
Integrating Expectation Handling into Jason

Surangika Ranathunga, Stephen Cranefield, and Martin Purvis

Department of Information Science, University of Otago,
PO Box 56, Dunedin 9054, New Zealand

{surangika,scranefield,mpurvis}@infoscience.otago.ac.nz

Abstract. Although expectations play an important role in designing
cognitive agents, agent expectations are not explicitly being handled in
most common agent programming environments. There are techniques
for monitoring fulfilment and violation of agent expectations, however
they are not linked with common agent programming environments so
that agents can be easily programmed to respond to these circumstances.
This paper investigates how expectation monitoring tools can be tightly
integrated with the Jason BDI agent interpreter by extending it with
built-in actions to initiate and terminate monitoring of expectations,
and demonstrates how an external expectation monitor is linked with
Jason using these internal actions.

1 Introduction

Expectations represent the anticipatory mental component of an agent, thus
they resemble an important part of cognitive agents. When an agent bases its
practical reasoning on the assumption that one or more of its expectations will
hold, it somehow has to ensure that it is aware of when these expectations are
fulfilled and/or violated.

Although much research can be found on techniques for monitoring fulfilment
and violation of various types of future expectation such as those based on norms,
commitments, and contracts(see [8] for a brief survey of the existing monitoring
techniques), we do not see much research on providing support for these in
common agent programming environments. However, to successfully implement
normative multiagent systems using these agent programming environments, it is
important that they support techniques to monitor for fulfilments and violations
of these expectations to help in the development of socially aware multiagent
systems, and to provide better testbeds for experimenting with new monitoring
techniques.

In this work, we present an approach for tightly integrating expectation mon-
itoring with the Jason [4] Belief-Desire-Intension (BDI) agent interpreter, by ex-
tending it with built-in actions to initiate and terminate monitoring of expected
constraints on the future and by defining specific belief types to represent de-
tected fulfilments and violations of expectations. With the introduction of these
built-in actions, any third party monitoring tool can be “plugged in” to the Jason
environment, and in this paper we demonstrate this with an expectation monitor

developed in previous research [7]. Moreover, we present extended operational
semantics for Jason, which incorporates expectation handling.

Our mechanism allows agents to choose to delegate to an expectation monitor
service the monitoring of rules that specify conditional constraints on the future.
These rules may be based on published norms, agreed contracts, commitments
created through interaction with other agents, or personally inferred regularities
of behaviour, and multiple instances of the monitoring service may be active on
behalf of different agents at any time.

The benefit of using a monitoring service available within Jason rather than
using an external monitoring agent is that it is easier to apply this monitoring
mechanism to different applications. The only requirements for agent system de-
velopers to understand and use our approach are understanding of the abstract
idea of monitoring for fulfilments and violations of future-oriented expectations
and the signature of two new internal Jason actions, and to be provided with
the customized (Java) logic needed to connect a given monitoring technique
with Jason. This is in contrary to monitoring mechanisms based on specialised
monitoring agents, such that presented by Meneguzzi et al. [10]. In that work,
a norm monitoring tool for a specific domain was implemented as an agent and
agent-level communication was used between the monitor agent and its client
(a Jason agent). This can be seen as an application pattern that can be reused
for different domains, but this reuse requires understanding of the function of
the monitor agent, the protocols used for communication, and the Jason plans
used to handle communication with the monitor agent. Furthermore, while this
approach is suitable for providing an official monitor for norms and contracts
defined at the institutional level, it would introduce undesirable communica-
tion overhead if used as an architecture for agents wanting their own individual
expectations monitored, for use in their own personal reasoning processes.

However, it should be noted that our approach does not rule out the use
of a single designated monitoring agent to monitor expectations (e.g. norms)
applying to a whole society. Such a monitor agent can also make use of the
techniques discussed in this paper.

The rest of the paper is organized as follows. Section 2 gives an overview
of agent expectations and their significance. Section 3 gives an overview of the
Jason platform, and Section 4 contains an overview of the expectation monitor
used in this work. Section 5 lays out the introduced extensions to Jason, and
in Section 6 we demonstrate this by means of an example. Finally, Section 7
concludes the paper.

