
A rule language for modelling and monitoring social expectations
in multi-agent systems

Stephen Cranefield
Department of Information Science

University of Otago, PO Box 56, Dunedin, New Zealand
scranefield@infoscience.otago.ac.nz

Abstract

This paper proposes a rule language for defining
social expectations based on a metric interval tem-
poral logic with past and future modalities and a
current time binding operator. An algorithm for
run-time monitoring compliance of rules in this lan-
guage based on formula progression is also pre-
sented.

1 Introduction
The study of electronic institutions—explicit declarative
models of the rules governing particular open systems of au-
tonomous agents—has gained much recent attention[Cort́es,
2004]. An institution provides a social model of a multi-agent
system in which agents agree (by the act of joining the so-
ciety) or are required to conform to particular norms of be-
haviour and role and empowerment structures. However, in
an open system it is not sufficient to simply formally or semi-
formally define an institution and hope that agents will follow
its rules. As in human society, the successful functioning of
an institution requires that all (or at least most) members will
conform. There is therefore a need for mechanisms to en-
sure the conformance of all agents by formal verification of
agents’ code—which is not possible in an open system, or by
run-time compliance checking.

There has been a significant amount of recent research on
statically verifying properties of institutions as well as in-
terpreting institutions to manage or guide agent interaction
(examples include several papers in the DALT’04 workshop
[Leite et al., 2004] as well as earlier work such as that by
Hugetet al. [2002] and Cliffe and Padget[2002]). However,
there has been little attention paid to mechanisms for run-
time compliance checking, i.e. monitoring events in a running
agent system, determining the future expectations of agents’
behaviour according to norms of the institution, and checking
if these are fulfilled or violated. This paper focuses on this
issue.

Verdicchio and Colombetti[2003; 2004a] have developed a
formal model of social commitment with its semantics based
on a propositional branching time logic with future and past-
time modal operators (CTL±), but with an axiomatic account
of events and commitments expressed using predicate logic
and CTL± operators together. This paper presents the results

of an investigation into how implication formulae of the style
used by Verdicchio and Colombetti can be formally charac-
terised and, with appropriate syntax restrictions, be used for
practical reasoning by agents at run time. An important re-
quirement for this purpose is the ability to reason efficiently
about how event occurrences relate to specific points or in-
tervals in time. We have therefore developed a logic named
hyMITL± that combines CTL± with Metric Interval Tem-
poral Logic (MITL) [Alur et al., 1996], as well as features
of hybrid logics[Blackburnet al., 2001]. We present a sub-
set of hyMITL± that provides a rule language for defining
social expectations and show how the technique of formula
progression from the planning system TLPlan[Bacchus and
Kabanza, 2000] can be used to monitor social expectations
until they are fulfilled or violated.

The structure of the paper is as follows. Sections 2 and 3
define the syntax and semantics of hyMITL±, respectively,
with the rule language presented in Section 4 and an exam-
ple of its use in Section 5. Section 6 gives details of the
compliance-testing algorithm. Finally some related work is
discussed in Section 7 and Section 8 concludes the paper.

2 Syntax of hyMITL ±

Formulae of hyMITL± are defined by the following gram-
mar:

φ ::= p | ¬φ | φ ∧ φ | ∀x.φx | X+φ | X−φ |
φU+

I φ | φU−I φ | Aφ | Eφ | ↓ux.φx | I

I ::= (−∞,+∞) | [b, b] | [b, b) | (b, b] | (b, b)

b ::= a | +r | −r

where:

• p is an atomic formula from a first order languageL.

• φx denotes a formulaφ in which variablex is free
(i.e. not bound by∀ or ↓).

• a andr are terms, possibly containing variables, that de-
note (respectively) absolute and relative points in time1.

1We do not define a language for these terms in this paper, but
note that Verdicchio and Colombetti[2004b] have proposed a suit-
able language, which has inspired the treatment here.



• u is a unit selector on the↓ binding operator, referring to
the desired granularity of time (e.g.year or minute) for
bindingx to the current time. A value ofnow indicates
maximum precision.

We constrain the use of variables within interval boundsb:
any such variables must be bound by an enclosing↓ operator.

