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Abstract

The paper is a study on a new class of spatial-temporal evolving

fuzzy neural network systems (EFuNNs) for on-line adaptive learning,

and their applications for adaptive phoneme recognition. The systems

evolve through incremental, hybrid (supervised / unsupervised) learning.

They accommodate new input data, including new features, new classes,

etc. through local element tuning. Both feature-based similarities and

temporal dependencies, that are present in the input data, are learned

and stored in the connections, and adjusted over time. This is an im-

portant requirement for the task of adaptive, speaker independent spoken

language recognition, where new pronunciations and new accents need to

be learned in an on-line, adaptive mode. Experiments with EFuNNs, and
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also with multi-layer perceptrons, and fuzzy neural networks (FuNNs),

conducted on the whole set of New Zealand English phonemes, show the

superiority and the potential of EFuNNs when used for the task. Spatial

allocation of nodes and their aggregation in EFuNNs allow for similarity

preserving and similarity observation within one phoneme data and across

phonemes, while subtle temporal variations within one phoneme data can

be learned and adjusted through temporal feedback connections. The ex-

perimental results support the claim that spatial-temporal organisation

in EFuNNs can lead to a signi�cant improvement in the recognition rate

especially for the diphthong and the vowel phonemes in English, which

in many cases are problematic for a system to learn and adjust in an

adaptive way.

1 Introduction

The complexity and the dynamics of real-world problems, especially in engi-

neering and manufacturing, require sophisticated methods and tools for build-

ing on-line, adaptive intelligent systems (IS). Such systems should be able to

grow as they operate, to update their knowledge and re�ne the model through

interaction with the environment. This is especially crucial when solving AI

problems such as adaptive speech and image recognition, multi-modal informa-

tion processing, adaptive prediction, adaptive on-line control, and intelligent

agents on the WWW. Seven major requirements of the present IS as de�ned in

[23, 25] are listed below:

1. IS should learn fast from a large amount of data (using fast training, e.g.

one-pass training).

2. IS should be able to adapt incrementally in both real time, and in an

o�-line mode, where new data is accommodated as it becomes available.

3. IS should have an open structure where new features (relevant to the

task) can be introduced at a later stage of the system's operation. IS

should dynamically create new modules, new inputs and outputs, new
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connections and nodes. This should occur either in a supervised, or in

an unsupervised mode, using one modality or another, accommodating

data, heuristic rules, text, images, etc. The system should tolerate and

accommodate imprecise and uncertain facts or knowledge and re�ne its

own knowledge.

4. IS should be memory-based, i.e. they should keep a reasonable track of

information that has been used in the past and be able to retrieve some

of it for the purpose of inner re�nement, external visualisation, or for

answering queries.

5. IS should improve continuously (possibly in a life-long mode) through

active interaction with other IS and with the environment they operate

in.

6. IS should be able to analyse themselves in terms of behaviour, global

error and success; to extract rules that explain what has been learned by

the system; to make decisions about its own improvement; to manifest

introspection.

7. IS should adequately represent space and time in their di�erent scales;

should have parameters to represent such concepts as spatial distance,

short-term and long-term memory, age, forgetting, etc.

Several investigations [46, 10, 48]showed that the most popular neural net-

work models and algorithms are not suitable for adaptive, on-line learning. This

includes multilayer perceptrons trained with the backpropagation algorithm, ra-

dial basis function networks, self-organising maps SOMs [34, 35] and those NN

models which were not designed for on-line learning in the �rst instance. At

the same time some of the seven issues above have been acknowledged and ad-

dressed in the development of several NN models for adaptive learning and for

structure and knowledge manipulation as discussed below.

Adaptive learning is aimed at solving the well-known stability / plasticity

dilemma [4, 3, 5]. Several methods for adaptive learning are related to the work
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presented here, namely incremental learning [12, 11, 40], lifelong learning [24],

and on-line learning [9, 48, 47, 15]. Incremental learning is the ability of a NN

to learn new data without destroying (or at least fully destroying) the learned

patterns from old data, and without a need to be trained on the entirety of

the old and new data. On-line learning is concerned with learning data as the

system operates (usually in real time) and where the data might exist only for

a short time.

Some of the on-line learning methods deal with a �xed structure of the

NN [1, 14], other exploit dynamically changing structure of NN through ei-

ther a structural growth (constructivism) [8, 6, 12], or a structural pruning

(selectivism) [45, 13, 16, 21, 36, 37, 42, 53], or both growing and shrinking

[2, 24, 49, 39].

