Multi-agent platforms
and Asynchronous Message Passing

Frameworks Overview

Christopher Frantz

Mariusz Nowostawski

Martin Purvis

{cfrantz,mnowostawski,mpurvis}@infoscience.otago.ac.nz
Information Science Department
University of Otago
Dunedin, New Zealand

ABSTRACT

In this article we review contemporary multi-agent system
architectures and implementations. We particularly focus on
asynchronous message passing mechanisms. Our motivation
is to explore two main areas in the context of multi-agent
systems: the concept of micro-agents and the asynchronous
message passing architectures. In the article we take a close
look at the emerging area of micro-agent-based systems and
contrast them with selected representatives from the general
field of agent architectures. We provide historical references
and examples of contemporary implementations support-
ing the hierarchical micro-agent-based software engineering
paradigm. In addition, we also investigate various imple-
mentation mechanisms for efficient asynchronous message
passing between large numbers of small interacting software
components with regards to their use in the context of multi-
agent systems. The results show a trade-off between perfor-
mance, fairness and usability as key problem when selecting
an appropriate solution. Future investigations into alterna-
tive concurrency handling mechanisms for better support of
micro-agent architectures are suggested.

Categories and Subject Descriptors

1.6 [Computing Methodologies|: Simulation and Mod-
elling; 1.2.11 [Computing Methodologies|: Distributed
Artificial Intelligence

General Terms

Software Architectures

Keywords

multi-agent systems, micro-agents, asynchronous, communi-
cation, message passing

1. MOTIVATION

The field of Multi-Agent Systems (MAS) is driven by the
key metaphor of interaction between multiple autonomous
agents whose micro-behaviour produces the perceived over-
all system behaviour. Given this broad understanding, it is
unavoidable that the field of MAS is all but unified. It is
rather dispersed into various application-related categories
e.g. social sciences, education, large-scale distributed sys-
tems and so on. Independent developments in those differ-
ent subfields drive this diversification further, limiting the
perspective for a more precise general concensus on funda-
mental concepts and their development. Standards encour-
aging the development of open general-purpose platforms,
carefully respecting key agent properties, have been speci-
fied — e.g. Foundation for Intelligent Physical Agents (FIPA)
specifications [16], Java Agent Services (JAS) [4] for a uni-
fied platform implementation in Java. However, efforts to
implement those standards effectively decline’. A successful
example of this group of standard-compliant general pur-
pose platforms is the Java Agent DEvelopment Framework
(JADE) [9] which is still under active development and used
in various applications and organizations (see [12]).

It is our belief that the lack of efficient MAS platforms is
the inhibiting aspect of the multi-agent paradigm. We be-
lieve that although existing frameworks promote the main
open system principles, they are nevertheless not particu-
larly suitable to represent flexible agent entities and inter-
action on various levels as necessary for composition and or-
ganization of higher-level entities in the spirit of true multi-
level Agent-Oriented Software Engineering (AOSE) [21]. Rea-
son for this is the overhead of FIPA-agents, enforced by
standard-compliance such as the global naming scheme, high
level of abstraction from message transport mechanisms to
support the various transport protocols (such as IIOP, HTTP
and SMTP) and last, but not least, the assumption of a
rational agent architecture imposed by its knowledge-level
communication language (see [26] for a detailed discussion).

As such the work presented in this paper deals with sev-
eral areas yielding towards a consistent AOSE approach
while providing high runtime performance. Micro-agents,
albeit following the intentional stance, shall be perceived as

Most of the platforms listed under [8] ceased to exist or
have not received further development for the last few years;
today JAS is an inactive Sourceforge project.

continuous concepts with a streamlined set of core features
and a flexible demand-oriented extension filling the gap be-
low FIPA-compliant agents. In the trade-off of performance
and expressiveness micro-agents compromise on the latter
and act as a complement to the conceptually more powerful
FIPA-agents which are eventually the result of micro-agent
composition. This allows the consequent use of agent-related
concepts on every level without sacrificing overall system
performance.

Additionally, the micro-agent paradigm respects the di-
versified agent understanding throughout the whole com-
munity (and especially application-related subfields) and en-
courages the consistent use of concepts and constructs, avoid-
ing the confusion with related development paradigms like
object-orientation. Although complexity of the concepts
might be similar at the lower levels we perceive the blended
use of both paradigms as one of the pitfalls of AOSE.

Key aspects to achieve this is to firstly, provide an effi-
cient underlying asynchronous message passing mechanism
focusing on performance and scalability and, secondly, re-
lieve the developer from the underlying threading aspects
which should naturally be managed by the agent infrastruc-
ture rather than the implementer.

In the first part of the article we introduce our micro-agent
architecture. We provide the necessary conceptual frame-
work and link the concept of micro-agents to existing devel-
opments employing hierarchical agent organizations which
have been undertaken in the field of MAS.

Following this we provide an overview of selected Java-
based asynchronous message passing frameworks and inves-
tigate their applicability in the context of multi-agent sys-
tems. We highlight the key aspects of usability, fairness and
performance. We concentrate on Java-based frameworks as
of the broad adoption of this language for the implementa-
tion of multi-agent platforms.

