
Agent-Based Integration of Web Services
with Workflow Management Systems

Bastin Tony Roy Savarimuthu
Maryam Purvis
Martin Purvis

Stephen Cranefield

The Information Science
Discussion Paper Series

Number 2005/05
April 2005

ISSN 1177-455X

University of Otago

Department of Information Science

The Department of Information Science is one of seven departments that make up the
School of Business at the University of Otago. The department offers courses of study
leading to a major in Information Science within the BCom, BA and BSc degrees. In
addition to undergraduate teaching, the department is also strongly involved in post-
graduate research programmes leading to MCom, MA, MSc and PhD degrees. Re-
search projects in spatial information processing, connectionist-based information sys-
tems, software engineering and software development, information engineering and
database, software metrics, distributed information systems, multimedia information
systems and information systems security are particularly well supported.

The views expressed in this paper are not necessarily those of the department as a
whole. The accuracy of the information presented in this paper is the sole responsibil-
ity of the authors.

Copyright

Copyright remains with the authors. Permission to copy for research or teaching pur-
poses is granted on the condition that the authors and the Series are given due ac-
knowledgment. Reproduction in any form for purposes other than research or teach-
ing is forbidden unless prior written permission has been obtained from the authors.

Correspondence

This paper represents work to date and may not necessarily form the basis for the au-
thors’ final conclusions relating to this topic. It is likely, however, that the paper will ap-
pear in some form in a journal or in conference proceedings in the near future. The au-
thors would be pleased to receive correspondence in connection with any of the issues
raised in this paper, or for subsequent publication details. Please write directly to the
authors at the address provided below. (Details of final journal/conference publication
venues for these papers are also provided on the Department’s publications web pages:
http://www.otago.ac.nz/informationscience/pubs/). Any other correspondence con-
cerning the Series should be sent to the DPS Coordinator.

Department of Information Science
University of Otago
P O Box 56
Dunedin
NEW ZEALAND

Fax: +64 3 479 8311
email: dps@infoscience.otago.ac.nz
www: http://www.otago.ac.nz/informationscience/

http://www.otago.ac.nz/informationscience/pubs/
mailto:dps@infoscience.otago.ac.nz
http://www.otago.ac.nz/informationscience/

Agent-based integration of Web Services with Workflow Management Systems
(WfMSs)

Tracking number : 489

Abstract

Rapid changes in the business environment call for more
flexible and adaptive workflow systems. Researchers have
proposed that Workflow Management Systems (WfMSs)
comprising multiple agents can provide these capabili-
ties. We have developed a multi-agent based workflow sys-
tem, JBees, which supports distributed process models
and the adaptability of executing processes. Modern work-
flow systems should also have the flexibility to integrate
available web services as they are updated. In this pa-
per we discuss how our agent-based architecture can be
used to bind and access web services in the context of exe-
cuting a workflow process model. We use an example from
the diamond processing industry to show how our agent ar-
chitecture can be used to integrate web services with
WfMSs.

1. Introduction

Workflow management systems (WfMSs) [20, 13] are
widely used to manage business processes due to their
known benefits such as automation, co-ordination and col-
laboration between entities. Still, the existing, commercially
available workflow management systems do not offer suffi-
cient flexibility for distributed organizations participating in
the global market.

Existing systems have rigid, centralised architectures
that do not operate across multiple platforms [18]. Improve-
ments can be made by employing a distributed network of
autonomous software agents that can adapt to changing cir-
cumstances. In particular some of the reasons for wanting
an adaptive WfMS are:

• It may not be possible to specify all the process de-
tails associated with a complex process at the outset.
The initial model may represent a high-level view of
the process, which includes some of the sub-processes.
Gradually some of these sub-processes may be refined
as the stakeholders obtain more experience and knowl-
edge of a particular process.

• Due to changes in the market or regulatory environ-
ment, new requirements may be imposed which can
impact the process definition. Changes in the market
may also include the availability of some new tech-
nologies and new services such as web services which
may require the modification of the process.