In this logic, the temporal operatorsX (the next/previous
state) andU (until) can be applied in the future direction
(when adorned with a superscript ‘+’) or the past (indicated
by a ‘−’). Following MITL 2 [Alur et al., 1996], the twoU
operators are qualified by an intervalI that can be open or
closed at each end (depending on whether a round or square
bracket is used, respectively). The meaning ofX+φ is that
φ is true in the next state, andφU+

I ψ asserts thatφ will re-
main true from the current state for some (possibly empty)
sequence of consecutive future states, followed by a state that
is within the time intervalI and for whichψ holds. X− and
U−I are defined similarly, but in the past direction.

The bounds of intervals can be specified either relatively
or absolutely—a prefix of “+” or “−” indicates a relative time
value. Relative times (except for values of plus or minus zero)
must indicate the units used, and the language for expressing
time points must define a syntax for this, e.g. “−3 hours”.
When qualifyingU−, the interval bounds are written in the
reverse order from usual, e.g.[−2 hours,−3 hours].

A and E are temporal path quantifiers. They assert that
the formula that follows the operator applies to all, or respec-
tively at least one, of the possible sequences of states passing
through the current state.

The↓ operator is the “binder” operator used in hybrid log-
ics [Blackburnet al., 2001]. It binds a variable to a term
denoting the current date/time, using the same syntax as ab-
solute interval bounds. The optional unit selectoru is a time
unit constant from the date/time sublanguage and indicates
that the variable should be bound to the time point resulting
from rounding down the current date/time to a particular de-
gree of precision, e.g. to the start of the current year, month
or day.

The final type of formula is an interval formula. This is
true if the timepoint associated with the current state is within
the interval3. The usual abbreviations of predicate logic are
defined for disjunction (∨), implication (→) and existential
quantification (∃). We also use the standard abbreviations for
existential and universal quantification over states in a path:
F+
I φ ≡ true U+

I φ andG+
I φ ≡ ¬F+

I ¬φ, with similar defini-
tions forF−I andG−I . We define future and past “weak until”

2We do not choose to qualifyX− andX+ by an interval. Al-
though one version[Haslum, 2002] of MITL qualifies its next-state
operator in this way, the version used in TLPlan[Bacchus and Ka-
banza, 1998] does not, and, in fact, the original definition of MITL
[Alur et al., 1996] did not include this operator at all.

3This is a generalisation of the notion of anominal in hybrid
logics: a formula that names a point in a model and is true if the
current point is the one named.

〈M,p, V 〉 |= φ whereφ is an atomic formula,
iff 〈p0, V 〉 |= φ.

〈M,p, V 〉 |= ¬φ iff 〈M,p, V 〉 6|= φ.

〈M,p, V 〉 |= φ ∧ ψ iff 〈M,p, V 〉 |= φ and〈M,p, V 〉 |= ψ.

〈M,p, V 〉 |= ∀x.φx iff for all d ∈ D, 〈M,p, V [d/x]〉 |= φx.

〈M,p, V 〉 |= X+φ iff 〈M,p1, V 〉 |= φ.

〈M,p, V 〉 |= X−φ iff for some pathq, q1 =p and

〈M, q, V 〉 |= φ.

〈M,p, V 〉 |= φU+
I ψ iff for somen≥0, 〈M,pn, V 〉 |= ψ,

τ(pn) ∈ IM,V and for allm s.t.0≤m<n,

〈M,pm, V 〉 |= φ.

〈M,p, V 〉 |= φU−
I ψ iff for some pathq and for somen, qn=p,

〈M, q, V 〉 |= ψ, τ(q)∈ IM,V , and for all

m s.t.0<m≤n, 〈M, qm, V 〉 |= φ.

〈M,p, V 〉 |= Aφ iff for all q ∈ Paths(p0), 〈M, q, V 〉 |= φ.

〈M,p, V 〉 |= Eφ iff for someq ∈ Paths(p0), 〈M, q, V 〉 |= φ.

〈M,p, V 〉 |=↓ux.φx iff 〈M,p, V [ floor(τ(p),uM )/x]〉 |= φx.

〈M,p, V 〉 |= I whereI is an interval formula, iffτ(p) ∈ IM,V .

Figure 1: The semantics of hyMITL±

operators in the following way4:

φW+
[l,u]ψ ≡ ↓ t.(G+

[t,u]φ ∨ φU+
[l,u]ψ)

with similar definitions for intervals with open bounds and for
W−. Finally, if a temporal operator is qualified by the interval
(−∞,+∞), we allow this to be suppressed for brevity.