The paper further develops and explores spatial-temporal adaptation in

evolving fuzzy neural networks (EFuNNs) for the task of on-line adaptive speech

recognition. This task is explained and illustrated in section 2. The major prin-

ciples of spatial temporal EFuNNs are presented in section 3. EFuNNs are used

in section 4 for adaptive learning and classi�cation of all the phonemes in New

Zealand English. They are compared with other connectionist models. Sec-

tion 5 introduces a framework for phoneme-based adaptive speech recognition

systems. Section 6 suggests directions for further development.

2 Why should the seven major issues be ad-

dressed when building adaptive speech recog-

nition systems?

Indeed, why are the above seven issues important for making a further progress

is the area of adaptive speech recognition and language acquisition?

Building adaptive speech recognition systems is an important task in the

area of spoken language processing [7, 28, 50]. Adaptive speech recognition is

concerned with the development of speech recognition systems that:
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1. can adapt to new speakers, new pronunciations and new accents;

2. can enlarge their vocabulary of words in an on-line mode;

3. can acquire new languages.

It is well known that there is much variation in the pronunciation of phones

of the same phonemes, even when spoken by the same individual. At the same

time there are similarities in the pronunciation of phones of di�erent phonemes

pronounced by di�erent speakers. This makes the recognition of phonemes

a very di�cult task. Some of the variability within and similarity between

examples of speech data that make the process of adaptive speech recognition

di�cult are illustrated in the next �gures.

In this paper we use data collected from twenty one speakers (eleven fe-

males and ten males) of NZ English each pronouncing three times 135 words.

The pronounced words, and the forty three English phonemes extracted from

them, form the Otago Speech Corpus which is part of a Repository for Intel-

ligent Connectionist-based Information Systems (http://divcom.otago.ac.nz/-

infoscience/kel/CBIIS.html). First, we give an illustration of the variability

problem within a phone data. Then we illustrate the variability problem of

di�erent pronunciation of same speakers and di�erent speakers on the same

phoneme. We then illustrate the similarity between di�erent phoneme data.

In the paper, data from one male and one female speaker (speakers 17 and 21

from the data base), their �rst pronunciation, is denoted as set A, their second

pronunciation as set B, while data from a second male and female speakers is

denoted as set C.

Figure 1 shows thirty two vectors, each of them consisting of three time-lags

of twenty six mel-scale coe�cients of the phoneme /e/ data taken from one

pronunciation of the word "get" by speaker 17. The speech data is processed

as follows: after 512-point FFT is applied, each time frame of 11.6 msec is

transferred into twenty six mel-scale elements with a 50% of overlap between

consecutive frames. It can be seen that while there is similarity in the mel-scale

vector patterns, there are no two vectors that are the same which may cause
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problems when trying to classify this phoneme data based on these 78-element

vector classi�cation.

In Figure 2 ten consecutive frames each of them of twenty six element mel

vectors, taken from the phoneme /e/ data are plotted as lines. This shows a cer-

tain pattern similarity across the consecutive time frames, but also a signi�cant

di�erence in the values of the main mel-scale coe�cients.

To further stress the fact that the mel-scale coe�cients may vary signif-

icantly within the same phones, Figure 3 shows this variation on the same

phoneme /e/data, where ten consecutive values of the main mel-coe�cient 2

are taken through their membership degrees to a fuzzy membership function

denoting "high" value (when just three triangular membership functions denot-

ing "low", "medium" and "high" are used on the domain values for the second

mel-coe�cient).

While there are variations within same phoneme data, there is a signi�cant

similarity across the phonemes pronounced by the same speaker that makes

their recognition di�cult. Figure 4 illustrates the "spatial" ambiguity of the

monothong and and the diphthong data taken from the set A.

Successful adaptive speech recognition sets the same requirements to the IS

as discussed in section 2. In the experiments presented in this paper di�erent

connectionist models and systems are experimented with in the same way, i.e.:

A system is trained on the set A data and tested on the set A (for a training

error), and on sets B and C (for a generalisation error). The system is further

trained on set B and tested on set A (forgetting rate), on set B (adaptation

error), and on set C (generalisation error). The system is further trained on set

C (adaptation error), and recalled on set B and A (forgetting rate). Through this

small experiment on three data sets A,B and C we demonstrate how adaptation

to new pronunciations and new speakers can be achieved through a spatial-

temporal organisation in a new connectionist model called EFuNN, and how it

compares on the same task with EFuNNs without spatial-temporal organisation

and with other NN models.

