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Abstract

In tackling data mining and pattern recognition tasks, finding a compact but effective set of features
has often been found to be a crucial step in the overall problem-solving process. In this paper we present
an empirical study on feature analysis for classical instrument recognition, using machine learning
techniques to select and evaluate features extracted from a number of different feature schemes. It is
revealed that there is significant redundancy between and within feature schemes commonly used in
practice. Our results suggest that further feature analysis research is necessary in order to optimize
feature selection and achieve better results for the instrument recognition problem.

1 Introduction

Music data analysis and retrieval has become a very popular research field in recent years. The ad-
vance of signal processing and data mining techniques has led to intensive study on content-based music
retrieval [1][2], music genre classification [3][4], duet analysis [2], and most frequently, on musical
instrument detection and classification (e.g., [5][6][7][8]).

Instrument detection techniques can have many potential applications. For instance, detecting and an-
alyzing solo passages can lead to more knowledge about different musical styles and be further utilized
to provide a basis for lectures in musicology. Various applications for audio editing, audio and video re-
trieval or transcription can be supported. An overview of audio information retrieval has been presented
by Foote [9] and extended by various authors [2][10]. Other applications include playlist generation
[11], acoustic environment classification [12, 13], and using audio feature extraction to support video
scene analysis and annotation [14].

One of the most crucial aspects of instrument classification, is to find the right feature extraction
scheme. During the last few decades, research on audio signal processing has focused on speech recog-
nition, but few features can be directly applied to solve the instrument classification problem. New
methods are being investigated so as to achieve semantic interpretation of low-level features extracted
by audio signal processing methods. For example, a framework of low-level and high-level features
given in the MPEG-7 multimedia description standard [15] can be used to create application-specific



description schemes. These can be used to annotate music with a minimum of human supervision for
the purpose of music retrieval.

In this paper, we present a study on feature extraction and selection for instrument classification using
machine learning techniques. Features were first selected by ranking and other schemes, data sets of
reduced features were generated, and their performance in instrument classification was further tested
with a few classifiers using cross validations. A number of feature schemes were considered based
on human perception, cepstral features, and the MPEG-7 audio descriptors. The performance of the
feature schemes was assessed first individually, and then in combination with each other. We also used
dimension reduction techniques so as to gain insight on the right dimensionality for feature selection.
Our aim was to find differences and synergies between different feature schemes and test them with
various classifiers, so that a robust classification system could be built.Features extracted from different
feature schemes were ranked and selected, and a number of classification algorithms were employed and
managed to achieve good accuracies in three groups of experiments: instrument family classification,
individual instrument classification, and classification of solo passages.

Following this introduction, Section 2 reviews the recent relevant work on musical instrument recog-
nition and audio feature analysis. Section 3 outlines the approach we adopted in tackling the problem
of instrument classification, including feature extraction schemes, feature selection methods, and clas-
sification algorithms used. Experiment settings and results based on the proposed approach are then
presented in Section 4. We summarize the findings and conclude the paper in Section 5.

2 Related Work

Various feature schemes have been proposed and adopted in the literature of instrument sound analy-
sis. On top of the adopted feature schemes, different computational models or classification algorithms
have been employed for the purposes of instrument detection and classification.

Mel-frequency cepstral coefficients (MFCC) features are commonly employed not only in speech pro-
cessing, but also in music genre classification and instrument classification. Marques and Moreno [5]
built a classifier that can distinguish between eight instruments with 70% accuracy using Support Vector
Machines (SVM). Eronen [6] assessed the performance of MFCC features and spectral and temporal
features such as amplitude envelope and spectral centroids for instrument classification. The Karhunen-
Loeve transform was conducted to decorrelate the features, andk-nearest neighbors (k-NN) classifiers
were used with their performance assessed through cross validation. The results favoured MFCC fea-
tures, and violin and guitar were among the most poorly recognized instruments.

The MPEG-7 audio framework targets standardization of the extraction and description of audio fea-
tures [15][16]. The sound description of MPEG-7 audio features was assessed by Peeters et al. [17]
based on their perceived timbral similarity. It was concluded that combinations of the MPEG-7 de-
scriptors can be reliably applied in assessing the similarity of musical sounds. Xiong et al. [12] com-
pared MFCC and MPEG-7 audio features for the purpose of sports audio classification, adopting hidden
Markov models (HMM) and a number of classifiers such ask-NN, Gaussian mixture models, AdaBoost,
and SVM. Kim et al. [10] examined the use of HMM-based classifiers trained on MPEG-7 based audio
descriptors to solve audio classification problems such as speaker recognition and sound classification.

