model’s adjusted R” value was 0.622.

2.5)

Backward elimination produced the following model:

EFFORT =426.492 + 6.761 ENTITYFORM
+11.619 REPORTNUM
— 5.727 PRODUCTIVITY

This model’s adjusted R* value was 0.684.

(2.6)

The above two models clearly show that developers’
productivity is indeed influential in the target
environment as they are both superior to the productivity
exclusive models developed earlier in terms of adjusted
R’. The direction of the influence agreed with intuition
that higher productivity results in less effort.

Regression analysis including (EFFORTxPRODUCTIVITY)
as the dependent variable was also performed using both
stepwise selection and backward elimination.



Stepwise selection produced a bivariate model:

EFFORTXPRODUCTIVITY
=4550.14 + 380.90 ENTITYFORM
+ 815.62 REPORTNUM 2.7
This model’s adjusted R* value was 0.590.
Backward elimination produced the following
multivariate model:
EFFORTXPRODUCTIVITY
=6422.07 + 1225.41 REPORTNUM
+ 325.33 ENTITYFORM
—130.15 ENTITYREPORT
+ 325.33 ENTITYGRAPH  (2.8)

This model’s adjusted R” value was 0.516.

In order to select the systems for which developers’
productivity were regarded as the same, a fixed range of
productivity values between 50% and 70% inclusive were
chosen. Based on this productivity range, a subset of 11
systems was selected from the original 17 systems.
Descriptive statistics and the results of correlation
analysis of this subset are shown in Table 4 and 5. The
data are still skewed. Table 5 shows that in the subset
ENTITYFORMREPORTGRAPH has the highest correlation
with EFFORT, followed by ENTITYFORM and
ATTRIBUTENUM in the order. Surprisingly FORMN UM
which has the second highest correlation with EFFORT in
the original set, did not show a significant correlation in
the subset. Another surprising result in Table 6 is that the
correlations between the specification-based software size
metrics appear to be slightly more complex than those in
the original set. These two surprising results may be
explained as the non-parametric correlation coefficient
being not powerful due to the small number of
observations (projects) in the subset, although a further
study is required for the confirmation. The counter-
intuitive negative correlation of TOTALFORMREPORT-
GRAPH with EFFORT in Table 6 is not considered to be an
issue as the value is almost negligible.

Based on the subset, two univariate models were
produced: one consisting of ENTITYFORMREPORTGRAPH,
whose correlation with EFFORT was the highest, and the
other consisting of ENTITYFORM, whose correlation was
the second highest in the subset and the highest in the
original set. These models were:

EFFORT =114.393 +
4.430 ENTITYFORMREPORTGRAPH  (2.9)

EFFORT = 236.785 + 4.498 ENTITYFORM (2.10)

The model in Equation 2.9 had the R* value of 0.406 and
the model in Equation 2.10 had 0.536.

Stepwise selection and backward elimination performed
with the subset produced the same univariate model as
shown in Equation 2.9.

Two multivariate models, one consisting of FORMNUM,
ENTITYFORM, ENTITYREPORT and ENTITYGRAPH, and
the other consisting of ENTITYFORM, ENTITYREPORT and
ENTITYGRAPH, were also produced for comparison with
those of the original 17 systems. However, both models

only achieved a non-significant p-value for their F
statistics (0.159 and 0.069 respectively). Thus, neither
was considered as a candidate model for the target
environment.

2.3.4 Outlier Detection

Regression models’ prediction accuracy increases when
influential outliers are removed from the data set.
During the above regression analyses, some outlier
detection techniques, namely scatterplots of the residuals
and statistics such as the deleted residuals, Cook’s
distance, Mahalanobis distance, were used to locate any
potential outliers. The results did not justify removing
any project from the data set.