The work of Fleurkeet al.[8, 7] deals with the framework
of a distributed network of autonomous software agents that
can adapt to the changing circumstances in a workflow man-
agement system. The business processes undergo changes
over time to accommodate a changing environment such as
the availability of web services. Business processes should
be able to take advantage of web services that are avail-
able in an intranet as well as in the Internet, such as stock
monitoring web services. The workflow system that mod-
els these business processes should have necessary mecha-
nisms to integrate and use these web services. In this paper
we describe the extension to the work done by Fleurkeet
al. The enhanced framework provides mechanisms to cre-
ate agents that are capable of accessing various web ser-
vices.

The paper is organized as follows. The next section gives
an overview of the background information on coloured
Petri nets, software agents,WfMSs and web services. The
architecture of the system is described in Section 3. In the
fourth section we discuss the underlying mechanism of in-
tegrating web services with our workflow system based on
multiple agents. We have used a real life example of inte-
grating web services with a diamond processing workflow
driven by agents. We present the conclusions and future di-
rections of our work in section five.1 2

2. Background

In this section we explain the background of our work
which includes the coloured Petri nets that are used to de-
sign the process models, the multi-agent system on which

1 * The primary author is a student.
2 * A demonstration of this system will be available to be shown at the

conference.

1

our workflow system has been built, and some prior ap-
proaches in using web services with agents.

2.1. Coloured Petri nets

Petri nets [14] are a formalism and associated graphi-
cal notation for modelling dynamic systems. The state of
the system is represented byplaces(denoted by hollow cir-
cles) that can containtokens(denoted by symbols inside the
places). The possible ways that the system can evolve are
modelled by definingtransitions (denoted by rectangles)
that have input and output arcs (denoted by arrows) con-
nected to places. The system dynamics can be enacted (non-
deterministically) by determining which transitions areen-
abledby the presence of tokens in the input places, select-
ing one andfiring it, which results in tokens being removed
from its input places and new tokens being generated and
placed in the output places.

Figure 1: A Coloured Petri net model of fault processing
system

Coloured Petri nets (CPNs) [11] are an elaboration of or-
dinary Petri nets. In a coloured Petri net, each place is as-
sociated with a ‘colour’, which is a type (although the the-
ory of CPNs is independent of the actual choice of type sys-
tem). Places can contain a multiset of tokens of their de-
clared type. Each input arc to a transition is annotated with
an expression (possibly containing variables) that represents
a multiset of tokens. For a transition to be enabled, it must
be possible to match the expression on each input arc to
a sub-multiset of the tokens in the associated input place.
This may involve binding variables. In addition, a Boolean
expression associated with the transition (itsguard) must
evaluate to true, taking into account the variable bindings.
When a transition is fired, the matching tokens are removed
from the input places, and then multiset expressions anno-
tating the output arcs are evaluated to generate the new to-
kens to be placed in the output places. If the expression on
an output arc evaluates to the empty multiset then no tokens
are placed in the connected place. Our system uses CPN to
model, simulate and execute workflow processes. Figure 1
shows a coloured Petri net model of a fault processing sys-
tem.

2.2. WfMSs and agents

In the context of WfMSs, agent technology has been
used in different ways [12]. In some cases the agents ful-
fil particular roles that are required by different tasks in the
workflow. In these cases the existing workflow is used to
structure the coordination of these agents [10, 15]. An ex-
ample of this approach is the work by M. Nissen in de-
signing a set of agents to perform activities associated with
the supply chain process in the area of e-commerce [15].
In other cases, the agents have been used as part of the
infrastructure associated with the WfMS itself in order to
create an agent-enhanced WfMS [19, 22]. These agents
provide an open system with loosely coupled components,
which provides more flexibility than the traditional sys-
tems. Some researchers have combined both of these ap-
proaches [6], where an agent-based WfMS is used in con-
junction with specialized agents that provide appropriate
application-related services.

