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Alternatives to Regression Models for Estimating Software Projects 
 

Stephen G. MacDonell and Andrew R. Gray 
Computer and Information Science 

University of Otago 
Dunedin, New Zealand 

 
 
Abstract 
 
The use of ‘standard’ regression analysis to derive predictive equations for software development 
has recently been complemented by increasing numbers of analyses using less common methods, 
such as neural networks, fuzzy logic models, and regression trees.  This paper considers the 
implications of using these methods and provides some recommendations as to when they may  
be appropriate.  A comparison of techniques is also made in terms of their modelling capabilities 
with specific reference to function point analysis. 
 
 
1  Introduction 
 
Effective means of project effort estimation have been sought since the advent of the area of 
research and practice now commonly referred to as software metrics.  Halstead, one of the 
founders of software measurement, included in his inspired (but subsequently seen as somewhat 
flawed) assertion of software science an equation to predict program development effort based on 
fundamental algorithm size (Halstead 1977).  As understanding of the software process has 
increased, our awareness of the need to manage that process has become greater.  Fortunately, 
this progression has been mirrored by developments in process and product measurement, to the 
point where a number of de facto standards for best practice exist.  One such standard is that of 
function point analysis (FPA) as the method of choice in system sizing and effort estimation 
activities. 
 
FPA provides a well-established method for the relatively early assessment of system scope, 
based on various transaction-oriented system requirements characteristics.  Given the managed 
and consistent collection of project size, complexity and effort data, relationships can be 
established that enable the a priori determination of size and effort for new projects in the very 
early stages of development.  Although not without its potential problems, particularly in the 
areas of inter-rater subjectivity, it remains one of the most widely used methods for recording 
data on system scope and complexity in organisations concerned with process management. 
 
It is one thing to measure and record data of interest; it is another to analyse and interpret that 
data in a valid and reliable manner.  Software engineering data in general is notorious for its non-
ideal characteristics with respect to model building (detailed in the next section) - however, many 
of the commonly used analysis techniques are not able to take account of these factors.  It is in 
this area of analysis that we consider FPA could be augmented, so that analysts can be confident 
in the methods they employ and thus in the results they obtain and the conclusions they draw. 
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Traditionally models of software metrics have been derived using basic regression analysis.  
While this approach can often provide simple models in an effective and efficient manner, it is 
proposed here that some alternatives should also be considered.  In a previous paper (Gray and 
MacDonell 1996) a number of alternatives to regression analysis for software metric modelling 
were proposed and examined.  Not all of these will be covered here.  Instead the focus will be on 
simple statistical methods, some more advanced statistical methods, fuzzy logic models, neural 
networks, with some mention of other techniques such as regression trees.  The interested reader 
is referred to the previous paper for more details. 
 
The remainder of the paper is as follows: the next section considers the generic requirements of 
predictive modelling, irrespective of the technique chosen; section 3 considers the positive and 
negative aspects of statistical methods as model-building frameworks; section 4 examines some 
of the less ‘traditional’ modelling approaches available for data analysis; section 5 includes an 
empirical comparison of some of these methods using a set of FPA data; the paper is then 
concluded with a summary and suggestions for further work. 
 
 
2  Predictive Modelling Requirements 
 
Any metric program that simply attempts to capture data and extract whatever value can be found 
from it is unlikely to succeed.  A higher-level view of the model development process is regarded 
as necessary to ensure consistency and compatibility of the metrics program across the metric life 
cycle process.  This includes the early planning and specification of the goals of the program, the 
questions to be answered that would assist in the achievement of these goals, and the metrics that 
can be used to answer the questions.  These three steps represent the well-known 
Goal/Question/Metric (GQM) approach (Basili and Rombach 1987) widely used in software 
metrics research and practice. 
 
Three additional steps are suggested here as being useful to append after the determination of the 
metrics.  These are the specification of the data that should be collected and how it can be 
collected, the analysis techniques that will be available for model building, and finally how the 
outputs of the model will be used in the development process.  It is only when the entire metric 
development process is considered as a single entity that high levels of confidence can be placed 
in the final resultant models. 
 
