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Abstract

Progresses made on content-based image retrieval has reactivated the
research on image analysis and similarity-based approaches have been in-
vestigated to assess the similarity between images. In this paper, the
content-based approach is extended towards the problem of image collec-
tion summarization and comparison. For these purposes we propose to
carry out clustering analysis on visual features using self-organizing maps,
and then evaluate their similarity using a few dissimilarity measures im-
plemented on the feature maps. The effectiveness of these dissimilarity
measures is then examined with an empirical study.

1 Introduction

Over the last decade, content-based image retrieval (CBIR) has become a pop-
ular research topic, much owing to the ever increasing use of multimedia on
the Internet, as well as in personal entertainment, education, and mobile com-
munications. Aimed at effective multimedia asset management and efficient
information retrieval, a typical CBIR system (e.g. [1], [2]) works basically on
low-level visual features such as color, texture, shape or regions. Despite some
breakthroughs made in the field, it is generally understood that the problem is
still far from being solved [3]. Due to obstacles in object recognition and image
understanding in general, it is difficult to overcome the so-called ‘semantic gap’
and establish the linkage from low-level visual features to high-level concepts
that correspond to objects and their semantic content within the image. Con-
sequently, none of commercial image search engines has provided CBIR, utilities
so far.

Nevertheless, interesting progresses have been achieved with the research
on CBIR and relevant fields. For instance, the validation of various visual
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schemes carried out in the MPEG-7 core experiments has provided a group
of robust visual features that are promising for semantic matching [4][5]. On
the other hand, some effective mechanisms have been explored to compare the
similarity of these visual features. In [6], a number of tests have been proposed
for histogram analysis and examined in comparison along with L1 and Euclidean
norms. More dissimilarity measures have been introduced for the comparison of
feature distributions of color images [7][8]. Other techniques such as relevance
feedback and the use of joint features have been worked out to complement the
weakness of the CBIR approach. Even though similarity metrics defined on
these low level visual features may not directly reflect the high-level semantic
similarity between images and objects, CBIR still provides a valuable interface
for multimedia asset management and semantic analysis.

In CBIR applications, usually one is interested in searching out interested
patterns or images. There are however circumstances where there is a need
to compare different image collections - e.g. images stored in folders named
‘family photos’ under different paths of a file system, or two collections of images
featuring architectures in two countries. In a wider context, people may wish
to be able to summarize their MP3 collections stored in a computer network
and compare with other people’s collections of similar or different music taste.
Hence it is desirable to have a multimedia collection management tool that is
equipped with such kind of capabilities.

In particular we would like to consider the following two questions in this

paper:
e Can we generate some visual summary or profiles for image collections?

e Can these profiles be quantitatively compared? In other words, can we
define some dissimilarity measures on them to assess the dissimilarity of
the original collections?

We propose to extend the CBIR approach in order to tackle the problems
of collection summarization and comparison outlined as above. A neural net-
work model is employed for self-organized summarization of image collections.
The neural structure is used as a profile of the image collection and provides a
graphical interface for collection navigation and visual assessment of dissimilar-
ity between image collections. To enable quantitative assessment, a number of
distance measures are implemented and are found to perform effectively in an
empirical study.

The rest of this paper is organized as follows. In Section 2 we present
an introduction to the computational model, including the summarization of
collections via self-organizing feature maps, and different dissimilarity measures
defined on the feature maps. In Section 3 empirical results obtained from four
image collections and some mixed sets are presented to verify the computational
model, and the performance of different dissimilarity measures are discussed.
Finally the paper is concluded along with a discussion on some future works in
Section 4.



2 The computational model

2.1 Self-organizing maps

Our approach of image collection summarization is based on extracting repre-
sentative prototypes from the CBIR feature space generated from the image
collections. Therefore, a number of clustering or vector quantization algorithms
can be employed for this purpose. Among numerous clustering algorithms, one
neural network model of particular interest is Kohonen’s Self-Organized Map
(SOM) [9]. It has been applied widely in a number of information retrieval
systems, such as in SOMLib [10] and PicSOM [11].