We can see from the experimental results that the spatial-temporal EFuNNs,
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in which the seven major issues have been addressed, are superior to the rest of

the connectionist models which address only some of the issues. That gives a

clear indication on the future directions for the development of the connectionist

models for adaptive speech recognition. The next section gives a brief introduc-

tion to the main principles of EFuNNs, while section 4 presents experimental

results of using di�erent models for adaptive phoneme recognition on sets A,B

and C of phoneme data. Section 5 presents a general framework for building

adaptive spatial-temporal EFuNN-based phoneme recognition systems.

3 Spatial-Temporal Evolving Fuzzy Neural Net-

works EFuNNs

3.1 General principles of EFuNNs

Fuzzy neural networks are connectionist structures that implement fuzzy rules

and fuzzy inference [54, 38, 17, 20, 19, 22, 27]. FuNNs represent a class of them

[27]. EFuNNs are FuNNs that evolve according to the principles of evolving

connectionist systems ECOS [23]. EFuNNs were introduced in [25] where pre-

liminary results were given. Here EFuNNs are further developed in terms of

their spatial-temporal rule node allocation and adaptation.

EFuNNs have a �ve-layer structure, similar to the structure of FuNNs (see

Figure 5). But here nodes and connections are created / connected as data

comes starting with no nodes in the beginning. An optional short-term memory

layer can be used through a feedback connection from the rule (also called,

case) node layer. The layer of feedback connections could be used if temporal

relationships between input data are to be memorised structurally.

The input layer represents input variables. The second layer of nodes (fuzzy

input neurons, or fuzzy inputs) represents fuzzy quantization of each input vari-

able space. For example, two fuzzy input neurons can be used to represent

"small" and "large" fuzzy values. Di�erent membership functions (MF) can be

attached to these neurons (triangular, Gaussian, etc.). The number and the
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type of MF can be dynamically modi�ed in an EFuNN which is explained in

[26, 30, 32]. New neurons can evolve in this layer if, for a given input vector,

the corresponding variable value does not belong to any of the existing MF to a

degree greater than a membership threshold. A new fuzzy input neuron, or an

input neuron, can be created during the adaptation phase of an EFuNN. The

task of the fuzzy input nodes is to transfer the input values into membership

degrees to which they belong to the MF.

The third layer contains rule (case) nodes that evolve through supervised /

unsupervised learning. The rule nodes represent prototypes (exemplars, clus-

ters) of input-output data associations, graphically represented as an association

of hyper-spheres from the fuzzy input and fuzzy output spaces. Each rule node

r is de�ned by two vectors of connection weights - W1(r) and W2(r), the lat-

ter being adjusted through supervised learning based on the output error, and

the former being adjusted through unsupervised learning based on similarity

measure within a local area of the problem space. The fourth layer of neurons

represents fuzzy quantization of the output variables, similar to the input fuzzy

neurons representation. The �fth layer represents the real values of the output

variables.

The evolving process can be based on two assumptions:

1. no rule nodes exist prior to learning and all of them are created (generated)

during the evolving process; or

2. all the rule nodes exist from the very beginning but they are not connected

to the input and output nodes and become connected through the learning

(evolving) process.

The latter case is more biologically plausible [44, 18]. The EFuNN evolving

algorithm [26] not di�erentiate between these two cases.

Each rule node rj represents an association between a hyper-sphere from

the fuzzy input space and a hyper-sphere from the fuzzy output space, the

W1(rj) connection weights representing the co-ordinates of the centre of the

sphere in the fuzzy input space, and the W2(rj) - the co-ordinates in the fuzzy
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output space. The radius of an input hyper-sphere of a rule node is de�ned

as (1 � Sthr), where Sthr is the sensitivity threshold parameter de�ning the

minimum activation of a rule node (e.g., r1) to an input vector (e.g., (Xd2; Y d2))

in order for the new input vector to be associated to this rule node. Two pairs

of fuzzy input-output data vectors d1 = (Xd1; Y d1) and d2 = (Xd2; Y d2) will

be allocated to the �rst rule node r1 if they fall into the r1 input sphere and

in the r1 output sphere, i.e. the local normalised fuzzy di�erence between Xd1

and Xd2 is smaller than the radius r and the local normalised fuzzy di�erence

between Y d1 and Y d2 is smaller than an error threshold Errthr. The local

normalised fuzzy di�erence between two fuzzy membership vectors d1f and d2f

that represent the membership degrees to which two real values d1 and d2 data

belong to the pre-de�ned MF are calculated as follows:

D(d1f; d2f) =

P
j d1f � d2f jP
j d1f + d2f j

(1)

For example, if d1f = (0; 0; 1; 0; 0; 0) and d2f = (0; 1; 0; 0; 0; 0), thenD(d1; d2) =

1+1
2 = 1 which is the maximum value for the local normalised fuzzy di�erence.