2. MICRO-AGENTS

The MAS standardization efforts driven in the 1990’s and
early 2000’s were majorly concerned to see agents as enablers
for truly open systems engaging in intelligent conversations.
In consequence, the modelling of practical applications fre-
quently demanded the decision whether to use heavy-weight
agents, switch between object-oriented and agent-oriented
development or fall back to the individual development of
agent platforms completely breaking with the vision of open
agent-based systems. To bridge the conceptual gap between
the high-level agent-based abstractions, typical program-
ming frameworks and data structures (typically object-orien-
ted or structured programming), we have proposed the no-
tion of micro-agents [24]. Micro-agents fill the conceptual
and implementation gap between the modelling abstractions
of agent-hood, and implementation-oriented constructs used
to actually implement the modelling abstractions. Micro-
agents are designed for providing performance while sup-
porting a scalable agent notion. They provide a much bet-
ter support for various software engineering demands rather
than following the one size fits all approach, taken by most
popular agent development frameworks. We do not argue
that those systems are unsuitable in general; we rather argue
that the efficiency penalties involved in using those systems
outweigh benefits from the use of agent-oriented software en-
gineering for production environments and create the gen-
eral perception of agents to be difficult to work with and

slow.

Indicators that the existence of this kind of agents is useful
come from the field of agent-based simulations which heavily
rely on the concept of emergence, enabled by considerably
large number of simple agents. Although the latter notion is
often too simplistic and implementations hardly offer direct
communication (see Malsch et al [23]), multi-agent systems
can learn from this and extend this to a rather continuous
agent notion, the concept of micro-agents.

Multi-agent platforms known to have micro-agent-like en-
tities are currently limited to two general-purpose systems,
namely MadKit and Opal. Both of them will be introduced
in this section, along with other more popular toolkits such
as JADE and 3APL.

2.1 MadKit

The MadKit multi-agent platform [18] has been developed
at the University of Montpellier in the late 1990’s and of-
fers a lean agent concept based on the Agent-Group-Role
(AGR) model which does not enforce a specific agent ar-
chitecture. In this a general agent is simply considered as
7 ... a class defining [a] basic life-cycle ... ” [14] which is
backed by a micro-kernel including group management ca-
pabilities, the life-cycle management as well as the message
passing mechanism. Given those constraints the basic unit
of modeling is in fact an organisation consisting of agents
which are associated with (potentially multiple) groups and
play roles. This allows the ’cheap’ use of agents - an effect
which the platform uses itself: All services, apart from the
one associated with the micro-kernel are so-called agenti-
fied services.> Groups of agents communicate within their
group. Communication to external parties is always estab-
lished via one agent playing the role of the communicator.
All further specific services, including communication ser-
vices are implemented as specialized agents which then can
handle a specific message protocol for the whole platform
(e.g. socket-based cross-platform communication).

The obvious goal of the platform is to achieve a useful
basis for various kinds of multi-agent systems and rather
than providing a fully-fledged featureful system concentrates
on an efficient core which allows extension in a consequently
agent-oriented manner. The development of agents is eased
by providing explicit support for the JESS rule language,
Scheme bindings as well as pre-defined models for various
purposes (e.g. simulation of artificial life).

2.2 JAS

The Java Agent Services (JAS), driven by the Java Com-
munity Process and resulting in Java Specification Request
87 (JSR8T), has the goal to specify unified interfaces for
the implementation of the FIPA Abstract Architecture for
Java-based FIPA-compliant agent platforms. Although the
FIPA specifications are detailed on the semantic level, the
platform-independent nature leaves a strong degree of engi-
neering freedom with regards to the implementation. JAS
aims at closing this gap by providing the according Java
interfaces agent platform implementation could eventually
commit to. As such its listing under the agent platform is
not entirely correct but it represents the contribution to Java

2 Additionally generic graphical components allow reuse for
GUI development.
3The version considered in this review is 4.2.0.

itself with regards to the standardization efforts of agent
platforms.

Its value is to abstract an platform implementation from
lower-level transport mechanisms and unification of FIPA di-
rectory registration services (agent naming, de/registration)
to not only ensure interoperability between different plat-
forms but also to keep a certain degree of technology-inde-
pendence and allow reuse of transport services in different
platforms. The specification version 2.1 dates back to 2002
but despite the promising concept it did not gain strong
attention for the implementation in agent platforms. Plat-
forms known to still make use of JAS are OPAL (in an ex-
tended version) as well as the reference implementation of
3APLI1].

2.3 Opal

The Otago Agent Platform (OPAL) has been developed
at the University of Otago from 1999 onwards, building on
a simple micro-agent kernel and continuously extended to-
wards a fully-fledged FIPA-compliant agent platform, rang-
ing from a weak micro-agent notion to potentially rational
high-level OPAL agents. Reason for this is not only the
support for different application types but also the conse-
quent composition of high-level agents from micro-agents.
The multi-level architecture behind this concept is defined
by its three levels of agents and represents an extension to
the multi-level architecture proposed in [24].