Brown et al. [18] conducted a study on identifying four instruments of the woodwind family. Features
used were cepstral coefficients, constant Q transform, spectral centroid, autocorrelation coefficients. For
classification, a scheme using Bayes decision rules was adopted. The recognition rates based on the

2



feature sets varied from 79%-84%.
Agostini et al. [7] extracted spectral features for timbre classification, and the performance was as-

sessed over SVM,k-NN, canonical discriminant analysis, and quadratic discriminant analysis, with the
first and last being the best. Compared with the average 55.7% correct tone classification rate achieved
by some conservatory students, it was argued that computer-based timbre recognition can exceed human
performance at least for isolated tones.

Essid et al. [8] processed and analyzed solo musical phrases from ten instruments. Each instrument
was represented by fifteen minutes of audio material from various CD recordings. Spectral features,
audio spectrum flatness, MFCC, and derivatives of MFCC were used as features. SVM yielded an
average result of 76% for 35 features.

Livshin and Rodet [19] evaluated the use of monophonic phrases for detection of instruments in
continuous recordings of solo and duet performances. The study made use of a database with 108
different solos from seven instruments. A set of 62 features (temporal, energy, spectral, harmonic, and
perceptual) was proposed and subsequently reduced by feature selection. The best 20 features were used
for realtime performance. A leave-one-out cross validation using ak-NN classifier gave an accuracy
of 85% for 20 features and 88% for 62 features. Benetos et al. [20] adopted branch-and-bound search
to extract a 6-feature subset from a set of MFCC, MPEG-7, and other audio spectral features. A non-
negative matrix factorization algorithm was used to develop the classifiers, gaining an accuracy of 95.2%
for six instruments.

Kostek [2] studied the classification of twelve instruments played under different articulations. She
used multilayer neural networks trained on wavelet and MPEG-7 features. It was found that a combi-
nation of these two feature schemes can significantly improve the classification accuracy to a range of
55% - 98%, with an average of about 70%. Misclassifications occurred mainly within each instrument
family (woodwinds, brass, and strings). A more recent study by Kaminskyj et al. [21] dealt with iso-
lated monophonic instrument sound recognition usingk-NN classifiers. Features used include MFCC,
constant Q transform spectrum frequency, Root mean square (RMS) amplitude envelop, spectral cen-
troid, and multidimension scaling analysis trajectories. These features underwent principal component
analysis (PCA) to be reduced to a total dimensionality of 710.k-NN classifiers were then trained un-
der different hierarchical schemes. A leave-one-out strategy was used, yielding an accuracy of 93% in
instrument recognition, and 97% in instrument family recognition.

Some progress has been made in musical instrument identification for polyphonic recordings. Eggink
and Brown [22] presented a study on the recognition of five instruments (flute, oboe, violin and cello)
in accompanied sonatas and concertos. Gaussian-mixture-model classifiers were employed on features
reduced by PCA. The classification performance on a variety of data resources ranged from 75% to 94%,
while misclassification occurred mostly for flute and oboe (both classified as violin).

With the emergence of many audio feature schemes, feature analysis and selection has been gaining
more research attention recently. A good introduction on feature selection was given in Guyon and Elis-
seef [23], outlining the methods of correlation modelling, selection criteria, and the general approaches
of using filters and wrappers. Yu and Liu [24] discussed some generic methods such as information gain
(IG) and symmetric uncertainty (SU), where an approximation method for correlation and redundancy
analysis was proposed based on using SU as the correlation measure. Grimaldi et al. [25] evaluated
selection strategies such as IG and gain ratio (GR) for music genre classification. Livshin and Rodet
[19] used linear discriminant analysis to repeatedly find and remove the least significant feature, until a
subset of 20 features was obtained from the original 62 feature types. The reduced feature set gave an
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average classification rate of 85.2%, very close to that of the complete set.
Benchmarking is still an open issue that remains unresolved. There are very limited resources avail-

able for benchmarking, so direct comparison of these various approaches is not possible. Most studies
have used recordings digitized from personal or institutional CD collections. McGill University Master
Samples (http://www.music.mcgill.ca/resources/mums/html/mums.html) have been used in some studies
[7][22][21], while the music samples from the MIS Database from UIOWA (http//:theremin.music.uiowa.edu/)
were also widely used [18][6][22][20].

3 Feature Analysis and Validation

3.1 Instrument categories

Traditionally, musical instruments are classified into four main categories or families: string, brass,
woodwind, and percussion. For example, violin is a typical string instrument, oboe and clarinet be-
long to the woodwind category, horn and trumpet are brass instruments. Piano is usually classified as
a percussion instrument. Sounds produced by these instruments bear different acoustic attributes. A
few characteristics can be obtained from these sound envelopes, including attack (the time from silence
to amplitude peak), sustain (the time length in maintaining level amplitude), decay (the time the sound
fades from sustain to silence), and release (the time of the decay from the moment the instrument stops
playing). To achieve accurate classification of instruments, more complicated features need to be ex-
tracted.

