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Abstract

As the number of object-oriented software systems increases, it becomes more im-
portant for organizations to maintain those systems effectively. However, currently
only a small number of maintainability prediction models are available for object-
oriented systems. This paper presents a Bayesian network maintainability predic-
tion model for an object-oriented software system. The model is constructed using
object-oriented metric data in Li and Henry’s datasets, which were collected from
two different object-oriented systems. Prediction accuracy of the model is evaluated
and compared with commonly used regression-based models. The results suggest
that the Bayesian network model can predict maintainability more accurately than
the regression-based models for one system, and almost as accurately as the best
regression-based model for the other system.
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1 Introduction

It is arguable that many object-oriented (OO) software systems are currently
in use. It is also arguable that the growing popularity of OO programming lan-
guages, such as Java, as well as the increasing number of software development
tools supporting the Unified Modelling Language (UML), encourages more OO
systems to be developed at present and in the future. Hence it is important
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that those systems are maintained effectively and efficiently. A software main-
tainability prediction model enables organizations to predict maintainability
of a software system and assists them with managing maintenance resource.
In addition, if an accurate maintainability prediction model is available for
a software system, a defensive design can be adopted. This would minimize,
or at least reduce future maintenance effort of the system. Maintainability
of a software system can be measured in different ways. In this paper, main-
tainability is measured as the number of changes made to the code during
a maintenance period. Alternatively, maintainability may be measured as ef-
fort to make those changes. When maintainability is measured as effort, the
predictive model is called a maintenance effort prediction model. It is unfortu-
nate that the number of software maintainability prediction models including
maintenance effort prediction models, is currently very small in the literature.

Programming an OO software system is different from programming a non-
OO system due to the concepts that are specific to the OO paradigm, for
example, objects, inheritance and encapsulation. This difference limits the ap-
plicability of well-known non-OO software effort prediction models, such as
COCOMO [3], to OO software effort prediction, as well as non-OO software
metrics, such as Function Points [1], to measuring the characteristics of OO
software systems [23]. Hence a number of new software metrics were proposed
specifically for OO systems. Some of those OO metrics were used to predict
maintainability of OO systems. Examples of the OO metrics are Chidamber
and Kemerer (C&K) metrics and Li and Henry (L&H) metrics [10,25]. It was
shown that the L&H metrics had a correlation with the number of changes
made to the code of the OO software system [25]. It was also shown that
multiple linear regression models consisting of the C&K, L&H and other OO
metrics were able to predict software maintenance effort for some OO systems
[17].

This paper constructs an OO software maintainability prediction model using
a technique known as Bayesian network [14,20,22]. This technique allows a user
to construct a predictive model based on Bayesian probability theory [12]. An
application of Bayesian network to Software Engineering is currently limited
to a small number of studies of development effort prediction [2,11,31,34] and
defect prediction [15,28]. However, Bayesian network can also be a promis-
ing new technique for OO software maintainability prediction. This is due to
the ability to explicitly represent uncertainty using probabilities, the ability
to incorporate existing human expert’s knowledge into empirical data, and
the ability to update the model when new information becomes available.
Hence this paper investigates a research problem of what prediction accuracy
a Bayesian network OO software maintainability prediction model can achieve.
The term prediction accuracy in this paper means how well a predictive model
constructed using known data can predict the outcomes of unknown data. The
Bayesian network model’s prediction accuracy is evaluated using some accu-
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racy measures, which are commonly found in the software effort prediction
literature [16,24]. Those measures are absolute residuals, the magnitude of
relative error (MRE) and pred measures. Then, the Bayesian network model’s
prediction accuracy is compared with regression-based models, namely, a re-
gression tree [4] model and two different types of multiple linear regression
models.

The structure of the reminder of this paper is as follows. Section 2 describes
the OO software datasets and the sampling method used. Section 3 describes
the Bayesian network OO software maintainability prediction model. This
is followed by Section 4, which describes the regression tree model and the
multiple linear regression models. Section 5 describes the prediction accuracy
measures used. Section 6 evaluates the Bayesian network model’s prediction
accuracy using those accuracy measures and compares it with the regression
tree model and multiple linear regression models. Finally Section 7 presents
conclusions and discussions about a direction of future studies.