2 Expectations of Cognitive Agents

Expectations represent the anticipatory mental component of an agent. In a
theoretical perspective, expectations are “hybrid mental configurations whose
components entail not only beliefs but also converging goals that those beliefs
will be realized” [6]. Despite several definitions on how expectations are really

formed based on beliefs and goals, it is the common agreement that beliefs and
goals are the two elements that form expectations of an agent.

Along with perceptions, expectations play a very important role in generating
emotions of agents such as hope, fear, frustration, disappointment, and relief [5].
For example, if the agent had been expecting something bad, and the received
punishment is less than what was expected, it generates the emotion relief. On
the other hand, if the agent achieved a lesser result than what was expected, it
leads to the emotional state disappointment.

Expectations also have an important role to play in the social context of
multi-agent systems. They play a fundamental role in defining social norms,
conventions, and commitments, and on the other hand, can arise due to these
normative components [6]. Expectations are also the root course in generating
social trust, where trust can be defined as a complex form of expectation [9].
Therefore properly analysing and modeling individual agent expectations is ben-
eficial in developing more reactive and emotional agents as well as normative
multi-agent societies.

3 Jason

Jason [4] is a Java-based open source interpreter for an extended version of the
AgentSpeak agent programming language [12], which is based on the BDI model.

A Jason agent program consists of plans that are executed in response to
the events received. These events are generated by the addition or deletion of
the beliefs and goals of an agent. A belief is the result of a percept the agent
retrieves from its environment or it could be based on a message received from
another agent. A goal could be internally generated by the agent, or it could be
a goal that was asked to be achieved by another agent. While executing a plan,
an agent might generate new goals, act on its environment, create mental notes
to itself or execute internal actions.

3.1 Jason Agent Reasoning Cycle

An agent is operated in a continuous cycle called the reasoning cycle, operating
on a stream of belief update events produced as the agent perceives its environ-
ment. The Jason semantics define the following steps for interpreting AgentS-
peak programs, as shown in Figure 1 [4]. First, the reasoning cycle checks for
messages received by the agent and selects one of the messages to process fur-
ther (ProcMsg). Then one event from the many pending events is selected to be
processed further in that reasoning cycle (SelEv). Then is the step of selecting
the set of relevant plans for the given event (RelPl). From the relevant plans,
a subset of plans are again retrieved, which are currently applicable (ApplPl),
meaning that their context conditions evaluate to true given the agent’s current
beliefs. Then, one plan from the set of applicable plans (the intended means) is
selected for execution (SelAppl), and the new intended means is added to the
set of intentions (AddIM). Then the reasoning cycle chooses one of the pending

Fig. 1. Possible state transitions within one reasoning cycle [4]

intentions (SelInt), executes one step of that intention (ExecInt), and clears the
intended means that may have finished in the previous step (ClrInt).

Most of the aforementioned steps are directly customizable and since the
Jason source is freely available, other functionalities of the Jason interpreter can
also be changed as needed.

4 The Monitoring Tool

In this paper we selected an expectation monitor developed in previous re-
search [7] to be integrated with the Jason platform. This expectation monitor
aims at monitoring expectations that encode complex temporal constraints on
the future. It uses a language based on hybrid temporal logic to facilitate this en-
coding. With the use of temporal logic, this expectation monitor is able to deal
with expectations with complex temporal aspects, as opposed to many other
monitoring techniques that handle only propositions that must come true by a
deadline.

The language that the expectation monitor accepts includes the following
operators relating to conditional rules of expectation1:

– Exp(Condition,Expectation)
– Fulf(Condition,Expectation)
– Viol(Condition,Expectation)

where Condition and Expectation are formulae in a form of linear propositional
temporal logic. Condition expresses a condition on the past and present, and
Expectation is a constraint that may express an expectation on the future or
a check on the past (or both). Expectations come into existence when their
condition evaluates to true in the current state. These expectations are then
considered to be fulfilled or violated if they evaluate to true in a state (without
considering any future states that the monitor might already know about, e.g.
if it is running in an “offline” mode to analyse an audit trail).

1 In previous work these operators were named ExistsExp, ExistsFulf and ExistsViol,
but we use simplified names here.

If an active expectation is not fulfilled or violated in a given state, then
it remains active in the following state, but in a “progressed” form. Formula
progression involves partially evaluating the formula in terms of the current
state and re-expressing it from the viewpoint of the next state [3], e.g. if p is
true in the current state, an expectation that “p is true and q is true in the next
state” will progress to the expectation that “q is true in the current state”.