The SOM features in carrying out vector quantization and multi-dimensional
scaling at the same time. The map, usually set in 2-D or 3-D topology, con-
sists of a regular lattice of neurons set in hexagonal or rectangular topology.
Each neuron is associated with a weight vector. The map attempts to perform
localized clustering on these node vectors, while in the meantime the order-
ing of nodes on the lattice works to allow similar inputs to be matched to the
same node or nodes close to each other, and dissimilar inputs onto nodes far
from each other. The nodes are sometimes also called ‘units’, and unit vectors
‘prototypes’.

Assume we have a N-prototype SOM to train. Denote w;(t) as the weight
vector associated with node 7. Given an input x(t), the algorithm first finds the
best-matching unit (BMU) w;, among all prototypes, i.e.

b=arg;,|lx(t) —w;(@t)], i=1,..,N. (1)
The weight vectors are then updated according to the following learning rule:
wi(t +1) = wi(t) + 7 ()hs,i(£)[x(t) — wi(t)]. (2)

where hy, ; is a neighborhood function centered at BMU and shrinking over time,
and «(t) the learning rate decreasing over time. There have been quite some
variants proposed to this original learning rule, but generally it has been shown
that these learning rules lead to the convergence of weight vectors of very good
quantization quality.

2.2 Collection summarization by SOMs

The SOM has a number of traits that make it a suitable choice for collection
summarization. With the map nodes located on a low-dimensional lattice, it is
easy to be visualized and interpreted. SOM also displays good topology pre-
serving capability. Similar inputs are mapped onto the same node or nodes
in a neighborhood on the map. This means that similar images can be closely
mapped onto the grid, obviously an advantage for the visualization of the collec-
tion contents. Hierarchical design of maps can be used to leverage navigation.
Another additional feature of the SOM goes to density matching ([12], page
460-461). It represents a cluster of more frequently occurring input stimuli by a



larger area in the feature map. If we denote the number of nodes in a small vol-
ume dx over the input space X as m(x), it is proved that the one-dimensional
SOM achieves m(x) o pY %(x), where px(x) is the probability density func-
tion of the input x [13]. It also has been shown in [14] that the SOM can
be regarded as a simplified Gaussian mixture estimator using a homoscedastic
Gaussian mixture model. Trained with a large amount of input data, the fea-
ture map will form micro-clusters that can be treated as multivariate normal
distributions. This gives the plausibility of defining appropriate dissimilarity
measure between protocol vectors.

To extend the use of the SOM for summarization, a straightforward approach
is to train a feature map on visual features so as to construct a profile of the
whole collection. Further operations such as browsing, search, and comparison
can be carried out efficiently using this profile. For a user to quickly assess
and compare profiles of different image collections, it is preferable to adopt flat
structure for the feature maps. By matching feature vectors of high dimension-
ality onto prototypes organized on a low-dimensional grid, SOM is by itself a
multi-dimension scaling method. However node distance on the grid does not
reflect faithfully the distance between prototypes in the high-dimensional space.
It is then required to project high-dimensional prototypes onto optimal posi-
tions on the low-dimensional, usually 2-D, display space, using linear transform
such as principal component analysis (PCA), or nonlinear projection algorithm
such as Sammon’s mapping [15].

Before considering the comparison of these feature maps or profiles, one has
to ensure that the self-organizing maps generated for this purpose are robust
and stable. The outcome of the SOM algorithm itself is subject to variation on
random initialization, different parameter settings of the learning rate and map
size etc., and the presentation order of data samples during training. Moreover,
multi-dimension scaling techniques such as Sammon’s mapping makes use of
random initialization and gradient descent techniques that give no unique result.
All these loom an undesirable effect for image collection profiling, as a user
would expect a stable profile each time when visualizing an image collection. A
remedy for this is to use linear initialization of the network weights using two-
dimensional PCA. This not only stabilizes the feature maps generated, but also
leads to maps of better quality, with little folding effect. Sammon’s mapping
can also be stabilized by using PCA-based initialization.