2 OO software datasets

2.1 Characteristics of datasets

This paper uses OO software datasets published by Li and Henry [25]. The
datasets consist of five C&K metrics: DIT, NOC, RFC, LCOM and WMC, and
four L&H metrics: MPC, DAC, NOM and SIZE2, as well as SIZE1, which is a
traditional lines of code size metric. Those metric data were collected from a
total of 110 classes in two OO software systems: User Interface Management
System (UIMS) and Quality Evaluation System (QUES). The code was writ-
ten in Classical − AdaTM . The UIMS and QUES datasets contain 39 classes
and 71 classes, respectively. Maintainability was measured in CHANGE met-
ric by counting the number of lines in the code, which were changed during
a three-year maintenance period. Neither UIMS nor QUES datasets contain
actual maintenance effort data. The description of each metric is given in
Table 1.

The descriptive statistics of the UIMS and QUES datasets are shown in Ta-
ble 2.

The Pearson’s correlation coefficients between CHANGE and each of the OO
metrics are shown in Table 3.

Table 3 shows that there is a significant correlation between CHANGE and the
OO metrics. However, Table 3 also shows that the correlations in the UIMS
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dataset are different from the correlations in the QUES dataset. In addition,
Tables 2 shows that the characteristics of the UIMS dataset are different from
the QUES dataset. Thus, this paper regards the UIMS and QUES datasets
as being heterogeneous and constructs a separate maintainability prediction
model for each dataset.

2.2 Sampling method

Approximately a two-third of the cases in each dataset is chosen by random
sampling without replacement using a function provided in a statistical soft-
ware package, SPSS 11.0. This subset forms a learning subset, which is used
to construct a maintainability prediction model. The remaining one-third of
the cases forms a test subset, which is used to evaluate the model’s prediction
accuracy for unknown data. This results in the UIMS having 26 cases in a
learning subset and the QUES 48 cases. Consequently, the UIMS has 13 cases
in a test subset and the QUES 23 cases. Although there are many different
ways to split a given dataset, this paper has chosen the described split for both
datasets. The decision was made in order to have a small number of learning
cases and at the same time, to maintain the comparability of prediction accu-
racy of the two datasets by using the same proportion of the cases for learning
and testing. This is because the number of known cases is usually small for
predicting maintainability of an OO software system and thus, using a small
number of learning cases is considered to be more realistic for the model.

The above sampling is repeated 10 times from each dataset in order to create
10 different subsets for learning and testing for each dataset. Those subsets are
used to perform a 10-cross validation when prediction accuracy of the models
are evaluated.

3 Bayesian network model

3.1 Bayesian network

A Bayesian network (also known as Bayes net, causal probabilistic network,
Bayesian belief network, or simply belief network) is a directed acyclic graph
(DAG) whose nodes represent events in a domain [22]. These events are con-
nected with directed links, which represent an association or a causal rela-
tionship between them. When a link represents an association, the direction
is defined according to the order of time in which the events happen, that
is, the link starts from the preceding event. When a link represents a causal
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relationship, the link starts from the causal event. Figure 1 shows an example
Bayesian network consisting of three events, X1, X2, and Y. In Figure 1, an
event is shown as an ellipse and a directed link is shown as an arrow. This
example Bayesian network shows that X1 and X2 have an association or a
causal relationship with Y, that is, the outcomes of the events X1 and X2

have an effect on the outcome of the event Y.

In a Bayesian network, a relationship between events is defined as a conditional
probability, P (Y | X), which is the probability of the event Y conditional on
a given outcome of event X. The conditional probability is calculated using
Bayes’ Theorem [22]:

P (Y | X) =
P (X | Y )P (Y )

P (X)
(1)

where P (X | Y ) is the conditional probability of the event X given the event
Y, and P(X) and P(Y) are the probabilities of events X and Y respectively.
From this point of view, Bayesian networks can be considered as a network of
events connected by the probabilistic dependencies between them. The proba-
bilistic dependency is maintained by the conditional probability table (CPT),
which is attached to the corresponding event. The CPT shows all possible
outcomes of the event and the conditional probabilities corresponding to each
outcome given an outcome of an associated or a causal event. If an event has
no associated or causal event, the event is given an unconditional (also called
a marginal) probability distribution instead of a CPT. Once either a CPT or
an unconditional probability distribution is assigned to all events, the network
can calculate the joint probability distribution P(θ,x) over the network, which
is defined as

P (θ, x) = P (x | θ)P (θ) (2)

In Equation 2, θ denotes a vector whose components are parameters that
describe the probability distributions over the network, and x denotes a piece
of data. In Equation 2, P(θ) is called the prior probability distribution of
the network and P(x | θ) is called the likelihood of the data, given the prior
probability distribution.