Although this expectation monitor supports the monitoring for the existence
(i.e. activation) of an expectation, as well as its fulfilment or violation, in the
integration of the monitor with Jason, we currently handle only the fulfilment
and violation of an expectation. We intend to modify our extension to support
monitoring for the existence of an expectation in future versions.

As an example, consider the the football team play scenario “give and go”
illustrated in Figure 2. This team play scenario involves two players where one
player (player 1 in the figure) passes the ball to her team mate (player 2). Player
2 then adopts an expectation that player 1 will run down to an advantageous field
position (which was agreed upon according to the team tactic). The intention of
player 2 is to pass the ball back to player 1, when she fulfills this expectation.
On the other hand, if player 1 was unable to fulfill this expectation, player 2 has
to initiate a new tactic.

As player 2 has to focus on advancing down the field while avoiding opposition
players, the expectation monitor can be delegated to monitor the performance
of player 1, to check whether she fulfills (or violates) the defined expectation
of player 2. The fulfilment and violation of this expectation can be expressed
using the following two formulae, where we assume that player 1 is supposed to
advance towards the goal B in the field, until she reaches the penalty area in
front of goal B.

Fulf(s5 , advanceToGoalB(player1) U penaltyB(player1))
Viol(s5 , advanceToGoalB(player1) U penaltyB(player1))

The first argument in the formulae refers to the condition that triggers the expec-
tation, as explained earlier. This condition becomes true when the proposition
s5 is true. s5 is a nominal, which can be true in only one state (state 5, in this
example). The operator U is the standard ‘until’ operator of temporal logic.

The first formula above evaluates to true in any state in which the rule is
fulfilled (i.e. player 1 reaches the penalty B area), and the second formula will be
true in any state in which the rule is violated (e.g. player 1 moves in the opposite
direction from goal B or stops moving before reaching the penalty area). In these
cases, the monitor sends a belief addition event back to player 2 to inform her
that this rule was fulfilled or violated.

5 Expectation Handling in Jason

5.1 New Internal Actions to Start and Stop Expectation Monitoring

An important feature of our monitoring mechanism is the ability to use any third-
party monitoring tool in conjunction with Jason plans. Therefore the interface

Fig. 2. The “give and go” tactic in football

between Jason and an expectation monitor was designed to be more abstract
than the logic described in the previous section. This helps to switch to different
expectation monitor techniques without changing the actual agent logic that
initializes or terminates expectation monitoring. Our intention is to provide a
generic interface that would suit a range of monitoring tools.

Internal actions in the Jason platform help programmers to extend agent
capabilities by defining them in the Java programming language. Internal ac-
tions are appropriate to use when the corresponding logic cannot be expressed
in AgentSpeak language constructs (e.g. integrating Jason with an external pro-
gram) or involve computations of a procedural nature that are more conveniently
expressed in Java.

The new internal actions needed to extend the Jason platform are directly
added to the standard internal actions library, enabling any agent program to
refer to those. Thus an agent programmer does not have to know how to design
these internal actions. However, if the custom logic related to an expectation
monitor is included in these internal actions, the agent programmer has to change
the standard Jason code each time when integrating a new expectation monitor
type. Therefore we have made it possible to store this custom code in a Java
class which is stored inside the same Java package as the related agent program.
The internal actions expect the existence of this customized class to handle the
specific logic related to a given expectation monitor. The internal actions decode
the parameter values sent by an AgentSpeak program, and send these values
to this customized class, to be processed according to the selected expectation
monitor.

Initiating Expectation Monitoring: The internal action corresponding
to the initialization of expectation monitoring is start monitoring2. It takes in
the following parameters:

2 Currently each call to start monitoring creates a new instance of the monitor. This
is due to a current limitation of the monitor implementation that it only handles one
rule at a time. In future work we plan to have a single monitor handling multiple
rules at a time

monitoring mode: This is either “fulf” or “viol” to indicate whether the rule
of expectation is to be monitored for fulfilment or violation. For example, with
respect to the expectation monitor we are currently employing, the logic of the
internal action generates a Fulf formula if the parameter refers to “fulf” and a
Viol formula if the parameter refers to “viol”.

expectation name: This specifies a name for the expectation, for ease of future
reference.

monitor tool: This identifies the monitoring tool that should be used to mon-
itor this expectation.

condition: This specifies the requirements on the past and present that acti-
vate monitoring for the expectation.

expectation: This specifies the actual expectation.
context information list: This argument can be used to assign any other

contextual information that might be useful for monitoring an expectation. For
example, we can specify a specific agent or a group of agents to be monitored.
This information will be added to any fulfilment belief or violation belief sent to
the agent as a result of monitoring the expectation.