In our framework, JBees [8], the WfMS is partitioned
among various interacting agents following the interac-
tion protocols. The model associated with a business pro-
cess is represented using the coloured Petri net formalism
and is executed by a specially designed agent. This agent-
based environment facilitates the dynamic incorporation of
changed models into the system and thereby assists pro-
cess re-engineering. Advantages of employing agents in-
clude the facilitation of inter and intra organizational co-
operation and flexibility in choosing processes on-the-fly
and controlling process parameters.

2.3. Web Services

Web Services are software components available on the
Internet, which provide certain services that may be of gen-
eral interest, such as weather monitoring services, currency
converters, etc. A large fraction of the web services are
used within companies protected within their own firewalls.
These web services can be accessed for day-to-day business
transactions. Examples of these web services include bank-
ing services and air ticket booking. The workflow process
modeller can integrate web services with the existing work-
flow sytem. For example, a process model associated with
the travel plan of a tourist may depend upon environmen-
tal factors, such as the weather conditions. The task associ-
ated with finding the weather condition can be provided us-
ing a web service.

2.4. Related Work

Some researchers have integrated agent-based workflow
systems with web services [4, 5, 21]. However enhance-
ments can be made to improve these approaches.

2

Figure 2: Architecture of the multi-agent based workflow management system

In the research done by Buhleret al. [4, 5], BPEL4WS
[2] has been used as a process model and this model is con-
verted to a Petri net. The problem with this approach as ac-
knowledged by the authors, is that the demonstration system
developed by the researchers so far does not support some
of the simple constructs of BPEL4WS. However, in our sys-
tem the process model is described using a coloured Petri
net that can be directly executed. Our system does not re-
quire the conversion of a BPEL process into a Petri net pro-
cess. The conversion mechanism of a BPEL4WS model to
a Petri net model has to be validated to ensure the struc-
tural and behavioural equivalence associated with the origi-
nal model.

3. System Architecture

Our system is based on the FIPA [3] compliant agent
platform, Opal [17] and uses the CPN-execution tool JFern
[16]. Our system consists of seven types of special Opal
agents which provide the functionality to control the work-
flow. Figure 2 shows the architecture of the agent-based
workflow system.

The manager agent provides all functionality the work-
flow manager needs, such as creation and deletion of tasks,
roles and process definitions, instantiation of new process
instances, and creation of resource agents. The process
agent executes a process instance. Each resource in the sys-
tem has its own resource agent. Every resource in the sys-
tem gets registered to one of the broker agents that allocate
resources to the process. The storage agent manages the per-

sistent data that is needed. The monitor agent collects all the
process-specific data and sends them to the storage agent.
The control agent continuously looks for anomalies to the
criteria specified by the human manager and reports the vi-
olations of these criteria to the manager agent. The manager
agent provides information to the human manager, which
can be used as a feedback mechanism. A detailed descrip-
tion of these agents can be found in the work byX (name
suppressed for blind reviewing purposes)[24, 23].

��������

�	�
��
�������
�����
�
�����

���
	
���

�������
�	�
�

����
�

����
� �

�
��������
��
�	�
�
�

������	��
�	��
	����	�	��	���
	��	�	�����	���	����

�
������
	����	�	
�����
	��	�������
	��	�����	�

���������	�
���	�
�
�����

�	���

	�������

�	��������

�

��

	������������	����������

������	��
�	��
	����������	��	���	��
����	�����	��	��

������
	��	�����	�

��		
�����
��
����
�

����
�	��
���
�����	�	��
�

Figure 3: Task execution mechanism

4. Integrating Web Services

This section describes how we have integrated web ser-
vices with our workflow management system using agents.