If data example d1 = (Xd1; Y d1), where Xd1 and Y d1 are correspondingly

the input and the output fuzzy membership degree vectors, is associated with

a rule node r1 with a centre r11 , then a new data point d2 = (Xd2; Y d2), which

falls in the r1 input and output hyper-sphere, will be associated with this rule

node too. Through the process of associating (learning) of new data points to a

rule node, the centres of this node hyper-spheres adjust in the fuzzy input space

depending on a learning rate lr1 and in the fuzzy output space depending on

the learning rate lr2. The adjustment of the centre r
1
1 to its new position r21 can

be represented mathematically by the change in the connection weights of the

rule node r1 from W1(r
1
1) and W2(r

1
1) to W1(r

2
1) and W2(r

2
1) as it is presented

as follows:

W2(r
2
1) =W2(r

1
1) + lr2 � Err(Y d1; Y d2) � A1(r

1
1),

W1(r
2
1) =W1(r

1
1) + lr1 �Ds(Xd1; Xd2),
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where: Err(Y d1; Y d2) = Ds(Y d1; Y d2) = Y d1 �Y d2 is the signed value rather

than the absolute value di�erence vector; A1(r
1
1) is the activation of the rule

node r11 for the input vector Xd2.

While the connection weights fromW1 andW2 capture spatial characteristics

of the learned data (centres of hyper-spheres), the temporal layer of connection

weights W3 from Figure 6 captures temporal dependencies between consecutive

data examples. If the winning rule node at the moment (t � 1) (to which the

input data vector at the moment (t� 1) was associated) was r1 = inda1(t� 1),

and the winning node at the moment t is r2 = inda1(t), then a link between

the two nodes is established as follows:

W3(r1; r2)
(t) =W3(r1; r2)

(t�1) + lr3 � A1(r1)
(t�1)A1(r2),

where: A1(r)(t) denotes the activation of a rule node r at a time moment (t) lr3

de�nes the degree to which the EFuNN associates links between rules (clusters,

prototypes) that include consecutive data examples (if lr3 = 0, no temporal

associations are learned in an EFuNN).

The learned temporal associations can be used to support the activation

of rule nodes based on temporal, pattern similarity. Here, temporal depen-

dencies are learned through establishing structural links. These dependencies

can be further investigated and enhanced through synaptic analysis (at the

synaptic memory level) rather than through neuronal activation analysis (at

the behavioural level). The ratio spatial-similarity / temporal-correlation can

be balanced for di�erent applications through two parameters Ss and Tc such

that the activation of a rule node r for a new data example dnew is de�ned as

the following vector operations:

A1(r) = f(Ss �D(r; dnew) + Tc �W3(r
(t�1); r))

where: f is the activation function of the rule node r, D(r; dnew) is the nor-
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malised fuzzy distance value and r(t�1) is the winning neuron at the previous

time moment. Figure 7 shows a schematic diagram of the process of evolving of

four rule nodes and setting the temporal links between the consecutively evolved

nodes based on consecutive frames of phoneme /e/ data.

3.2 Spatial location of rule nodes in the rule node space

There are di�erent ways to locate rule nodes in an EFuNN rule node space as

it is explained here. The type selected depends on the type of the problem the

EFuNN is designed to solve. Here �ve major strategies are explained as experi-

mented with in section 4.

(a) Linear clustering. With this strategy, new nodes are appended to the end

of the rule layer, with no heed paid to the spatial position of the example the

new node is to represent (see Figure 8). This strategy is useful when there are

no spatial relationships in the data, when the training examples for a particular

class are to be presented sequentially, or when rule node aggregation is not going

to be applied to the trained network.

(b) Maximum Weight clustering: In this strategy, the new node is inserted adja-

cent to the existing node that most supports the activation of the desired action

node (see Figure 9). This is simply determined by �nding which rule node has

the highest valued weight leading to the desired action node. This strategy is

useful for classi�cation tasks, where one action node must be activated above

the others. The strategy preserves the spatial characteristics of the data, by

inserting new nodes next to those that represent the same class as the new ex-

ample. It is also useful when aggregation is going to be applied to the network,

as clusters of spatially close nodes will be formed, and when training examples

for a class are not presented sequentially.

(c) Maximum Node clustering: With this strategy, the node is inserted next

to the most highly activated existing node. This strategy is based upon the

assumption that the most highly activated rule node will be the one that is the

closest spatially to the current example. While this may yet prove to be useful

for such tasks as time series prediction, it is no longer used for classi�cation,

11



as experiments have shown that it is not as e�ective as the Maximum Weight

strategy.