Terminating Expectation Monitoring: We have made it possible for an
agent to stop monitoring for an expectation if the need arises to do so during
its reasoning process. The internal action stop monitoring stops the monitoring
of the expectation. It takes the following parameters:

expectation name: The name of the expectation
monitor tool: The monitoring tool that is currently running the specified

expectation.

5.2 Representing Expectation Fulfilments and Violations in Jason

An important design consideration is how to encode the fulfilments and viola-
tions identified by the external expectation monitor as Jason events to Jason.
The Environment class in Jason acts as the interface to integrate the Jason plat-
form with outside simulation environments. Therefore the Environment class
was selected as the best option to communicate the detected fulfilments and
violations to Jason agents. Just like percepts, these fulfilments and violations
result in new beliefs that lead to the execution of plans that handle the detected
fulfilment or violation.

We define the structure of beliefs based on the detected fulfilments and vio-
lations as follows:

fulf(Name,StateId)[rule(Cond ,Exp), rule triggered in state(OldStateId),
context(Context)]

viol(Name,StateId)[rule(Cond ,Exp), rule triggered in state(OldStateId),
context(Context)]

Here, fulf encodes the fulfilment of an expectation, while viol represents a vio-
lation.

The variable Name represents the name assigned to a particular fulfilment
or violation detected, and the StateId represents the identifier for the state in
which the actual fulfilment or violation of the expectation occurred. The notion
of a state is important because fulfilments and violations arise in a particular
temporal context that is encapsulated by the state identifier. It is up to the
monitor to provide an appropriate form of state identifier.

In Jason, a percept with the same content as an already existing belief will
not lead to the generation of a new belief. However, we want a fulfilment or a
violation detected in one iteration of the Jason reasoning cycle to be distinct
from the same fulfilment or violation detected in the previous cycle (e.g. two dif-
ferent robberies in consecutive states are two different crimes). This requirement
can be accomplished with the state number associated with the fulfilment (and
violation) beliefs.

When creating beliefs in Jason, an agent programmer can add any other
variable of importance using ‘annotations’. These annotations can be omitted
when specifying the triggering event for a plan if the context and the body of
the corresponding plan do not need this information. In the above predicates,
we have defined three annotations. The first annotation represents the actual
rule that was fulfilled or violated. It has two parameters: the condition that
triggers the expectation and the actual expectation. These can be defined in
any format according to the expectation monitor in use. The second annota-
tion is ‘rule triggered in state’ which identifies the state in which the condition
of the expectation became true. The third annotation is the list of contextual
information that is related to this identified fulfilment or violation. The context
information list that was generated for the related expectation when it was ini-
tiated by star monitoring internal action is used to provide information in this
annotation.

5.3 Extended Jason Semantics

In this section, we present the extended Jason semantics which includes the
operation of the expectation monitor.

In Jason, the state of an agent is determined by the belief base, the set of
events, the plan library and the set of intentions. With our extension, an agent
can have a set of expectation monitors that are active on behalf of it, which
operate external to the Jason core logic. A monitor has its own state, which is
different from an agent’s state. For simplicity, we only model a single expectation
monitor in the semantics. Incorporating multiple monitors is a straightforward
extension.

An expectation monitor can have many ‘monitor tasks’, distinguished by
their unique name. Each monitor task is comprised of a rule (a rule resembles an
expectation, and its triggering condition), and a property which states whether
the rule should be monitored for its fulfilment or violation. Associated with a
monitor, there is also a history component, which resembles the set of input

states received by the monitor. We also define a set of notifications, which be-
comes the output of the expectation monitor. The set of notifications resembles
the set of states where the expectation monitor recorded a fulfilment or vio-
lation for any of the monitor tasks that are currently being monitored. These
notifications are eventually consumed by the agent.

