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Abstract

Referrals are used in multi-agent systems, network
agents and peer-to-peer systems for the purpose of global
or local information spreading to facilitate trust rela-
tionships and reciprocal interactions. Based on referral
local interactions can be altered with a purpose to max-
imise the utility function of each of the participants, which
in many cases requires mutual co-operation of partici-
pants. The referral system is often based on the global
detailed or statistical behaviour of the overall society. Tra-
ditionally, referrals are collected by referring agents and
the information is provided upon request to individu-
als. In this article, we provide a simple taxonomy of refer-
ral systems and on that basis we discuss three distinct ways
information can be collected and aggregated. We anal-
yse the effects of global vs. local information spreading,
in terms of individual and global performance of a pop-
ulation based on the maximisation of a utility function
of each of the agents. Our studies show that under cer-
tain conditions such as large number of non uniformly act-
ing autonomous agents the spread of global information
is undesirable. Collecting and providing local informa-
tion only yields better overall results. In some experimental
setups however, it might be necessary for global infor-
mation to be available otherwise global stable optimal
behaviour cannot be achieved. We analyse both of these ex-
treme cases based on simple game-theoretic setup. We
analyse and relate our results in the context of e-mail rely-
ing and spam filtering.

1. Motivation

This study concentrates on benefits of localisation for
the purpose of information distribution, storage and refer-
rals. We focus here on the notion of locality in the context
of trust and trust referrals.

Trust is a numerical or symbolic prediction of agent’s
behaviour (or behavioural pattern) as perceived by a sin-

gle agent. We may talk about trust relationship between two
agents, if both agents have accurate representation of each
other behavioural patterns. Reputation is a perceived collec-
tive trust value. In other words, aggregated individual trust
provides the notion of a reputation of a given agent. Refer-
ral is an act of referring or recommending. In other words,
referral is the act of communicating trust or reputation infor-
mation. Each individual agent can accumulate its own trust
information based on historical interactions. Each agent can
built a reputation information through exchange of trust in-
formation with other agents. In our system, each agent is re-
sponsible for collecting storing and propagating both trust
and reputation information.

Recently, many multi-agent systems (or systems that can
be modelled as such) are characterised by a large num-
ber of locally interacting components distributed in spatio-
temporal space1. This is typical for example for sensory net-
works, peer-to-peer systems, Internet nodes, mail server re-
lays, etc. The size of the spatio-temporal space and the num-
ber of interacting elements create a number of challenges in
the context of information spreading and referrals.

In this article we take into account two main metrics of
information spreading in the context of referral systems: a)
speed of information spread, b) cost of information spread.

Referral systems, based on local information spreading
only, will be typically characterised by a faster system re-
sponse to local variations and will require less information
propagation within the system itself. Modelling, analysing
and predicting the effects of these tendencies on the over-
all utility function of the individual participant and popula-
tion as a whole are the main objectives of this study.

In the following Section 2 we present our abstract notion
of locality. Then in Section 3 we introduce basic concepts
related to game analysis, such as reward matrix, Nash equi-
librium, and Pareto optimality. In Section 4, we expand tra-

1 By the term spatio-temporal we mean distribution in space and time.
Space can be a physical 3-dimensional euclidean space as in the con-
text of sensory networks physically deployed in a real physical envi-
ronments. Or it can be an abstract space with a distance function based
on the number of hops between the nodes.



ditional concepts with our own model of behaviour emerg-
ing from selfish interests. We discuss various equilibrium
concepts and provide notions of stable, and optimal strate-
gies. In Section 5 we present the details of the games that we
have used in our experiments. Section 6 contains the exper-
imental results of the abstract game analysis. Section 7 con-
tain a discussion of applicability of our findings in the con-
text of spam and mail relying. The article is summarised in
Section 8.

2. The concept of locality

Locality is in other words a measure of distance within
a particular topology. Locality captures the notion of how
close elements are. In our studies we use the concept in
a dual meaning: a) derived from the notion of connectiv-
ity and distance in graphs, and b) derived from the notion
of distance in time. Informally, elements that require less
hops (a number of nodes in a path in a graph) are said to
be close, or local. Same, elements that occur one after an-
other in time, are said to be close, or local.