(d) Spatial-temporal allocation strategy: as in (b) but temporal feedback con-

nections are set as well (see Figure 10). New connections are set that link

consecutively activated rule nodes through using the short term memory and

the links established through theW3 weight matrix; that will allow for the evolv-

ing system to repeat a sequence of data points starting from a certain point and

not necessarily from the beginning.

(e) Spatial-temporal links are set within, and across, evolved modules: The same

as above, but in addition, new connections are established between rule nodes

from di�erent EFuNN modules that become activated simultaneously (at the

same time moment) (Figure 11). This would make it possible for an EFuNN-

based system to learn a correlation between conceptually di�erent variables, e.g.

correlation between speech sound and lip movement.

3.3 Learning modes in EFuNN. Rule node aggregation

Di�erent learning, adaptation and optimisation strategies and algorithms can be

applied on an EFuNN structure for the purpose of its evolving. These include:

� Active learning , e.g. the EFuNN algorithm;

� Passive learning (i.e., cascade-eco, and sleep-eco learning) as explained in

[23].

� Rule insertion into EFuNNs

� Rule extraction

� Rule node pruning

� Rule node aggregation.

Here the rule node aggregation strategy is explained as it is the main structural

optimisation strategy exploited in section 4 on the adaptive phoneme recogni-

tion task. Each rule node, which represents a prototype, rule, exemplar from
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the problem space, can be described by its connection weightsW1(r) andW2(r)

that de�ne the association of the two corresponding hyper-spheres from the

fuzzy input and the fuzzy output problem spaces. The association is expressed

as a fuzzy rule, for example:

IF x1 is Small 0.85 and x1 is Medium 0.15

and x2 is Small 0.7 and x2 is Medium 0.3

THEN y is Small 0.2 and y is Large 0.8

The numbers attached to the fuzzy labels denote the degree to which the centres

of the input and the output hyper-spheres belong to the respective MF.

3.3.1 Rule Node Aggregation

The process of aggregation of several rule nodes into a larger hyper-sphere is

shown in Figure 12 on an example of three rule nodes r1, r2 and r3 (only the

input space is shown there). Although several aggregation strategies are in use,

each is based upon measuring the spatial distances between the incoming and

outgoing weight vectors of the rule two nodes n and m. The distances D1 (dis-

tance between incoming weights) and D2 (distance between outgoing weights)

are calculated by:

D1n;m =

CX

i

j W1i;n �W1i;m j

CX

i

(W1i;n +W1i;m)

(2)

and

D2n;m =

AX

i

j W2i;n �W2i;m j

AX

i

(W2i;n +W1i;m)

(3)
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where C is the number of condition nodes in the network, and A is the number

of action nodes.

3.3.2 Aggregation Strategies

Pair Wise Aggregation The most conservative of the strategies investi-

gated, pair wise aggregation will at most halve the number of rule nodes in

an EFuNN. It will, for each pair of nodes in a network, examine the distances

between them, and aggregate them into one if both D1 and D2 are below the

set thresholds. If either distance is above the threshold, then both nodes will

be preserved unchanged.

GroupWise Aggregation In this strategy, distances between adjacent nodes

are measured. While both D1 and D2 are below the thresholds, the nodes are

added to the aggregation set An. When a distance is found that exceeds the

threshold (i.e. either D1 or D2 are greater than the threshold) all nodes in An

are aggregated into one node, and the process begun again, starting at the last

node not added to An.

3.4 The Aggregation Process

The centre of the new node ragg created from the aggregation set An is calcu-

lated as:

W1(ragg) = (W1(An))

W2(ragg) = (W2(An))

Here the geometrical centre between two points in a fuzzy problem space

is calculated with the use of an average vector operation over the two fuzzy

vectors. This is based on a presumed piece-wise linear function between two

points within their input and output hyper-spheres of a chosen radius (Figure

12).
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Through node creation and consecutive aggregation an EFuNN systems can

adjust over time to changes in the data stream. Rule nodes which represent

phoneme data clusters, would shift in the phoneme data space with new speakers

of di�erent accents talking to the system over time and the system adapting to

them. With the learning and pruning operations as part of the EFuNN learning

algorithm, and with some additional adaptation techniques, an EFuNN can

dynamically organise its structure to learn from data in an adaptive, continuous,

incremental, life-long learning mode.