An expectation monitor is represented by the triple 〈H,MTs, Ns〉, where:

– H is the history of the monitor. As mentioned earlier, H resembles the set of
input states received by the monitor. The input states have a state identifier,
and some associated information of the world in a representation specific to
the expectation monitor being used.

– MTs is the set of monitor tasks associated with the expectation monitor.
A monitor task MT is a 4-tuple of the form 〈Na,Cn,Ex, Pr〉. Here Na
refers to the unique name assigned to the monitor task. The Cn and Ex
parameters represent a rule, where Cn represents the condition specifying
when an expectation becomes active and Ex refers to the actual expectation.
Pr is the property which has the grammar Pr := FULF |V IOL, meaning
that the property refers to the fulfilment or violation of a rule.

– Ns is the map of notifications generated by the expectation monitor as the
output. This map associates state identifiers with sets of pairs 〈Na,Pr〉
where each pair expresses the information that in the given state the monitor
task named Na resulted in a detected event of type Pr (FULF or V IOL).

This abstract model of a monitor can be related to the semantics of a specific
monitor tool as shown by the following example rule. This shows how the model
theoretic semantics (top left) of our chosen monitor [3] is related to the emission
of a fulfilment notification. A similar rule can be defined to explain the emission
of violation notifications.

H, ∅, |H| |= Fulf(Cn, Ex) 〈Na,Cn,Ex, FULF 〉 ∈MTs

〈H,MTs, Ns〉 → 〈H,MTs, Ns′〉

where
Ns′ = Ns ∪ (|H| 7→ 〈Na,FULF 〉) if |H| is not a key in Notifications,
or
Ns′ = map update(Ns, |H|, Ns[|H|] ∪ 〈Na,FULF 〉) otherwise.

In this rule, we assume that history states are identified by their (1-based) in-
dices, so |H| (the length of the history H) is the identifier for the final state in
the history.

The rule states that when a fulfilment formula logically holds in the logic
used by the monitor3, and the corresponding rule is being monitored, a fulfil-
ment notification is emitted for the current state (the last in the history). The
notification map is updated either by adding a new mapping |H| 7→ 〈Na,FULF 〉
to the monitor notifications, or by adding 〈Na,FULF 〉 to the notifications for
state |H| if any exist.
3 The details of this particular monitor’s semantics [3] are outside the scope of this

paper.

In the Jason semantics, the transition relation of an agent’s configuration is
given by a set of conditional rules that change the agent’s configuration in each
of the steps of the reasoning cycle. The configuration for an agent is represented
by the tuple 〈ag, C,M, T, s〉 [4], where:

– ag refers to the agent program, which consists of a set of beliefs and a set of
plans

– C is an agent’s circumstance, denoted by the tuple 〈I, E, A〉, with I being
the set of intentions, E the set of events and A being the set of actions to
be performed in the environment.

– M is a tuple 〈In, Out, SI〉 that registers different aspects of communicating
agents. Here, In is the message inbox of an agent, Out is the out-going
message box, and SI keeps track of the suspended intentions related to the
communication messages that are currently being processed.

– T is a structure that stores temporary data required in various steps of
the reasoning cycle. This is a tuple 〈R,Ap, i, ε, ρ〉, where R represents the
relevant plans, Ap represents the set of applicable plans, and i, ε, ρ respec-
tively represent an intention, event and an applicable plan that are being
considered along the execution of one reasoning cycle.

– s is the current step (or state) in the agent reasoning cycle shown in Figure 1,
where:
s ∈ {ProcMsg, SelEv, Relpl, ApplPl, SelAppl, AddIM, SelInt, ExecInt, ClrInt}.

Subscripts are used to identify individual components of tuples, e.g. CE denotes
the events set within a configuration C, and the notation i[p] is used to denote
an intention consisting of plan p on top of intention i.

To define the semantics of our Jason extension we must address three issues:
i) the effect of the new internal actions start monitoring and stop monitoring,
and ii) how notifications emitted from the monitor are communicated to Jason
as beliefs. There is a third issue that we consider out of the scope of these
semantics: the process that adds states to the monitor’s history. This is because
the Jason agent is not responsible for sending percepts to the monitor, and our
architecture does not even assume that the monitor receives state information
from the Jason environment object—it may have its own separate mechanism
for obtaining information from the system in which the Jason agent is situated4.