2.3 Dissimilarity measures between feature maps

Although the SOM algorithm has been used widely for data analysis in many
disciplines, the problem of comparing two different feature maps has received
little treatment in the literature. We could adopt a simple visual approach,
projecting all feature maps in a graph of low dimensionality, for instance using
PCA. While this may facilitate the visual exploration of multimedia collections,
it gives little quantitative information about their dissimilarity.

In [16] a dissimilarity measure is proposed based on the evaluation of the
goodness of the feature maps by comparing the shortest path on the maps when



matching a given pair of data samples. To calculate the distance measure all
pairs of data samples need to be matched onto the feature maps in comparison,
which can be rather time-consuming for large data sets. This method was used
for comparison of word category maps generated by the SOM in [17]. When
dealing with high dimensional feature maps generated from a large volume of
multimedia collections, the efficiency of such an approach will however be in
question, as the plausibility of retaining the large training data set for map
assessment can hardly be assumed. We suggest, given that those feature maps
have formed good representation of the original data collections, a comparison
process directly based on the map prototypes rather than on the original data
sets would be much more efficient.

If we regard the SOM simply as a clustering algorithm that extracts a few
prototypes from the overall feature data set, it is straightforward to employ a few
distance metrics defined on point sets. By considering its modeling capability,
more dissimilarity measures for probabilistic distributions can be explored. We
next present a few distance measures extended for the use on self-organizing
maps.

2.3.1 Hausdorff distance
Given two point sets X and Y, the Hausdorff distance from X to Y'is defined by

MX,Y) = sup,c xinfyevd(z,y), (3)

where d is a L, metric, where usually the Euclidean distance is used. The
Hausdorff metric is define as

HD(X,Y) = max{h(X,Y), h(Y, X)}. (4)

It is found that the Hausdorff distance satisfies triangular inequality but is
very sensitive to outliers in the point sets. Some modification can be done, for
example, by generalizing the maximum operator with a quantile or a median.
The Hausdorff distance has been applied in fractal image compression, shape
matching and object detection etc.

2.3.2 Earth Mover’s Distance

The EMD [7] is defined over weighted point sets. Suppose each point set is con-
figured by a normalized weight set. We denote a point set as A = {a1, ag, ..., a, },
with a; = {(z;,w;)}, ; € R, and w; € Rt U {0}. The EMD calculates the
minimum amount of work needed to transform one configuration to another
by moving weight under constraints. Denote the set of all feasible flows as
F = {fi;}, where 7 is a point label for set A, and j for B. These flows are
subject to the following constraints:

L fi; >0i=1,..mj=1,..n

2. Z?:l fij S wi,i = 1, .,



3.3 fij <wujj=1,..,n
4. 300 3700 fig = min(W,U)

Here W and U are the total weights of A and B respectively. These constraints
ensure, for instance, each flow of weight is non-negative; a point at the ‘sender’
can not send more weight than it holds, and a point at the ‘receiver’ does not
receive more weight than it needs.

The EMD between the two point sets can then be define as

EMD(A, B) = mingep Y Y fijdi;. (5)

i=1 j=1

EMD has been applied in image retrieval for similarity comparison of global
color features, texture features, and shapes.

To make EMD eligible for SOM comparison, weights need to be assigned
to the prototype nodes. An easy solution is to map the original data set onto
the trained SOM and assign the probability of each node being selected as the
BMU onto the node as the weight. Due to the probability density matching
characteristic, there is however a tendency for the nodes to share a flat firing
rate distribution. Also to acquire the firing rate over the entire data population
can be rather time-consuming, even if on-line resource information is tracked as
in some variants of the algorithm (e.g., [18]). Therefore in practice we find it
more efficient to assign a uniform weight to all nodes in a map.