To define such a distance measure in the abstract spatio-
temporal space, we use the notion of connected graphs
(networks) and the traffic passing through such a network.
The nodes represent the processing units (computers, e-mail
servers, agents, etc) and the vertices are the communica-
tion channels which allow the information flow between the
nodes. The information can be of any form, e-mail mes-
sages, agent communication messages, etc.

We say that the given set of nodes is local, or close, if
they are directly connected with one another (1 hop). We
say that nodes are non-local if there is another node on the
path between them.

3. Cooperation through game analysis

Some authors argue that incentive based control of
emerging behaviour of agent societies may not be suf-
ficient [3] and explicit normative prescriptions and rules
on the behaviour must be employed and enforced. There
is much merit to such views, however, their applicabil-
ity in open multi-agent systems is limited or not applicable
without fixed and centralised services, such as specialised
middleware. For open multi-agent systems a different ap-
proach needs to be taken. In our work we assume that de-
cisions made by individual agents are the sole cause of any
global patterns of the behaviour within a multi-agent soci-
ety. We do not assume any other institutional or normative
regulatory mechanisms. In particular, in case of spam fil-
tering no such regulatory mechanism are in place at the
time of writing this article, therefore the only way to rem-
edy the situation is through specially engineered bottom-up
mechanisms and related investigations.

For our analysis and abstract experiments we have cho-
sen the game theoretic approach [5]. Game theoretic analy-
sis is one of the popular ways of conducting studies about

trust and cooperation. The setup usually involves 2- or
more players (agents, participants). Each of the participants
makes a decision at the same time without knowing oth-
ers decisions. Each player is then given a payoff (reward)
based on its and all others decision. If we consider each de-
cision as a row and column index and each cell of such a
matrix a vector of payoffs given to each of the players ac-
cordingly, then such a matrix is called a payoff (or reward)
matrix. Note, the dimension of the matrix is equal to the
number of choices each player can make, and the dimen-
sion of the vector equals to the number of players. Strat-
egy is the way a given player makes its decision. We dis-
tinguish two basic types of strategies. Fixed strategies, such
that players decision is invariant in time. Adaptive strategies
change in time subject to external and internal influences.
Strategies are also characterised by the history horizon, that
is, how many previous iterations are being taken into ac-
count. Games are often called dilemmas (such as Prisoner
Dilemma), and played iteratively many times with various
initial conditions, strategies and other parameters.

Various dilemmas developed for experiments show the
intrinsic complexity of agent’s choices regarding trust and
cooperation. Software simulations allow modelling differ-
ent forms of matrix games with number of variables, various
fixed and adaptive strategies with large number iterations.
Some of these studies can only be conducted through ex-
perimentation and simulation due to the large number mu-
tually dependent variables and adaptive character of some
strategies.

There is a number of existing concepts [6] that are use-
ful in the context of analysis of behaviour and establishing
trust relationships, and others have proposed various mod-
els for modelling mutual trust relationships (e.g. [1, 6]). We
will follow game-theoretic approach, similarly to [5] and
we will briefly discuss here two mostly used notions: Pareto
and Nash equilibrium.

Pareto optimality2 is a situation which exists when re-
wards have been allocated in such a way that no-one can
be made better off without sacrificing the well-being of at
least one other player. In other words, movement in the re-
ward matrix along any of the rows or columns is not possi-
ble without at least one player being worst off. That means
that a current strategy cannot be improved without a sac-
rifice of at least one of the players. The concept of Pareto
optimality is useful in establishing local optima and stable
game strategies. However, Pareto optimality says nothing
about global optima and globally stable strategies. By re-
quiring that no participants be worse off, Pareto optimality
protects the status quo and therefore any inequity or sub-
optimality of the strategy distribution already existing or es-
tablished.

Nash equilibrium3 is a kind of solution concept of a

2 Named after Italian sociologist and economist Vilfredo Pareto (1848-
1923).

3 named after John Forbes Nash (born 1928).



game involving two or more players, where no player has
anything to gain by changing only his or her own strat-
egy unilaterally. If each player has chosen a strategy and
no player can benefit by changing his or her strategy while
the other players keep theirs unchanged, then the current set
of strategy choices and the corresponding payoffs consti-
tute a Nash equilibrium.