In the rules below we define transitions on an extended system configuration
comprising the Jason agent and the monitor. This is a pair 〈AG, EM〉, where
AG = 〈ag, C, M, T, s〉 and EM represents the expectation monitor as defined
above.

start monitoring :
Through the start monitoring internal action, an expectation monitor is

started and is added to the set of active expectation monitors of the agent.

4 This is the case for our work on integrating this extended version of Jason with the
Second Life virtual world [11]

The start monitoring internal action takes place when the body of an agent
plan is being executed, and this internal action becomes the current intended
means to be executed. This refers to the ExecInt step in the reasoning cycle
in Figure 1. The internal action executes completely (i.e. without suspension,
which is the normal procedure for executing internal actions) and returns.

The Jason semantics for this action is shown below.

Ti = i[head← start monitoring(Mm, En,Mt, Cn,Ex,Cil);h]
〈〈ag, C,M, T,ExecInt〉, EM〉 → 〈〈ag, C, M, T ′,ClrInt〉, EM ′〉

Where:

– Parameters Mm, En, Mt, Cn, Ex and Cil respectively refer to monitor-
ing mode, expectation name, monitor tool, condition, expectation and con-
text information list, as defined in Section 5.1

– Here EM ′
MTs = EMMTs ∪ {〈En,Cn,Ex,Mm〉}

– T ′
i = i[head← h]

As in the standard Jason semantics, where a transition is defined as transforming
a structure S into a new version S′, all components of S′ are assumed to be the
same as those in S except where otherwise specified.

stop monitoring : The stop monitoring internal action takes place when the
body of an agent plan is being executed, and this internal action becomes the
current intended means to be executed. This refers to the ExecInt step in the
reasoning cycle as in start monitoring, and it moves the transition to the state
ClrInt.

Ti = i[head← stop monitoring(En,Mt);h]
〈〈ag, C,M, T,ExecInt〉, EM〉 → 〈〈ag, C, M, T ′,ClrInt〉, EM ′〉

where:

– Parameters En and Mt respectively refer to the expectation name and mon-
itor tool as defined in Section 5.1

– EM ′
MTs = EMMTs \ {MT}. In other words, the stop monitoring internal

action removes the monitor task MT referenced by En (here, the expecta-
tion name refers to the unique name of the monitor task) from the expecta-
tion monitor.

– T ′
i = i[head← h]

Though not included in the paper, we also modify the condition of the existing
Jason semantic rule for handling internal actions to exclude it from applying
the standard operational semantics in the case that the selected action a is
start monitoring or stop monitoring.

Handling Fulfilment and Violation Notifications Whenever the monitor
identifies the fulfilment or violation of a rule defined in it, it sends a notification
to Jason. These notifications are treated as Jason percepts and subsequently
result in new belief events. We use the function NotBels to denote the process
that converts monitor notifications into belief events using the syntax defined
in Section 5.2, and the corresponding rule for this transition can be written as
follows:

EMNs 6= ∅
〈〈ag, C, M, T, s〉, EM〉 → 〈〈ag, C ′,M, T, s〉, EM ′〉

In this rule, EM ′
Ns = ∅ and C ′

E = CE ∪NotBels(EMNs).
Here, EM ′

Ns refers to the set of notifications belonging to all the monitor
tasks active for that expectation monitor.

This rule is not executed as part of the Jason agent’s reasoning cycle. Rather,
it represents a separate process that consumes notifications from the monitor and
adds them as new events for the agent to process. This process runs concurrently
with the Jason interpreter, and we do not assume any sychronisation between
the two processes (except to avoid concurrent modification of the agent’s input
event set CE). Therefore this rule can be applied in any state of the agent5.

6 Example Scenario - A Jason Agent Engaged in the
Football Team Play Scenario “Give and Go”

We have integrated this Jason extension with the popular virtual world Second
Life [1], with the use of a framework we have developed [11] for integrating agents
with Second Life. This enables the implementation and testing of sophisticated
Jason agents.

In this example, we demonstrate how the ability of a Jason agent to monitor
and detect fulfilments and violations of its expectations is useful in its decision
making process. We implement this example in the SecondFootball [2] virtual
simulation in Second Life which enables playing virtual football. This system
provides scripted stadium and ball objects that can be deployed inside Second
Life, as well as a “head-up display” object that an avatar can wear to allow the
user to initiate kick and tackle actions.