Primitive micro-agents live on the lowest level and provide
capabilities similar to objects, including a purely reactive, if
not only responsive, internal architecture as well as direct
method invocation. In contrast to objects, the discovery
and linking mechanism is dynamic and goal-driven. Due
to their primitive nature these agents do not compromise
performance.

Non-primitive micro-agents constitute the next level of ab-
straction and are the key aspect of this work. They provide
an organizational scheme for primitive micro-agents, make
use of primitive micro-agents for their own goal achievement,
rely on asynchronous message passing as interaction mech-
anism and manage their own logical thread of execution.
Additionally, they can be implemented in programming lan-
guages other than Java (e.g. Clojure) and can transpar-
ently engage in internode communication. The use of non-
primitive micro-agents involves some limited performance
penalty but provides a significantly bigger feature set. In
order to minimize the memory footprint lazy initialization
is used as key principle throughout the micro-agent plat-
form as well as its agents and includes messaging, organiza-
tion mechanisms, programming language support and net-
working. Taking this into account, capabilities and ’weight’
of non-primitive micro-agents vary in an application-related
manner, supporting both applications with a limited num-
ber of seemingly intelligent entities (e.g. auctions) as well as
hundreds of light-weight entities (e.g. ants).

On the highest level we advocate system openness and
emphasize standards compliance for the agent entities which
concerns FIPA standards as well as the adoption of an ex-
tended version of JAS. On this level the system is con-
sequently FIPA-oriented and, among other specifications,
supports the Abstract Architecture and Agent Communi-
cation Language (ACL). The implementation additionally
complies to an extended version of JAS to allow a strong
abstraction from the message transport layer. Considering

the fact that higher-level agents necessarily inherit capa-
bilities from lower levels by extending them; moving to a
different level does not result in a loss of capabilities. As
such the proposed system harmonizes the trade-off between
development of high-performance platform-specific systems
as well as systems able to engage in communication with
third-party platforms.

24 JADE

The Java Agent DEvelopment Framework (JADE) [13] [9]
is probably the most prominent agent development frame-
work written in the Java programming language, developed
by Telecom Italia from 1998 onwards. The platform fully
complies with the FIPA standards for the Abstract Archi-
tecture and the ACL as well as interaction protocols. In
JADE agents are modelled as individual threads compris-
ing their own behaviour and live in so-called containers —
which do not necessarily need to reside on the same node.
A platform consists of one main container and further con-
tainers holding the actual agents. The main/ bootstrap con-
tainer, holds directories about all running containers and
the according agents. The platform supports the develop-
ment of fault-tolerant applications and provides support for
mobile agents. The platform additionally allows the interac-
tion with web services and is available as light-weight version
for the use on mobile devices running Java 2 Micro Edition
(J2ME). Although JADE does not focus on a fixed con-
cept of agent-hood itself, the consequent implementation of
the FIPA specifications forces it to implement a consider-
able conceptual baggage which makes the platform rather
“heavy”. Means of structuring agents, apart from their as-
sociation to containers, are not considered.*

2.5 3APL

3APL [1], or more concrete An Abstract Agent Program-
ming Language, has been developed at the University of
Utrecht, Netherlands, to provide a full specification as well
as reference implementation and development environment
for an agent programming language. Although the actual
language, like many other agent programming languages, is
based on PROLOG, its major architectural difference to the
popular AgentSpeak is the introduction of the plan revision
cycle, allowing the revision of selected plans during execu-
tion.

3APL strictly focuses on rational agents; the developer
needs to consequently adopt the 3APL agent model to build
agents. As a result the computionally expensive execution
makes the use of 3APL reasonable for applications with a
limited number of intelligent agents (e.g. card games). In
order to make use of external Java functionality, the plat-
form allows the development of plugins to encapsulate Java
code.

The messages are considered to be FIPA-compatible and
the platform makes use of JAS. However, the message con-
structs in fact only provide a subset of the FIPA message
specification. Communication between 3APL platforms is
provided in a client-server pattern. As of its character as
reference implementation the IDE puts major focus on ca-
pabilities to retrace the reasoning cycles and message log-
ging, rather than providing a robust and efficient runtime
platform. In the context of this comparison, the agent con-
cept of 3APL is the by far most sophisticated but also most

4The JADE version considered here is 4.0.1.

constrained one and does not consider weaker agent notions.
A simpler, more practical, approach to agent development
is provided with 2APL, a practical agent programming lan-
guage, which builds on top of the JADE platform. The
authors also provide a mobile version of 3APL, 3APL-M
targeting devices running J2ME.®

2.6 Performance comparisons

The platforms listed above support a range of different
agent notions and platform capabilities. To retrace the dif-
ferences of those platforms and to facilitated the proper
choice of the most suitable platform for an application, we
have conducted a performance comparison based on a simple
agent scenario focusing mainly on agent interactions.

The scenario involves four agents: A client agent requests
a service (represented as a data retrieval and print on the
console) from another agent which itself coordinates the data
retrieval and print via two agents dedicated to the according
actions. The activity is repeatedly requested by the client
until a given number of rounds is reached. Then timer is
stopped. Although the agent functionality required to con-
duct the tasks is simple, it involves the coordination of in-
teraction, especially by the mediating agent.°

The results (see figure 1 and table 1) show three clusters
of platforms. The certainly by far slowest is 3APL with its
extensive reasoning, largely interpreted execution, but also
the overhead caused by its logging facilities.