In most multi-agent systems composed of selfish agents
a typical stable uniform strategy lies on the Nash equi-
librium. Nash equilibrium configuration implies that there
is no benefit for one player to change its strategy if the
other agent’s strategy does not change. However, in the con-
text of non-zero sum games this is rarely the optimal strat-
egy for players to adapt. Economists use the game analy-
sis for predicting various social behaviour in market situa-
tions, and there is usually a consensus that societies in the
models settle for Nash equilibrium. There are some stud-
ies that challenge this typical game-theoretic approach. For
example, the work of Banerjee et al [1] considers 1-level
agents who select actions based on expected utility consid-
ering probability distributions over the actions of the op-
ponent(s). In certain situations, such stochastically-greedy
agents can perform better (by developing mutually trusting
behaviour) that those that explicitly attempt to converge to
Nash equilibrium.

4. Cooperative behaviour: reputation and
trust

In [6] authors developed a trust mechanism that selects
the number of agents to query for referrals. The proposed
mechanism works effectively if the knowledge of the agents
behaviour distribution is known in advance. An agent can
make an informed decision, given the expected probability
distribution and the referral information. In the case of un-
known probability distribution, given a referral, agent is un-
able to establish how far from expected behaviour that re-
ferral is. For an unknown adaptive mechanism we propose
the modification based on the new Selfish Stochastic Strat-
egy and dynamic referral information spreading. These con-
cepts will be described with more details later.

For the purpose of our initial abstract experiments, we
will consider only stochastic environments, where exact in-
formation about players is not available. That means play-
ers cannot distinguish with whom they played in the past.
Only the average local and global score information is prop-
agated through the referral system.

We will formally introduce here three concepts related
to game equilibrium. These concepts are discussed as opti-
mal strategies, in the context of trust/reputation and optimi-
sation of agent’s utility function. These are Best Cumulative
Strategy, Greedy Stochastic Strategy and Selfish Stochastic
Strategy.

Note, the utility function can be defined in various forms
and ways and for a different purpose. In the context of e-
mail filtering, the utility function is directly related to the

traffic granted (reward) by other email servers and/or the
spam that is at the end not received by an email server. This
notion will be used later when the e-mail filtering system is
analysed and discussed with more details.

4.1. Greedy Stochastic Strategy

Greedy Stochastic Strategy (GSS) is a strategy that a sin-
gle player would play, exclusively to maximise its own pay-
off intake, given a static snapshot of probability distribution
of all strategies of other players, The GSS strategy assumes
that one’s decision is insignificant for the overall probabil-
ity distribution of population strategies. That is, GSS disre-
gards its own impact on the probability distribution change.
That means that each player makes its own choice as if its
own strategy would not influence anybody else decisions.
As if a given agent was outside of the population pool.
This is obviously a simplified model for rational decision
making, as each individual player is almost always influ-
ential in other players decision making. In some large sys-
tems, where interactions are random between players, there
is quite a substantial inertia between individual player de-
cision and the influence on he global strategies probability
distribution. In other systems, where interactions are fre-
quently with the same group of players, such as in our anti-
spam relay model, the influence is substantial and immedi-
ate.

In terms of strategies probability distribution of a given
population, GSS strategy tries to achieve the maximum in-
dividual reward intake, disregarding the future shape of the
probability distribution of strategies. This usually renders
the GSS strategy to drive the probability distribution of
strategies towards GSS steady state. One can interpret this
as the state where players do not exhibit trust in other play-
ers good will and cooperation.

4.2. Selfish Stochastic Strategy

Selfish Stochastic Strategy (SSS) is similar to GSS. SSS
is the universally optimal strategy in the context of max-
imising one’s utility function based on a given probabil-
ity distribution of other players’ strategies. SSS works un-
der the assumption that one’s decision influences the proba-
bility distribution significantly. This assumption may seem
strange, in the context of games played by large number
of players, where individual decision may seem significant.
However, in most cases in the long run, in particular, when
the game is played indefinitely, the actual population size
does not matter. Each decision is statistically significant for
the overall probability distributions, even for large popula-
tions. In the context of interactions with small closed group
of players (such as federated servers that rely traffic to one
another) the influence is substantial.