In this example, we implement the “give and go” team play scenario described
in Section 4. Here, the Jason agent Ras Ruby is engaged in the team play scenario
with the player Su Monday, who is controlled by a human. When Ras Ruby
receives the ball, it adopts the expectation which states that Su Monday should
run until she reaches the PenaltyB area, so that she can pass the ball back to
Su Monday for her to attempt a goal score at Goal B.

5 In practice, the monitor’s notifications are recorded as percepts in the Jason En-
vironment object, and the agent perceives them via Jason’s belief update phase.
However, Jason’s operational semantics do not include a state for perceiving the
environment, so here we model the connection between the monitor and the agent
as a separate process that pushes fulfilment and violation beliefs to the agent.

When the system starts, the Jason agent corresponding to Ras Ruby is ini-
tialized. When the Jason agent starts executing, it first tries to log itself into
Second Life. After sending its login request, the agent has to wait till it gets
the confirmation of the successful login. When it receives the successful login
notification, the agent adopts the new goal to walk to the area MidfieldB2. The
corresponding plan for this goal addition is shown below (+! denotes a goal ad-
dition event, a context condition appears after the colon, and the arrow operator
separates the head and body of the plan).

+!check_connected: connected
<-
action("walk", "MidfieldB2").

Once in the area MidfieldB2, the agent Ras Ruby waits for Su Monday to
kick and pass the ball to it. Once it successfully receives the ball, the agent
gets the “successful kick(su monday, ras ruby)” percept (which is generated by
our Second Life integration framework and states that Su Monday successfully
passed the ball to Ras Ruby through a kick), and this triggers the corresponding
plan related to this belief addition, as given below.

+successful_kick(su_monday,ras_ruby)
<-
//internal actions
.start_monitoring("fulf",

"move_to_target",
"expectation_monitor",
"#once",
"(’U’,

’advanceToGoalB(su_monday)’,
’penaltyB(su_monday)’)",

[]);

.start_monitoring("viol",
"move_to_target",
"expectation_monitor",
"#once",
"(’U’,
’advanceToGoalB(su_monday)’,
’penaltyB(su_monday)’)",

[]).

This plan starts the internal actions for monitoring for the fulfilment and
violation of the agent’s expectation. Here, in the first parameter we define the
type of expectation; whether it is a fulfilment or a violation. The second param-
eter assigns a name for the expectation. The third parameter is the name of the
expectation monitor used. The fourth parameter is the triggering condition for
the expectation, and in this example, it is a keyword with a special meaning

(#once). For this scenario the initiating agent wants the rule to fire precisely
once, as soon as possible, and this can be achieved in our current expectation
monitor by using a ‘nominal’ (a proposition that is true in exactly one state)
for the current state as the rule’s condition. However, the BDI execution cycle
only executes a single step of a plan at each iteration, and any knowledge of
the current state of the world retrieved by the plan may be out of date by the
time the monitor is invoked. The #once keyword instructs the monitor to insert
a nominal for the current state of the world just before the rule begins to be
monitored. Here, the actual expectation formula is given by the fifth parameter,
and the sixth parameter is a list of optional context information, which we do
not utilize in this example.

The fulfilment of this expectation occurs when Su Monday advances towards
GoalB (advanceToGoalB(su monday)) , until (’U’) she reaches PenaltyB,
denoted by ’penaltyB(su monday)’ . Similarly, the violation of this expectation
occurs if Su Monday stopped somewhere before reaching PenaltyB, or she moves
in the opposite direction before reaching PenaltyB area6.

If Su Monday fulfilled Ras Ruby’s expectation, the expectation monitor de-
tects this and reports back to the Jason agent, which results in a fulfilment belief.
The following plan handles this detected fulfilment and instructs the avatar to
carry out the kick action7.

+fulf("move_to_target", X)
<-
//Calculate kick direction and force, turn, then ...
action("animation", "kick").

On the other hand, if Su Monday violated the expectation, the expectation
monitor reports the violation to the Jason agent, generating a violation belief for
the agent. The agent uses the first plan below to decide the agent’s reaction to
the detected violation, which creates a goal to choose a new tactic for execution.
The second plan (responding to this new choose and enact new tactic) is then
triggered, and the agent adopts the tactic of attempting to score a goal on its
own by running towards the PenaltyB area with the ball.