3

��������	

�
��
��	����	��
�

����	�
�
�

�	���	����	
���������

�����������	

��������

�����������	

�������
�������

�����������	

������
������������
�������

�����������	

������
� �	�����

���

!	�	��
���������	�
�
�	���������	�
������	�
�
����"	��
	����	

#��$�	�
����	�����%���������	��	

������������	
��
���	����	�����������
������
���	����	��	�����	��������
�� ���
��!� "����# $��	
��
�������
�� ���
��!���%���&#�����
���'����(���'���)������
���	����	��	�����	��������
�� ���
��!���%���&#�� "����# $�*+

���&��	���������	�
����
��"	��
	����	��
����
%	�

��
��	�	��
	���
����"
�������

,'����-"���	��'���
�������)�����,'����-"���	��'��.��������/

,'����-"���	��'��"����!(��	�0'�	�)�
��������	�,'����-"���	��'��"�����/

11�*�����������		
�	
������	�
������
�����������
����
������
��
��������
�
�����������	

'��&��	�����
	�������	
���
	
�����
���	����	���	����	�)����������
���	����	��	����	�#$2 ���/
��	����	��	��	�	'0	���	�-	��/
��	����	��	�����	��������
�� ���
��!���%���&#������.�3�	��
��/

�4'���	�-���	����	3����	����	���	�$	5����0	����'��#-���/

Figure 4: Code generation for a Web Service Agent

4.1. Underlying mechanism

The resource agents in our WfMS are equipped to per-
form the tasks specified in the transition of the CPN. Each
resource subsumes one or more roles. Each role is capable
of performing certain tasks.

4.1.1. Types of resource agents.These resource agents
may be interfaces to the human agents as well as devices
such as scanners and printers. Previous work by X [24] de-
scribes how WfMSs support resource agents that interface
both humans and computatinal devices. Our objective here
is to specialize the resource agent in order to obtain an agent
that can perform the task of connecting to any web service.

4.1.2. Execution of tasks.The workflow process models
are executed by the process agents. The process agent uses
the CPN engine to validate the process model and execute
it. A transition in a CPN represents the task that has to be
performed. The process agent assigns this task to a resource
agent. The resource agent will perform the task and report
the result to the process agent. The task to be performed is
embedded within the transition of CPN - known asaction
code.

Figure 3 shows an example in which the process agent
assigns resource agent X to perform task A. The action code
specifies the internal logic of task A. The process agent
sends a message to a specialized resource agent Y, which
is capable of connecting to a web service to perform the
task (task B) specified in the action code. The agent con-
nects to the appropriate operations requested by the process

agent on a web service. The agent then sends the result to
the process agent.

4.1.3. The Web Service Agent (WSA).In our design we
have wrapped the web service as an agent. A specialized
agent called Web Service Agent(WSA) is created, and it
can be used to query various operations exposed by the Web
Service. Thus a resource agent in the WfMS is specialized
into a Web Service Agent.

When the process agent executes a process model, ajob
tokenobject is created. This job token consists of a map,
that stores various attributes, which include details such as
the URI of the WSDL file, and the operation to be invoked
on the web service. The workflow manager will create these
attributes in the job token.

The attributes encoded in the job token in the form of
name-value pairs are:

• Attribute 1: (URIName, URI)

• Attribute 2: (transition name, operation name)

The process agent assigns a task to a resource agent.
It passes the job token to the resource agent. The re-
source agent accesses the URI from the job token and
reads the WSDL document and uses WSDL2java from the
Axis toolkit [1] to create the necessary stubs. It also gener-
ates necessary code for handling requests from other agents
to access appropriate operations exposed by the web ser-
vices and also the code for sending responses to other
agents. Figure 4 shows the code that is generated dur-
ing the creation of a web service agent.

4

The resource agent sends a message to the process agent
about the creation of the Web Service Agent, which is ca-
pable of handling requests for operations defined in WSDL.
The process agent then assigns the task of connecting and
querying the web service, by handing over the job token
to the WSA. The web service agent matches the task name
from the map and retrieves the operation to be performed.
The web service agent connects to the web service and re-
trieves the result and sends it to the process agent.

In our framework, FIPA ACL [9] is used for agent com-
munication. Figure 5 shows that FIPA messages are ex-
changed between interacting agents. In the current system
the Petri net model provides an abstract view of the pro-
cess, and the process agent has the built-in intelligence to
map the transitions with the agents that are capable of per-
forming the tasks and thereby sending messages to appro-
priate agents.