On the other hand, Bayes’ Theorem 1 shows that

P (θ | x) =
P (x | θ)P (θ)

P (x)
(3)

In Equation 3, P(θ | x) is called the posterior probability distribution of the
network. Considering that P(x) is a constant for a given x, Equations 2 and
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Name Description 
DIT Depth of the inheritance tree 

(= inheri tance level number of  the class, 0 for the root class)  
NOC Number of chi ldren 

(= number of direct sub-classes that the class has) 
M PC Message-passing coupling  

(= number of  send statements defined in the class)  
RFC Response for a class  

(= total of the number of local  methods and the number of  methods 
called by local methods in the class) 

LCOM Lack of cohesion of methods  
(= number of disjoint sets of  local methods, i.e. number of sets of local 
methods that do not interact with each other, in the class)  

DAC Data abstraction coupling  
(= number of abstract data types defined in the class) 

WM C Weighted method per class 
(= sum of McCabe’s cyclomatic complexity of al l  local methods in the 
 class) 

NOM Number of methods  
(= number of local methods in the class) 

SIZE1 Lines of cod  
(= number of  semicolons in the class) 

SIZE2 Number of  properties 
(= total  of the number of attributes and the number of  local methods in 
the class)  

Change Number of l ines changed in the class 
(insertion and deletion are independently counted as 1,  
 change of the contents is counted as 2) 

 

Table 1
Software Metrics [25]

Fig. 1. An Example Bayesian Network

6



 Mean Median Std Dev M in Max Skewness Kurtosis 
DIT 2.15 2 0.90 0 4 - 0.54 0.09 
NOC 0.95 0 2.01 0 8 2.24 4.28 
M PC 4.33 3 3.41 1 12 0.73 - 0.70 
RFC 23.21 17 20.19 2 101 2.00 4.94 
LCOM 7.49 6 6.11 1 31 2.49 6.86 
DAC 2.41 1 3.40 0 21 3.33 12.87 
WM C 11.38 5 15.90 0 69 2.03 3.98 
NOM 11.38 7 10.21 1 40 1.67 1.94 
SIZE1 106.44 74 114.65 4 439 1.71 2.04 
SIZE2 13.97 9 13.47 1 61 1.89 3.44 
Change 46.82 18 71.89 2 289 2.29 4.35 

                                                        (1) UIMS dataset  

 

 Mean Median Std Dev M in Max Skewness Kurtosis 
DIT 1.92 2 0.53 0 4 - 0.10 5.46 
NOC 0 0 NA 0 0 NA NA 
M PC 17.75 17 8.33 2 42 0.88 1.17 
RFC 54.44 40 32.62 17 156 1.62 1.96 
LCOM 9.18 5 7.31 3 33 1.35 1.10 
DAC 3.44 2 3.91 0 25 2.99 12.82 
WM C 14.96 9 17.06 1 83 1.77 3.33 
NOM 13.41 6 12.00 4 57 1.39 1.40 
SIZE1 275.58 211 171.60 115 1009 2.11 5.23 
SIZE2 18.03 10 15.21 4 82 1.71 3.42 
Change 64.23 52 43.13 6 217 1.36 2.17 

                                                        (2) QUES dataset 

Table 2
Descriptive Statistics

3 show that

posterior distribution ∝ likelihood× prior distribution (4)

as well as

posterior distribution ∝ joint probability distribution (5)

The above relationship 4 provides the principle of Bayesian updating, where
the prior probability distribution is updated using the likelihood of observed
data. That is, a Bayesian network can be recalibrated every time new infor-
mation becomes available. The effect of new information propagates both for-
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Pearson’s Cor relation Coefficient  
UIMS dataset QUES dataset 

DIT           - 0.433**           - 0.090 
NOC 0.559** NA 
M PC 0.454** 0.461** 
RFC 0.643** 0.388** 
LCOM 0.568**              0.050 
DAC 0.629**              0.083 
WM C 0.646** 0.425** 
NOM 0.635**              0.142 
SIZE1 0.626** 0.635** 
SIZE2 0.666**              0.149 

        (** indicates a significant correlation at the 0.01 level)   

Table 3
Correlations between CHANGE and OO Metrics

ward and backward on the network and it enables the network to update the
joint probability distribution. In addition, the prior probability distribution
of a Bayesian network can be specified subjectively, that is, specified initially
based on only human expert’s knowledge. Then, the network is updated using
empirical data. This enables expert’s knowledge to be incorporated into empir-
ical data. Alternatively, when no expert’s knowledge is available for specifying
the prior probability distribution, the network can perform batch learning. In
batch learning the structure of the network and all the CPTs and uncondi-
tional probability distributions are learned from data. There are a number of
different algorithms that enable a Bayesian network to perform batch learn-
ing [9].

