
A Software Framework for Application Development using ZigBee Protocol

Bastin Tony Roy Savarimuthu, Morgan Bruce and Maryam Purvis
Department of Information Science

University of Otago, Dunedin, New Zealand
{tonyr, tehrany}@infoscience.otago.ac.nz, brumo162@student.otago.ac.nz

Abstract

The problem with the uptake of new technologies

such as ZigBee is the lack of development
environments that help in faster application software
development. This paper describes a software
framework for application development using ZigBee
wireless protocol. The architecture is based on
defining XML based design interfaces that represent
the profiles of ZigBee nodes that are used in the
application.

1. Introduction

Wearable, portable computing devices have started
to emerge in day-to-day interactions thanks to the
convergence of networks that provide interaction
capabilities between these devices. Some of the
challenges with smaller computing devices are their
battery life, the amount of data transferred and their
reliability.

Bob Metcalfe, the inventor of Ethernet, which
added a whole new dimension in the world of
computers talking to each other said “There are about
eight billion microprocessors shipped every year, in
everything from our cars to washing machines to
industrial processes. ZigBee will network these
devices" [1]. Since ZigBee devices can form a mesh
network of unlimited size, this will potentially be an
important future technology for applications that
require limited amounts of data to be transferred. The
advantages of ZigBee protocol over the well-known
protocols such as Bluetooth [2] and Wi-Fi [3] include
the lower power consumption of ZigBee devices, their
low cost and the support for relatively larger number
of nodes in the network. Another important feature of
this technology is its support for self-organising and
adaptive networks. The current ZigBee application
areas are in building embedded systems for industrial
control, medical data collection, smoke and intruder
warning and home automation.

One problem that is common to all new
technologies is the unavailability of a suitable
development environment that facilitates faster
development of applications. ZigBee being a relatively

new technology suffers from the same problem and
this paper describes an approach to address this.

Section 2 provides an overview of the ZigBee
protocol and compares it to other protocols. In section
3 we describe the software framework that we
developed that helps easier and faster creation of
ZigBee applications.

2. Overview of ZigBee protocol

2.1 ZigBee Protocol

ZigBee is designed to work on top of the IEEE
802.15.4 standard [4, 12] for low-rate wireless
Personal Area Networks (PAN). The ZigBee standard
is the result of collaborative design and development
between a number of international companies, who
together form a consortium known as the ZigBee
Alliance [5]. This consortium is headed by some of the
largest worldwide electronics companies such as
Phillips, Siemens, Texas Instruments and Motorola.

ZigBee was designed particularly for applications
that satisfy the criteria such as low rates of data
exchange, low power consumption (hence, higher
battery life), low cost, range exceeding 10 meters,
possibility to include strong security measure and the
support for open industry standard wireless protocol
[6, 11, 12]. The other features of ZigBee protocol
include support for a large number of nodes, fast and
easy deployment, low latency, self-healing and
interoperability.

2.2 ZigBee devices

There are three types of devices in a ZigBee network
namely the coordinator, the router and the end device.
The co-coordinator is responsible for managing
(monitoring and controlling) the overall network. The
router is a Full Function Device (FFD). It supports the
full range of functions and features specified by the
standard, and can also function as a network
coordinator. A ZigBee end device is a Reduced
Function Device (RFD), which can only transmit data
to a router or a coordinator. A FFD can also be used as
an end device. The end nodes have reduced

functionality in order to minimize the complexity and
the cost.

Figure 1 shows the overall interactions between a
coordinator and an end device in the context of a
temperature sensing application. Once the coordinator
and the end devices are up and running, the end
devices scan the channel range to find the coordinator.
The end device can join the network and an
acknowledgement will be sent by the coordinator. The
end device can then send the temperature data to the
coordinator and the coordinator can display this
information on the console.