A number of characteristics associated with each model-building technique need to be considered 
when evaluating the suitability of any given technique for a specific problem.  These issues 
include data availability since some techniques have greater requirements.  For example, Paola 
and Schowengerdt (1995) found that a neural network consistently out-performed a maximum 
likelihood approach for various training data set sizes.   
 
Another related issue is that of being able to use all available sources of information in the model 
development process.  Statistical and traditional neural network techniques are primarily data 
driven and expert knowledge is limited as to its usefulness outside of variable selection, 
appropriate transformations, and some parameter boundaries.  However, fuzzy logic lends itself  
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to full use of expert knowledge, and adaptive models are available to use data for fine tuning (or 
even as the only information source).  There has been much interest in neuro-fuzzy approaches 
that simulate an adaptive fuzzy system within an adaptive neural network architecture (the 
interested reader is referred to Kasabov et al. (1996) for further details as well as Gray and 
Kasabov (1996) for information about its application to a model development methodology). 
 
Other issues relevant to a model building technique’s applicability include its accuracy and its 
ability to generalise.  With regard to this second point, it is easier to develop a model that 
performs well on a given set of data through overfitting.  However, a model developed in such a 
manner will not generalise as well to new data, which is obviously more important for most 
applications. 
 
A further interesting and often neglected attribute of a modelling technique is the manner in 
which users relate to models derived through their use.  It could be argued, for instance, that 
neural networks, with their (incorrectly attributed) biological metaphors would be considered to 
produce more ‘intelligent’ solutions than those developed using regression. 
 
A final aspect considered here is the interpretability of a model in its final form.  Statistical and 
neural network models are not overly conducive to providing understanding of the solution or 
enabling verification.  This is one area where fuzzy systems are more appropriate since the rules 
contained within them are intended to be semantically and linguistically comprehensible. 
 
 
3  Statistical Approaches 
 
The most commonly used methods for predictive model development are those derived from 
inferential statistics.  Among the advantages of using such approaches are their relative simplicity 
in formulation (via most statistical analysis software) and their sound basis in probability theory.  
The long history of such methods, compared to other techniques discussed here, ensures a wide 
body of theory is available to both the practitioner and researcher. 
 
3.1  Linear Least-Squares Regression 
 
Straight-forward linear regression under the least-squares (LS) model attempts to find the line 
that minimises the error in the relationship between predictive and dependent variables and 
parameters.  The structure of this line is normally expressed in the form of an equation.  Simple 
linear regression considers the relationship that exists between just one predictor variable and a 
constant term if required, and the dependent variable of interest.  Multiple linear regression, by 
extension, is an analysis of the relationship between more than one independent (predictor) 
variable and the variable to be estimated.  Any form of linear regression is generally preceded by 
the use of scatter plots and correlation analyses in order to first intuitively, as well as 
quantitatively, determine the potential relationships that may exist in the data.  It is important to 
keep in mind that the linear nature of such regression only refers to the linear form of the 
parameter’s coefficients.  Transformations can be used in advance on variables to permit non- 
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linear modelling, providing the appropriate transformation is known in advance.  Similarly, 
interaction effects can be simulated by the creation of a new variable appropriately defined. 
 
Once the best-fit line has been determined, its consistency and accuracy can be assessed using a 
validation data set, in which the values for the predictor variables are ‘plugged into’ the 
regression equation and the difference between predicted and actual values is determined.  The 
use of some data set that has not exerted any influence whatsoever on the model selected is 
essential for an unbiased estimate of the model’s generalisation capabilities.  If one data set is 
used to estimate the model’s parameters for several different models, and another set is used to 
pick the best model, then it is imperative that another set exist to determine the model’s 
performance on new data.  This does of course assume stationary relationships, but in the  
absence of additional information it is an unbiased estimator for the particular error measure 
used.  This point applies to all modelling techniques, not just regression, and should be kept in 
mind through the remainder of the paper. 
 
Many different methods for estimating a model’s error are available.  These include the many 
forms of correlation.  A pair of indicators is commonly used in metrics analysis to indicate the 
adequacy of a predictive model - the mean magnitude of relative error (MMRE) and the 
threshold-oriented pred measure. 
 