The relationship 5 is the principle of Bayesian inference, where computation of
the joint probability distribution is performed in order to summarize the poste-
rior probability distribution. On a Bayesian network, the computation of the
joint probability distribution is simplified using the chain rule. The chain rule
enables the joint probability distribution to be calculated as the product of
CPTs and unconditional probability distributions over the network. When a
Bayesian network is a predictive model, the resulting posterior probability dis-
tribution provides the probability distribution of the predicted variable, that
is, a list of all possible outcomes of the variable and the associated probabili-
ties. In other words, a Bayesian network model provides an interval estimate
of the predicted variable with the associated probabilities. When a point es-
timate is preferable, the outcome with the highest probability value would be
chosen. More detailed information about Bayesian network can be found in
the literature [14,20,22,12].
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3.2 Model construction

There are a number of software tools that assist with constructing a Bayesian
network. This paper uses a tool called Bayda, a software package developed
in the University of Helsinki. Bayda allows users to construct a special type of
Bayesian networks called Näıve-Bayes classifier. A Näıve-Bayes classifier is a
Bayesian network, in which a single node representing a classification variable
is connected to all other nodes that represent predictor variables. This special
Bayesian network assumes no expert’s knowledge about the prior probability
distribution, but performs batch learning to learn it from data. This paper
chooses a Näıve-Bayes classifier instead of a general Bayesian network. This is
because for the Bayesian network maintainability prediction model, a single
node CHANGE is connected to the 10 OO metric predictor variables in Table 1,
but no sufficient expert’s knowledge is available to quantitatively specify the
prior probability distribution of this network. Thus, the network needs to
perform batch learning using a learning subset.

After the batch learning, the network predicts the posterior probability distri-
bution of CHANGE for each case in the corresponding test subset, by comput-
ing the joint probability distribution. As was mentioned previously, a Bayesian
network model’s prediction output is an interval estimate. However, this pa-
per uses a point estimate. This is because the interval estimate is difficult to
compare with the other models. The point estimate is chosen from the interval
estimate as the value that has the highest probability. When more than one
value have the same highest probability, the mean of those values is chosen.

4 Regression-based models

4.1 Regression tree model

Regression tree is a tree-structured regression technique, which recursively
partitions the data space of a given dataset with a number of regression sur-
faces, on each of which a constant estimate of the response variable is given
according to a chosen regression method [4]. Figure 2 shows an example re-
gression tree. In Figure 2, four sequential binary splits partition all cases in the
dataset into five terminal nodes T1, . . . , T5, which are shown as five squares.
Each terminal node consists of only the cases that satisfy the corresponding se-
quential splitting rules to reach it. An ellipse represents an intermediate node,
where cases are split according to the splitting rule. A regression tree gives an
estimate of the response variable at each intermediate node and each terminal
node. The estimate is calculated from the cases in the node, but the type of

9



Fig. 2. An Example Regression Tree

the estimate depends on the splitting rule. For example, the splitting rule used
is to minimize the mean within node sum of squares, mean of the cases in the
node is used as the estimate for the node. In Figure 2, the estimates are shown
as Y1, . . . , Y9.

A regression tree also outputs the decision rule at each intermediate node.
The decision rule shows how cases are split at the node, and is described as
the condition that one or more predictor variables must satisfy. This makes
a regression tree similar to a decision tree and makes the structure easy to
understand. Many researchers have found regression tree to be a useful tech-
nique for software effort prediction, especially due to the good explanatory
ability [5–8,19,21,29,30,32].