Figure 1. Interactions between a coordinator and an
end device

2.3 ZigBee Topologies

Three types of topologies are supported by the
ZigBee protocol: the star, mesh and cluster-tree. In the
star topology, there are two types of devices - a
coordinator and the end nodes. All end nodes
communicate with the coordinator. In the mesh
topology, the routers are connected to each other. The
routers route messages from end devices to the central
coordinator either directly or through other routers.
This mechanism supports duplicate routers, which
allows for traffic from the end devices to be re-routed
through different paths. This allows the network to
self-heal if a router fails. In the mesh topology if one
of the routers fail, the end devices can still connect to
another router (router) and send their information to
the coordinator. The third type of network is the
cluster-tree network which is a combination of both the

star and mesh topologies. The advantage of the cluster
tree is that it is able to extend the range of the network
beyond that of a star and mesh topology. The mesh
topology is reliable and robust as it can accommodate
random failures of routers. But, the disadvantage of
this topology is that the routers cannot go to sleep and
hence would use large amount of power. In the cluster-
tree topology, the routers can go to sleep, hence it is
not as robust as the mesh topology in terms of router
failures.

2.3 Comparison with other protocols

In this section we compare ZigBee protocol with
the other well known and emerging wireless protocols.
ZigBee focuses on large scale monitoring and
controlling applications in which nodes transmit
limited data and require very low power. ZigBee
protocol can be used to connect the ZigBee nodes to be
integrated with the IP networks. This approach enables
remote sensing and controlling on the Internet.

Well known technologies such as Wi-Fi, target

devices running applications that require larger
bandwidths where large amounts of data need to be
transferred. Wi-Fi enabled devices require large
amounts of battery power. The use of Bluetooth
technology has primarily been as a replacement for
cabling between personal devices. The bandwidth it
supports is lower than Wi-Fi. The network sizes
supported by both Wi-Fi and Bluetooth are reasonably
limited whilst ZigBee can support up to 65536 nodes
in a network. ZigBee allows nodes to go to sleep
which saves a considerable amount of power. The
bandwidth supported by ZigBee is much smaller than
that of Wi-Fi and Bluetooth and hence it is only
suitable for applications that require small amounts of
data to be transmitted. As the network size can be
large, ZigBee is suitable for large scale applications
(e.g. industrial control).

Wireless USB [7] serves the same purpose as

Bluetooth but suffers from the same power problem
similar to Wi-Fi and also the transmission range it
offers is small. While Wi-Fi, Bluetooth and Wireless
USB are not ideal for the same application domains as
ZigBee (large scale monitoring and controlling
applications), Wibree [8], Z-Wave [9] and EnOcean
[10] technologies are aimed at similar market niches
but they all suffer from the lack of standardization.

The Wibree [8] technology is a low-powered
extension to Bluetooth, developed by Nokia. One of
the advantages of this technology is that it can be
implemented using existing Bluetooth devices, without

any additional hardware. While it has a higher data
transmission rate than ZigBee, it has a very limited
range, which makes it unattractive for large-scale
networks.

Z-Wave [9] has been developed by a consortium of
companies, including Intel, to meet requirements
similar to ZigBee such as low-power, cost-effective
and reliable wireless networking. It is aimed
exclusively at home automation, however, it is not
based on any recognized standard. Like ZigBee, Z-
Wave can use a self-adaptive mesh topology to achieve
wide-range and reliable networking. Unlike ZigBee, it
does not use any central coordinator to help achieve
this, and hence transmits data at a lower speed. This
results in higher battery usage and an increased chance
of collision between data packets. A Z-Wave network

is also smaller than a ZigBee network which limits
both its potential applications and future expansion.

EnOcean [10] solves the problem of battery life by not
having batteries. Their wireless sensors are powered by
‘energy harvesting’ (by temperature fluctuations, solar
power, piezo-electricity, vibrations or movement) in
order to meet needs for home and building automation,
medical, and logistics sensors. Like ZigBee, they form
mesh networks that can interface with IEEE 802.11x
and ZigBee networks. Unlike ZigBee and Z-Wave, it
has been developed and patented by a single company,
not a consortium. Table 1 shows the comparison of
both well-known and emerging wireless technologies
based on several criteria.