3.2 Feature Extraction for instrument classification

Because of the complexity of modelling instrument timbre, various feature schemes have been pro-
posed through acoustic study and pattern recognition research. One of our main intentions is to inves-
tigate the performance of different feature schemes as well as find a good feature combination for a
robust instrument classifier. Here, we use three different extraction methods, namely, perception-based
features, MPEG-7 based features, and MFCC. The first two feature sets consist of temporal and spectral
features, while the last is based on spectral analysis. These features, 44 in total, are listed in Table 1.
Among them the first sixteen are perception-based features, the next seven are MPEG-7 descriptors, and
the last 26 are MFCC features.

3.2.1 Perception-based features

To extract perception-based features, music sound samples are segmented into 40ms frames with 10ms
overlap. Each frame signal was analysed by 40 band-pass filters centered at Bark scale frequencies. The
following are some important perceptual features that are used in this study:

• zero-crossing rate(ZCR), an indicator for the noisiness of the signal, often used in speech pro-
cessing applications:

ZCR =

N∑
n=1

|sign(Fn) − sign(Fn−1)|

2N
(1)

whereN is the number of samples in the frame, andFn the value of then-th sample of a frame.
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Table 1. Feature Abbreviations and Descriptions
# Abbr. Description Scheme
1 ZC Zero Crossings

2-3 ZCRM, ZCRD Mean and standard deviation of ZC Ratios
4-5 RMSM, RMSD Mean and standard deviation of RMS Perception-
6-7 CentroidM, CentroidD Mean and standard deviation of Centroid based
8-9 BandwidthM, BandwidthD Mean and standard deviation of Bandwidth

10-11 FluxM, FluxD Mean and standard deviation of Flux
12 HC Harmonic Centroid Descriptor
13 HD Harmonic Deviation Descriptor
14 HS Harmonic Spread Descriptor
15 HV Harmonic Variation Descriptor MPEG-7
16 SC Spectral Centroid Descriptor
17 TC Temporal Centroid Descriptor
18 LAT Log-Attack-Time Descriptor

19-44
MFCCkM, MFCCkD Mean and standard deviation

MFCC
of the first 13 linear MFCCs

• theRoot-mean-square(RMS), which summarizes the energy distribution in each frame and chan-
nel over time:

RMS =

√√√√√√
N∑

n=1

F 2
n

N
(2)

• Spectral centroid, which measures the average frequency weighted by sum of spectrum amplitude
within one frame:

Centroid=

K∑
k=1

P (fk)fk

K∑
k=1

P (fk)

(3)

wherefk is the frequency in thek-th channel, the number of channels is K=40, andP (fk) the
spectrum amplitude on thek-th channel.

• Bandwidth, also referred to as centroid width, shows the frequency range of a signal weighted by
its spectrum:

Bandwidth=

K∑
k=1

|Centroid − fk)|P (fk)

K∑
k=1

P (fk)

(4)

• Flux, which represents the amount of local spectral change, calculated as the squared difference
between the normalized magnitudes of consecutive spectral distributions:

Flux =
K∑

k=2

|P (fk) − P (fk−1)|2 (5)
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These features were extracted from multiple segments of a sample signal and it is the mean value and
the standard deviation that are used as the feature values for each music sample.

3.2.2 MPEG-7 timbral features

Instruments have unique properties which can be described by their harmonic spectrums and their tem-
poral and spectral envelopes. The MPEG-7 audio framework [15] endeavours to provide a complete
feature set for the description of harmonic instrument sounds. We consider in this work only two classes
of timbral descriptors in the MPEG-7 framework: Timbral Spectral and Timbral Temporal. These in-
clude seven feature descriptors: Harmonic Centroid (HC), Harmonic Deviation (HD), Harmonic Spread
(HS), Harmonic Variation (HV), Spectral Centroid (SC), Log-Attack-Time (LAT), and Temporal Cen-
troid (TC). The first five belong to the Timbral Spectral feature scheme, while the last two belong to the
Timbral Temporal scheme. Note that the SC feature value is obtained from the spectral analysis of the
entire sample signal, so it is similar but different from the CentroidM of the perception-based features.
CentoidM is aggregated from the centroid feature analysed from short segments within a sample.

3.2.3 MFCC features

To obtain MFCC features, a signal needs to be transformed from frequency (Hertz) scale to mel scale:

mel(f) = 2595 log10

(
1 +

f

700

)
(6)

The mel scale has 40 filter channels. The first extracted filterbank output is a measure of power of the
signal, and the following 12 linear spaced outputs represent the spectral envelope. The other 27 log-
spaced channels account for the harmonics of the signal. Finally a discrete cosine transform converts
the filter outputs to give the MFCCs. Here, the mean and standard deviation of the first thirteen linear
values are extracted for classification.