JADE | 3APL | MadKit | opar, | Micro-

agents
1000 | 025 | 1422 | 013 | 11 0.03
10000 | 8.3 - T35 | 104 | 041
100000 | 8882 | - 98 | 1005 15
1000000 |- - 96 10357 | 122

Table 1: Benchmark results for Agent Platforms per
scenario rounds (in seconds)

JADE agents and OPAL agents shape another cluster of
heavy-weight platforms with considerably long runtime. In
the test, despite assigning 1024 MB heap memory, JADE
was not able to execute the scenario for 1000000 rounds.
Although OPAL could achieve this task, it took fairly long.
MadKit and the micro-agents of the OPAL platform out-
performed any other platform. The OPAL micro-agents are
about twice as fast as MadKit’s agents. Especially for small
but high-performance tasks micro-agent frameworks seem
a useful alternative to heavy-weight platforms while keep-
ing their flexibility for extension with further capabilities
(e.g. different implementation languages, reasoning engines).

3. ASYNCHRONOUS MESSAGING FRAME-

WORKS

Asynchronous message passing — popularized in the con-
text of the Actor model (see [20] and [10]) for concurrent
computation and used as key communication paradigm in

5The version considered for this review is dated 19 Novem-
ber 2007.

5The benchmark was undertaken on an Intel Core2 Quad-
Core PC at 2.66 GHz, 3.25 GB RAM, using J2SE 1.6 Update
20 on Microsoft Windows XP Professional SP3.

programming languages originally focused on inter-node com-
munication such as Erlang [11]. The idea is based on the
idea to fully decouple communicating entities and control
structures and thus allowing non-blocking communication
while following the share nothing principle. Its scalability
potential by avoidance of empty wait cycles has received at-
tention as viable alternative to shared memory approaches
for interprocess communication in the context of multi-core
computing and its inevitable consideration in contemporary
programming [28].

In this context, independent from the technological trends,
asynchronous communication and the maintenance of sev-
eral concurrent conversations is very natural for agents. In
turnaround the increasing availability of asynchronous mes-
sage passing frameworks motivates a review with regards
to their suitability as a messaging infrastructure for agent-
based systems. Although most of the reviewed frameworks
see their use in the context of the actor pattern, many do
not fulfill key semantic properties for actor systems (encap-
sulation of state and messages, fairness, location transparent
addressing and mobility) [22]. In this context we trade some
of those properties against the importance of performance
as we see the frameworks as infrastructural basis for agent
platforms which eventually balance unsatisfied properties.

Alternative mechanisms for interprocess communication
using the message passing principle include Remote Proce-
dure Call (RPC) which, introduced around 1976 [30], allows
the transparent integration of calls to procedures - or meth-
ods in the context of object-orientation - on remote nodes
into local code. Due to the transparent integration blocking
execution on caller side is a key characteristic along with
the necessary handling of network failure (which limits the
usefulness of transparency). Further the RPC mechanism
resulted in various incompatible RPC protocols and imple-
mentations. Examples include, but are not limited to, Sun’s
Remote Method Invocation (RMI), Microsoft’s MSRPC or
as part of the Common Object Request Broker Architecture
(CORBA). As of the lack of message composition and aggre-
gation features, frequent use results in decreased code per-
formance and considerable network load and was one of the
key drivers for the development of mobile agents, e.g. Tele-
script [29].

Web services [7] provide another interaction approach.
Web services rely on W3C standards and have evolved in
three different flavours, the first resembling the RPC pat-
tern with open standards but providing similar drawbacks as
of the poor abstraction from implementation details and as
such comparatively tight coupling. The second type, estab-
lished in the context of service-oriented architectures, con-
centrates on messages rather than operations described by
comprehensive Web Service Description Language (WSDL)
contracts. This results in less tight coupling but often heav-
ily relies on developer introspection harming the ad-hoc use.
Representational State Transfer (REST) web services switch
the perspective towards a fixed set of operation primitives
for interaction with web services and thus easing the dy-
namic invocation of their encapsulated (stateful) resources [15].
Although the used protocols promote openness a drawback
is their dependence on HT'TP as message transport protocol
and as such comparatively poor performance.

CORBA [17], driven by the object-oriented programming
paradigm and maintained by the Object Management Group
(OMG), seeks to provide an access mechanism to share ob-

Runtime of agent platforms
per scenario rounds

1400 /
1200

X

’ /

/| /

///

[72]
g /
S 1000
(&]
3 /
? g0
£ /
@ 600
E /
T 400
5 /
T 00
0 m-/: i
10 100 1000

=—JADE -#—3APL

Number of scenario rounds

MadKit =>OPAL -—*-Micro-agents

10000 100000 1000000

Figure 1: Performance benchmark results Asynchronous Messaging Frameworks

jects independent from programming language and local-
ity. Each node uses an individual object request broker
(ORB) through which it accesses objects by unique address-
ing. Mappings for concepts of the according programming
language need to be existent in order to map object inter-
faces, described by the interface description language (IDL).
CORBA provides a comprehensive set of specifications al-
lowing various kinds of communication, including transport
via HTTP. However, its use over the internet has been con-
strained as firewalls had been insufficiently considered. Along
with this different implementations proved incompatible and
threading was hardly taken into account during its specifi-
cation [19].