2.3.3 Sum of Minimum Distances

In [19] the sum of minimum distances (SMD) as a similarity measure was dis-
cussed. It is defined as:

SMD(X,Y) = %(Z minyd(z,y) + Y min,d(z,y)). (6)
rzeX yey

The calculation of SMD between two feature maps is straightforward and is of
the same complexity compared with HD. However, like all dissimilarity measures
presented so far, it ignores the established neural structure formed among the
prototype nodes.

2.3.4 Sum of Average Neighbor Distance (SAND)

As stated earlier a trained feature map not only quantizes its high dimensional
features, but also self-organizes into a low dimensional grid structure that re-
flects the probability density of feature data. The neighborhood topology within
a feature map can be examined to further characterize the original feature space.
Taking this into account, we propose a modified sum of minimum distance, so
called sum of average neighbor distances (SAND).

The same as in the calculation process of HD and SMD, for a prototype
z € X, its BMU on the peer map Y, i.e., the prototype y, € Y with the



minimum distance to x, is found. To calculate SAND, this minimum distance is
averaged with the distances between x and y;’s neighbors, before it is summed
across all population of X. The same process is then repeated on Map Y.

The calculation process can be summarized in the following steps:

1. Find the BMU y, € Y for any = € X, with
b = arg, ey min(|z - y|). (7)

2. Find out all best-matching pairs (a, ) between the neighborhood of z
and 1y, and calculate the averaging distance:

dn(z) = Effla = B[}, Vo € Q(z), 5 € Qys) (8)
Here €)(.) denotes the neighborhood of a map node.

3. Sum up the individual measures:

SAND(X,Y) Z dn() + ) du(y)). 9)

reX yey

The rationale behind this scheme is the probability density matching ability
of the SOM. Examining the matching among a map neighborhood can tell the
difference between maps of similar range of spatial span yet originated from
different probability distributions. As density differing in the original feature
space will result in, on the low dimensional map, either dense grids or sparse
grids, the difference can be better reflected by SAND than a plain point-to-point
measure.

2.4 Simplified Kullback-Leibler divergence (SKLD)

If we regard a SOM as an approximation of a Gaussian mixture, then we can
extend the point-to-point distance measure between prototype vectors onto a
dissimilarity measure between two Gaussian distributions. The Kullback-Leibler
divergence between two density functions f and g is defined as

KL(f:g) = / flogg (10)

If we assume that the N dimensions of the data are independent and Gaussian
distributed, a simplified version of Kullback-Leiberler divergence can be worked
out in close form, as presented in [8] for two models p and ¢:

1 o o@D _ N\ @\
i=1 %5 %

As the SOM tends to produce prototype vectors of similar variance because
of its density matching capability, we simply estimate the deviation o® at



each prototype as the average deviation of all map prototypes. Having this
simplified measure between two prototypes, we can then define a simplified
Kullback-Leibler divergence (SKLD) of two feature maps as the averaged KL
measure between best-matching prototypes of the two maps:

SKLD(X,Y) = & (B (KL(r, 1)}, B, {KL(y, :)}) (12

2.5 Coupling index

The above dissimilarity measures are all based on the distance between a pair
of map nodes and lead to a scale value as the overall dissimilarity assessment
between two maps. On the other hand, when two maps representing the high-
dimensional manifolds formed by similar visual features are generated, they may
overlap or fold into each other. To assess the overlap of feature maps it may
be interesting to see how well a feature map compete to represent the others
collectively. Hence we define a coupling index between a pair of feature maps as
a cross referencing ratio to nearest neighbors. Here a cross referencing occurs
when the nearest neighbor of a map prototype is located on the peer map rather
than its own. We can therefore consider coupling index as a similarity measure,
as the more similar the maps are, the more cross referencing occurs, and the
bigger the coupling index is.