3.3 Feature Selection

Feature selection techniques are often necessary to optimize the feature set used for classification.
This way, redundant features are removed from the classification process and the dimensionality of
the feature set is reduced, so as to save computational cost and defy the “curse of dimensionality” that
impedes the construction of good classifiers [23]. To assess the quality of a feature used for classification,
a correlation-based approach is often adopted. In general, a feature is good if it is relevant to the class
concept but is not redundant given the inclusion of other relevant features. The core issue is modelling
the correlation between two variables or features. Based on information theory, a number of indicators
can be developed to rank the features by their correlation to the class. Relevant features will yield a
higher correlation.

Given a pre-discretized feature set, the ‘noisiness’ of the featureX can be measured as the entropy,
defined as:

H(X) = −
∑

i

P (xi)log2P (xi), (7)
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whereP (xi) is the prior probability for thei-th discretized value ofX. The entropy ofX after observing
another variableY is then defined as

H(X|Y ) = −
∑
j

P (yj)
∑

i

(P (xi|yj)log2P (xi|yj)), (8)

The Information Gain (IG) [26], indicating the amount of additional information aboutX provided by
Y , is given as

IG(X|Y ) = H(X) − H(X|Y ) (9)

IG itself is symmetrical, i.e., IG(X|Y ) =IG(Y |X), but in practice it favours features with more values
[24].

The gain ration method (GR) normalizes IG by an entropy term:

GR(X|Y ) =
IG(X|Y )

H(Y )
(10)

A better measure is defined as the symmetrical uncertainty [27]:

SU = 2
IG(X|Y )

H(X) + H(Y )
(11)

SU compensates for IG’s bias toward features with more values and restricts the value range within[0, 1].
Despite a number of efforts previously made using the above criteria [25][24], there is no golden rule

for the selection of features. In practice, it is found that the performance of the selected feature subsets
is also related to the choice of classifiers for pattern recognition tasks. The wrapper-based approach [28]
was therefore proposed, using a classifier combined with some guided search mechanism to choose an
optimal selection from a given feature set.

3.4 Feature analysis by dimension reduction

To get a reference level for deciding how many features are sufficient for problem solving, one can use
standard dimension reduction or multidimension scaling (MDS) techniques such as PCA and Isomap
[29] to assess an embedding dimension of the high-dimensional feature space. PCA projects high-
dimensional data into low-dimension space while preserving the maximum variance. Naturally it is
optimal for data compression but has also been found rather effective in pattern recognition tasks such
as face recognition and handwriting recognition. The Isomap algorithm calculates the geodesic distances
between points in a high-dimensional observation space, and then conducts eigenanalysis of the distance
matrix. As the output, new coordinates of the data points in a low-dimensional embedding are obtained
that best preserve their intrinsic geodesic distances. In this study, we used PCA and Isomap to explore
the sparseness of the feature space and examine the residuals of the chosen dimensionality so as to
estimate at least how many features should be included in a subset. The performance of the selected
subsets was then compared with that of the reduced and transformed feature space using MDS.

3.5 Feature validation via classification

Feature combination schemes generated from the selection rankings were then further assessed using
classifiers and cross-validated. The following classification algorithms were used in this study:k-NN,
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an instance-based classifier weighted by the reciprocal of distances [30]; Naive Bayes classifier employs
Bayesian models in the feature space; and SVM, which is a statistical learning algorithm and has been
widely used in many classification tasks.

4 Experiment

4.1 Experiment settings

We tackled the music instrument classification problem in two stages: 1) instrument type classification
using samples of individual instruments, and 2) direct classification of individual instruments.

A number of utilities were used for feature extraction and classification experiments. The perception-
based features were extracted using the IPEM Toolbox [31]. The Auditory Toolbox [32] was used to
extract MFCC features. The MPEG-7 audio descriptor features were obtained using an implementa-
tion by Casey [33]. Various algorithms implemented in Weka (Waikato Environment for Knowledge
Analysis) [34] were used for feature selection and classification experiments.

Samples used in the first experiment were taken from the previously mentioned UIOWA MIS collec-
tion. The collection consists of 761 single instrument files from 20 instruments which cover the dynamic
range from pianissimo to fortissimo and are played bowed or plucked, with or without vibrato, depend-
ing on the instrument. All samples were recorded in the same acoustic environment (anechoic chamber)
under the same conditions. We realize that this is a strong constraint and our result may not generalize
to a complicated setting such as live recordings of an orchestra. To explore the potential of various
feature schemes for instrument classification in live solo performance, solo passage music samples were
collected from music CD recordings from private collections and the University of Otago library.