In the following we review several existing Java-based mes-
sage passing frameworks with regards to general functional-
ity as well as performance in an agent-related scenario.

3.1 Kilim

Kilim [27] praises itself as an ultra-light-weight message
passing framework which relates to the actor pattern and
eliminates any user-code locking. Arbitrary numbers of light-
weight cooperative threads interact via mailboxes. The light-
weight threads are considered ’as light’ as Erlang’s fibers.
Mailboxes wrap buffered typed message queues (using Java
Generics) and can be shared and passed around in messages
themselves. Features include the support for blocking, non-
blocking, timed-blocking or selective retrieval from multiple
mailboxes. Additionally the sizes of message queues can be
bounded and support priorities. Messages are isolated in the
sense of interference freedom; references to them can only be
held by one entity at a time.

The development process involves an extended tool chain
as a mandatory Weaving process amends annotated meth-
ods from the bytecode in order to produce light-weight coop-
erative threads. Kilim provides a central scheduler to ensure

basic FIFO execution of tasks, additionally network support
is provided using Java Asynchronous I/O. Kilim is released
under an MIT-like license.”

3.2 Jetlang

Jetlang [5] is an open source "high-performance’ in-memory
message passing library for Java developed by Mike Ret-
tig and is based upon its .NET sibling retlang which re-
sembles Erlang’s implementation of asynchronous commu-
nication mechanisms for object-oriented programming lan-
guages. Jetlang adopts the Erlang-like notion of fibers and
introduces typed channels as shared thread-safe entities us-
ing the Publish-Subscribe principle (supporting multiple sub-
scribers) resulting in an extremely loose coupling. It further
provides the concept of event subscriptions. Jetlang does
not rely on a central scheduler; it only guarantees ordered
message delivery to particular fibers in best-effort manner.
Jetlang can be used in conjunction with different JVM lan-
guages such as Scala, Groovy or Clojure. As of its focus
on in-memory message passing, networking is not available
out-of-the-box. Jetlang relies on Java 1.6 and is available
under [5]%.

3.3 ActorFoundry

ActorFoundry [2] belongs to the older group of actor frame-
works for the JVM and has been developed at the Open
Systems Lab at the University of Illinois. Its primary de-
sign goal is to strictly resemble the actor semantics and
relieve developers from any underlying message handling.
Criteria it seeks to fulfill are actor state encapsulation, safe
message-passing (avoiding zero-copy messaging respectively

"The tested version (0.7.2 at time of writing) was dated 7th
April 2010.
8Tts current version 0.2.1 is dated 5th April 2010.

‘message-by-reference’), fair scheduling, location transpa-
rency’ by using a globally valid naming scheme and mo-
bility [22]. Its original implementation mapped each actor
on an individual thread and realized message transport us-
ing Java’s serialization mechanism. In order to achieve per-
formance improvements by avoidance of context switching
ActorFoundry switched to the use of the cooperative light-
weight threads used in Kilim (to avoid 1:1 assignment be-
tween thread and actor) - and as such inherits the post-
compilation weaving step. Additionally a new scheduler has
been provided.

ActorFoundry is not available open source; the "documen-
tation by example” approach hampers the full functional un-
derstanding. Its current version 1.0 can be obtained under

[2]1().

3.4 Actors Guild Framework

The Actors Guild Framework [3] yields at making thread
programming in Java easier and indeed provides a light frame-
work which makes heavy use Java annotations (as done in
earlier versions of Kilim) to indicate messages and gener-
ate properties. Similar to ActorFoundry message types are
defined by annotating Java methods which then can be ac-
cessed by other actor entities. Actors Guild intercepts ac-
cesses to those methods and queues them at runtime. Mu-
table data structures passed to methods (or messages in
this context) need to implement Java’s Serializable inter-
face, similar to ActorFoundry.

Similarly to the latter the framework is less focused on
performance but easy development and safe execution. This
is partially done by relying on immutable data types (by
modifying Java types to be finalized). It allows parame-
ter manipulation from user code (thread pools, consider-
ation for I/O tasks) and supports ’safe’ (execution order
sequential) and ’less safe’ (execution order unpredictable)
execution modes. Interestingly and different from any other
framework it identifies an agent as a higher level entity as
compared to its actors.

There is no indication in the source code that network
support was considered. The framework is provided open
source but does not report to have an existing community
(the author is demanding for feedback on his framework) and
development will eventually cease (as shown on the website).
One reason for this is probably the poor performance, as
shown in third-party benchmarks (see [25]). Compared to
the other frameworks the documentation is extensive. The
latest version of the framework can be found under [3] **.