 ZigBee Wi-Fi Bluetooth Wireless

USB

Wibree Z-Wave EnOcean

Standard 802.15.4 802.11x 802.15.1 USB N/A N/A N/A

Application
Focus

Monitoring &
Control

Wireless
LAN

Short range
cable
replacement

 USB cable
replacement

Low-power
Bluetooth
(eg. sensors)

Monitoring
& Control

Monitoring
& Control

Bandwidth 20 – 250
Kbps

54 Mbps 1 Mbps 110 – 480
Mbps

1 Mbps 40 Kbps 120 Kbps

Network Size 65536 32 7 N/A * 232 *

Transmission
Range

10 – 100m 50 – 100m 10m 10m 5 - 10m 30m 300m

Power
Consumption

Very low High Medium High Low Very Low Extremely
Low

Typical
Applications

Home &
Building
automation,
industrial
controls,
sensors

Wireless
LAN
connectivity

Wireless
connectivity
between
devices (e.g.
laptops &
phones)

Computer
peripherals

Low power
connectivity,
e.g. watches,
sports
sensors, toys

Home
automation
& sensor
networks

Home &
Building
Automation,
Sensors,
Medical

Table 1 – Comparison of different wireless technologies.
(* refers to details unavailable, N/A refers to details not applicable)

3. Design and Implementation of a
framework to develop ZigBee applications

To realize our objective of developing a ZigBee based
application we chose Jennic’s hardware-software
implementation of ZigBee protocol [13]. The toolkit
had one coordinator, two routers and two end devices.
Soon after developing some sample applications it
became clear that the developer had to write large
amounts of code (~ 300 lines for each device) to create
a simple system like the light-switch application. So,
we focused on designing and developing a framework
that provides a development environment that helps
faster development of ZigBee applications.

We identified three options that can help reduce the
development effort required. The first approach was to
provide a higher level API on top of Jennic’s ZigBee
API (e.g. API for node joining and leaving). The
limitation of this approach was that it can only be used
only with Jennic’s implementation. The second option
was to generate application specific templates. These
templates would have all the code required for each
node except the application logic. For example, in the
light switch context, all the code except the one that
turns the light on or off will be provided in the
template. This approach is limited because, it will
again work only with the Jennic’s implementation and
also the designers of the templates cannot foresee all
possible applications.

The third approach to reduce the development effort
was to create an XML based interface for the devices
involved in the application. This XML based interface
is a generic interface which is based on the ZigBee
Protocol specification provided by the ZigBee alliance.
This XML based interface can then potentially be
converted into implementation specific code by other
ZigBee vendors. As this approach assumes XML to be
the common denominator, we chose this option.

The specification provided by ZigBee alliance defines
a concept called application profiles. An application
profile represents the profile of the messages and
message formats exchanged by devices participating in
an application. The application profile enables
individual nodes that are part of an application to send
commands, request data, process commands and
requests between devices. For example, in the context
of light-switch application, the application profile
describes, the messages and message formats that
should be exchanged between these two devices.

Figure 2 shows the various entities that make up the
ZigBee Profile. A profile consists of several nodes
(one or more) depending upon the application that is
being built. A node usually corresponds to one
physical object. A node in ZigBee network can have
240 devices attached to it. For example, an end node
can have three sensors namely thermal sensor,
humidity sensor and the motion sensor. Each of these
devices (or sensors), have an endpoint reference. Each
of these devices consists of feature sets and cluster
information. Feature sets encapsulate the set of
mandatory and optional features supported by the
device. A cluster is a related collection of commands
and attributes. Clusters store information about the
devices that are participating (bound to a cluster) by
using the unique identifier for each cluster. The
attributes are the data that is stored which is a physical
quantity (e.g. temperature) or a state (e.g. on or off).
The commands allow devices to manipulate the
attributes (e.g. set and get commands). In the light-
switch example, one node acts as a client (switch)
which typically manipulates the attributes held by the
server (light). Information about some commonly used
clusters is available in the ZigBee Cluster Library
document provided by the ZigBee alliance [14].

Profile

Node [1…∞]

Device Description [1…240]

Cluster [0...∞]

Attribute [0...∞]

Command [0...∞]

Feature Set

Feature [1...∞]

Figure 2. Structure of the ZigBee profile

The concept of application profiles is used to model a
XML based interface. The software framework that we
have implemented follows a three step sequence to
generate application specific code from a given

application profile document described in XML.
Figure 3 shows the architecture of our conversion
framework.