3 Semantics of hyMITL±

Let S be a set of states, each being a first-order model for the
languageL over the fixed domainD, and all having the same
interpretation for the date/time sublanguage ofL. We denote
the image of date terms under this shared interpretation by
Dateand the image of the set of time unit constants byU .

A hyMITL± modelM is a tuple〈S,<, τ,≺, floor〉 where
< is a a total order relation onDate, τ is a function mapping
from S into Date, ≺ is a state predecessor relation in which
every state has a unique predecessor and a non-empty set of
successors and which is consistent with the ordering on dates:
∀s1, s2 ∈ S, s1≺s2 → τ(s1)<τ(s2), andfloor is a function
from Date× U to Date representing the notion of ‘rounding
down’ a time value to a particular level of granularity5.

A pathin a model is an infinite sequence of states with each
pair of adjacent elementssi andsi+1 satisfyingsi ≺ si+1.

4A straightforward extension of the usual definition would give
φW+

I ψ ≡ G+
I φ∨φU+

I ψ, which would be true ifφ is true through-
out a future intervalI but not before then.

5Thefloor function is subject to a number of semantic constraints
that we do not discuss here.



We writepi to denote elementi+1 of a pathp (with indices
starting at0), pn for the subsequence ofp beginning with
statepn, and extend the date functionτ to operate on paths:
τ(p) = τ(p0). The set of all paths starting from states is
denotedPaths(s).

Let V be a variable assignment mapping variables to el-
ements of the domainD. The notationV [d/x] represents
a variable assignment that is identical toV , except withx
mapping tod. For interval expressionsI in our language we
write IM,V (or just IM for ground interval expressions) to
denote the interval inDate formed by applyingV and the
interpretation of date constants and function symbols that is
common in all states ofM to the bounds ofI. We define
(−∞,+∞)M,V = Date. The interpretation inD of a ground
termt in the date/time sublanguage is denotedtM .

The truth of a formula in a modelM and for a pathp in M
is then defined as shown in Figure 1.

4 The Rule Language
We now identify a subset of hyMITL± that is suitable for
encoding social expectations in a form that can be used in
run-time compliance testing. We define the languageR to be
the set of all formulae of the following form:

AG+ ∀1≤i≤nxi.(φ→ ψ)

for n≥0, where:

• φ andψ are linear-time formulae, i.e. they do not contain
A or E;

• free variables(φ) = free variables(ψ) = {x1, . . . , xn};
• φ andψ do not contain any occurrences of∀, except

when represented using the∃ abbreviation as outlined in
the following clause:

• Any occurrence of∃ must be of the following restricted
form6: ∃x.(αx ∧ βx) wherex is free inαx andβx.

The intent of the last restriction is that matchingαx to the
current state should produce a finite set of variable bindings
for x, each of which should leaveβx with no free variables.
This can not be expressed syntactically and remains the re-
sponsibility of the rule designer (although any insufficiently
instantiated instances ofβx can be detected and discarded at
run time).

Rules of this form are intended to be used in the following
compliance-testing process:

Given a current state and the history of all prior
states and their associated times, for each rule,
match the left hand side (φ) against the current state
and history, resulting in a set of instances of the
right hand side (ψ). Add these instances to the set
of current expectations, then check all expectations
to see which are fulfilled or violated. Any expecta-
tions that can not yet be evaluated because they in-
volve future modalities will be ‘progressed’ to the
next state when it is created by an event observa-
tion.

6This is equivalent to TLPlan’s bounded existential quantifica-
tion [Bacchus and Kabanza, 2000].

This process requires that the left hand side of a rule can
be matched against the current state and history, leaving no
residual formula involving future states. This is not a syntac-
tic constraint—future modalities can legitimately appear in
the left hand side of a rule: considerF−I (α∧X+β). However,
this constraint can be checked at run time, with a rule appli-
cation simply failing if its left hand side can not be matched
using the current state and history alone. The rule designer
must also use his/her knowledge of the domain model to en-
sure that the left hand side can only have a finite (and prefer-
ably bounded) number of matches for any state and history.

The following section presents an example rule in this nota-
tion and then Section 6 describes the compliance-testing pro-
cess in more detail.