3.5 Korus

Korus is another framework promising to be light-weight
and considers itself to be one 7.. of [the] first 'pure’ actor
pattern frameworks in Java.” [6]. Apart from all similar fea-
tures provided by other frameworks it appears to have the
simplest API of all frameworks seen before. Along with this
it provides a distributed mode which allows network com-
munication. This communication is not only restricted to
communication with nodes of its own kind but also other
frameworks or platforms integrated via adapters. An exam-
ple adapter for communication with Erlang nodes is avail-

9This implies the support for distributed actors.
107 atest release data: 12th of May 2008.
"The current version 0.6 is dated 6th February 2009.

able at given time. Other than the frameworks mentioned
before it includes a simple directory allowing lookup of other
'processes’ (as used in the Korus terminology). Along with
the network adapter functionality it anticipates the devel-
opment of add-ons and its use for web applications by con-
sidering priorities for web requests. The Korus API sup-
ports developers in writing own parallel and pipeline execu-
tion constructs. Key difference to other frameworks is the
fixed message type which essentially is a hashmap restricting
key and value to String objects, obviously mainly to realize
compatibility to third-party systems when considering dis-
tri11)2uted execution. Its latest version can be found under
[6]~.

3.6 Messaging summary

Common for nearly all open source Java actor libraries
is the limited community around them. Also, implementa-
tions supporting distributed communication are rare. Most
frameworks gain their high performance by explicitly ne-
glecting safe message passing, another relevant criteria dis-
qualifying many of the frameworks to be associated with the
actor pattern.

Application of both Kilim and ActorFoundry is majorly
characterized by the necessary post-compilation for which
no IDE support is available as of now. Additional drawback
is the often limited informative value of error messages pro-
duced during the weaving process. In contrast, using Kilim’s
mailboxes principle is realized in a very intuitive and pro-
ductive way. ActorFoundry repeatedly quit its service with-
out any notification; it’s intransparent nature (as non-open
source software) can thus lead to extensive debugging ef-
forts. ActorsGuild, although the by far worst performing
framework used a similar approach to ActorFoundry by an-
notating methods as messages. However, the extensive use
of annotations for runtime code generation (for example the
creation of properties by the use of annotated getters) is not
backed by an equally powerful error messaging and caused
unnecessary complications without value-adding functional-
ity.

The idea to use annotated methods, as done in Actor-
Foundry and ActorsGuild, is convenient as it avoids any kind
of looping or event-handling by the user. In consequence
however, it spreads the messaging-related code throughout
the application class, resulting in a tight coupling of applica-
tion and messaging framework compared to Jetlang, Kilim
and Korus. Jetlang’s publish-subscribe mechanism is pow-
erful and unique but enforces initial code overhead which
eventually pays off considering the extension of the applica-
tion at a later point. Its 1:1 assignment of fibers to actors
limits the scalability of implementations when considering
large numbers of interacting entities.

Korus is the light-weight in the comparison. A fixed num-
ber of worker threads — per default the number of CPU cores
— handle all messaging and are supplied by one or more cen-
tral schedulers. However, the implementation does not reach
the throughput of most other frameworks but its usage is
simpler than any other framework. Additionally it provides
network support which is not only restricted to platforms of
its kind.

3.7 Performance

121ts current version is 1.0 and dated 4th February 2010.

In this section we will expand our previous listing of plat-
form features by a more detailed analysis of the various per-
formance indicators relevant for each of the frameworks dis-
cussed. Although comparisons of some of the frameworks
have been undertaken (e.g. [22] and [25]), the scenario used
here is driven by the intention to measure performance of
agent-like interactions rather than measuring performance
of sequential or parallelised activities. In order to test this
we constructed a scenario resembling massive concurrent in-
teraction of independent entities fully driven by the message
passing frameworks:

Numbers, chosen to represent some state, are assigned to
agents on a quadratic 2D grid. Every grid cell is ’owned’
by an agent. Upon initiation a given ratio of agents ran-
domly request a swap of the state with other agents. Along
with the swap itself the originally requesting agent becomes
idle and the swap target requests the next swap. This is
repeated until the first agent reaches a certain threshold for
the number of successful swaps. The agents need to ensure
that their state is consistent, i.e. transactions need to be
fully processed; agents in a transaction refuse requests for
a swap. In order to make the use of the frameworks com-
parable for agent frameworks using a message container for
message exchange a (close to) unified message structure is
used in all implementations.

Values chosen for the number of rounds are 1000, the num-
ber of initially activated agents is 10 percent (Example for
grid dimension 100: 10000 agents, 1000 activated initially).
The grid dimension represents the independent variable and
ranges from 5-500, resulting in 25 to 250000 agents. For the
runs Java heap memory usage is restricted to a maximum of
1024MB on an Intel QuadCore PC with 2.66 GHz and 3.25
GB RAM.'3 Measured criteria of the message passing frame-
works were performance along with fairness. Performance is
measured as sum of all (successful and unsuccessful) swap
requests of all swap agents divided by seconds. Each re-
quest consists of two messages, thus allows the measure of
messages per second.