In terms of strategies probability distribution of a given
population, SSS strategy tries to maintain the current status
quo. This strategy does not drive the current state of affairs



up or down, it just tries to conform to the current strategies
distribution. In terms of trust the strategy follows the estab-
lished track record of a given player (from self-knowledge
and from the referral system).

4.3. Best Cumulative Strategy

Best Cumulative Strategy (BCS) is a strategy that when
played by all players would yield the highest overall sum of
their individual payoffs. This is a modified SSS in which an
agent takes a pro-active role of driving the probability dis-
tribution of strategies towards the common global optimal
state. In most game theoretic situations, such a global opti-
mal state is highly unstable. The BCS is a theoretical model
capturing the tendency of the population to reach that state.

In terms of probability distribution, BCS drives the
strategies distribution towards a global optima. Players can
be interpreted as exhibiting a pro-active and pro-trust ac-
tivities. This can be implemented indirectly as shorter
memory span for keeping negative players’ informa-
tion and having generally more positive outlook on other
players. In highly competitive environments, BCS strat-
egy usually would perform extremely poorly in some of the
games.

We will look more into detailed abstract game models in
the next section.

5. Abstract game models

To present details of the strategies described in the pre-
vious Section 4 we will use three simple variants of a pop-
ular Prisoner’s Dilemma (PD). The first one is a classic PD,
the second one is a modified PD with three choices, and the
third variant is the Traveller’s Dilemma (that can be seen as
generalisation of PD to 99 choice variant).

5.1. Prisoner’s Dilemma

Two suspects, A and B, are arrested by the police. The
police have insufficient evidence for a conviction, and, hav-
ing separated both prisoners, visit each of them to offer the
same deal: if one testifies for the prosecution against the
other and the other remains silent, the betrayer goes free
and the silent accomplice receives the full 10-year sentence.
If both stay silent, both prisoners are sentenced to only six
months in jail for a minor charge. If each betrays the other,
each receives a five-year sentence. Each prisoner must make
the choice of whether to betray the other or to remain silent.
However, neither prisoner knows for sure what choice the
other prisoner will make. So this dilemma poses the ques-
tion: How should the prisoners act?

Nash equilibrium for the above game is < D,D >. All
allocations are Pareto optimal. BCS is C. GSS and SSS by
definition depend on the actual or perceived probability dis-
tributions. However, in the case of PD game, the GSS D is
independent of the current probability of playing C, which

Cooperate (C) Defect (D)
Cooperate (C) < 3, 3 > < 0, 5 >

Defect (D) < 5, 0 > < 1, 1 >

Table 1. Classic Prisoner’s Dilemma

we denote as Cp. Assuming that the probability distribu-
tion of opponent choices < C,D > in the population is
vector < Cp, D1−p > the SSS will follow the exact strat-
egy vector < Cp, D1−p >. To understand SSS, note that it
is in players interest to have C players around. With only
D players around any strategy would be doing poorly. The
only choice that would not destroy the existing balance is
SSS < Cp, D1−p >.

5.2. 3-way Prisoner’s Dilemma

Consider a generalised to 3 choices PD game below.

C M D
C < 3, 3 > < 1, 3 > < 0, 5 >
M < 3, 1 > < 2, 2 > < 1, 3 >
D < 5, 0 > < 3, 1 > < 1, 1 >

Table 2. 3-way Prisoner’s Dilemma

Nash equilibrium for the above game is again< D,D >.
All allocations but < D,D > are Pareto optimal. BCS is
again C. GSS is again D (which is not Pareto optimal this
time). And SSS would be accordingly a vector of probabil-
ity distributions < Cp,Mpp, D1−p−pp >.

5.3. Traveller’s Dilemma

The original formulation of TD [2]: An airline loses the
suitcases of two travelers. Both suitcases happen to be iden-
tical and contain identical pieces of antique. An airline man-
ager tasked to settle the claims of both travelers explains
that the airline is liable for a maximum of $100 per suit-
case, and in order to avoid inflated claims he separates both
travelers and asks them to write down a number no less than
2 and no larger than 100. He also tells them that if both write
down the same number, he will treat this number as the true
dollar value of both suitcases and reimburse both travel-
ers that amount in dollars. However, if one writes down a
smaller number than the other, this smaller number will be
taken as the true dollar value, and both travelers will receive
that amount plus a bonus/malus: a $2 extra amount for the
traveler who wrote down the lower value and a $2 deduc-
tion for the person who wrote down the higher amount. The
question is: what strategy should both travelers follow to de-
cide which number to write down?



