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Abstract

Along with the progress of the content-based image retrieval research and the develop-
ment of the MPEG-7 XM feature descriptors, there has been an increasing research inter-
est on object recognition and semantics extraction from images and videos. In this paper,
we revisit an old problem of indoor versus outdoor scene classification. By introducing
a precision-boosted combination scheme of multiple classifiers trained on several global
and regional feature descriptors, our experiment has led to better results compared with
conventional approaches.
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1 Introduction

With the rapid development of information and communication technologies, the
ever-growing use of multimedia data has brought many technical challenges, es-
pecially for data compression and information retrieval to be done effectively, effi-
ciently and flexibly. In recent years, an intensive research effort has been focused
on content-based image retrieval (CBIR) [1]. CBIR was proposed to overcome
the shortcomings of traditional annotation-based retrieval system for images and
videos. It aims at effective multimedia asset management and efficient information
retrieval by automatically indexing image or video storage based on their low-level
visual features such as colour, texture, shape and regions. Being under rigorous re-
search worldwide for more than a decade, CBIR has made significant contribution
to the research and development of multimedia systems.

1 The author thanks the support of Grant UOOX0208 from the FRST, New Zealand.
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However, CBIR’s reliance on low-level features alone can also result in poor re-
trieval quality and lack of semantic representation of image indexes. Although
techniques such as joint feature histograms and relevance feedback etc. have been
investigated to more or less improve the retrieval quality, it has been realised that
the bottleneck remains at the semantic gap [1] between the simplicity of visual
features available and the richness of hidden semantics. An intelligent multimedia
asset management system should require the capability of automatic interpretation
of visual features so that semantic objects or concepts can be extracted and used for
indexing and retrieval purposes. There are many research works that try to explore
the relationship between low-level features or their combinations and the corre-
sponding semantic concepts. For instance, in [2], colour semantics of art works
are used for image retrieval based on perceptual concepts on colour quantities and
sensation, such as warmth, harmony and anguish.

Although being still far away to offer any mature solutions in bridging the seman-
tic gap, CBIR has activated the research on image analysis and laid down a sound
basis of low level visual feature extraction schemes that are representative and pow-
erful for image indexing and retrieval. For instance, the MPEG-7 core experiments
[3][4] has proposed a rich set of low level features whose robustness has been tested
with a huge amount of image data. It is therefore desirable to use machine learning
and pattern recognition techniques to model these low-level features and semantic
concepts. Because of the difficulty in achieving image understanding in general,
this is usually limited within specific domains. In [5], an approach was proposed
to learn abstract concepts (indoor versus outdoor) from low-level features based on
classification combination. Each training image was manually assigned a semantic
label, and then divided into fixed-size sub-blocks. Several kinds of visual features
on colour, texture and frequency were extracted from the sub-blocks each to train a
classifier separately, and then the classified results of all classifiers were combined
based on a majority voting rule to determine the high-level semantic properties of
a testing image. It was demonstrated that combining multiple weak features with
a k-nearest neighbour (k-NN) classifier can produce better results than using a sin-
gle ‘good’ feature. However, due to the rigid partition of the image into fixed-size
blocks, there is no control for a block to possibly correspond to any meaningful
object. Rather a block may contain several objects or parts of different objects,
causing the feature set extracted from blocks unable to retain image semantics re-
liably, and hence the accuracy of scene classification is affected. In [6] some low
level global features from the MPEG-7 core experiments suggested in [3] were
extracted to train different classifiers such ask-NN and support vector machines
for different semantic categories, and then results of the individual classifiers were
combined into a final classification based on several strategies. In [7], an image is
also divided into rigidly split blocks (4 × 4), and low-level features in each block
are used to train a 2-D multiple-resolution HMM models that produce a semantic
concept dictionary. Because of the rigid block partition, these however may inherit
the weakness as in citesz98.
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In this paper, we proposed a new approach to tackle the indoor-outdoor scene clas-
sification problem given in [5]. Both global and local visual feature were extracted
from the scene image. For local features we use segmented regions of homogeneity
instead of fixed-size blocks generated by brute-force partitioning. Each type feature
set trains an individual classifier. We then calculate the precision of the classifier
corresponding to each semantic category by cross validation, and use it to tune the
Bayesian posterior probability and assign the image to the class with the maximum
probability. Our experiment demonstrates that this approach successfully improves
the classification rate of indoor-outdoor scenes.