3  Model Evaluation

3.1 Prediction Accuracy Measures

The most commonly used prediction accuracy measures
for software effort prediction models among researchers
are MMRE and pred (Fenton and Pfleeger 1997,
Shepperd, Cartwright, and Kadoda 2000). The magnitude
of relative error (MRE) is a normalized measure of the
discrepancy between actual values and predicted values
(Kitchenham, Pickard, MacDonell and Shepperd 2001):

| actual effort - predicted effort |
actual effort

MRE =

3.1)

MMRE is the mean of MREs over all observations in the
data set (Kitchenham, Pickard, MacDonell and Shepperd

2001):

MMRE =+ Y MRE, (3.2)
nig

where n is the number of observations in the data set and
MRE; is the MRE of the i-th observation. Pred is a
measure of what proportion of the predicted values have
MRE less than or equal to a specified value (Fenton and
Pfleeger, 1997):

k

Pred(q) = — (3.3)

n
where q is the specified value, k is the number of
observations whose MRE is less than or equal to g, and n
is the number of observations in the data set. It is
suggested that an acceptable level of MMRE and pred for
an effort prediction model being considered to be
accurate are MMRE =< 0.25 and pred(0.25) = 0.75
(Conte, Dunsmore and Shen 1986) or pred(0.30) = 0.70
(MacDonell 1997). Thus, in this paper, the models were
evaluated using these three prediction accuracy measures
to determine whether each model can be considered to be
accurate.

In addition, Rz, the maximum MRE observed, and
statistics of the absolute residuals were used for the
models’ comparison, as these prediction accuracy
measures have been used in a number of comparative
studies of prediction models (Kemerer 1987, Shepperd,
Cartwright, and Kadoda 2000, MacDonell 2003).



3.2 Models’ prediction accuracy evaluation
and comparison

The MMRE and pred measure values of the models
presented in Section 2 are shown in Table 6, together
with the models’ maximum MRE values and R values.
Statistics of the models’ absolute residuals are shown in
Table 7 and used for the models’ comparison. Table 8
shows the models’ comparison results in terms of eight
different prediction accuracy categories. The numbers in
each column in Table 8 show the rank of the
corresponding models in the category, 1 for the best and
10 for the worst.

The first three columns in Table 6 show that all values
except one are better than the suggested value of the
corresponding prediction accuracy measure. This means
that each of the models can be considered to be accurate
for the target environment, except for the univariate
model as shown in Equation 2.9 when the value of
pred(0.25) is considered. However, a number of
researchers suggest that pred(0.30) criterion seems more
appropriate than that of pred(0.25) (MacDonell 1997).
Given that criterion, all the models can be considered to
be accurate for the target environment.

Table 8 shows that the same model achieves a different
ranking in different prediction accuracy categories when
compared with other models. This result is consistent
with the results presented by other researchers (Shepperd,
Cartwright, and Kadoda 2000) and supports the
suggestion that the most appropriate model should be
chosen from the models presented in this paper based on
the specific goals and needs of users. For example,
models with a smaller number of variables are, in general,
easier to collect data. Thus, when minimizing data
collection time and cost is an important goal of users, a
univariate model would be the most appropriate.

Table 8 also shows that the models including developers’
productivity achieve, in general, better prediction
accuracy than their productivity exclusive counterparts,
as most of them show a higher rank order in most
prediction accuracy categories. This result suggests that
productivity is influential on development effort in the
target environment.

4  Conclusions

4.1 Summary of the Findings

A total of 10 linear regression models were constructed in
order to predict effort for a data-centred 4GL software
development environment where a specific tool suite was
used. These models were evaluated and compared in
terms of commonly used prediction accuracy measures.
The evaluation results showed that all the models
achieved better prediction accuracy than the suggested
values of all the three prediction accuracy measures used,
with one exception. The models’ comparison results
showed that each of these models achieved a different
ranking in different prediction accuracy categories in
comparison with other models. These results suggest that
users can choose the most appropriate model(s) from the

models presented in this paper depending on their needs
and goals.

This study also used student developers’ marks in a
practical development test as the productivity metric and
examined the influence of productivity. The results
showed that the productivity inclusive models, in general,
achieved better prediction accuracy than their
productivity exclusive counterparts. This suggests that
developers’ productivity is influential on effort in the
target environment.

4.2 Limitations of the Study

All effort prediction models in this study were
empirically constructed using historical data collected
from software systems developed by non-professional,
university undergraduate developers. This implies that the
applicability of these models to industrial settings may be
limited. In addition, the applicability of empirical effort
prediction models is, in general, subject to the specific
development environment where the models’ historical
data were collected. Given that, the models presented in
this paper would not be exempted from such limitations.