2) 3 4 . . . 99 100
2 < 2, 2 > < 4, 0 > < 4, 0 > < 4, 0 > < 4, 0 >
3 < 0, 4 > < 3, 3 > < 4, 0 > < 5, 1 > < 5, 1 >
4 < 0, 4 > < 2, 5 > < 4, 4 > < 6, 2 > < 6, 2 >
. . .
99 < 0, 4 > < 1, 5 > < 2, 6 > < 99, 99 > < 101, 97 >
100 < 0, 4 > < 1, 5 > < 2, 6 > < 97, 101 > < 100, 100 >

Table 3. Traveller’s Dilemma

Nash equilibrium for this game is < 2, 2 >. All allo-
cations are Pareto optimal. The BCS is to play 100. Let us
consider a GSS and SSS in a randomly distributed popu-
lation of players, where P2 = P3 = P4 = . . . P100 in a
choice vector < 2, 3, 4, . . . , 100 >. Let us assume this dis-
tribution as ω. In such ω environment, there are two GSSω:
96 and 97. And one global SSS 97. This notion of SSS and
GSS can be generalised for Traveller’s Dilemma with arbi-
trary probability distributions.

6. Experimental studies

Each individual player keeps track of its performed in-
teractions. In other words, each individual keeps track of
the history of its interactions. Based on the history, each
individual agent creates its own internal trust model about
other agents (individually, or as a probability distribution
for the entire population). The simplest mechanism of re-
ferral is to ask other agents about their trust values. Based
on that information, an internal reputation model can be es-
tablished. The local trust value and the collective reputa-
tion are then used for a given agent to make a decision.
The trust value is gained through direct interactions. How-
ever, for unknown players, or players with whom a given
player played only few times, the trust value may be un-
reliable. Note also, that players can change their strategy
dynamically, and the trust value a given agent holds about
the opponent may become obsolete. This is why using re-
ferrals is beneficial. Referrals may increase the information
propagation speed about players through indirect informa-
tion spreading. On the other hand, indirect information may
be inaccurate, and it also increases the overall communica-
tion costs.

In our experimental setup we used the three levels of in-
formation propagation:

1. personal knowledge, this is the base level, where
agents rely exclusively on their own personal experi-
ences

2. first-degree referrals, this is the base level where agents
refer to their own personal knowledge, and share the
information between each other.

3. second-degree referrals, this is the most advanced
level, in which agents propagate not only per-

sonal knowledge, but also referral information ob-
tained from other agents.

We have conducted experimental studies for establishing
trust relationships in systems with reliable referrals, that is,
agents always communicate the true information about their
experiences. More complex models would need to be em-
ployed for situations were this is not the case and agents
can provide unreliable information. Our working assump-
tion is that through averaging large enough sample we can
neglect the small probability of individual agents to provide
inaccurate or wrong information. More detailed studies into
that area are part of future work.

We have used simple game scenarios as discussed ear-
lier. For experiments we used population of 5000 agents
(players) with various strategies, playing with each other
1000 games per round, in 100 round settings. Agents em-
ploy various strategies and can vary them during the games.
Agents can communicate their personal preference for ad-
justing their strategy locally or globally. Thus other agents
can use the information and follow the success of others. In
our experimental studies we have assumed all interactions
to be unanimous, and agents make their decisions purely
based on their perceived probability distribution of other
players’ strategies4 and the referral system5. On Figure 1
we present the runs for the classic two-way PD game, with
the payoff matrix as in Table 1. The two middle lines repre-
sent the completely random baseline, and the population in
which agents adapt SSS strategy. In both of these cases, the
average score per player is close to 2.25. As expected, the
SSS strategy does not affect the overall probability distribu-
tion of other players strategies, therefore the average score
per player in the entire population remains the same.