The rest of the paper is thus organised. In Section 2 we go through the feature
extraction process and briefly introduce some feature schemes adopted for the scene
classification problem. In Section 3 we present a new method to combine multiple
classifiers using precision boosting. Empirical results are presented and discussed
in Section 4. Finally we conclude with some discussion on the future work.

2 Feature Extraction

2.1 Global features

Human visual perceptions are very sensitive to colours. Colour histograms have
been the most versatile features used in CBIR since they are representative and
robust to resolution variation, translation and rotation. We adopt the LUV colour
space in computing the colour histograms as it models well the human perception
on colour similarity. For the global colour histogram, we quantize each channel of
LUV into 5 bins and then compute the colour histogram as the global colour feature.
The selection of the LUV space is also based on our finding that classification
validation based on LUV is consistently better than that on the commonly used
RGB space.

Luminance Edge histogram descriptor (EHD) [3], another feature descriptor widely
used in CBIR research, captures the spatial distribution of five directional edges.
It is found to be quite effective in representing natural image, therefore is adopted
here. To obtain the EHD, edge filters are first applied to detect the edges of the2×2
pixel blocks, such as vertical, horizontal, 45 diagonal, 135 diagonal edges, non-
directed edges and no edge. Grouping the edge information of all blocks generates
an edge histogram with 6 bins. An image is partitioned into4× 4 sub-images, each
generating a sub-image edge histogram.Concatenating the edge histogram vectors
results in a global edge histogram of 96 dimensions. We used the MPEG-7 core
experiment code [8] for this purpose.
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(a)

(b)

Fig. 1. An example scene image: (a) original, and (b) segmented.

2.2 Image segmentation

Apart from the global visual features, regional visual characteristics are also consid-
ered here. Because image segmentation can extract homogenous regions of better
semantic integrity, one hope it will produce improved modelling capability on the
image semantics compared with the approaches using fixed-size blocks or global
histogram features only. The image is segmented into colour-texture homogeneous
regions using the JSEG algorithm [9]. JSEG quantises the image into colour-maps,
and then spatial segmentation and region-growing methods are used to merge simi-
lar regions to generate the final segmentation. One can tune the colour quantisation
parameters and the merging threshold to control the segmentation outcome. We
used a moderate merging threshold of 0.3 in our study. Figure 1 shows the segmen-
tation result of an example ‘indoor’ scene with this setting.

Once the scene image is segmented, local colour features and texture features can
be extracted from the segments and later used as training samples for different
classifiers.
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2.3 Local features from image segments

For the colour histograms of segmented regions, as there exist fewer colours in each
region, we can quantize colours in finer granularities. Unlike the uniform quantisa-
tion used in the global colour histogram, we quantise each channel with the same
interval. Thus the L channel has 20 bins, U has 70 bins and V has 42 bins, all cor-
responding to the different ranges in each channel: L (0∼ 100), U (-134∼ 220)
and V (-140∼ 122). These are then concatenated into a total of 132 bins.

The computation of the local edge histogram over a segmented region can be tricky
due to its arbitrary shape as shown in Figure 1. We compute the local edge his-
togram by grouping the edge histogram of the image blocks fallen into the seg-
mented region and normalize it. The local edge histogram vector with 6 bins reflects
the edge information since segmented regions have colour-texture homogeneity.
Those regions that are too small to contain any image blocks are ignored as we
assume that these small regions give no significant semantic indication.

3 Classification models and their combination

At this stage we have extracted four feature sets: two global and two regional. Each
of these feature set will train an individual classifier. As revealed by many studies,
in real world pattern classification problems it is usually hard to find and rely on a
best classifier based on some good feature; a more reliable approach is to derive a
consensus decision by combining the classification outcome of each classifier [10].
A Bayesian classification combination scheme is adopted, from which a precision
boosting process is introduced for classification combination. The overall compu-
tational framework is shown in Figure 2.
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3.1 Global scene classification using k-NN

In this work we usek-NN classifiers ask-NN is a simple, non-parametric clas-
sification method but has been effective in solving many classification problems,
especially in difficult situations where no sufficient data is available for parametric
estimation. Given a training set, upon receiving a new instance, ak-NN classifier
identifiesk nearest neighbour samples in a codebook and typically assigns the class
label with the largest number of neighbours to the new instance. An additional ad-
vantage of usingk-NN classifiers is that one can assign straightforwardly a soft
class membership using the following approximation of the posterior probability:

P (wi|f) = ki/k (1)

wherewi denotes thei-th class,f the feature code,ki is the number of occurrence
of classi among thek nearest neighbours. The classification decision is thus made:

c = arg maxi{P (wi|f)|i = 1, 2, ...,m} (2)