Step 1: The ZigBee application profile is represented
as a XML document using the schema which defines
the data types used by the application. This XML
document encapsulates all the necessary details
required to create the application profile (i.e. the
elements shown in figure 2).

Step 2: Once a XML based model is created, it can be
converted into implementation specific code by our
conversion framework. The XML document is parsed
by the ZigBeeProfile Manager (ZBP Manager) class.
Dom4j and XPath expressions have been used for
parsing purposes. ZBPManager class creates several
Java classes encapsulating certain aspects of the XML
document. These generated Java classes include
ZigBee application profile class, consisting of nodes,
device descriptions, their clusters and attributes as well
as other implementation details such as network ID
and channel. The nodes, device descriptions, clusters
and attributes were created as separate classes. For a
light-switch application profile, there will be classes
corresponding to three node types (coordinator, router
and end device) and their corresponding device
descriptions. Each node type will have reference to the
corresponding cluster types that they are using

(typically these nodes will refer to the same cluster
type instances; just the role attribute will be different
which specifies whether a node is a server or a client).

Step 3: The ZigBeeFactory class uses the appropriate
Java classes that were generated along with the C
templates that are predefined by the framework and
generates the ZigBee application code with annotations
that indicate where the application logic should be
added. The C template classes were Java classes which
helped to produce C code. For example, there was a
separate class (CTemplateFunction.java) that was used
to construct the functions in C and another class called
CTemplateImports.java constructed the necessary
#include statements of the C program. The resultant
files are coordinator.c, router.c and end_device.c. The
application programmer can then insert the application
logic to the C programs appropriately.

In step 3, an application developer can choose to
generate code for all the nodes or select one or more
node types and also optionally indicate which clusters
should be associated with the chosen node. This gives
developers the flexibility to concentrate on one node.
This also helps in the partition of tasks between
developers. While one developer focuses on
developing a router program the other can work on the
end-device program.

Profile Schema (XSD)

ZigBee Profile (XML)
ZBPManager

Java
classes

ZigBeeFactory

Options: Node to
manufacture;

clusters to
include.

C code (with annotation)

C
 te

m
pl

at
e

C
la

ss
es 3. Developer chooses node, and conversion

is performed to an appropriate Jennic
implementation by the ZigBeeFactory class

using associated C template classes.

1. Creation of generic XML
interface (which uses the profile
schema)

2. An instance of the
ZBPManager class parses XML
into Java classes

Figure 3. Architectural diagram of the software framework for developing ZigBee applications

For a simple application involving a light and a switch,
table 2 shows the Source Lines of Code (SLOC). Some
basic code is provided by Jennic for each of the
devices (349 lines for each device). It can be noted that
significant amount of the code is automatically
generated by the framework which otherwise had to be
written by the developer. For the router (switch), the
application developer had to write 51 lines and for the
end-device (light) 21 lines were needed. No extra lines
were needed for the coordinator because there was no
application logic specific to the coordinator. The
coordinator served as a link between these two devices
through which data was transferred. In other
applications the coordinator also has the potential to
act as an end-device if need arises. Usually, the
coordinator is used as a point of contact for monitoring
and controlling applications such as connecting to a
computer which displays the information from all end-
devices (e.g. sea-level monitoring application).

Device

SLOC
Provided
by Jennic

Generated
code

Applicatio
n code

Total

Coordinator 349 19 0 368
Router
(Switch)

349 316 51 716

End Device
(Light)

349 394 21 764

Table 2 – Generated and application specific SLOC

5. Discussion

We note that using our framework would reduce the
effort required to develop larger and complex ZigBee
applications. The XML based interface would be an
important design artifact to model the system and can
serve as a common standard to facilitate
interoperability between different vendors. The XML
document will also serve as a common reference point
in a firm, if multiple developers work on the same
application at the same time. We expect that the
ZigBee standard would continuously evolve to
accommodate expanding needs of different types of
applications that should be supported. Hence, the
modular XML structure that we have proposed needs
to be changed.