Given two maps X and Y, the coupling index can be defined for a node
r e X:

1, otherwise (13)

)

n(z) = { 0, if ming (d(z,z')) < miny(d(z,y)),Ve' € X,2' #z;y €Y

The overall coupling index is then defined as the average of the coupling indexes
on all the nodes in X and Y:

Cr= (3 () + 3 nw)). (14)

rzeX yey

3 Empirical study

3.1 Data sets

To verify the image collection profiling and comparison approach as presented
above, a series of experiments have been conducted. We use color pictures
downloaded from the SUNET FTP site. There are four categories of images
used, namely wviews, sports, animals, and vehicles. Each category holds images
differing in background and objects in focus. There are 413 images in ‘animals’,
170 in ‘views’, 391 in ‘sports’ and 356 in ‘vehicles’. There are 1380 images used
in total. Selected thumbnails of each category are shown in Fig.1(a)-(d).

Even though images of each category are pinned under the same subject,
we can see from these thumbnails that their content is rather heterogeneous,
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Figure 1: Thumbnails from the collections: (a) ‘views’, (b) ‘vehicles’, (¢) ‘sports’,
and (d) ‘animals’.

presenting different objects or scenes with big variance in both background and
foreground. For instance, sky background is present in all four sets; ‘vehicles’
includes vehicle on the road, in the sky, as well as on water; and ‘sports’ features
outdoor scenes as well as indoor scenes with or without players.

3.2 Training of SOMs

The first feature scheme we explore is regional average colors (RAC) in five
non-overlapping zones, the same as in PicSOM [11]. It is actually a simplified
version of the color layout descriptor (CLD) as defined in [4], using 5 overlapping
zones instead of 8 x 8 blocks as in CLD. To assess the similarity of texture
components of the image collections, a set of Gabor filters in 4 frequency level
and 8 orientations is used [20]. Texture energy on these filters gives a 32-
dimension feature vector for each image. We denote this feature scheme as
GFH.

For sake of simplicity, feature sets of all four categories are clustered on 8 x 8
SOMs. The SOM_PAK toolbox [21] was used to generate these feature maps
under hexagonal topology and Gaussian neighborhood. Two passes of training
as suggested in [21] were conducted, with the initial learning rates of 0.05 and
0.03 respectively. Initial neighborhood size were set as 6 and 3 respectively. The



run length was set to be 6400.

The RAC profiles generated as the feature map obtained from the ‘views’ and
the ‘vehicles’ collection respectively are shown in Fig.2 and Fig.3. These maps
are visualized by Sammon’s mapping, with some nodes labeled with images that
carry the best matching feature to the node vectors.

Figure 2: The profile of image collection ‘views’.

3.3 Visual assessment of collection profiles

For visual assessment on the dissimilarity of the four profiles generated on the
RAC feature scheme, they are all projected onto a 2-D plot generated by pro-
jecting their prototypes over the first two eigenvectors of the overall prototype
set. This is shown in Figure 4. Comparing the node ‘clouds’ shown in Figure 4,
we may have some clues of the dissimilarity of the collection profiles. It is hard
however to assess the coupling effect from this projection. To get more accurate
assessment of their dissimilarity, quantitative measures need to be worked out.

3.4 Quantitative assessment of collection profiles

The mutual dissimilarity measures between the ‘sports’ profile and the other
three, assessed on the RAC and GFH features, are listed in Table 1 and Table
2 respectively.

In Table 1 all distance measures calculated between the ‘sports’ collection
and the other three using the RAC feature are listed together with their CPU
time consumed. It is noted that all the dissimilarity measures report similar
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Table 1: Distance calculated between the RAC profiles of ‘sports’ and other
three collections.

Measures - COH.QCUOHS ———+ CPU Time
animals | views | vehicles

HD 125.4 153.3 135.1 0.01

EMD 73.4 101.0 102.9 0.10

SMD 55.4 66.1 56.7 0.01

SAND 66.7 76.1 68.5 0.02

SKLD 1.187 1.7 3.76 0.01

Table 2: Distance calculated between the GFH profiles.