4 Spatial-temporal adaptation in EFuNNs for

adaptive phoneme recognition

4.1 EFuNNs for adaptive phoneme recognition

In this section data collected from two groups of one male and one female speaker

from the Otago Speech Corpus (see section 1) is used. The �rst pronunciation of

the �rst two speakers (17 and 21) is denoted as set A, their second pronunciation

- as set B, while data from the second group of one male and one female speakers,

is denoted as set C. There were 10175 examples in set A, 4955 examples in set B

and 7058 rows in set C. The data values were linearly normalised to lie between

0 and 1. Several experiments were carried out as explained below.

4.1.1 Experiment One

Initially forty three EFuNNs, one for each phoneme in the data set, were evolved

over a single pass through data set A. The initial EFuNNs each had seventy

eight inputs, with each input having three membership functions (representing

low, medium and high activation of that input) attached for a total of 234

condition nodes. Each network had a single output with two action nodes

(representing positive or negative classi�cation of an example) attached. No

temporal connections were present. The following training parameters were

used: linear rule node allocation strategy; linear activation functions; SThr =
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0:5; lr1 = lr2 = 0:75; lr3 = 0; no pruning; Errthr = 0:01. The classi�cation rate

was evaluated on data set A (to evaluate the training error), on data set B (to

evaluate the generalisation of the EFuNNs over a new articulation by the same

speakers ), and on data set C (to evaluate the generalisation over new speakers).

Then all EFuNNs were further trained for one pass on set B to adapt them to

the new articulation data. After the additional training the EFuNNs were tested

again on sets A, B and C. The classi�cation rate signi�cantly improved on the

sets A, B and C. This experiment shows that EFuNNs can successfully adapt

to new pronunciations without forgetting previous ones (on the contrary - the

recognition rates over previous examples improves). The EFuNNs were then

further adapted to set C and tested again on sets A,B and C. The number

of rule nodes after each training session are shown in Table 1. The positive

classi�cation accuracies for the vowels /I/ /e/ /&/ and /i/ are shown in Table

2. The mean positive classi�cation accuracies across the a�ricate, approximant,

monothong and diphthong phoneme classes are displayed in Table 3. In both

cases the results show a successful adaptation of the initially trained EFuNNs

on new articulation data and a new set of speakers.

4.1.2 Experiment Two

EFuNNs with temporal connections were evolved over the set A and tested with

the set B elements for the phonemes /p/ /f/ /ch/ /m/ /l/ /I/ and /el/. These

phonemes are representative of each of the seven classes of phonemes that exist

in New Zealand English. There were 1675 examples present in set A and 815

examples in set B. The training parameters were similiar to those in experiment

one, with the exception of lr3 being set to 0.01. The positive classi�cation

accuracies across set A and B after training are displayed in table 4. The

number of rule nodes evolved for each phoneme are displayed in table 5. Here

the initial positive accuracies over both set A and set B are higher than for

EFuNN lacking the temporal connections. These results are to be expected

after seeing the temporal variations in phonemes in Figure 1.
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4.1.3 Experiment Three

As with experiment one, forty three EFuNNs were trained and recalled with each

of the three data sets. However, after training each network had the groupwise

aggregation algorithm from section 3.3.1 applied. The resulting reduced net-

works were also recalled with each data set. These aggregated networks were

then used as the starting points for further training. The data sets and training

parameters were the same as in experiment one. The incoming and outgoing

weight distance aggregation thresholds were both set to 0.6

The positive classi�cation accuracies for the vowels /I/ /e/ /&/ and /i/ are

shown in Table 7. The table displays for each recall data set the accuracy across

that set for both the trained and aggregated networks. The number of rule nodes

present in each of these networks before and after aggregation are displayed in

Table 6. Table 8 displays the mean pre- and post-aggregation accuracies for the

a�ricate, approximant, monothong and diphthong phoneme classes.

Figure 13 shows the winning rule nodes (Y-axis) for the /e/ network after

training with set A and recall with the /I/ /e/ and /&/ elements of set B.

While de�nite spatial clustering is visible, the scattering about the main clusters

indicates the potential confusion between the three phonemes.

4.2 Experiment Four

The setup for this experiment was the same as for experiment three, with the

exception that the Maximum Weight rule node clustering algorithm was used

during training. The positive classi�cation accuracies for the same four vowels

as before are displayed in Table 10, with the number of rule nodes before and

after aggregation shown in Table 9. Mean pre- and post-aggregation accuracies

for the four phoneme classes are in Table 11.

Comparison with the results of experiment three shows that maximum weight

rule clustering not only reduces the size of aggregated networks (each network

is consistently reduced to only two nodes) but also increases the positive classi-

�cation accuracy.

Figure 14 shows the winning rule nodes (Y-axis) for the /e/ network after
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training with set A and recall with the /I/ /e/ and /&/ elements of set B.