4.2. Demonstration of agent-based integration of
web service using an example

In this section we describe how a web service has been
integrated with the multi-agent based workflow manage-
ment system. The Petri net model shown in figure 6 illus-
trates how agents can be used in a diamond processing in-
dustry. When the Petri net model shown in figure 6 is exe-
cuted by the process agent, a token representing a job is cre-
ated at theStartnode. The attributes added to the token are
given below.

• Attribute 1 : (URIName,
http://www.stardiamonds.com/diamonds.wsdl)

• Attribute 2 : (connectAndQueryWebServive, getAll-
StoneDetails)

• Attribute 3 : (determinePrice, getPrice)

As described in the previous section, the process agent
assigns to the resource agent the task of creating a web ser-
vice agent as inscribed increateWebServiceAgenttask def-
inition. The resource agent creates a web service agent ca-
pable of connecting to the web service as described by the
WSDL file given by the URI.

Once the process agent receives a message from the re-
source agent that a web service agent has been successfully
created, the process agent executes the next transitioncon-
nectAndQueryWebService. The operation that is to be in-
voked is encoded in the job token that is passed along when
a transition has been fired successfully. The process agent
assigns this task to the web service agent by sending the
message to the web service agent with the details about the
operation that is to be invoked. The web service agent in-
vokes the webservice, obtains the result, and sends back
the result to the process agent as a message. The results are
stored in the job token.

Figure 5: Interactions of a process agent with a web service
agent

The result consists of an array comprising of details of
the diamonds. For each diamond in the array, a job to-
ken is created. A diamond job token would contain details
such asclarity, color, cut, carat weight, lusture, nextPro-
cess, nextArtisan, hasProcessingFinished, price and name-
value pairs of the web serivce operations that are to be in-
voked. The name represents the transition that is executed
and the value represents the operation that is called on the
web service. These job tokens are available for the assorter3

agent who decides if the diamond has been processed. The
process agent directs the assorter agent to decide whether
each of the diamonds requires further processing. If a dia-
mond requires further processing, the assorter agent deter-
mines which process the diamond should undergo and then
allocates the appropriate artisan agent to perform that task.
If the assorter agent decides that the diamond has been pro-
cessed completely, it updates the details of the diamond to-
ken that can be sent to the evaluator. This is done be setting
a value for the boolean attributehasProcessingFinishedfor
that particular token to indicate whether the diamond has
been processed.

The web service agent, which acts as a evaluator deter-
mines the price of the token depending upon the 4 c’s of di-
amond quality, namelycolor, clarity, cut, carat weight,and
assigns a price for that diamond.

3 The job description of an assorter is defined at
http://www.occupationalinfo.org/77/770281010.html

5

Figure 6: A snapshot of the diamond process model during execution

Each artisan agent is capable of performing one or more
tasks. These tasks arelasterCut, windowing, acidBoil, man-
ualCut and polishing. Each unprocessed diamond is as-
signed to one of these tasks by the assorter agent. Depend-
ing upon the attribute of the job token, these diamonds will
be available to a particular artisan agent. The artisan agent
performs a particular task on the diamond. After the com-
pletion of a task, the artisan agent requests the process agent
to add a name-value pair to the attribute list of the job to-
ken to indicate the completion of the task. For example, af-
ter the completion of a task named laserCut, an attribute
binding such as (laserCut, true) is added to the job token.

After a stone has been processed into a diamond that can
be sold, it is evaluated and the diamond is made available

at theendplace for further operations such asdispatchTo-
HeadOffice. If the processing of the diamond is not com-
plete, the stone details can be obtained from the diamond
processing web service. The diamond goes through an iter-
ation of several processes before it is ready for the market.
After every task is executed, the storage agent persistently
stores all the details of a diamond. Figure 6 shows the pool
of resource agents and the process model that is executed.
The dotted arrows start from an agent and end in a transi-
tion of the CPN. This indicates that the agent is able to per-
form the task indicated by the transition. Figure 7 shows the
sequence diagram for the above mentioned example.