Measures - COH?CUOHS ———+ CPU Time
animals | views | vehicles

HD 0.54 0.64 0.59 0.01

EMD 0.23 0.29 0.59 0.12

SMD 0.33 0.38 0.26 0.02

SAND 0.35 0.39 0.31 0.04

SKLD 15.36 14.72 27.98 0.01

Table 3: Coupling index matrix of the four profiles.

Collections | animals vehicles views
vehicles 17.2%

views 14.8% 14.1%

sports 11.7% 16.4%  4.7%
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Figure 3: The profile of image collection ‘vehicles’.

ranking of the similarity between image collections, with ‘animals’ on the near
side, and ‘views’ on the far side. Interestingly EMD reports rather close dis-
tances to both the ‘views’ and ‘vehicles’ profiles. On the other hand, while most
measures are efficient to calculate, EMD requires the longest time, requiring
more than 0.10 seconds to complete while others need only about 0.01 seconds.
This result agrees with other empirical findings on using EMD for image dissim-
ilarity computation [22]. The CPU time here were collected from a Linux 2.2
system running on a Pentium-II PC. Although the difference is not significant
here, for applications with much larger collections to compare it may become
an important factor to consider.

The coupling index matrix of these collection profiles are also calculated, as
shown in Table 3. While these coupling indexes indicate significant overlap of
‘animals’ - ‘views’, and ‘sports’ - ‘vehicles’ pairs, it is also revealed that little
coupling exists between ‘sports’ and ‘views’, which can be hardly found out
from visual assessment using profiles projection. This may suggest that these
two profiles have a large dissimilarity measure, which we shall further verify
with another feature scheme.

Table 2 gives the results with profiles generated by the GFH feature. Since
the feature codes are in a different range the dissimilarity values are also quite
different when compared with those in Table 1. A similar dissimilarity ranking
of the collections is obtained, even though in general dissimilarity assessed from
different maps trained on different features may differ. It is however noted that
the SKLD measure managed to single out the ‘views’ collection mapped with
the texture feature. To obtained an overall dissimilarity ranking, results from
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Figure 4: Four RAC-feature SOMs visualized by PCA.

different features can be normalized and then multiplied together, in this case
resulting in the normalized joint dissimilarity measures as shown in Fig. 5.

All these dissimilarity measures suggest almost consistently that ‘views’ and
‘sports’ have the largest dissimilarity between each other. This is most likely
due to the fact that these two collections share the biggest difference in overall
visual contents. The ‘views’ collection mainly features outdoor scenes, while
the ‘sports’ collection has a large portion of indoor scenes featuring close-ups
humans in various outfits. On the other hand, ‘animals’ and ‘vehicles’ mostly
have outdoor objects or man-made objects and therefore should be closer to
‘sports’. The dissimilarity between the ‘views’-‘sports’ pair is ranked the sec-
ond on EMD, originated from the difference measured on the texture feature.
This difference however can be balanced if using a smaller weight on texture
dissimilarity when producing the joint measures.

3.5 Robustness of the dissimilarity measures

To test the robustness of the dissimilarity measures, we constructed a few mixed
data sets from the feature sets generated from the four collections. Table 4 gives
the normalized dissimilarity measures of two mixed sets compared with the orig-
inal sets. For Mixed Set 1, generated by half of ‘sports’ and half of ‘views’,
measures were normalized with the dissimilarity measure between ‘sports’ and
‘views’. Likewise the measures on Mixed Set 2 (generated with half of ‘animals’
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Figure 5: Joint dissimilarity measures between ‘sports’ and AN: ‘animals’, VE:
‘vehicles’, and VI: ‘views’.