The magnitude of relative error (MRE) is a normalised measure of the discrepancy between 
actual values (VA) and fitted values (VF): 
 

    MRE
V V
V
A F

A
=

−
  

 
The mean MRE is therefore the mean value for this indicator over all observations in the 
validation sample.  A lower value for MMRE generally indicates a more accurate model. 
 
The pred measure provides an indication of overall fit for a set of data points, based on the MRE 
value attained for each data point: 
 

    pred l
i
n

( ) =  

 
  where l is the selected threshold value for MRE, i is the number of data  
 points with MRE less than or equal to l, and n is the total number of data  
 points. 

 
As an illustration, if pred(0.25) = 0.4, then we can say that 40% of the fitted values fall within 
25% of their corresponding actual values.  In terms of assessing the performance of a given 
model, contemporary expectation of a ‘good’ model using these indicators is the achievement of 
MMRE ≤ 0.25 and pred(0.25) ≥ 0.75 (Conte et al. 1986) or, more realistically, pred(0.30) ≥ 0.70 
(Tate and Verner 1990). 
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3.2  Linear Least-Median-Squares Regression 
 
The ‘limitations’ of the least-squares linear regression method when used for metric data analysis 
are due in part to the fact that the technique assumes a reasonably normal underlying data 
distribution.  However, much software engineering data does not conform to this requirement - 
data is often skewed to the right and may contain a number of outlier values relative to the 
number of observations (Kitchenham and Pickard 1987).  A common example exhibiting this 
characteristic is module error frequency data, which can never take a value less than zero and yet 
are concentrated near the zero data point with a few particularly highly error-prone modules.  In 
such cases, where the distribution is somewhat departed from the normal model, the LS 
regression model loses much of its efficiency (Hampel et al. 1986; Myrvold 1990).  (It is not so 
much a limitation of the technique that causes a problem; rather it is the fact that the technique is 
applied to data that it was not intended to address.)  Figure 1 illustrates the extent of influence 
that an outlier value may have on a least-squares derived regression model.  Prediction of a new 
data point such as that shown using the LS approach would clearly be ineffective in this case. 
 
 

Data Point

New Data Point
Least Mean
Squares Line

Least Median
Squares Line

 
 

Figure 1:  Outlier influence on regression lines 
 
 
This problem of analysis can be at least partially overcome within statistical bounds through the 
application of the less common least-median-squares (LMS) regression technique.  This approach 
determines outlier values prior to final regression, and enables the analyst to discard or weight 
appropriately the outlier observations.  Thus the main body of observations remains integral to 
the development of the relationship whilst outlier observations, which may be questionable in 
terms of reliability or accuracy, can be treated more appropriately.  The result is generally a more 
robust predictive model, particularly in the case where the data set concerned is small 
(MacDonell 1993; Miyazaki et al. 1994). 
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4  Artificial Intelligence Approaches 
 
Since the software development process is complex, it seems somewhat naïve to expect a simple 
or even multiple linear model to always adequately match the real world.  A number of 
approaches for modelling have emerged from the field of artificial intelligence including neural 
networks, fuzzy logic, genetic algorithms, regression trees, and case-based reasoning.  Here the 
first two of these methods will be examined in detail with regard to their general modelling 
capability and their appropriateness for software metric modelling.  The other techniques will 
then be briefly mentioned.  Again, the interested reader is referred to Gray and MacDonell (1996) 
as a starting point for more information. 
 
4.1  Fuzzy Logic Models 
 
One general disadvantage of statistical models is the manner in which their comprehensibility 
diminishes as variables, interactions, and transformations are added.  This problem can be at least 
partially overcome with the use of fuzzy logic, which was developed out of a dissatisfaction with 
classical, all-or-nothing, logic.  The central assertion underlying this approach is that entities in 
the real world simply do not fit into neat categories.  For example, a project is not either small, 
medium, or large.  It could in fact be something in between, perhaps mostly a large project but 
also something like a medium project.  This can be represented as a degree of belonging to a 
particular linguistic category.  As shown below a system with 162 entities belongs to the class of 
medium projects to a degree of 0.4 and to the class of large projects to a degree of 0.61. 
 