Regression tree is different from Bayesian network. As a summary, regres-
sion tree is a regression-based classification technique, which outputs a tree
structure similar to a decision tree. A regression tree model is constructed to
classify cases in a learning subset based on a specified splitting rule, which is
similar to a rule in regression. For example, a regression tree classifies cases
by minimizing the mean within node sum of squares. This splitting rule is
similar to ordinary least square in regression. A regression tree model does
not calculate the probability of the response variable in prediction. It provides
a point estimate of the value calculated from the cases in the terminal node,
into which a test case is classified.
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A regression tree maintainability prediction model is constructed using the
same learning subset as the Bayesian network model. The model uses all 10 OO
metrics as predictor variables and predicts the value of the response variable
CHANGE. The tool used is CART 5.0. The default settings provided by the
tool are used for the regression tree construction. The splitting rule chosen is
to minimize the mean within node sum of squares. After learning, the model
predicts the value of CHANGE for a test case by providing a point estimate.
The estimate is the mean of all the cases in the terminal node, into which the
test case is classified according to the decision rules of the tree.

4.2 Multiple linear regression models

Two types of multiple linear regression models are constructed from the same
learning subset as the previous models. The software package used is SPSS
11.0. In multiple linear regression, a variable selection procedure enables only
important predictor variables to be included in the model. Two commonly
used variable selection procedures are backward elimination and stepwise se-
lection. Backward elimination eliminates predictor variables whose contribu-
tion is less significant according to a specified criterion, while stepwise selection
enters predictor variables whose contribution is more significant. In addition,
stepwise selection re-assesses the contribution of the variables that already en-
tered, every time a new variable is entered. The re-assessment is performed in
the same way as backward elimination using a specified elimination criterion.
Backward elimination and stepwise selection often produce different models.
Thus, this paper constructs one multiple linear regression model using back-
ward elimination and the other using stepwise selection. The elimination crite-
rion used in backward elimination is the p-value of the F statistic being larger
than or equal to 0.1. The entering criterion used in stepwise selection is the
p-value of the F statistic being smaller than or equal to 0.05. The eliminating
criterion used in stepwise selection is the same as the one used in backward
elimination.

In multiple linear regression, multicollinearity between the predictor variables
often causes a problem of an unstable model and a large standard error in
prediction. Thus, multicollinearity is monitored by the variance inflation factor
(VIF) statistic in this paper. A VIF value larger than 10 usually indicates the
presence of multicollinearity. When multicollinearity is detected by the VIF
value, the offending predictor variable is removed and the model is rebuilt
without the offending variable.

The backward elimination model constructed is different from the stepwise
selection model for eight out of the 10 learning subsets in the UIMS dataset,
and six out of the 10 learning subsets in the QUES dataset. All of those mul-
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tiple linear regression models have strongly significant parameter coefficients,
as indicated by the associated p-value that is smaller than 0.01. The resid-
ual plots of the models show no sign of violation of the assumptions in linear
regression.

5 Prediction accuracy measures

This paper evaluates and compares the OO software maintainability predic-
tion models quantitatively, using the following prediction accuracy measures:
absolute residual (Ab.Res.), the magnitude of relative error (MRE) and pred
measures.

The Ab.Res. is the absolute value of residual given by:

Ab.Res. =| actual value− predicted value | (6)

In this paper, the sum of the absolute residuals (Sum Ab.Res.), the median
of the absolute residuals (Med.Ab.Res.) and the standard deviation of the
absolute residuals (SD Ab.Res.) are used. The Sum Ab.Res. measures the total
residuals over the dataset. The Med.Ab.Res. measures the central tendency
of the residual distribution. The Med.Ab.Res. is chosen to be a measure of
the central tendency because the residual distribution is usually skewed in
software datasets. The SD Ab.Res. measures the dispersion of the residual
distribution.

MRE is a normalized measure of the discrepancy between actual values and
predicted values, given by [24]:

MRE =
| actual value− predicted value |

actual value
(7)

In this paper, the maximum value of MRE (Max.MRE) is used. The Max.MRE
measures the maximum relative discrepancy, which is equivalent to the maxi-
mum error relative to the actual effort in the prediction. The mean of MRE,
the mean magnitude of relative error (MMRE):

MMRE =
1

n

i=n∑
i=1

MREi (8)

is also used. MMRE measures the average relative discrepancy, which is equiv-
alent to the average error relative to the actual effort in the prediction. Some-
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times MMRE is expressed in %. However, this paper follows the difinition
given in Equation 8 and does not express MMRE in %.