Fairness is measured as the standard deviation of swaps
of all agents. Unfairness is measured as the relative differ-
ence between the minimum and maximum number of swaps
performed. The results of this benchmark, shown in Figure
2, reveal the largely differing performance results. Actor-
Foundry and ActorsGuild are the only frameworks advo-
cating safe message passing but also allow in-memory mes-
sage passing and has thus been included twice clarifying
the effects of safe message passing, both having Java se-
rialization as their bottleneck.'® All other frameworks rely
in in-memory passing which allows significant performance
boosts. However, given the nature as infrastructure of agent
platforms, developers of the latter need to take this into
account if they intend to utilize this performance gain. Ac-
torFoundry also outperformed all other frameworks for a

13The runs were done using J2SE 1.6 Update 20 on Microsoft
Windows XP Professional SP3. The values taken represent
the mean of 10 runs for each platform/configuration combi-
nation.

14The performance calculation does not consider administra-
tive messages such as the initialization and the transmission
of results to a central agent. The timing stops once the first
agent reached the required number of swaps.

5n fact the curves representing safe messaging (serializa-
tion) for ActorFoundry and ActorsGuild are overlapping.

small number of agents. However, subsequently the perfor-
mance declined rapidly with increasing gridsize (and as such
increasing number of agents). Key consideration for this is
that ActorFoundry was more sensitive to memory adjust-
ments than any other framework, thus garbage collection
influenced the results earlier than in other frameworks. Ac-
torsGuild’s results were the overall poorest, whether using
safe message passing or in-memory; it was not able to han-
dle more than 2500 agents and stopped execution without
any feedback. Positive however is the support of multiple
message passing modes which not been considered by most
others.

Korus took the mid-range position in this benchmark and
did not commit to the low-end group nor the leading field.
It nearly constantly performed half as fast as Kilim; along
with its fairness results this indicates a similar scheduling
approach of both frameworks. Retracing the sharp decline
in performance for ActorFoundry, the overall fastest frame-
work was Jetlang. Kilim’s performance is slightly lower but
converged with Jetlang with increasing grid size.

Kilim | Jetlang Fiitri)cliry /éclii(ifis Korus
100 25.1 465 431 425 25.5
225 25.4 446 432 433 24.3
10000 24.7 431 432 - 26.4
40000 25.7 232 232 - 27
160000 25.7 115.8 115.8 - 27
250000 25.7 92.67 96 - 27

Table 2: Fairness of Message Passing Frameworks
for selected scenario rounds

In contrast to performance the fairness results'® clearly in-
dicated two clusters, one with considerably fair frameworks
ranging around a standard deviation of 25. Frameworks
belonging to this cluster are Kilim and Korus. As both
achieved similar fairness results, this value seems to repre-
sent the underlying Java random number generator (for the
selection of swap agents) rather than framework-specifics.
All other frameworks can be considered unfair as in nearly
every case at least one agent had not been able to perform
even one swap. With increasing rounds the unfairness de-
clined steadily for Jetlang and ActorFoundry. Overall their
fairness values were very similar, pointing to a delivery in
best-effort manner without central coordination - and as
such basically the opposite of Kilim and Korus for the case
of fair frameworks.

Given those results, for a practical use in the case of purely
reactive agents, Kilim and Korus seem to be the better
choice for implementation - in a trade-off of high perfor-
mance versus the introduction of an additional post-com-
pilation step. However, considering the application in the
context of pro-active agents a separate scheduler ensuring
execution fairness would allow the consideration of other
frameworks - given that messages sent are eventually deliv-
ered.

4. CONCLUSIONS

8For ActorFoundry and ActorsGuild only the fairness values
for in-memory message passing are shown as the ones from
serialization are not significantly different.

700

Messaging performance per Number of Agents

== Jetlang —i—Korus

ActorFoundry (in-memory)

©
g 600 +—— -
8 500
(2]
g 400 7—""—“‘ — —
2 300
(3]
E 200 - /.__.\.— T -
o = W T 5
o
o 100 0 S .
i ! ! K
— - —o—
0 : —e : ,
25 250 2500 25000 250000

Number of agents

=>e=ActorsGuild (serialization) === ActorsGuild (in-memory)

=de=Kilim
=@ ActorFoundry (serialization)

Figure 2: Performance benchmark results Asynchronous Messaging Frameworks

This paper advocates an increasing relevance of micro-
agent concepts to converge different fields of agent-based
computing by providing more flexible agent platforms. Yet
only two platforms of the selection, although with differ-
ent emphasis, rely on this approach to lower the threshold
for the uptake of agent-based software development while
allowing the agents to ’grow’ with the demands of the ap-
plication. Making the point for micro-agents to exist along-
side with traditional agent concepts, we provide a survey on
candidate infrastructure for fast message transport on agent
platforms. As a future step alternative threading models
respectively concurrency handling mechanisms will be eval-
uated with regards to their usability in the given context.
We hope to encourage further research supporting the no-
tion of micro-agents pioneered by research in the context of
OPAL and by others. It should be driven by the spirit to
finally convince software engineers to make use of the po-
tential provided by agent-oriented software engineering and
remove the stigma of agent-based systems as being imprac-
tical, slow and strictly confined to the academic realm.

5. REFERENCES

[1] 3APL Homepage. http://www.cs.uu.nl/3apl/.

Accessed on: 25th July 2010.

ActorFoundry. http://osl.cs.uiuc.edu/af/. Accessed

on: 25th July 2010.