Table 4: Mixed sets and their normalized dissimilarity measures
Dissimilarity \ HD \ EMD \ SMD \ SAND \ SKLD H CI

Mixed Set 1
to ‘sports’ 0.425 | 0.444 | 0.417 | 0.478 | 0.238 | 74.20%
to ‘views’ 0.788 | 0.700 | 0.706 | 0.783 | 0.689 | 31.20%
Mixed Set 2

to ‘animals’ 0.76 | 0.60 | 0.61 0.68 0.61 50.70%
to ‘vehicles’ 0.52 | 0.50 | 0.55 0.63 0.48 63.30%

and half of ‘vehicles’) were also normalized. We can see that all the dissimilari-
ties measured between the mixed set and the original sets are smaller than the
dissimilarity between the original sets. Also, the dissimilarity order is consistent
with the coupling index. The general tendency is that, the smaller the coupling
index is, the bigger the dissimilarity will be. Other mixed sets generated also
give similar outcome, suggesting that the dissimilarity measures as well as the
coupling index are all robust to assess the dissimilarity of mixed collections.
On the other hand, when the size of a feature map is changed, its quantiza-
tion ability, location and modeling of its prototypes will be directly impacted.
It will be interesting to see how dissimilar the profiles of the same collection can
be if being generated in different sizes. The following experiment was conducted
to test the robustness of the dissimilarity measures calculated for feature maps
of different sizes. Different map sizes, from 4 x 4, to 16 x 16, were used and
maps were generated from the ‘sports’ RAC feature. We then used the original
8 x 8 ‘sports’ map as a reference map, calculated its dissimilarity measures to
these new maps. We also normalized these values by the smallest inter-collection
measure (between ‘sports’ and ‘animals’, as given in Table 1) to see how the
scaling on the maps will affect the dissimilarity assessment between collections.
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Figure 6: Normalized dissimilarity measures and CI for maps of different sizes
compared with Sports_8x8_RAC.

The results are presented in Fig. 6. As we can see all dissimilarity measures will
more or less be affected by map scaling. Among them, SKLD gives consistently
the best performance especially around the reference size (6 x 6, 9times9, and
10 x 10), only starting to be become less robust than EMD after the size of
12 x 12. The CI curve also indicates that from then on the coupling of the big-
ger map with the reference map drops significantly. In this case, local Gaussian
models should undergo significant changes, making a dissimilarity measure such
as SKLD defined on the Gaussian mixture less invalid. It is noted that EMD
as a point set approach suffers less from the further scaling-up of the feature
maps, but a 40% dissimilarity compared with the reference is still reached when
the number of map nodes approaches four times the original size.

These results indicate that SKLLD and EMD are robust to limited change on
the feature map size. To mitigate the effect of map size variation so as to avoid
possible failures in assessing map similarity, we can impose some control on the
map size, possibly by maintaining the quantization error on a certain level.

4 Conclusion

We proposed to use self-organizing maps trained on low level CBIR features
extracted from image collections for content-based summarization and com-
parison. A number of different dissimilarity measures are examined in a four
collection problem with more than 1000 images in total. Especially we have
found that a simplified Kullback-Leibler dissimilarity measure outperforms the
Earth Mover’s Distance in terms of efficiency, ranking accuracy, and robustness
to small map size changes. The coupling index, introduced as a simple con-
cept, also gives consistent result in assessing the overlap of collection profiles.
We would like to test our approach on more image collections of larger scales,
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assessing feature maps generated on more feature schemes used such as in [4].

While the SOM may seem a natural and effective approach for document and
multimedia data analysis, a few drawbacks exist. There is no efficient mechanism
for a feature map, once trained, to adapt its own size when there is a need to
allocate new resource for novel inputs. The lack of incremental learning ability
in the SOM also makes on-line adapting of the network implausible. Considering
the use of summarization for multimedia collections under constant variation, it
is desirable to adapt the existing profiles with new data without the retraining
of the whole model. This is hard to achieve with the SOM.

Other self-organizing neural networks may be considered in this respect, in-
cluding online incremental clustering models and hierarchical models [23][24].
A hierarchical online learning process will improve the efficiency for profiling
large image collections. Better probabilistic modeling ability may also improve
the robustness of dissimilarity measures defined on the profiles. Also, by explor-
ing more powerful feature descriptors, it is promising for this approach to be
extended for content-based summarization and comparison of audio and video
data collections.
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