3.2 Region-based scene classification

Image regions segmented are likely to relate directly to semantic objects. If these
objects can labelled reliably then one can expect the whole scene can be more accu-
rately classified. While the global feature corresponds to an image class directly, the
local features only represent the local properties of image regions, therefore another
step of decision making is required to combine region labels into a scene category.
For the two-class scene classification problem, we adopt a simple approach and
assume class labelling of each segment is inherited from its parent image during
training. With this groundtruth dataset we then traink-NN classifiers on the fea-
tures extracted from the segments so as to match regional features to ‘indoor’ or
‘outdoor’ labels. For the classification of the whole image, it is first segmented into
regions, and thenk-NN classification on each region is done using Eq.(2). The fi-
nal classification for the whole image can be obtained via majority voting of the
labelled regions. For instance, assume there areNin regions labelled as ‘indoor’
andNout as ‘outdoor’ in an image. The probability for the image to be labelled as
‘indoor’ is

P (indoor|f) =
Nin

Nin + Nout

(3)

wheref denotes a regional feature used to classify the segmented regions and then
the whole image.
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3.3 Classifier validation

The performance of a classifier can be evaluated with precision and recall values.
In our experiments, we perform a leave-one-out cross validation over the data set
and compute the precision on indoor and outdoor classes separately.

3.4 Precision-boosted Bayesian multiclassifier combination

There are now four classifiers, two based on global colour and edge features and
the other two on regional colour and edge features. As revealed by our empirical
results to be shown later, none of these features leads to a very strong classifier. It
is therefore necessary to investigate the combination of these individual classifica-
tion decisions that gives a consensus decision. Various combination rules, such as
product rule, sum rule, min rule, max rule, median rule, and majority voting can be
used for this purpose [10].

However, there is another observation that the performance of these classifiers dif-
fer. Some are stronger, but others weaker, as indicated by validation results. It is
our concern to tune the classifier combination so that strong classifiers gain more
weights in a Bayesian combination scheme.

Assume a sample imagex is associated with a feature setF = {f1, f2, f3, .., .fn}.
For the sake of simplicity we further assume features inF are independent from
each other. The probability that a sample belongs to classwc (c ∈ C = {c1, c2, ..., cm})
is:

P (wc|x) = P (wc|F ) (4)

From the Bayes’ rule, we have:

P (wc|F ) =
p(F |wc)P (wc)

p(F )

=

P (wc)
n∏

j=1

p(fj|wc)

∑
i∈C

P (wi)
n∏

j=1

p(fj|wi)

(5)

As

p(fj|wi) =
P (wi|fj)p(fj)

P (wi)
,

and assuming all priori probabilitiesP (wi) are equal between classes, Eq.(5) can
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Fig. 3. Two examples of posterior probability boosting according to the precision of the
classifier.

then be simplified as

P (wc|F ) =

P (wc)
n∏

j=1

P (wc|fj)p(fj)

P (wc)∑
i∈C

P (wi)
n∏

j=1

P (wi|fj)p(fj)

P (wi)

=

n∏
j=1

P (wc|fj)

∑
i∈C

n∏
j=1

P (wi|fj)

(6)

This means that the combined classification result can be worked out from the
posterior probabilities from individual classifiers using the above product rule.

As seen from Eq.(3), the posterior probabilities can be estimated from thek-NN
results, but this approximation ability is in question when classifiers performance
varies. Consequently we should give the classifier with high precision more weight
when combining multiple classification decisions. Hence we boost the posterior
probability of each classifier (if it is greater than 0.5) as:

Pb(wc|fj) =
1

2
+ [P (wc|fj)−

1

2
]ρ(wc, fj), (7)

whereρ(wc, fj) is the precision of classifierj on classc obtained from cross val-
idation. Figure 3 gives two examples of this precision-based boosting. The poste-
rior probabilities in Eq.(6) can be better estimated with the precision-boosted value
Pb(wc|fj) and therefore is hopeful to give more accurate classification.
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(a)

(b)

Fig. 4. Sample scene images: (a) indoor, and (b) outdoor.

A normalisation step is then carried out after the boosting:

P (wc|fj) =
Pb(wc|fj)

n∑
l

Pb(wc|fl)

. (8)

4 Empirical study

4.1 Groundtruth dataset

Due to the lack of benchmark data for the scene classification problem, we have
to use our own image database as groundtruth. The image database consists of 153
photos that are taken during and after the construction of the Information Services
Building (ISB) of University of Otago. A variety of pictures of constructional sites,
completed building with outdoor background, indoor scenes of close-ups of library
users or architectural structures etc. are included. Some of these indoor and outdoor
images, as shown in Figure 4, have visually similar components especially of the
architecture. It is challenging to classify these scenes with a high accuracy.