[3] Actors Guild Framework.
http://actorsguildframework.org/. Accessed on: 25th
July 2010.

[4] Java Agent Services.
http://sourceforge.net/projects/jas/. Accessed on:
25th July 2010.

[5] Jetlang. http://code.google.com/p/jetlang/. Accessed
on: 25th July 2010.

[6] Korus. http://code.google.com/p/korus/. Accessed on:
25th July 2010.

2

[7] Web Services Architecture.
http://www.w3.org/TR/ws-arch/. Accessed on: 25th
July 2010.

[8] Publicly Available Implementations of FIPA
Specifications.
http://www.fipa.org/resources/livesystems.html, 2003.
Accessed on: 25th July 2010.

[9] JADE - Java Agent DEvelopment Framework.
http://jade.tilab.com, October 2009. Accessed on:
25th July 2010.

[10] G. Agha. ACTORS: A Model of Concurrent
Computation in Distributed Systems. MIT Press, 1986.

[11] J. Armstrong, R. Virding, C. Wikstrom, and
M. Williams. Concurrent Programming in Erlang.
Prentice Hall, Englewood Cliffs, 2nd edition edition,
1996.

[12] F. Bellifemine, F. Bergenti, G. Caire, and A. Poggi.
Jade - a java agent development framework. In
R. Bordini, M. Dastani, J. Dix, and A. E. F.
Seghrouchni, editors, Multi-Agent Programming:
Languages, Platforms and Applications, pages
125-148. Springer, 2005.

[13] F. Bellifemine, G. Caire, and D. Greenwood.
Developing Multi-Agent Systems with JADE. John
Wiley & Sons, 2007.

[14] J. Ferber and O. Gutknecht. A meta-model for the
analysis and design of organizations in multi-agent
systems. Third International Conference on
Multi-Agent Systems (ICMAS ’98), IEEE Computer
Society, pages 128-135, 1998.

[15] R. Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis,
University of California, Irvine, 2000.

[16] FIPA. FIPA Agent Management Specification.
http://www fipa.org/specs/fipa00023/SC00023K.html,
2004. Accessed on: 25th July 2010.

[17]

[18]

O. M. Group. The Common Object Request Broker:
Architecture and Specification. Technical report,
Object Management Group, 1998.

O. Gutknecht, J. Ferber, and F. Michel. The MadKit
Agent Platform Architecture. Technical report,
Laboratoire d’Informatique, de Robotique et de
Microelectronique de Montpellier, Universite
Montpellier II, 2000.

M. Henning. The Rise and Fall of CORBA.
Communications of the ACM, 51(8):53-57, 2008.

C. Hewitt, P. Bishop, and R. Steiger. A Universal
Modular Actor Formalism for Artificial Intelligence. In
IJCAI pages 235-245, 1973.

N. R. Jennings and M. Wooldridge. Agent-Oriented
Software Engineering. Artificial Intelligence,
117:277-296, 2000.

R. K. Karmani, A. Shali, and G. Agha. Actor
Frameworks for the JVM Platform: A Comparative
Analysis. In 7th International Conference on the
Principles and Practice of Programming in Java, 2009.
T. Malsch, C. Schlieder, P. Kiefer, M. LAijbcke,

R. Perschke, M. Schmitt, and K. Stein.
Communication between process and structure:
Modelling and simulating message reference networks
with COM/TE. Journal of Artificial Societies and
Social Simulation, 10(1), 2007.

M. Nowostawski, M. Purvis, and S. Cranefield. KEA -
Multi-Level Agent Architecture. In Proceedings of the
Second International Workshop of Central and
Eastern Europe on Multi-Agent Systems (CEEMAS
2001), pages 355—362. Department of Computer
Science, University of Mining and Metallurgy, Krakow,
Poland, 2001.

S. Pal. More Java Actor Frameworks Compared.
http://sujitpal.blogspot.com/2009/01/more-java-
actor-frameworks-compared.html, 2nd January 2009.
Accessed on: 25th July 2010.

M. P. Singh. Agent Communication Languages:
Rethinking the Principles. Computer, 31(12):40-47,
1998.

S. Srinivasan and A. Mycroft. Kilim: Isolation-Typed
Actors for Java. In European Conference on Object
Oriented Programming ECOOP 2008, Cyprus, 2008.
H. Sutter and J. Larus. Software and the concurrency
revolution. ACM Queue, 3(7), 2005.

J. White. Telescript technology: The foundation for
the electronic marketplace. White paper, General
Magic, Inc., Mountain View, CA, USA, 1994.

J. E. White. RFC 707: High-level framework for
network-based resource sharing, Dec. 1975. Status:
UNKNOWN.

	1 Motivation
	2 Micro-agents
	2.1 MadKit
	2.2 JAS
	2.3 Opal
	2.4 JADE
	2.5 3APL
	2.6 Performance comparisons

	3 Asynchronous messaging frameworks
	3.1 Kilim
	3.2 Jetlang
	3.3 ActorFoundry
	3.4 Actors Guild Framework
	3.5 Korus
	3.6 Messaging summary
	3.7 Performance

	4 Conclusions
	5 References