In general, the purposes of these experiments is to test the performance of the feature schemes, eval-
uate the features using feature selection, and also test the performance of different classifiers.

4.2 Instrument family classification

4.2.1 Feature ranking and selection

We first simplified the instrument classification problem by grouping the instruments into four families:
piano, brass, string and woodwind. For this four-class problem, the best 20 features of the three selec-
tion methods are shown in Table 2. All of them indicate that Log-Attack-Time (LAT) and Harmonic
Deviation (HD) are the most relevant features. The following features have nearly equal relevance. It
is important to note that the standard deviations of the MFCCs are predominantly present in all three
selections. Also the measures of the centroid and bandwidth, as well as the deviation of flux, zero cross-
ings and mean of RMS can be found in each of them. These selections are different from the best 20
features selected by Livshin and Rodet [19], where MPEG-7 descriptors were not considered. However,
they also included bandwidth (spectral spread), MFCC, and Spectral Centroid.

Classifiers were then used to assess the quality of feature selection. A number of algorithms, includ-
ing Naive Bayes,k-NN, multilayer perceptrons (MLP), radial basis function (RBF), and SVM, were
compared on classification performance based on 10-fold cross validation. Among these, the Naive
Bayes classifiers employed kernel estimation during training. A plaink-NN classifier was used here
with k = 1. SVM classifiers were built using sequential mimimal optimisation, with RBF kernels and a
complexity value of 100, with all attributes standardized. Pairwise binary SVM classifiers were trained
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Table 2. Feature ranking for single tones.

Rank
IG GR SU SVM

Feature Value Feature Value Feature Value Feature

1 LAT 0.8154 LAT 0.5310 LAT 0.4613 HD
2 HD 0.6153 HD 0.5270 HD 0.3884 FluxD
3 FluxD 0.4190 MFCC2M 0.3230 BandwidthM 0.2267 LAT
4 BandwidthM 0.3945 MFCC12D 0.2970 FluxD 0.2190 MFCC3D
5 MFCC1D 0.3903 MFCC4D 0.2700 RMSM 0.2153 MFCC4M
6 MFCC3D 0.381 BandwidthM 0.2660 MFCC1D 0.2084 ZCRD
7 RMSM 0.3637 RMSM 0.2640 MFCC4M 0.1924 MFCC1M
8 BandwidthD 0.3503 MFCC13D 0.2580 MFCC11D 0.1893 HC
9 MFCC4M 0.3420 MFCC2D 0.2450 MFCC3D 0.1864 MFCC9D
10 MFCC11D 0.3125 MFCC11D 0.2400 BandwidthD 0.1799 ZC
11 ZCRD 0.3109 MFCC7D 0.2350 MFCC2M 0.1784 RMSM
12 CentroidD 0.2744 FluxD 0.2290 MFCC4D 0.1756 CentroidD
13 MFCC8D 0.2734 MFCC1D 0.2240 MFCC7D 0.1710 MFCC9M
14 MFCC6D 0.2702 MFCC4M 0.2200 MFCC12D 0.1699 BandwidthM
15 MFCC7D 0.2688 CentroidM 0.2150 ZCRD 0.1697 MFCC5D
16 ZC 0.2675 SC 0.2110 CentroidD 0.1653 SC
17 MFCC4D 0.2604 MFCC5M 0.2090 CentroidM 0.1610 MFCC12D
18 CentroidM 0.2578 CentroidD 0.2080 MFCC13D 0.1567 MFCC7M
19 MFCC10M 0.2568 HC 0.1950 SC 0.1563 MFCC2M
20 MFCC10D 0.2519 MFCC1M 0.1910 MFCC8D 0.1532 MFCC6M

9



Table 3. Classifier performance of the instrument families.
Feature Scheme k-NN Naive Bayes SVM MLP RBF

All 44 95.75% 86.5% 97.0% 95.25% 95.0%
Best 20 94.25% 86.25% 95.5% 93.25% 95.5%
Best 10 90.25% 86.25% 94.25% 91.0% 87.0%
Best 5 89.5% 81.0% 91.75% 86.75% 84.5%

Table 4. Performance of classifiers trained on the “Selected 17” feature set.
Classifier 1NN Naive Bayes SVM MLP RBF

Performance 96.5% 88.25% 92.75% 94% 94%

for this multi-class problem, with between 10 and 80 support vectors created for each SVM. The struc-
ture of MLP is automatically defined in the Weka implementation, and each MLP is trained over 500
epochs with a learning rate of 0.3 and a momentum of 0.2.