+viol("move_to_target",X)
<-
!choose_and_enact_new_tactic.

+!choose_and_enact_new_tactic
<-
action("run", "penaltyB").

6 The conditions and expectations are defined in temporal logic and we do not wish
to elaborate on them in the scope of this paper. These are written as nested Python
tuples, as this is the input format for the expectation monitor written in Python.

7 Due to technical problems the Second Life avatar cannot currently perform the actual
‘kick’ animation

7 Conclusion

This paper addressed the importance of agents having a capability to directly
monitor their expectations and detect the fulfilments and violations of these
expectations, and respond accordingly.

We demonstrated a tight integration of expectation monitoring in the BDI
agent model and presented an implemented mechanism to monitor expectations
of individual agents in the Jason agent model. Also, we identified this as an
approach to focus on monitoring at the individual agent level, as opposed to
the organizational level monitoring that has received the main focus in the past
research, and noted that our approach also has the flexibility to be used for
monitoring in the organization level.

As future work, it is interesting to investigate ways of how agents can publish
their expectations to make other agents in the society aware of their personal
expectations, and how agents should react to the detected fulfilments and vio-
lations of their expectations, both in a social context and with respect to their
emotions. Moreover, it should also be investigated how agents can use their ex-
pectations as well as expectations of other agents in the society that they are
aware of, proactively in their deliberation process.

References

1. Linden Lab. Second Life Home Page. http://secondlife.com, August 2010.

2. Vstex Company. Secondfootball Home Page. http://www.secondfootball.com,
August 2010.

3. F. Bacchus and F. Kabanza. Using Temporal Logics to Express Search Control
Knowledge for Planning. Artificial Intelligence, 116(1-2):123–191, 2000.

4. R. H. Bordini, J. F. Hubner, and M. Wooldridge. Programming Multi-Agent Sys-
tems in AgentSpeak using Jason. John Wiley & Sons Ltd, England, 2007.

5. C. Castelfranchi. Mind as an anticipatory device: For a theory of expectations. In
M. De Gregorio, V. Di Maio, M. Frucci, and C. Musio, editors, Brain, Vision, and
Artificial Intelligence, volume 3704 of Lecture Notes in Computer Science, pages
258–276. Springer Berlin / Heidelberg, 2005.

6. C. Castelfranchi, F. Giardini, E. Lorini, and L. Tummolini. The prescriptive destiny
of predictive attitudes: From expectations to norms via conventions. In Proceedings
25th Annual Meeting of the Cognitive Science Society (CogSci 2003), Boston, USA,
31 July 2 August, 2003.

7. S. Cranefield and M. Winikoff. Verifying social expectations by model checking
truncated paths. Journal of Logic and Computation, 2010. Advance access, doi:
10.1093/logcom/exq055.

8. S. Cranefield, M. Winikoff, and W. Vasconcelos. Modelling and monitoring inter-
dependent expectations. Discussion Paper 2011/03, Department of Information
Science, University of Otago, 2011. http://eprints.otago.ac.nz/1094/.

9. E. Lorini and R. Falcone. Modeling expectations in cognitive agents. In AAAI
2005 Fall Symposium: From Reactive to Anticipatory Cognitive Embodied Systems,
2005.

10. F. Meneguzzi, S. Miles, M. Luck, C. Holt, and M. Smith. Electronic contracting in
aircraft aftercare: a case study. In Proceedings of the 7th international joint con-
ference on Autonomous agents and multiagent systems: industrial track, AAMAS
’08, pages 63–70, Richland, SC, 2008. International Foundation for Autonomous
Agents and Multiagent Systems.

11. S. Ranathunga, S. Cranefield, and M. Purvis. Interfacing a Cognitive Agent Plat-
form with a Virtual World: a Case Study using Second Life. In 10th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2011), 2011.
To appear.

12. A. S. Rao. BDI agents speak out in a logical computable language. In Proceedings
of the 7th European workshop on Modelling autonomous agents in a multi-agent
world: agents breaking away, pages 42–55. Springer-Verlag Berlin, Heidelberg, 1996.