The degree of seperation between the nodes representing the target phoneme

/e/ and it's adjacent (from the data set) phonemes is much greater than with

linear node allocation, and may account for the superior performance over set

B of this network as compared with experiment three.

4.3 Comparison of EFuNNs with Other Connectionist Mod-

els

So that the performance of EFuNN could be compared with more traditional

models, several experiments were carried out with data sets A and B. The models

investigated were three and four neuron layer MLPs, four neuron layer FuNNs

(FuNNs that lack fuzzy outputs), conventional FuNNs, and FuNNs structurally

optimised by genetic algorithms. As with the EFuNNs, each manually designed

network had seventy eight inputs and one output. The MLPs and FuNNs each

had ten neurons in each hidden layer. Bootstrapped backpropagation training

was used. Each network was trained for 1000 epochs, with the training set

consisting of positive and negative data in a three to one ratio. The training

set was rebuilt with fresh examples every ten epochs, and the learning rate and

momentum were both set to 0.5.

The algorithm by which FuNNs are structurally optimised by GA is detailed in

[31] and [52]. For these experiments, a population size of �fty individuals was

used, with a mutation rate of 0.001 and a total run of �fty generations. At the

end of each run, the most �t network was extracted and trained with the same

parameters as above.

Although these experiments were run across all forty three phonemes, only the

positive classi�cation accuracy across data set B for the phonemes /I/ /e/ /&/ and

/i/ are displayed here in Table 12.

The mean positive classi�cation accuracy across the a�ricate, approximant,

monothong and diphthong phoneme classes are presented in Table 13.
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5 A general framework of an adaptive phoneme-

based speech recognition system

The experiments explained in the previous section and the characteristics of the

spatial-temporal EFuNNs makes it possible to build adaptive phoneme-based

speech recognition systems that adapt to every new accent and new speaker

if they fail to recognize them. Many EFuNNs evolve all the time in a life-

long learning, on-line, adaptive mode to learn to classify phonemes and other

elementary phones. They grow and shrink in an self-organized way re
ecting

the data structures and patterns in the speech data presented. A block diagram

of a system is given in Figure (15). This framework is currently being used for

the development of multilingual adaptive speech recognition systems that utilise

some principles from [28].

6 Conclusions and directions for further devel-

opment

The paper presents a theoretical and experimental results that proof the power

of the evolving connectionist systems paradigm for wide spread applications in

adaptive systems and especially adaptive speech and language systems.

Further development in this area includes building EFuNN-based system for

evolving spoken languages and building multi-modal spoken language process-

ing systems [41, 29]. The cortical areas of the human brain that are respon-

sible for the speech and the language abilities of humans evolve through the

whole development of an individual [33, 51, 43]. Computer modeling of this

process, before its biological, physiological and psychological aspects are made

completely known, is an extremely di�cult task. It requires 
exible techniques

for adaptive learning trough an active interaction with a teaching environment.

Spatial-temporal EFuNNs with an aggregation procedure could be a good choice

in this respect.
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Table 1: Number of rule nodes after each training pass for experiment one

Training Set Phoneme

/I/ /e/ /&/ /i/

A 3733 3777 3755 3785

B 5688 5791 5757 5778

C 7786 7925 7880 7973

Table 2: Positive recall accuracies for experiment one

Training Set Phoneme Recall Set

/I/ /e/ /&/ /i/

78 83 89 79 A

A 58 69 78 52 B

22 19 63 23 C

81 82 86 77 A

B 64 77 91 73 B

17 25 58 27 C

80 83 85 75 A

C 64 77 90 76 B

97 94 93 95 C
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Table 3: mean phoneme class positive classi�cation accuracies for experiment

one

Training Set Phoneme Class Recall Set

A�ricates Approximant Monothong Dipthong

87 74 82 75 A

A 66 43 64 57 B

16 9 29 6 C

83 70 81 74 A

B 99 57 75 66 B

19 15 29 7 C

83 67 80 73 A

C 97 57 75 66 B

77 91 93 93 C

Table 4: Positive recall accuracies for experiment two

Training Set Phoneme Recall Set

/p/ /f/ /ch/ /m/ /l/ /I/ /el/

A 100 100 98 99 99 80 96 A

96 100 99 86 98 74 97 B

Table 5: Number of rule nodes after training with temporal connections enabled

Training Set Phoneme

/p/ /f/ /ch/ /m/ /l/ /I/ /el/

A 1445 1695 1696 1579 1610 1640 1944
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Table 6: Number of rule nodes before and after aggregation for experiment three