Small Medium Large

Membership
Degree

Number of Entities162

0.6

0.4

 
 

Figure 2:  Fuzzy set membership 
 
 
If some quantitative measure, such as code length in terms of functions or number of entities, is 
used for early prediction of the software development process then the problem of acquiring these 
“magic numbers” becomes apparent.  If it is desired to predict the length of a system  
 

                                                 
1 Note that these numbers do not have to add up to 1.  In many systems they are defined such that the sum will be 
unity, but this is usually done for convenience. 
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development project then the number of files, and entities, and several other variables must be 
estimated.  If estimates must be made, then problems can emerge with a reluctance to commit to 
such precise measures.  Even worse, once the project manager has been forced into providing 
these numbers, the risk of them becoming frozen is apparent. 
 
Fuzzy logic provides a less harsh form of commitment.  A project manager may say that a project 
will have a large number of entities, a small number of files, and similarly the other variables.  
These can be represented as fuzzy sets as shown below.  A series of rules, also shown in Figure 3, 
can then be used to derive some prediction for the output, in this case the project effort.  This 
effort measure could be “defuzzified” into a number, or left as a slightly vague label to encourage 
the idea that this is only an estimate. 
 

Input Variables Output VariablesFuzzy Rule Base

Data Model Size

Number of Screens

Process Model Size

Development Time

30

26

74

254
If data model small

then development time short
If data model medium

and number of screens small
then development time medium

.......

small largemedium

mediumsmall large

small largemedium
short medium long

0.5

0.8

05

 
 

Figure 3:  The fuzzy system classification model 
 
 

4.2  Neural Network Models 
 
The term neural network applies to a large family of modelling techniques.  The most commonly 
used of these are feed-forward networks trained using the back-propagation algorithm.  Often 
when literature refers to neural networks it is implicitly assumed that they are of this type.  This 
convention will be followed here for simplicity, although the reader should be aware that many 
other algorithms and structures are available and often produce superior results. 



8 

The process of training a network adjusts the weights (which function similarly to parameters in  
a statistical model, albeit in a much more hierarchical and non-linear fashion).  These  
adjustments are mathematically calculated to reduce the target error which is in this case the root 
mean square error (RMSE) defined as: 
 

   RMSE
V V

N O

A F
a

on

=
−

×

∑∑ ( )2
1  

 
where VA is the actual value predicted for that value, VF is that fitted.  N and O are the number of 
observations and outputs respectively. 
 
As the network trains and reduces this error its performance on new data (the training set) 
improves up to a certain point.  Beyond this point further training leads to overfitting where the 
network begins to memorise the training data at the expense of its performance on new data. The 
training procedure is therefore stopped when the test error, not the training error, is minimised. 
 
Neural networks have been applied to software metric modelling in a number of studies  
including Hakkarainen et al. (1993), Karunanithi et al. (1992), Khoshgoftaar and Lanning (1995), 
Kumar et al. (1994), Sheppard and Simpson (1990), Srinivasan and Fisher (1995), and  Wittig 
and Finnie (1994).  The results have, in general, been favourable to this particular technique.  
However a caution on the use of neural networks is made here since their use requires a 
background in the subject just as much as regression requires some knowledge about statistics.  
One of the shortcomings of some of these and other attempts has been the attitude that neural 
networks are automatically successful “universal approximators” that can take any data and 
produce meaningful output.  As always, garbage going into a process will always return the same. 
 
A fairly obvious disadvantage of using neural networks is their “black box” nature, where the 
inputs and outputs are visible, but the process of moving from one to the other is hidden.  An 
interesting way to avoid this problem is through the use of hybrid fuzzy neural networks as 
mentioned earlier in the paper.  These provide the advantages to neural networks of model-free 
estimation, non-linear mappings, and good generalisation capability.  They also provide the 
semantic meaningfulness of fuzzy logic.  Fuzzy-style rules can be inserted into such a structure, 
and after training on data, the adapted rules can be extracted. 
 
4.3 Other Techniques 
 
Several other techniques are available to model builders, including case-based reasoning and 
regression trees.  These two techniques have already been applied successfully to software metric 
modelling, with case-based reasoning used by Mukhopadhyay et al. (1992) and regression tress 
by Selby and Porter (1988). 
 