5 Example
Consider the case of an agent that can provide weekly reports
on a particular market for an annual fee. A potential customer
is advised of a fee for the service and has one week to confirm
the order and make payment. After this time, the price is
not valid and a new quote must be sought. Once payment is
made, the service-providing agent is committed to sending a
report to the customer once a week for 52 weeks or until the
customer cancels the order. If the customer cancels the order
before 52 weeks have passed, it may be eligible for a partial
refund, but we do not model that here.

Figure 2 shows how the service-providing agent could en-
code its conditional commitment using our rule syntax (where
p andc are the names of service provider and customer agents
respectively,t is an expression representing the time the of-
fer was made, andamountandprod id are expressions repre-
senting the amount to be paid for the service and the service
provider’s identification number for this product). This rule
could be sent from the provider to the customer as the con-
tent of a communicative act that explicitly asserts the commit-
ment is being made. Alternatively, making this commitment
may be an “institutional action”[Verdicchio and Colombetti,
2004a] that is inferred by bothp andc to have occurred as
a result of a particular dialogue between them having been
completed.

The rule in Figure 2 states that if the current state is one in
whichc has just made payment for the service, and the current
state is within the one week period from the time this offer is
made (timet) then weekly reports will be sent during the next
52 weeks untilp optionally cancels the order. The assertion
that weekly reports will be sent (the left hand side of theW+

operator) is encoded as the implication that if the report has
not been sent since the start of the current week then it will
be sent some time before the end of the week7.

This rule assumes that the actions of making a payment,
sending a report and cancelling an order can be observed by
both agents as occurring at a unique well defined time. In
practice, agents will not observe events simultaneously, and
their clocks cannot be guaranteed to be perfectly synchro-
nised. However, if these actions are implemented by send-
ing messages, the sending time (as recorded by the sender

7A tighter specification could identify a particular day of the
week on which the report will be sent



AG+ (Done(c, makepayment(c,p,amount,prod num)) ∧ [t, t +1 week) →
↓week w.((¬F−[−0,w]Done(p, sendreport(c,prod num,w)) → F+

(+0, w+1 week)Done(p, sendreport(c,prod num,w)))

W+
[+0, w+52 weeks]

Done(c, cancelorder(c,p,prod num)))

Figure 2: A rule expressing the terms of service offered by agentp

function checkstate
inputs: A history of state/time pairsh = 〈(s0, t0), . . . , (sn, tn)〉,

wheresn is the new state to be checked, a set of formulae
En−1 representing expectations that could not be fully
evaluated insn−1, and a set of rulesR.

outputs: A set of partially evaluated formulaeEn and a set of
notification assertionsN

begin
varsE = progressformulae(En−1, tn−tn−1) ∪

newexpectations(h,R),
En = ∅,N = ∅, dph = gensym()

for eachφ in E:
var φ′ = peval(φ, h, n, dph)
if φ′ = true,N = N ∪ {fulfilled(φ)}
else ifφ′ = false,N = N ∪ {violated(φ)}
else ifworth progressing(φ′),En = En ∪ {φ′}

return 〈En, N〉
end

Figure 3: The main algorithm:checkstate

and included in the message header) can be taken as the time
the action occurs. Provided that the intervals in a commit-
ment are of a significantly greater magnitude than the likely
clock slippage and message delivery delay, this approxima-
tion should be acceptable. The possibility of significantly in-
accurate message times (either forged or caused by inaccurate
clocks) is difficult to deal with; however, for ease of mod-
elling, the attempted detection of such occurrences (if possi-
ble and required) is best handled by a separate mechanism.

6 The Compliance Testing Process
The compliance testing process is performed by function
checkstateshown in Figure 3. This should be called by an
agent when it has performed an action or observed some event
that it (or the agent programmer) considers significant. The
checkstatefunction assumes that the agent has already cre-
ated a new state name and asserted into its world model for
that state any facts that it knows to hold (including facts ex-
pressing the occurrence of the actions and events that are con-
sidered to have triggered the transition to a new state). The
function receives as arguments the history of states, the cur-
rent unfulfilled expectations, and the set of rules defining the
social expectations of the institution to which the agent cur-
rently belongs.