To investigate the redundancy of the feature set, we used the Information Gain filter to generate
reduced feature sets of the best 20, best 10, and best 5 features respectively. Other choices instead of IG
were found to produce similar performance and hence were not considered further. The performance of
these reduced sets was compared with the original full set with all 44 features. The results are given in
Table 3.

These can be contrasted with results presented in Table 4, where 17 features were selected using a rank
search based on SVM attribute evaluation and the correlation-based CfsSubset scheme implemented in
Weka. This feature set, denoted as “Selected 17”, includes CentroidD, BandwidthM, FluxD, ZCRD,
MFCC[2-6]M, MFCC10M, MFCC3/4/6/8D, HD, LAT, and TC. It is noted that TC contributes positively
to the classification task, even though it is not among the top 20 ranked features. Here the classification
algorithms take similar settings as those used to generate the results shown in Table 3. The performance
of the “Selected 17” feature set is very close to that of the full feature set. Actually thek-NN classifier
performs even slightly better with the reduced feature set.

4.2.2 Evaluation of feature extraction schemes

Since thek-NN classifier produced similar performance in much less computing time compared with
SVM, we further used 1-NN classifiers to assess the contribution from each individual feature scheme
and improvements achieved through scheme combinations. Apart from combining the schemes two
by two, another option was also considered, picking the top 50% ranked attributes from each feature
scheme, resulting in a 21-dimension composite set, called ‘Top 50% mix’. The results are presented in
Table 5. Besides overall performance, classification accuracy on each instrument type is also reported.

From these results, it can be seen that among the individual feature subsets, MFCC outperforms both
IPEM and MPEG-7. This is different from the finding of Xiong et al. [12] that MPEG-7 features give
better results than MFCC for the classification of sports audio scenes such as applause, cheering, and
music etc. The difference is however marginal (94.73% vs 94.60%). Given that the scope of our study
is much narrower, this should not be taken as a contradiction. Indeed, some researchers also found more
favourable results using MFCC instead of MPEG-7 for instrument classification [10][8].

In terms of average performance of combination schemes listed in Table 5, the MFCC+MPEG-7
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Table 5. Performance (%) in classifying the 4 classes (10 CV)
Feature Sets Brass Woodwind String Piano Overall

MFCC (26) 99 90 89 95 93.25
MPEG-7 (7) 90 62 76 99 81.75
IPEM (11) 93 63 81 100 84.25

MFCC+MPEG-7 (33) 98 92 91 100 95.25
MFCC+IPEM (37) 98 89 94 98 94.75
IPEM+MPEG-7(18) 93 76 85 100 88.5

Top 50% mix (21) 95 89 88 100 93
Best 20 97 88 92 100 94.25
Selected 17 97 94 95 100 96.5

set shows the best results, while the MPEG-7+IPEM set with 18 features has the poorest result. It is
observed that the inclusion of MFCC is most beneficial for woodwind and string families, while the
inclusion of the MPEG-7 seems to boost the performance on piano and woodwind. Generally, the more
features that are included, the better the performance. However, between 33, 37 and 44 features the
difference is almost negligible. It is interesting to note that the ‘Selected 17’ feature set produces very
good performance. The top 50% mix set produces a performance as high as 93%, which is slightly worse
than that of ‘best 20’ probably due to the fact that the selection is not done globally among all features.
All these results, however, clearly indicate that there is strong redundancy within the feature schemes.

In terms of accuracy on each instrument type, the piano can be classified by most feature sets rather
accurately. The MPEG-7 and IPEM sets have problems in identifying woodwind instruments, with
which MFCC can cope very well. Combining MFCC with other feature sets can boost the performance
on ‘woodwind’ significantly. The MPEG-7 set does not perform well on string instruments either, how-
ever, a combination with either MFCC or IPEM can effectively enhance the performance. These results
suggest that these individual feature sets are quite complementary to each other. On the other hand, the
good performance of the selected feature set clearly indicates that there is high redundancy among the
three basic feature schemes.

4.2.3 Dimension reduction

Overall, when the total number of included features is reduced, the classification accuracy decreases
monotonically. However, it is interesting to see from Table 3 that even with five features only, the
classifiers achieved a classification rate around 90%. In order to interpret this finding, we used PCA and
Isomap to reduce the dimensionality of the full feature set. The two methods report similar results. The
normalized residuals of the extracted first 10 components using these methods are shown in Figure 1.
The 3-D projection of the Isomap algorithm, generated by selecting the first three coordinates from the
resulting embedding, is shown in Figure 2. For both methods the residual falls under 0.5% after the 4th
component, although the dropping reported by Isomap is more significant. This suggests that the data
manifold of the 44-dimensional feature space may have an embedded dimension of 4 or 5 only.