In general terms, case-based reasoning operates along the lines of storing a database of previous 
projects.  When a new project is to be estimated, the closest matches based on pre-specified 
characteristics are retrieved from this database and combined in such a way as to represent their  
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respective similarities to the project at hand.  This process is similar to expert reasoning by 
analogy. 
 
Regression trees are also based on using previous projects to find a good match.  They use a tree 
structure to classify project types into regression equations, with the most influential variables 
used first.  They can also be used as classification trees as in Porter and Selby (1990) where the 
final nodes are not regression equations but single descriptors. 
 
 
5  Empirical Comparison 
 
The comparison that follows is based on the analysis of a set of more than eighty project 
observations collected over a period of four years (Desharnais 1989).  The data set included 
measures of project effort, project duration, levels of experience with equipment and in project 
management, numbers of basic transactions and data entities, and the raw and adjusted function 
point counts.  Although the data is quite real, it is used here mainly to illustrate the capabilities 
and drawbacks associated with the various analysis methods available.  The first analysis 
scenario is based on the use of an historically derived function point productivity value; this is 
followed by linear regression analysis under the LS and LMS approaches; finally analysis based 
on a neural network model is presented.   
 
Each scenario has used the same randomly selected set of fifty-four observations for model 
construction, leaving a validation set of twenty-seven observations.  As mentioned earlier, it is 
only through such a hold-out data set that a realistic calculation of a model’s likely performance 
on new real-world data can be made.   
 
5.1  Scenario 1 - FPA Productivity Rate 
 
The model-building set enabled the determination of an average productivity rate of 0.074 
function points per person-hour of effort.  When used with the validation set, a mean magnitude 
relative error of 0.70 was obtained, along with pred values of pred(0.10) = 0.04 and pred(0.25) = 
0.22 respectively.  Given that this may be considered as the ‘traditional’ approach to function 
point data analysis, this is perhaps as much as many analysts would achieve.  When considered in 
the light of the expected performance values described earlier, this would seem to be quite 
unsatisfactory. 
 
An immediate and substantial improvement can be obtained (at least in terms of estimation 
accuracy) if the median productivity rate, rather than the average rate, is used.  To reiterate, the 
median value is a more robust indicator of central tendency, so whilst it may perform less 
effectively on some data points it is generally more useful for the main body of observations.  
The median rate of productivity for the fifty-four observations was found to be 0.056 function 
points per person-hour of effort.  The associated performance on the validation set was as 
follows:  MMRE = 0.89, pred(0.10) = 0.19, pred(0.25) = 0.41. 
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5.2  Scenario 2 - LS Regression Analysis 
 
Stepwise linear regression analysis of the model-building set produced the following predictive 
equation based on the number of adjusted function points (AFP): 
 
 effort = -461.7 + 19.82*AFP 
 
When used with the validation observations, the model adequacy indicators took the following 
values:  MMRE = 0.86, pred(0.10) = 0.15, pred(0.25) = 0.41. 
 
5.3  Scenario 3 - LS Regression Analysis with Outlier Removal 
 
Given the availability of a relatively large data set, outlier determination using boxplot depictions 
of the relevant variables was undertaken.  Five outlier observations were identified in the model-
building set using this process.  In general, outlier observations should be examined to determine 
whether they occurred as a result of inaccurate measurement, measurement equipment failure or 
other similar reasons.  In this case, however, we were more concerned with developing an 
optimally generalisable model for future prediction.  As the five projects were clearly much 
larger than the other forty-nine (three were extreme outliers), the five observations were removed 
from the model-building set.  The equation produced from the remaining forty-nine observations 
was: 
 
 effort = 625.9 + 14.48*AFP 
 
When applied to the full validation set, model adequacy indicators generally improved, to:  
MMRE = 0.88, pred(0.10) = 0.30, pred(0.25) = 0.56. 
 