For training and testing purposes we hand-labelled each image as ‘indoor’ or ‘out-
door’, resulting in 60 (39%) images labelled as indoor scenes, and 93 (61%) images
labelled as outdoor scenes. After segmentation, there are 1420 indoor segments
and 1682 outdoor segments as training samples. The priori probabilities are close
enough for their difference to be ignored.
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4.2 Experiment results

In our experiment, we perform leave-one-out cross validation over the training sam-
ples and compute the precision and recall rates separately. For the global feature,
we have two classifiers based on colour and edge features. Figure 5 shows the clas-
sification precision and recall on theindoor andoutdoorclasses. As we can see,
the performances of the classifiers vary on indoor and outdoor scenes. For instance,
the LUV classifier has relevant lower precision in indoor classification and higher
precision in outdoor classification. Different classifiers also give different classi-
fication precision. One classifier may have a better precision but a worse recall.
Yet to simplify the scenario we concentrate on the precision performance of these
classifiers.

Fig. 5. Performance of the global classifiers.

EHD-based classifiers are also evaluated using a leave-one-out cross validation pro-
cess. The precision of regional colour and regional EHD classifiers are shown in
Figure 6.

A big difference of the performance of the classifiers between regional colour and
edge features is observed. Regional colour classifiers work on outdoor images well
but poorly on indoor images. Regional edge classifiers are just on the contrary. The
reason may be that most segments within the outdoor image contain bright colours,
such as sky, grass and buildings, while the colours of indoor image segments change
inconsistently. On the other hand, most segments in indoor scenes have no edge,
but the outdoor segments have edges in different directions. As indicated by the
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Fig. 6. Precisions of the regional classifiers.

performance metrics, no single classifier using either global or local features works
well over all classes, which confirms the need for combining classification results
from classifiers trained on both global and regional features. The cross validation
results of combined classifiers are compared with those of individual classifiers, as
shown in Figure 7.

Fig. 7. Comparison of precision-boosted combination classifier with the individual classi-
fier.

To achieve an optimal classification rate, four individual classifiers with high pre-
cision values are empirically chosen. They are:

• Global colour histogram (G-CH) classifier atk = 9,
• Global EHD (G-EHD) classifier atk = 7,
• Regional colour histogram (R-CH) classifier atk = 13 and
• Regional EHD (R-EHD) classifier atk = 21.

After implementing different combination rules for classification, the final classifi-
cation accuracy values are listed in Table 1. It is clear that by using classification
combination the scene classification accuracy is consistently improved, while the
precision-based combination scheme gives the best result.

Some of the misclassified images are shown in Figure 8. These scenes are difficult
to classify simply using colour and texture information, without the help of knowl-
edge on the spatial layout or the structure of the buildings. Nevertheless, an overall
accuracy about 90% scenes can be correctly classified, showing the effectiveness
of our approach using content-based visual features and classifier combination.

We cannot compare these results directly with those reported in [5] as the dataset
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Table 1
Classification accuracy using different classification schemes and different combination
rules.

Classifier Accuracy (%)

G-CH 79.7

G-EHD 77.8

R-CH 70.7

R-EHD classifier 44.4

Majority voting combination 80.4

Product combination 85.6

Precision-based combination 89.5

Fig. 8. Some misclassified images.

used there is a different one and is not available as a benchmark. However, our
improvement of using precision-boosted classification combination over the con-
ventional majority voting rule and product rule is obvious.

5 Conclusion

In this paper, we introduced a scene classification method using global and region
features. A new classification combination rule using multiple precision-boosted
classifiers is proposed and applied to the indoor-outdoor scene classification prob-
lem, where regional features of segmented image regions rather than fixed-size
blocks are extracted together with global visual features. Empirical results have
shown that the new classification combination scheme performs better than major-
ity voting and the product rule.
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While we have been focusing on a two-class problem, it is clear that this precision-
boosted classification combination approach can be extended to multi-class prob-
lems. On the other hand, we hope to improve this approach by adopting more types
of classifiers, and further test it on some benchmark image datasets. To do this we
look forward to including more MPEG-7 XM features to enhance object classifi-
cation capability. Further research will be on constructing some regional semantic
models and then combining them to form a probabilistic semantic space of visual
objects and visual concepts, so that more complicated scene classification and scene
understanding can be achieved.
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