The GSS strategy adapted by a some players at early
rounds, when advertised through the referral system glob-
ally caused more players to switch to GSS. Although for
those individual players (up to 5% at the end of round 100)
their score went substantially up due to adaptation of GSS,
the overall score of the population went down. This is rep-
resented on a graph by a decrease of an average score per
player per game. Same with the average score per player. In

4 For experiments the actual statistical probability distribution was given
to agents globally.

5 The referral in that case does not relate to individual players but to the
general trend of the population.
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Figure 1. Comparison of various strategies in Prisoner’s Dilemma settings.

the longer run, GSS would dominate the population. Simple
individual mechanism to advertise successful local strate-
gies would lead for this population to achieve Nash equilib-
rium.

Adaptation of BCS strategy is not in agent’s selfish in-
terest and therefore was not a popular in a global refer-
ral setting. We have adapted additional voting mechanism,
in which players can express their approval or disapproval
for recent changes to the probability distribution caused by
agents’ strategies change. That means, agents would not
advertise their own strategies, but, will vote for the cur-
rent probability distribution. Initial change of few players
to BCS in early rounds caused the common consensus on
benefits of BCS, and more and more players were locked in
BCS through the majority voting. This is shown by the ris-
ing line of BCS strategy.

Similar experiments have been conducted for 3-way PD
and Traveller’s Dilemma games, with similar outcomes.

7. Applications: anti-spam rely

In the anti-spam relay scenario we consider a collabora-
tion of email servers that belong to a federation or collabo-
ration C of servers which will cooperate in order to decrease
the local spam traffic that each email server is receiving or
the global spam traffic that the federation of servers is re-
ceiving based on the three strategies mentioned in section
4. The explanation of the parameters that are used are taken
from a previous work done by Foukia et al. in [4]. Follow-
ing the setup described in section 3, the anti-spam relay sce-
nario is composed of at least 2 players (or email servers).
Each email server can decide or not to filter its outgoing
spam. Its decision can be made at the same time as another
email server without knowing the other email server’s deci-
sion. Each server is then given a payoff (reward) based on
its decision and all others email server’s decision. The re-
ward is expressed in terms of email traffic accepted by other
servers in the federation of servers.

7.1. Greedy Stochastic Strategy

In the GSS, the server X will only try to decrease the ef-
fect of spam coming from Y on its local users by con-
trolling the local spam rate (ASXY (K)) in its local traf-
fic LTXY . LTXY is given by equation (8) in [4]:

LTXY =sizeof{e|e ∈ EXY , now − t < T (e) < now}

See [4], for more explanation about how LTXY is com-
puted.

In this strategy, X disregards its own impact on other
servers. It does not try to benefit the collaboration by also
controlling the spam coming from Y and passed to the col-
laborators. Following the explanation of section 4.1, server
X tries to achieve the maximum individual intake by only
controlling the impact of spam on its local traffic. Conse-
quently, in this case, there is a chance that X may be quickly
blacklisted by its collaborators and be excluded from the
collaboration. This is what we interpreted as the state where
servers in the collaboration C do not exhibit trust in X’s
good will and cooperation.

7.2. Selfish Stochastic Strategy

In the SSS, the server X will try to decrease the ef-
fect of spam coming from Y on its local users by con-
trolling the spam rate in its local traffic LTXY . X will
also avoid to be blacklisted by its collaborators. This sup-
poses that X minimizes the spam rate in LTXY and at the
same time X controls the spam rate in GTXY so that:

maxZ∈C(FSSZX(K)) < BTX

The federated spam suspicion that server X com-
putes for server Y, FSSXY (K) is given by equation
(6) in [4]. This parameter corresponds to the aggrega-
tion value of local suspicion rates about Y exchanged be-



tween other servers of the collaboration C and X, that
X integrates in FSSXY (K) based on how much X
trusts (TRXZ ) the other servers Z in the collabora-
tion C. FSSXY (K) is given by:

FSSXY (K) = Σ(Z∈C)LSSZY (K).TRXZ
Σ(Z∈C)TRXZ

The blacklist threshold BTX , determines that when a
server in the collaboration computes a federated spam sus-
picion FSSZX(K) for the traffic coming from X beyond
the threshold BTX , all traffic from X should be re-
jected. We assume that the threshold BTX chosen for X by
each server in C is the same.
Compared to (ASZY (K)), LSSZY (K) is the local spam
suspicion rate after the time span K taking into ac-
count the digressive effect on older spam. See [4], for more
explanation about how LSSZY (K) is computed in equa-
tion (5).