Another limitation is that all the models were evaluated
using the same data used for the construction. In other
words, they were validated in terms of fitting accuracy to
the data. The models’ accuracy in predicting effort using
unknown data, that is, predicting effort for future projects
in the target environment, needs to be validated in further
studies.

4.3 Future Directions

In addition to the topic mentioned in the previous section,
a number of topics are identified for future studies. One
is to investigate other productivity metric(s) to establish
the best productivity inclusive model(s). Another topic is
to compare the models presented in this paper with other
effort prediction models, in particular, models constructed
using other statistical techniques, machine learning
techniques, fuzzy systems, neural networks, or
probabilistic networks such as Bayesian networks. The
models can also be compared with effort prediction
models using expert’s knowledge such as analogy.
Investigating a method where a number of different
modelling techniques are combined to construct a model,
is also considered to be an interesting direction for the
future.
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Metrics Median Mean | Std. Dev. Min. Max. Skewness Kurtosis
EntityNum 17.00 19.41 5.17 12 30 0.715 0.027
AttributeNum 79.00 93.94 50.13 36 252 2.092 5.739
FormNum 12.00 12.53 391 7 20 0.324 - 0.921
ReportNum 8.00 6.76 3.03 2 11 - 0.386 -1.143
GraphNum 0.00 0.59 1.73 0 7 3.581 13.419
TotalFormReportGraph 19.00 19.88 4.24 12 29 0.304 0.211
EntityForm 34.00 32.94 12.21 11 62 0.489 0.833
EntityReport 26.00 25.00 11.34 5 44 - 0.348 - 0.641
EntityGraph 0.00 1.35 4.37 0 18 3.884 15.493
EntityFormReportGraph 63.00 59.29 12.91 32 73 - 1.090 0.079
Productivity 59.17 57.57 8.69 42.50 73.96 0.199 - 0.295
Effort 359.25 398.06 92.90 258.20| 568.65 0.557 - 0.702
Table 2: Descriptive Statistics for Metrics Data
(17 systems)
Metrics Effort | EntityNum | AttributeNum | FormNum ReportNum | GraphNum
EntityNum 328
AttributeNum 426* .646**
FormNum S91** 480* 238
ReportNum -.303 -.515% -315 -.535%*
GraphNum .068 171 -.321 233 -.129
TotalFormReportGraph 302 .085 -.042 JJ07** 157 271
EntityForm .685%* JTT5** .604** ST79%* -.407 123
EntityReport -.110 -.635%* -.301 -.324 .836** -.177
EntityGraph .109 225 -.291 .248 -.178 .994**
EntityFormReportGraph | .459* .304 229 336 195 213
(a) Spearman’s Rank Correlation Coefficients
Metrics TotalFormReportGraph EntityForm EntityReport EntityGraph
EntityForm 218
EntityReport 262 -.334
EntityGraph 234 176 -.232
EntityFormReportGraph 450%* .607** 352 .240

(b) Spearman’s Rank Correlation Coefficients

Table 3: Correlation Analysis Results
(one-tailed test * for significance levels less than 0.05, ** for significance levels less than 0.01)




Metrics Median | Mean | Std. Dev. Min. Max. Skewness | Kurtosis
EntityNum 17.00 18.55 5.24 12 29 0.732 0.116
AttributeNum 66.00 73.82 28.47 36 138 1.321 1.813
FormNum 11.00 11.55 3.27 7 17 0.286 - 0.837
ReportNum 8.00 7.18 2.82 2 11 - 0.422 - 0.696
GraphNum 0.00 0.91 2.12 0 7 2.841 8.407
TotalFormReportGraph 18.00 19.64 4.06 14 29 1.223 1.976
EntityForm 27.00 30.09 13.42 11 62 1.190 2.656
EntityReport 26.00 26.00 11.22 5 44 - 0.237 - 0.007
EntityGraph 0.00 2.09 5.38 0 18 3.112 9.937
EntityFormReportGraph 60.00 58.18 11.86 29 70 -1.014 - 0.105
Effort 354.00 372.14 82.44 258.20] 553.80 1.018 1.278
Table 4: Descriptive Statistics for a Subset with the Same Productivity
(productivity range between 50 and 70% inclusive, 11 systems)
Metrics Effort | EntityNum | AttributeNum | FormNum | ReportNum | GraphNum
EntityNum 295
AttributeNum .555% .654*
FormNum 256 .637* 187
ReportNum -.096 -.789%* -.288 -.646*
GraphNum 208 278 -.087 .502 -.265
TotalFormReportGraph | -.023 -.070 -.161 583 .148 422
EntityForm .635* .822%* .858%* 408 -.595* 264
EntityReport .091 - 728%* -.245 -452 .888** -.306
EntityGraph .289 390 .006 543* -.364 985%*
EntityFormReportGraph | .795%* 517 593 499 -.164 401
(a) Spearman’s Rank Correlation Coefficients
Metrics TotalFormReportGraph EntityForm EntityReport EntityGraph
EntityForm -.181
EntityReport 226 -475
EntityGraph .340 .363 -410
EntityFormReportGraph 242 .686** .009 465