As a test, the first five principal components (PC) of the complete feature set were extracted, resulting
in weighted combinations of MFCC, IPEM and MPEG-7 features. A 1-NN classifier trained with the
five PCs reports an average accuracy of 88.0% in a 10-fold cross validation, very close to that of the
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“Best 5” selection given in Table 3. This further confirms that there is strong redundancy within and
between the three feature schemes.

4.3 Instrument Classification

4.3.1 Individual instrument sound recognition

Table 6. Confusion matrix for all 20 instruments with 10-fold CV.

Instrument
Classified As

a b c d e f g h i j k l m n o p q r s t
a=piano 19 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
b=tuba 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
c=trumpet 0 0 19 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d=horn 0 0 0 19 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
e=ttrombone 0 0 0 0 18 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
f=btrombone 0 0 0 0 1 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0
g=violin 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0
h=viola 0 0 0 0 1 2 1 18 0 0 0 0 0 0 0 1 0 1 0 1
i=bass 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0 1 0 1 0 0
j=cello 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0
k=sax 0 0 0 0 0 0 0 0 0 0 8 1 0 0 0 0 0 0 0 1
l=altosax 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 2 0 0 0
m=oboe 0 1 0 0 0 1 0 1 0 1 0 0 6 0 0 0 0 0 0 0
n=bassoon 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0
o=flute 0 0 0 0 0 0 0 0 1 0 0 0 0 0 7 1 0 0 1 0
p=altoflute 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7 2 0 0 0
q=bflute 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 8 0 0 0
r=bclarinet 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 6 0 0
s=bbclarinet 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 8 0
t=ebclarinet 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 2 0 0 0 5

Next, all 20 instruments were directly distinguished from each other. Here we chose to use 1-NN
classifiers as they work very fast and give almost the same accuracies as compared to SVM. A feature
selection process was conducted, using correlation-based subset selection on attributes searched by SVM
evaluation. This resulted in a subset of 21 features, including LAT, FluxM, ZCRD, HD, CentroidD, TC,
HC, RMSD, FluxD, and 12 MFCC values. The confusion matrix for individual instrument classification
is given in Table 6. Instrumenta is piano, and instrumentsb-f belong to the brass type,g-j the string
type, andk-t the woodwind type.

The overall average classification accuracy is 86.9%. The performance in general is quite satisfactory,
especially for piano and string instruments. Only one out 20 piano samples was wrongly classified
(as oboe). Among string instruments, the most significant errors occurred for viola samples, with an
accuracy of 18/25=72%. Classification errors in the woodwind category mainly occurred within itself,
having only sporadic cases of wrong classification as instruments of other families. The woodwind
instruments have the lowest classification accuracy compared with other instruments, but this may relate
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to the limited number of woodwind data samples in the current data set. The worst classified instrument
is Eb clarinet. There is also a notable confusion between alto flute and bass flute.

4.3.2 Classification of solo phrases

Finally, a preliminary experiment on solo phrases was conducted. For this experiment one representative
instrument of each instrument type was chosen. These were: trumpet, flute, violin, and piano. To
detect the right instrument in solo passages, a classifier was trained on short monophonic phrases. Ten
second long solo excerpts from CD recordings were tested on this classifier. The problem here is that
the test samples were recorded with accompaniment, thus are often polyphonic in nature. Selecting
fewer and clearly distinguishable instruments for the trained classifier helps to make the problem more
addressable. It is assumed that an instrument is playing dominantly in the solo passages. Thus, its
spectral characteristics will probably be the most dominant and the features derived from the harmonic
spectrum are assumed to work. Horizontal masking effects will probably the most crucial problem to
tackle. Overlapping tones could mask the attack and decay time.

The samples for the four instruments were taken from live CD recordings. Passages of around ten
seconds’ length were segmented into two second phrases with 50% overlap. The amount of music sam-
ples was basically balanced across the four instrument types, as seen in Table 7. A change to shorter one
second segments for training and testing showed similar results but with a tendency to lower recognition
rates. The trumpet passages sometimes have multiple brass instruments playing. The flutes are accom-

Table 7. Data sources for the solo phrase experiment.
Trumpet 9 min / 270 samples
Piano 10.6 min / 320 samples
Violin 10 min / 300 samples
Flute 9 min / 270 samples
Total 38.6 min / 1160 samples

panied by multiple flutes, a harp or a double bass, and the violin passages are sometimes flute and string
accompanied.

The same SVM-based feature selection scheme used before searched out 19 features for this task.
These included: 8 MFCC values (mainly means), 5 MPEG-7 features (HD, HS, HV, SC), and 4 perception-
based features (CentroidM, FluxM, ZCRD, and RMSM. An average accuracy of 98.4% was achieved
over four instruments using 3-NN classifiers with distance weighting. The Kappa statistics is reported as
0.98 for 10-fold cross validation, which suggests that the classifier stability is very strong. The confusion
matrix is shown in Table 8. Numbers shown are percentage. The largest classification errors occurred
with flute being classified as piano.