Following, the explanation given in section 4.2, in terms
of strategy, server X tries to maintain the current status quo
by maximizing its local rate of legitimate email and avoid-
ing to be blacklisted by the collaborators.

7.3. Best Cumulative Strategy

In the BCS, each email server X will try to bene-
fit the whole community of collaborating email servers
by decreasing the spam rate in the global email traf-
fic (follwowing the global optimal state explained in sec-
tion 4.3) passed to all the collaborators. From X’s point
of view, this strategy corresponds to minimizing the nor-
malized spam rate ASXY (K) that comes from Y to
X at the end of each time span K in the Global Traf-
fic Rate GTXY . These two parameters were given by equa-
tion (4) and (9) in [4]:

ASXY (K) = ΣSe/(Σe)

such that {e ∈ EXY , now − t < T (e) < now}, EXY
the repository of incoming email from Y to X and Se
the spam suspicion value on email e. t is the dura-
tion of each time span K.

GTXY = Σ(Z∈C) min(LTZY , GQXY .TRXZ)

where GTXY is the global traffic that X will actually ac-
cept from Y for all the servers in the collaboration. See [4],
for more explanation about how GTXY is computed.

8. Conclusions and future work

We have presented a taxonomy of various classes of
agent behaviour based on abstract game theory analysis. We
have proposed three distinct strategies that agents may em-
ploy in various trust-based multi-agent scenarios. These are

Greedy Stochastic Strategy (GSS), Selfish Stochastic Strat-
egy (SSS) and Best Cumulative Strategy (BCS). Although
globally optimal, the BCS is usually not attainable due to
its high instability in social collaboration. We have con-
ducted studies comparing GSS and SSS. The mechanisms
developed during the experimental studies on abstract game
scenarios were then employed for a spam filtering scenario.
The initial investigations [4] have been extended in the con-
text of BCS, GSS and SSS. From the spam filtering per-
spective, BCS is not attainable because e-mail relays can-
not work for local and global spam filtering at the same
time. They must relay global traffic, even if it may con-
tain, in their view, prohibited content. The GSS and SSS
are similar in the selfish behavior of the sending server X
which tries to maximize its own local payoff, but in SSS,
X avoids to be blacklisted. Morever, the GSS would have a
tendency for dramatic fluctuations in the network email traf-
fic (throughput), causing substantial delays and email traffic
rejections. This is because sending servers do not take any
pro-active actions to prevent their own blacklisting, when
relaying spam and various virus infected files. When em-
ploying SSS, the servers do not suffer any loss of service
since it is not blacklisted, and, the overall stability of the
email traffic (throughput) is maintained throughout the life-
span of a given email server.

References

[1] B. Banerjee, R. Mukherjee, and S. Sen. Learning mutual trust.
Working Notes of AGENTS-00 Workshop on Deception, Fraud
and Trust in Agent Societies, pages 9–14, 2000.

[2] Kaushik Basu. The traveler’s dilemma: Paradoxes of rational-
ity in game theory. American Economic Review, 84(2):391–
395, May 1994.

[3] Rosaria Conte and Cristiano Castelfranchi. Social order in
multiagent systems, chapter Chapter 2: Are incentives good
enough to achieve (info)social order?, pages 45–63. Multia-
gent systems, artificial societies, and simulated organisations.
Kluwer Academic Publishers, 2001. Editor: Rosaria Conte
and Chrysanthos Dellarocas.

[4] Noria Foukia, Li Zhou, and Clifford Neuman. Multilateral
decisions for collaborative defense against unsolicited bulk e-
mail. In 4th Confernce on trust managment, Itrust2006, Pisa,
Italy, 2006.

[5] Eric Rasmusen. Games and Information: An Introduction to
Game Theory. Blackwell Publishers, 2001.

[6] S. Sen and N. Sajja. Robustness of reputation-based trust:
boolean case. Proceedings of the first international joint con-
ference on Autonomous agents and multiagent systems: part
1, pages 288–293, 2002.