There have been some issues with the development of
applications tailored to run on Jennic’s
implementation. For example, the Jennic ZigBee
implementation software does not support explicit
representation of commands (e.g. set and get
commands that manipulate a given attribute). Even

though we have extracted out the commands in the
XML profile, this was not put to use at the code level.
To overcome this problem, the developer had to write
explicit methods in C once the application code was
generated. Another problem that we encountered was
the lack of support for many-to-one and many-to-many
bindings between devices in the Jennic’s software
implementation. Currently, multiple one-to-one
bindings are used to deal with this scenario.

One limitation of the framework is that we use three
separate programs that are used for the following
purposes: 1) create XML interface, 2) generate C code
and 3) writing and compiling of application specific
code. An Integrated Development Environment (IDE)
that can perform all these tasks under a single window
would be desirable. Eclipse’s plug-in development
environment can be used for this purpose in the future.
Another improvement that is required is to use an
XML editor customized for creating ZigBee profiles.
This editor would have built-in components that will
facilitate easier creation of ZigBee related elements
such as clusters.

An important lesson learnt from developing
applications for emerging technologies such as ZigBee
is to know the distinction between the standard and the
implementation. This distinction helps the developer to
identify what is possible with the current
implementation. Also, the developer should keep
abreast of the changes that are made to both the
standards and the implementation.

6. Conclusions

In this paper we have provided background
information on the ZigBee protocol and have
compared this with well known and emerging wireless
technologies. We have described the software
framework that we have developed for rapid
application development using ZigBee protocol. We
have used a XML based interface to represent
application profile information. This platform
independent approach will not only reduce the
development time but also increase the interoperability
between vendors that develop ZigBee application.

We are planning to communicate our findings to both
ZigBee Alliance as well as Jennic towards establishing
standards that can facilitate interoperability of
applications that are developed using ZigBee protocol.

7. Acknowledgements

We thank Abdulla Aljawder and Hayden Kane who
helped in the literature survey of the project. This
project was supported through the University of Otago
Research Grant in 2007.

8. References

[1] Article on ZigBee’s future,
http://www.techworld.com/mobility/news/index.cfm?NewsI
D=2406, accessed on 30th September 2007.

[2] Bluetooth specifications,
http://www.thewirelessdirectory.com/Bluetooth-
Overview/Bluetooth-Specification.htm, accessed on 15th
September 2007.

[3] Wireless Fidelity (WIFI), Specifications from
http://www.irit.fr/~Ralph.Sobek/wifi/, accessed on 15th
September 2007.

[4] IEEE Computer Society. (2003). IEEE 802.15.4 Standard
Specification, accessed on 15th September 2007.

[5] Zigbee Alliance. (2006). ZigBee specification,
http://www.zigbee.org/en/about/, accessed on 15th
September 2007.

[6] Frank, A. R., ZigBee's Buzz - A New Low-Cost Wireless
Control Technology is Spreading its Residential Systems,
accessed on 15th September 2007.

[7] Wireless USB,
http://en.wikipedia.org/wiki/Wireless_USB, Accessed on 1st
July, 2007

[8] Wibree, http://www.wibree.com, Accessed on 1st July,
2007

[9] Z-Wave, www.z-wave.com, Accessed on 1st July, 2007
[10] EnOcean, http://www.enocean.com, Accessed on
1st July, 2007

 [11] Frank, R. (2006, May). Five New Zigbee-Based
Wireless Systems. Design News , pp. 85-90.

 [12] M. Young, The Technical Writer's Handbook. Mill
Valley, CA: University Science, 1989. Baronti, P., Pillai, P.,
Chook, V., Chessa, S., Gotta, A., & Fun Hu, Y. (2006).
Wireless sensor networks: A survey on the state of the art
and the 802.15.4 and ZigBee standards. Computer
Communications , 1656-1690.

[13] Jennic’s JN5139 ZigBee Evaluation Kit,
http://www.jennic.com/files/product_briefs/JN5139-EK010-
PBv1.01.pdf, accessed on 15th June, 2008

[14] ZigBee Alliance’s technical documents download,
http://www.zigbee.org/en/spec_download/zigbee_downloads
.asp, accessed on 15th June, 2008