Training Set Phoneme

/I/ /e/ /&/ /i/

A 3711 3761 3734 3761 trained

2 2 2 2 aggregated

B 1851 1871 1874 1888 trained

4 4 4 4 aggregated

C 2212 2228 2219 2242 trained

6 6 6 6 aggregated

Table 7: Positive recall accuracies for experiment three

Training Set Phoneme Recall Set

/I/ /e/ /&/ /i/

84 90 93 81 A

53 71 60 77

A 58 69 78 50 B

59 65 51 66

23 19 63 23 C

77 47 79 75

60 64 76 51 A

55 77 69 60

B 92 81 91 89 B

61 73 57 55

15 17 52 36 C

73 54 93 56

38 65 56 34 A

58 91 68 94

C 39 65 43 36 B

59 89 57 89

97 94 96 95 C

84 90 91 98
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Table 8: mean phoneme class positive classi�cation accuracies for experiment

three

Training Set Phoneme Class Recall Set

A�ricates Approximant Monothong Diphthong

79 78 86 80 A

95 67 70 57

A 58 45 64 56 B

97 67 65 55

13 10 29 6 C

45 55 75 27

46 48 62 57 A

62 75 73 72

B 92 87 89 93 B

64 76 69 70

19 18 30 9 C

25 76 77 36

20 23 48 18 A

62 70 76 70

C 28 29 45 19 B

65 70 73 69

78 84 93 93 C

71 83 86 63
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Table 9: Number of rule nodes before and after aggregation for experiment four

Training Set Phoneme

/I/ /e/ /&/ /i/

A 3718 3766 3739 3767 trained

2 2 2 2 aggregated

B 1851 1874 1871 1890 trained

2 2 2 2 aggregated

C 2212 2218 2216 2254 trained

2 2 2 2 aggregated

Table 10: Positive recall accuracies for experiment four

Training Set Phoneme Recall Set

/I/ /e/ /&/ /i/

79 84 91 78 A

57 75 64 96

A 58 69 78 52 B

65 68 54 93

23 19 63 23 C

83 51 87 99

60 65 73 51 A

57 74 70 97

B 73 76 80 75 B

64 68 58 94

15 17 51 36 C

83 49 94 99

37 57 52 34 A

29 100 62 78

C 39 58 44 35 B

34 100 54 76

97 93 97 95 C

83 100 87 90

30



Table 11: mean phoneme class positive classi�cation accuracies for experiment

four

Training Set Phoneme Class Recall Set

A�ricates Approximant Monothong Diphthong

72 70 82 73 A

99 84 76 66

A 58 44 65 56 B

100 85 71 64

13 10 29 6 C

63 71 81 31

46 49 63 59 A

97 85 77 77

B 49 64 76 65 B

100 85 74 77

19 16 28 9 C

54 72 82 38

21 20 44 13 A

97 76 62 32

C 28 25 42 15 B

100 74 59 31

78 86 93 93 C

94 81 84 72

Table 12: mean positive classi�caiton accuracy for the comparison networks

/I/ /e/ /&/ /i/

Three layer MLP 82 92 91 87

Four layer MLP 76 89 91 82

Four layer FuNN 69 89 80 59

FuNN 64 85 57 15

GA-FuNN 72 89 82 62
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Table 13: mean phoneme class classi�cation accuracies for the comparison net-

works

Phoneme Class

A�ricates Approximant Monothong Diphthong

Three Layer MLP 92 74 84 77

Four Layer MLP 89 71 84 77

Four Layer FuNN 28 18 73 46

FuNN 70 20 61 22

GA-FuNN 86 58 74 48
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Figure 1: 32 mel-scale vectors each of them of 76 mel-coe�cients taken from an

individual pronunciation of the phoneme /e/

Figure 2: 10 consecutive frames of the phoneme /e/
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Figure 3: 10 consecutive values of mel-coe�cient 2 taken from the phoneme /e/
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Figure 4: Averaged phoneme vectors of monothongs and diphthongs pronounced

by one male and one female speaker and plotted in a two dimensional formant

space
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Figure 5: General structure of an EFuNN network
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Figure 6: General structure of an EFuNN network showing temporal feedback

connections

Figure 7: The evolving process of four rule nodes from phoneme /e/ data
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Figure 8: Linear rule node clustering

Figure 9: Spatial rule node clustering

Figure 10: Spatial-temporal rule node clustering
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Figure 11: Inter-module rule node clustering

Figure 12: Rule node aggregation
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Figure 13: Winning nodes for phonemes /I/, /e/ and /&/ for experiment three
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Figure 14: Winning nodes for phonemes /I/, /e/ and /&/ for experiment four

Figure 15: Adaptive phoneme based speech recognition system
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