The functionprogressformulaeapplies a modified version
of the progressalgorithm of Bacchus and Kabanza[1998]

to every unfulfilled expectation from the previous state, with
the diffence in time between the previous and current state
supplied as an additional argument. This algorithm gen-
erates a formula expressing what needs to be true in the
new state if the input expectation was true in the previous
state, but was not able to be evaluated there. For example,
progress(X+φ,∆) = φ, and if the intervalI is not in the
past,progress(φU+

I ψ,∆) has the following value:

pprogress(ψ,∆)q ∨ (pprogress(φ,∆)q ∧ φU+
parb(I,−∆)q ψ)

where corner quotes (p andq) are used to indicate the parts of
the formula that should be evaluated to generate subexpres-
sions, andarb (“adjust relative bounds”) is a function that
takes an interval term and a relative time and returns an ad-
justed version of the interval with that relative time added to
any relative bounds appearing in the interval.

The functionnewexpectationsmatches the left hand side
of each rule to the state history, and for each resulting rule in-
stantiation, adds the instantiated right hand side to the set of
new expectations that this function returns. Any expectations
that are not fully instantiated by this process (i.e. they have
free variables) are discarded. Thematchfunction used in this
process is shown in Figure 4. It is presented in the figure
as a non-deterministic function that can either fail or return
multiple variable bindings (one at a time). The notationxty
indicates a mapping from the semantic to the syntactic do-
main that chooses a term that names a given time point. This
must be built in to an implementation.

Once the new expectations have been computed, each for-
mula in the combined set of old and new expectations is par-
tially evaluated using the functionpevalshown in Figure 5.
This uses the history to evaluate a formula as much as possi-
ble, resulting intrue or false if the truth of the formula can be
determined yet, and otherwise returning a formula equivalent
to the original one (given the facts in the history states) but
modified where possible to make progression and future eval-
uation easier. Thesimplify function removes double nega-
tions and simplifies formulae that havetrue andfalse as sub-
formulae. In theU+

I case of thematchfunction, whenti<I,
an arb functional term is inserted into the resulting formula
instead of being evaluated. As the time of the next state is not
yet known, the evaluation must be delayed until the formula
is progressed when the next state is generated andcheckstate
is called again. For this reason, a symboldph (“delta place
holder”) is provided as an argument topeval. When thearb
term is encountered during progression, the place holder is
replaced by the∆ argument and the function is evaluated. In
the case for↓ formulae, a time constant must be generated
using thefloor function that is part of the semantic domain.



function match(non-deterministic)
inputs: A formulaφ, a history of state/time pairsh =

〈(s0, t0), . . . , (sn, tn)〉, and an indexi for the current state
output: A variable binding or⊥ (failure)
begin

if (i<0 ∨ i>n) fail
caseφ is an atomic formula:

chooseanyσ s.t.Dom(σ)=vars(φ) and〈si, σ〉 |= φ

return σ

caseφ = ¬φ1:
if free variables(φ)=∅ andmatch(φ1, h, i) fails, return {}
else fail

caseφ = φ1 ∧ φ2:
chooseσ=match(φ1, h, i) andreturn match(φ2σ, h, i)

caseφ = ∃x.(φ1 ∧ φ2):
let Ψ be the set{φ2σ|σ = match(φ1, h, i)

∧ free variables(φ2σ)=∅}
if Ψ 6= ∅ return

∨
ψ∈Ψ ψ else fail

caseφ = X+φ1: return match(φ1, h, i+1)

caseφ = X−φ1: return match(φ1, h, i−1)

caseφ = φ1 U+
I φ2:

begin
caseti>I: fail
caseti<I: chooseσ=match(φ1, h, i)

return match(φ1σU+
arb(I,ti−ti+1)

φ2σ, h, i+1)

caseti∈I: either chooseσ as for caseti<I
or chooseσ=match(φ2, h, i)

end
caseφ = φ1 U−

I φ2:
(Mirror image of U+

I case — omitted due to lack of space)
caseφ =↓ux.φx:

return match(φx[ x floor(ti, uM )y/x], h, i)
caseφ = I, whereI is an interval formula:

if ti ∈ I return {} else fail
end

Figure 4: Thematchfunction

The testworth progressingcan be used to discard expecta-
tions that could not be evaluated for reasons other than lack
of future information, such as atomic formulae for which
pevaldid not returntrue or false (if closed-world reasoning
is not used within states) or formulae with past modalities
that needed a longer history to be evaluated.

The use of thepeval function means that the progression
function does not need to handle atomic formulae—so it
needs no state argument as in the original definition[Bacchus
and Kabanza, 1998]—or ∃ or ↓ formulae.