6

���

�����		
�����
�	�����
�����

������
���
�������
�����

���
�������
�����

	���������
�
��	�����
�����
���
	���
�
�

���������������

������
������	
��
���
�������
�����

�		�����
�����

����������� ��������
!�����������"�����	#

������
��
����$
��
�������	

����������
�������	
����
�����		��%
�������		��

������
�������
������	
�����
��������������

����	��
�����

���������
�����
��
����$
�����		��
�������

������
�����

�		���
��&�
�����		
���
���'
�������		��
�������

������
������	

	���
�������
��
������������$
	������
����	��

������
��	�
	����	

Figure 7: Sequence diagram of agent interactions in diamond processing scenario

4.3. Advantages of wrapping a web service as an
agent

We believe that modelling a web service as an agent of-
fers the following advantages:

The web service agent speaks FIPA ACL [9]. One of the
advantages of modelling the web service as an agent is the
ability of the agents in the workflow system to communi-
cate using FIPA ACL [3], messages. This provides a uni-
form agent-based infrastructural support to the workflow
system. Other flexibilities of the web service agent include
the storage of the history of successes/failures of web ser-
vices (which can be used for performance analysis), match-
making to find web services available on the Internet that of-
fer services specified in WSDL and negotiation with other
similar web service agents to perform an operation. The
web service agent can be used in the determination of dy-
namic binding and choosing of protocols. The web service
agent is also used to execute the CPN model that models
composition of web services since the agent can bind to any
web service dynamically. This is achieved by the virtue of
the fact that the input to the web service agent is the WSDL

description and the required stubs for connecting to the web
service are generated during run-time.
Similar to the other agents in the Workflow management
system (JBees), the web service agents can be embedded
with intelligent decision-making capability, such as choos-
ing the most appropriate operation in a web service or con-
necting to another web service which offers the same opera-
tion, such as contacting a different weather monitoring ser-
vice to find the temperature of a tourist place of interest. The
web service agent can maintain a record of the reputation of
Web services and choose the appropriate one dynamically.
The web service agents would be able collect and analyze
information such as comparing prices of different products
across different manufacturers. The agents can also be used
for monitoring and controlling, such as constant monitoring
for a particular stock increase or decrease or monitoring the
level of some reservoir or monitoring temperatures in boil-
ers or reactors. These web service agents can also be spe-
cialized into experts, in connection to web services, that be-
long to particular domains of interest.

7

5. Conclusion and future work

We have described our flexible, agent based architecture
for workflow management systems. The agent based archi-
tecture facilitates the easy integration of Web Services with
the workflow system. We have demonstrated using an exam-
ple how a web service can be used in a diamond processing
workflow with limited effort. The Web service agent will be
able to connect to any Web service dynamically.

In the future we intend to integrate workflow ontologies
and domain-specific ontologies to our system and harness
the power of the Semantic Web when using the Web Ser-
vices. We are currently extending our architecture to acco-
modate a process model that executes composite web ser-
vices. We are also planning to extend our work to form a
society or institution of web service agents that can work
collaboratively to achieve a common goal.

6. Acknowledgements

The authors thank Mariusz Nowostawski for his help
with the Opal platform.

References

[1] Apache Axis Toolkit . http://ws.apache.org/axis/.
[2] Business Process Execution Language for Web Services

(BPEL4WS). http://www.ebpml.org/bpel4ws.htm.
[3] Foundation for Intelligent Physical Agents .

http://www.fipa.org.
[4] Paul Buhler and José M. Vidal. Enacting BPEL4WS speci-

fied workflows with multiagent systems. InProceedings of
the Workshop on Web Services and Agent-Based Engineer-
ing, 2004.

[5] Paul Buhler and José M. Vidal. Integrating agent services
into BPEL4WS defined workflows. InProceedings of the
Fourth International Workshop on Web-Oriented Software
Technologies, 2004.

[6] Q. Chen, M. Hsu, U. Dayal, and M.L. Griss. Multi-agent co-
operation, dynamic workflow and XML for e-commerce au-
tomation . Infourth international conference on Autonomous
agents, Barcelona, Spain, 2000.