Here again, MFCC was shown to be dominant in classification. To achieve a good performance, it is
noted that the other two feature schemes also contributed favourably.

4.4 Discussion

The scopes of some current studies and performance achieved are listed in Table 9, where the number
of instruments, classification accuracies (in %) of instrument family classification and individual instru-
ment classification are listed. It can be seen that our results are better or comparable with those obtained
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Table 8. Confusion matrix for intrument recognition in solo passages (performance in %).

Instrument
Classified As

piano trumpet violin flute
piano 100 0 0 0
trumpet 0.4 99.6 0 0
violin 0.3 0.3 98.7 0.7
flute 3.7 0 1.5 94.8

by other researchers. However, it is noted that the number of instruments included is different, and the
data sources are different despite the fact that most of these included the UIOWA sample set. The exact
validation process used may be different as well. For instance, we used 10-fold cross validation, while
Kaminskj and Czaszejko [21] and others used leave-one-out.

Paired with a good performance level, the feature dimensionality of our approach is relatively low
with the selected feature sets having less than or around 20 dimensions. On the other hand, Eggink and
Brown [22] used the same UIOWA sample collection but a different feature scheme with 90 dimensions,
reporting an average recognition rate of only 59% on five instruments (flute, clarinet, oboe, violin and
cello). Livshin and Rodet [19] used 62 features and selected the best 20 for real-time solo detection.
Kaminskj and Czaszejko [21] used 710 dimensions after PCA. In our study, a 5-dimension set after PCA
can also achieve a good classification accuracy. A notable work is by Benetos et al. [20], where only 6
features are selected. However, there are only six instruments included in their study and the scalability
of the feature selection needs to be further assessed.

Table 9. Performance of instrument classification compared with that of ours.
Work no. of instruments Family classification Individual classification
Eronen [6] 29 77 35
Martin and Kim [35] 14 90 70
Agostini et al. [7] 27 81 70
Kostek [2] 12 - 70
Kaminskyj and Czaszejko [21] 19 97 93
Benetos et al. [20] 6 - 95.2
This work 20 96.5 86.9

As for classification of solo passages, it is hard to make direct comparison as no common benchmarks
have been accepted and researchers used various sources including performance CDs [8, 19]. With more
benchmark data becoming available in the future, it is our intention to further assess the feature schemes
and feature selection methods employed in this study.

5 Conclusion

In this paper, we presented a study on feature extraction and evaluation for the problem of instrument
classification. The main contribution is that we investigated three major feature extraction schemes, ana-
lyzed them using feature selection measures based on information theory, and assessed their performance
using classifiers undergoing cross validation.
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For experiments on monotone music samples, a publicly available data set was used so as to allow
for the purpose of benchmarking. Feature ranking measures were employed and these produced similar
feature selection outputs, which basically aligns with the performance obtained through classifiers. The
MPEG-7 audio descriptor scheme contributed the first two most significant features (LAT and HD)
for instrument classification, however, as indicated by feature analysis, MFCC and perception-based
features dominated in the ranked selections as well as SVM-based selections. It was also demonstrated
that among the individual feature schemes it is the MFCC feature scheme that gave the best classification
performance.

It is interesting to see that the feature schemes adopted in current research works are all highly redun-
dant as assessed by the dimension reduction techniques. This may imply that an optimal and compact
feature scheme remains to be found, allowing classifiers to be built fast and accurately. The finding of
an embedding dimension as low as 4 or 5, however, may relate to the specific sound source files we used
in this study and its scalability needs further verification.

On the other hand, in the classification of individual instruments, even the full feature set would not
help much especially in distinguishing woodwind instruments. In fact, it is found in our experiments on
solo passage classification that some MPEG-7 features are not reliable for giving robust classification
results with the current fixed segmentation of solo passages. For instance, attack time is not selected
in the feature scheme, but it can become a very effective attribute with the help of onset detection. All
these indicate more research work in feature extraction and analysis is still necessary.

Apart from the timbral feature schemes we examined, there are other audio descriptors in the MPEG-
7 framework that may contribute to better instrument classification, e.g. those obtained from global
spectral analysis such as spectral envelop and spectral flatness [15]. Despite some possible redundancy
with the introduction of new features, it would be interesting to investigate the possible gains that can be
obtained through more study on feature analysis and selection, and how the proposed approach scales
with increased feature numbers and increased amount of music samples.

In the future, we intend to investigate the feature extraction issue with the use of real world live
recorded music data, develop new feature schemes, as well as experiment on finding better mechanisms
to combine the feature schemes and improve the classification performance for more solo instruments.
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