In the match and peval functions, comparisons and op-
erations involving intervals are required. The semantics of
hyMITL± assumed that there is a date/time sublanguage with
a total order< on time, and in the following we assume we
have an implementation of that relation, extended in the ob-
vious way to allow comparisons with±∞. As both absolute
and relative times can appear in interval bounds, we extend
equality and the< relation to apply to the combined set of

absolute and relative times: for any absolute timet and rela-
tive timer, t 6= r, t<r ≡ r>0 andr<t ≡ r<0. We define
membership of a point in an interval as follows:

t∈ [l, u] ≡ ((l< t<u) ∨ (l is a relative bound andl=±0)

∨ (l is an absolute bound andl= t)

∨ (u is a relative bound andu=±0)

∨ (u is an absolute bound andu= t))

with similar (but simpler) definitions for intervals with open
ends. A consequence of these definitions is that (e.g.)∀t ∈
Date, t∈ [−1,+1]. The intuition is that all timepoints will be
in a interval defined in that way, at the moment of comparison.

For a time pointt and intervalI with lower boundl we
definet< I ≡ (t< l ∨ (t= l ∧ l 6∈ I)). We definet > I in
similar way.

7 Related Work
The closest work to that described here is the SOCS-SI sys-
tem[Alberti et al., 2004], which performs run-time protocol
compliance testing based onsocial integrity constraints: rules
that express positive and negative expectations as the conse-
quences of observed actions. Abductive inference is used to
generate expectations during run time and these are moni-
tored to determine their fulfilment or violation. The seman-
tics do not include an underlying model of time. Instead ex-
plicit time variables are associated with the observation and
expectation atoms in rules, and constraint logic programming
constraints can be used to relate these time points.

Mallya et al. [2004] proposed a language for represent-
ing social commitments that have a temporal nature. Their
notation uses interval expressions representing universal or
existential state quantification within these intervals, with se-
mantics based on a timed version of CTL. They provided an
analysis showing how to determine when a given commit-
ment could be known to be fulfilled or violated.

Verdicchio and Colombetti[2004b] presented a rich lan-
guage for making statements involving time, including in-
terval expressions that are a generalisation of the work by
Mallya et al. The language is defined axiomatically, and so
would not support run-time use as efficiently as the approach
proposed here, where metric time is built in to the semantics
and evaluation mechanism. This work inspired the use of a
date/time sublanguage in the present paper.

8 Conclusion
This paper has defined a rule language for defining social ex-
pectations based on a metric interval temporal logic and has
presented an algorithm that can be used at run time in a multi-
agent system to monitor when expectations are generated, ful-
filled and violated—either for the system as a whole (if all
events can be detected by a specialised monitoring agent) or
within an individual agent wishing to monitor the expecta-
tions it has of other agents. A prototype implementation of
the compliance testing procedure has been implemented us-
ing SWI Prolog. Most of the features described here have
been implemented, although currently the system is not con-
nected to an agent—it uses a static database of states and their



Case Result

i<0 ∨ i>n φ

φ is atomic
true if si |= φ

false if si 6|= φ

φ otherwise

φ = ¬φ1 simplify(¬ ppeval(φ1)q)
φ = φ1 ∧ φ2 simplify(ppeval(φ1)q ∧ ppeval(φ2)q)

φ = ∃x.(φx ∧ ψx)

false if match(φx, h, i) fails

simplify(
∨
ψ∈Ψ ψ) if Ψ={ψxσ|σ=match(φx, h, i) ∧ free variables(ψxσ)=∅}

is non-empty

φ otherwise

φ = X+φ1

true if peval(φ1, h, i+1, dph)= true

false if peval(φ1, h, i+1, dph)= false

X+ppeval(φ1, h, i+1, dph)q otherwise

φ = X−φ1 Mirror image ofX+case — omitted due to lack of space

φ = φ1 U+
I φ2

true if ti∈I ∧ peval(φ2, h, i, dph)= true

false if ti>I ∨
(peval(φ1, h, i, dph)= false ∧ peval(φ2, h, i, dph)= false)

X+(φ1 U+
arb(I,−pdphq)φ2) if (ti<I ∨ ti∈I) ∧ peval(φ1, h, i, dph)= true

φ otherwise

φ = φ1 U−I φ2 Mirror image ofU+
I case, except arb(I,−pdphq) becomesparb(I, ti−ti−1)q

φ =↓ux.φx peval(φx[ x floor(ti, uM )y/x], h, i, dph)
φ = I

(an interval formula)

true if ti∈I
false otherwise

Figure 5: Functionpeval(φ, h, i, dph), whereh = 〈(s0, t0), . . . , (sn, tn)〉

facts—and integers are used to represent times rather than a
specialised date/time language.