[7] Martin Fleurke. JBees, an adaptive workflow management
system - an approach based on petri nets and agents. Mas-
ter’s thesis, Department of Computer Science, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands,
2004.

[8] Martin Fleurke, Lars Ehrler, and Maryam Purvis. JBees - an
adaptive and distributed framework for workflow systems.
In Workshop on Collaboration Agents: Autonomous Agents
for Collaborative Environments (COLA), Halifax, Canada,
pages 69–76, 2003.

[9] Foundation for Intelligent Physical Agents.
Fipa communicative act library - specification.
http://www.fipa.org/specs/fipa00037/, 2002.

[10] N.R. Jennings, P. Faratin, T.J. Norman, P. O’Brien, and
B. Odgers. Autonomous Agents for Business Process Man-
agement . Int. Journal of Applied Artificial Intelligence,
14(2):145–189, 2000.

[11] K. Jensen. Coloured Petri Nets - Basic Concepts, Analy-
sis Methods and Practical Use, Volume 1: Basic Concepts
. EATCS Monographs on Theoretical Computer Science.
Springer-Verlag, 1992.

[12] G. Joeris. Decentralized and Flexible Workflow Enactment
Based on Task Coordination Agents . In2nd Int’l. Bi-
Conference Workshop on Agent-Oriented Information Sys-
tems (AOIS 2000 @ CAiSE*00), Stockholm, Sweden, pages
41–62. iCue Publishing, Berlin, Germany, 2000.

[13] S. Meilin, Y. Guangxin, X. Yong, and W Shang-
guang. Workflow Management Systems: A
Survey. In Proceedings of IEEE Interna-
tional Conference on Communication Technology,
cscw.cs.tsinghua.edu.cn/cscwpapers/ygxin/WfMSSurvey.pdf,
1998.

[14] Tadao Murata. Petri nets: Properties, analysis and applica-
tions. Proceedings of the IEEE, 77(4):541–580, April 1989.

[15] M.E. Nissen. Supply Chain Process and Agent Design for
E-Commerce . In33rd Hawaii International Conference on
System Sciences, 2000.

[16] Mariusz Nowostawski. JFern - Java-based Petri Net frame-
work . http://sourceforge.net/projects/jfern/, 2003.

[17] Martin K. Purvis, Stephen Cranefield, Mariusz
Nowostawski, and Dan Carter. Opal: A Multi-Level
Infrastructure for Agent-Oriented Software Develop-
ment. The information science discussion paper series
no 2002/01, Department of Information Science, Univer-
sity of Otago, Dunedin, New Zealand, 2002.

[18] J.W. Shepherdson, S.G. Thompson, and B. Odgers.
Cross Organisational Workflow Coordinated by Software
Agents. InCEUR Workshop Proceedings No 17. Cross-
Organisational Workflow Management and Coordination,
San Francisco, USA, 1998.

[19] H. Stormer. AWA - A flexible Agent-Workflow System . In
Workshop on Agent-Based Approaches to B2B at the Fifth
International Conference on Autonomous Agents (AGENTS
2001), Montral, Canada, 2001.

[20] W.M.P van der Aalst and K. van Hee.Workflow Manage-
ment: Models, Methods, and Systems. MIT Press, 2002.

[21] Jośe M. Vidal, Paul Buhler, and Christian Stahl. Multiagent
systems with workflows.IEEE Internet Computing, 8(1):76–
82, January/February 2004.

[22] M. Wang and H. Wang. Intelligent Agent Supported Flexi-
ble Workflow Monitoring System . InAdvanced Information
Systems Engineering: 14th International Conference, CAiSE
2002, Toronto, Canada, 2002.

[23] X and Y. A collaborative multi-agent based workflow sys-
tem. InKnowledge-Based Intelligent Information and Engi-
neering Systems (KES), pages 1187–1193. Springer, 2004.

[24] X, Y, and Z. Monitoring and controlling of a workflow man-
agement system. InIn Proc. Australasian Workshop on Data
Mining and Web Intelligence (DMWI2004), pages 127–132,
2004.

8