5.4  Scenario 4 - LMS Regression Analysis 
 
With the removal of the ‘gross’ outliers before further analysis, the LMS analysis approach when 
used on the sample data set considered here performed less effectively than the LS method - 
MMRE = 0.85, pred(0.10) = 0.07, pred(0.25) = 0.41.  If, however, overly influential observations 
remained in the data (and particularly if the data set had been smaller) the LMS analysis could 
have been expected to produce a more robust estimation. 
 
5.5  Scenario 5 - Neural Network Analysis 
 
For this analysis method the data was broken into three (rather than two) separate sets.  The 
validation set was the same twenty-seven observations used for validating the statistical models.  
The remaining fifty-four data points were randomly separated into a training set of thirty-five, 
and a testing set of nineteen.  These two sets were used to ensure that the network was trained in 
a nearly-optimal manner. 
 
The actual behaviour of the final network is shown in Figure 4.  It can be seen that the network’s 
testing set error increased after 100 epochs had been reached.  Since this pattern continued for  
 



11 

three consecutive sets of 20 epochs, it is reasonable to expect that it represented the minimal  
error under these circumstances. 
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Figure 4:  Final network behaviour 
 
 
Since neural networks operate well with difficult to find non-linear relationships many of the 
variables available were used.  These were the number of entities, number of transactions, raw 
FPs, FP adjustment factor, adjusted FPs, project management experience in years, tool experience 
in years, and three dummy variables to represent the development environment. 
 
Several different architectures were tried with the best performance on the training data selected.  
This network was then used to predict values for the validation data set.  The performance of this 
network for all data sets is shown in Table 1. 
 

 Training Data Testing Data Validation Data 
Pearson Correlation 0.8896 0.7745 0.7379 
MMRE 0.2968 0.4586 0.43508 
pred(0.10) 6/35 1/19 7/27 
pred(0.25) 18/35 7/19 17/27 
pred(0.50) 31/35 15/19 20/27 

 
Table 1:  Network performance using error indicators 

 
 
 
 

RM
SE
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5.6  Comparison of Analysis Methods 
 
The performance of each analysis approach using the previously defined adequacy indicators is 
summarised in Table 2. 
 

Method MMRE pred(0.10) pred(0.25) 
FP estimation (average) 0.70 0.04 0.22 
FP estimation (median) 0.89 0.19 0.41 
LS regression 0.86 0.15 0.41 
LS regression (no outliers) 0.88 0.30 0.56 
LMS regression 0.85 0.07 0.41 
Neural network 0.44 0.26 0.63 

 
Table 2:  Comparative analysis method performance 

 
Of the statistical approaches employed, the best performed is the LS regression after outlier 
removal, predicting 30% of the validation set observations within 10% of their actual values - 
significantly better than the other statistical methods tested.  Overall, however, the best model 
seems to be that expressed by the neural network, with nearly half the MMRE of the other 
techniques and equivalent or superior pred performance. 
 
It is important to note here that these error measures represent the model’s performance on new, 
never before seen, data.  The errors for the training data, and for the neural network testing data, 
would be much lower.  The errors shown here provide realistic estimates of how the models 
would perform if used in real-world project management, rather than as an academic after-the-
fact analysis. 
 
The performance indicators are not in themselves overly encouraging - one would hope for much 
more accurate predictions in order to effectively manage the development process.  The objective 
of this study, however, was to compare a selection of analysis methods using the same data set, 
so as to emphasise the potential of the various analysis options and their capacity to provide 
effective general models for estimation.  
 
 
6  Summary and Further Work 
 
This paper has illustrated the advantages that may be gained when a variety of data analysis 
methods are considered and the most appropriate method chosen for the development of 
predictive models.  Traditional approaches to FPA estimation may be augmented by such 
methods so that the most use can be made of the collected data.  When combined with site-based 
model calibration, there is significant potential for more effective estimation. 
 
In terms of further investigation, our work is continuing in the use of fuzzy logic models, neuro-
fuzzy hybrids, case-based reasoning and regression trees as other data analysis approaches.  
Preliminary results suggest that in particular the neuro-fuzzy hybrids and regression trees may be  
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used to real effect to produce robust, generalisable and intuitively appealing estimation models.  
Within the statistical realm, the consideration of residual analysis as a further test of model 
adequacy is also being investigated. 
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