Future work includes investigating the expressivity of the
rule language for modelling complex scenarios, enhancing
it with additional operators (e.g. bounded universal quantifi-
cation) and applying it to interaction protocol verification—
where theX+ operator will have particular relevance. It is
also intended to deploy and evaluate this approach in a dis-
tributed multi-agent application.

Acknowledgements

Thanks to Hans van Ditmarsch and Willem Labuschagne for
their comments on a draft of this paper.

References
[Alberti et al., 2004] M. Alberti, F. Chesani, M. Gavanelli,

E. Lamma, P. Mello, and P. Torroni. Compliance verifi-
cation of agent interaction: a logic-based software tool.
In R. Trappl, editor,Cybernetics and Systems 2004, vol-
ume II, pages 570–575. Austrian Society for Cybernetics
Studies, 2004.

[Alur et al., 1996] R. Alur, T. Feder, and T. A. Henzinger.
The benefits of relaxing punctuality.Journal of the ACM,
43(1):116–146, 1996.

[Bacchus and Kabanza, 1998] F. Bacchus and F. Kabanza.
Planning for temporally extended goals.Annals of Mathe-
matics and Artificial Intelligence, 22(1-2):5–27, 1998.

[Bacchus and Kabanza, 2000] F. Bacchus and F. Kabanza.
Using temporal logics to express search control knowl-
edge for planning.Artificial Intelligence, 116(1-2):123–
191, 2000.

[Blackburnet al., 2001] P. Blackburn, M. de Rijke, and
Y. Venema.Modal Logic, chapter 7, pages 436–447. Cam-
bridge University Press, 2001.

[Cliffe and Padget, 2002] O. Cliffe and J. Padget. A frame-
work for checking agent interaction within institutions. In
MoChArt [2002].

[Cort́es, 2004] U. Cort́es. Electronic institutions and agents.
AgentLink News, 15:14–15, September 2004.

[Haslum, 2002] P. Haslum. Partial state progression: An ex-
tension to the Bacchus-Kabanza algorithm, with applica-
tions to prediction and MITL consistency. InProceedings



of the Workshop on Planning via Model-Checking, Sixth
International Conference on AI Planning and Scheduling,
pages 64–71, 2002.

[Hugetet al., 2002] M.-P. Huget, M. Esteva, S. Phelps,
C. Sierra, and M. Wooldridge. Model checking electronic
institutions. In MoChArt[2002].

[Leiteet al., 2004] J. A. Leite, A. Omicini, P. Torroni, and
P. Yolum, editors.Proceedings of the Workshop on Declar-
ative Agent Languages and Technologies (DALT 2004),
Third International Joint Conference on Autonomous
Agents and Multiagent Systems, 2004.

[Mallya et al., 2004] A. U. Mallya, P. Yolum, and M. P.
Singh. Resolving commitments among autonomous
agents. InAdvances in Agent Communication, volume
2922 ofLecture Notes in Computer Science, pages 166–
182. Springer, 2004.

[MoChArt, 2002] Proceedings of the Workshop on Model
Checking and Artificial Intelligence (MoChArt-2002),
15th European Conference on Artificial Intelligence, 2002.

[Verdicchio and Colombetti, 2003] M. Verdicchio and
M. Colombetti. A logical model of social commitment
for agent communication. InProceedings of the 2nd
International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2003), pages 528–535.
ACM Press, 2003.

[Verdicchio and Colombetti, 2004a] M. Verdicchio and
M. Colombetti. A logical model of social commitment for
agent communication. In F. Dignum, editor,Advances in
Agent Communication, International Workshop on Agent
Communication Languages, ACL 2003, volume 2922
of Lecture Notes in Computer Science, pages 128–145.
Springer, 2004.

[Verdicchio and Colombetti, 2004b] M. Verdicchio and
M. Colombetti. Dealing with time in content language
expressions. InProceedings of the Workshop on Agent
Communication, Third International Joint Conference
on Autonomous Agents and Multiagent Systems, pages
90–104, 2004.