(b) Spearman’s Rank Correlation Coefficients

Table 5: Correlation Analysis Results of a Subset with the Same Productivity
(one-tailed test * for significance levels less than 0.05, ** for significance levels less than 0.01)

Models MMRE Pred(0.25) Pred(0.30) | Max. MRE R’
Univariate model (2.1) 0.1323 0.8824 0.8824 0.3900 0.550
Univariate model (2.2) 0.1431 0.7647 0.9412 0.5117 0.364
Multivariate model (2.3) 0.1139 0.8824 1.0000 0.2790 0.569*
Multivariate model (2.4) 0.1199 0.8824 0.8824 0.3928 0.486*
Bivariate model (2.5) 0.1136 0.8824 0.9412 0.3723 0.622*
Multivariate model (2.6) 0.0939 0.8824 1.0000 0.2902 0.684*
Bivariate model (2.7) 0.0989 0.8824 1.0000 0.2664 0.590*
Multivariate model (2.8) 0.0982 0.8824 1.0000 0.2603 0.516*
Univariate model (2.9) 0.1624 0.7273 0.8182 0.4662 0.406
Univariate model (2.10) 0.1305 0.9091 0.9091 0.3700 0.536

Table 6: Models’ Prediction Accuracy
(figure in bold in the first 3 columns indicates that the value achieved is better than the suggested value,
* for adjusted R?)



Models Median Mean Std. Dev. Min. Max. Sum
Univariate model (2.1) 39.7556 49.2634 36.1309 1.2534 113.8291 837.4774
Univariate model (2.2) 38.3662 55.2831 47.3419 4.7278 151.6017 939.8121
Multivariate model (2.3) 34.4140 41.2840 31.2397 4.0923 116.9449 701.8282
Multivariate model (2.4) 27.8598 43.9509 39.3833 1.4690 113.9511 747.1660
Bivariate model (2.5) 36.1160 41.6707 31.7537 1.1873 119.5532 708.4026
Multivariate model (2.6) 27.5535 35.3512 29.8258 1.5620 115.5354 600.9711
Bivariate model (2.7) 28.1845 37.4431 28.7738 7.6512 115.8941 636.5331
Multivariate model (2.8) 31.9714 37.9468 31.0770 0.4414 119.5358 645.0963
Univariate model (2.9) 55.6373 59.8362 53.2548 2.1991 178.6546 658.1986
Univariate model (2.10) 38.1335 46.4417 27.9221 15.5016 101.0169 510.8592

Table 7: Statistics of the Absolute Residuals of the Models
Pred Pred Max. 2 Median Max. Sum
MMRE | 925) | ©30) | MRE | ® | Ab.Res. | Ab.Res. | Ab. Res.

Model (2.1) 8 2 8 7 5 9 2 9
Model (2.2) 9 9 5 10 10 8 9 10
Model (2.3) 5 2 1 3 4 5 6 6
Model (2.4) 6 2 8 8 8 2 3 8
Model (2.5)* 4 2 5 6 2 6 8 7
Model (2.6)* 1 2 1 4 1 1 4 2
Model (2.7)* 3 2 1 2 3 3 5 3
Model (2.8)* 2 2 1 1 7 4 7 4
Model (2.9)* 10 10 10 9 9 10 10 5
Model (2.10)* 7 1 7 5 6 7 1 1

Table 8: Prediction Accuracy Comparison
(number shows the rank order, 1 indicates the highest prediction accuracy, 10 the lowest,
* for productivity inclusive models)