Pred is a measure of what proportion of the predicted values have MRE less
than or equal to a specified value, given by [16]:

Pred(q) =
k

n
(9)

where q is the specified value, k is the number of cases whose MRE is less
than or equal to q, and n is the total number of cases in the dataset. In this
paper, pred(0.25) and pred(0.30) are used because those two pred measures
are commonly used in the software effort prediction literature.

In order for an effort prediction model to be considered accurate, MMRE ≤
0.25 [13] and/or either pred(0.25) ≥ 0.75 [13] or pred(0.30) ≥ 0.70 [27] is
suggested in the literature. On the other hand, there is a concern about MRE
because MRE is biased [33] and not always reliable as a prediction accuracy
measure [18]. However, MRE has been the de facto standard in the software
effort prediction literature and no alternative standard exists at present. Thus,
this paper still uses the above criteria. However, in addition to that, this paper
uses the absolute residual measures because it has shown that the absolute
residual measures, in particular the SD Ab.Res., are a better measure than
MRE for model comparison [18].

6 Model evaluation and comparison

6.1 Results from UIMS dataset

Table 4 shows the values of the prediction accuracy measures achieved by each
of the maintainability prediction models for the UIMS dataset. The values in
this table are the mean of the values obtained from the 10 different test subsets,
which were created using the sampling method described in Section 2.

Table 4 shows that the Bayesian network model has achieved the MMRE value
of 0.972, the pred(0.25) value of 0.446 and the pred(0.30) value of 0.469. Al-
though these values do not satisfy the criteria of an accurate prediction model,
which was mentioned in Section 5, those values are the best among all the four
models studied. The Wilcoxon signed-rank tests of the MRE values have also
confirmed strong evidence that the Bayesian network model’s MMRE value is
significantly lower and thus, better than those of the other models. In addition,
Table 4 shows that the prediction accuracy of the Bayesian network model is
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Model Max. 
MRE 

MMRE 
Pred 
(0.25) 

Pred 
(0.30) 

Sum 
Ab.Res. 

Med. 
Ab.Res. 

SD 
Ab.Res. 

Bayesian 
network  

   7.039   0.972  0.446  0.469 362.300  10.550  46.652 

Regression 
tree 

   9.056   1.538  0.200  0.208 532.191  10.988  63.472 

Backward 
el imination 

 11.890   2.586  0.215  0.223 538.702  20.867  53.298 

Stepwise 
selection 

 12.631   2.473  0.177  0.215 500.762  15.749  54.114 

 

Table 4
Prediction accuracy for the UIMS dataset

Model Max. 
MRE 

MMRE 
Pred 
(0.25) 

Pred 
(0.30) 

Sum 
Ab.Res. 

Med. 
Ab.Res. 

SD 
Ab.Res. 

Bayesian 
network  

  1.592   0.452  0.391  0.430 686.610  17.560  31.506 

Regression 
tree 

  2.104   0.493  0.352  0.383 615.543  19.809  25.400 

Backward 
el imination 

  1.418     0.403    0.396    0.461   507.984  17.396   19.696 

Stepwise 
selection 

  1.471     0.392    0.422    0.500   498.675  16.726   20.267 

 

Table 5
Prediction accuracy for the QUES dataset

also the best in the absolute residual measures. The Wilcoxon signed-rank
tests of the absolute residuals have again confirmed strong evidence that the
differences of the Bayesian network model from the other models are signifi-
cant. Thus, it is concluded that the Bayesian network model is able to predict
maintainability of the UIMS dataset better than the regression-based models
studied.

6.2 Results from QUES dataset

Table 5 shows the values of the prediction accuracy measures achieved by each
of the maintainability prediction models for the QUES dataset. The values in
this table are the mean of the values obtained from the 10 different test subsets.
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Table 5 shows that the Bayesian network model has achieved the MMRE
value of 0.452, the pred(0.25) value of 0.391 and the pred(0.30) value of 0.430.
Again these values do not satisfy the criteria of an accurate prediction model.
In comparison with the UIMS dataset, the MMRE value of 0.452 is better,
while the pred(0.25) and pred(0.30) values are poorer. This suggests that the
performance of the Bayesian network models may vary depending on the char-
acteristics of dataset and/or depending on what prediction accuracy measure
is used. Unfortunately the authors are not able to make any more comment
on this finding at present as it requires further investigation.

In comparison with the two multiple linear regression models, the prediction
accuracy of the Bayesian network model is lower in all the measures. However,
the Wilcoxon signed-rank test of the MRE values has shown no evidence of
the difference of the Bayesian network model from the backward elimination
model as indicated by the p-value of 0.078. On the other hand, the same test
on the stepwise selection model has shown weak evidence of the difference
as indicated by the p-value of 0.029. The tests of the absolute residuals have
shown strong evidence that the difference of the Bayesian network model from
the two multiple linear regression models is significant. Thus, it is concluded
that the Bayesian network model’s MMRE is not much different from those of
the multiple linear regression models, although the Bayesian network model’s
absolute residual statistics are different.

In comparison with the regression tree model, the prediction accuracy of the
Bayesian network model is better in most measures, with an exception of the
two absolute residual measures: the sum and the standard deviation. However,
the Wilcoxon signed-rank tests have shown no evidence of the differences as
indicated by the p-value of 0.752 for MRE, and 0.173 for absolute residuals.
Thus, it is concluded that there is no difference in prediction accuracy between
the Bayesian network model and the regression tree model.

Considering the above findings, the best model for the QUES dataset seems
one of the two multiple linear regression models. However, it is difficult to
determine exactly which model is the best because the measures in Table 5
present an inconsistent result. That is, the backward elimination model is
better when the Max.MRE and the SD Ab.Res. values are taken account of,
while the stepwise selection model is better when the MMRE, pred(0.25),
pred(0.30), Sum Ab.Res. and Med.Ab.Res. values are taken account of. In
addition, the Wilcoxon signed-rank tests of the MRE values and the absolute
residuals have shown no evidence of the differences between those two models,
as indicated by the p-value of 0.562 for MRE, and 0.694 for absolute residuals.
Thus, it is concluded that both multiple linear regression models are the best
model for the QUES dataset. However, it should be noted that the MMRE,
pred(0.25) and pred(0.30) values of those best models do not satisfy the criteria
of an accurate prediction model, either.
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6.3 Discussion

Any of the maintainability prediction models constructed in this paper does
not satisfy the criteria of an accurate prediction model. However, it is reported
that prediction accuracy of software maintenance effort prediction models are
often low and thus, it is very difficult to satisfy the criteria [26]. In addition,
the prediction accuracy achieved by the maintainability prediction models are
certainly higher than the value that would have been if none of the models
were used. Thus, it is concluded that the models presented in this paper can
predict maintainability of the OO software systems in Li and Henry datasets
reasonably well. In particular, the Bayesian network maintainability prediction
model has been able to achieve significantly better prediction accuracy than
the regression-based models for the UIMS dataset. For the QUES dataset,
although the Bayesian network model’s prediction accuracy has not been as
good as the best regression-based models, that is, the multiple linear regres-
sion models, it has been reasonably close. Thus, this could suggest that the
Bayesian network model can still be reasonably competitive against the best
regression-based models for the QUES dataset.

7 Conclusions

A Bayesian network OO software maintainability prediction model is con-
structed using the OO software metric data in Li and Henry datasets. The
prediction accuracy of the model is evaluated and compared with the regres-
sion tree model and the multiple linear regression models using the prediction
accuracy measures: the absolute residuals, MRE and pred measures. The re-
sults show that the Bayesian network model can predict maintainability of
the OO software systems. For the UIMS dataset, the Bayesian network model
has achieved significantly better prediction accuracy than the regression tree
model and the multiple linear regression models. For the QUES dataset, al-
though the Bayesian network model’s prediction accuracy has not been as
good as the best models, it has been still reasonably competitive against the
best models. Thus, it is concluded that the prediction accuracy of the Bayesian
network model is better than, or at least, is competitive against the regression-
based models. Those findings have also confirmed that Bayesian network is
indeed a useful modelling technique for software maintainability prediction,
although further studies are required to realize the full potential as well as the
limitation.

The results in this paper also suggest that the prediction accuracy of the
Bayesian network model may vary depending on the characteristics of dataset
and/or the prediction accuracy measure used. This provides an interesting
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direction for future studies. Another interesting direction would be using a
Bayesian network with a different structure, for example, a tree augmented
Näıve-Bayes classifier (TAN) or a general Bayesian network, for software effort
prediction. The authors are currently carrying out a research that applies
a general Bayesian network to software development effort prediction. Such
studies would allow us to investigate the capability of Bayesian network in
Software Engineering further.
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