

DUNEDIN NEW ZEALAND

Modifications to Smith’s Method for Deriving
Normalised Relations from a Functional

Dependency Diagram

Nigel Stanger

The Information Science
Discussion Paper Series

Number 99/23

December 1999
ISSN 1177-455X

University of Otago

Department of Information Science

The Department of Information Science is one of six departments that make up the Division of Com-
merce at the University of Otago. The department offers courses of study leading to a major in
Information Science within the BCom, BA and BSc degrees. In addition to undergraduate teaching, the
department is also strongly involved in postgraduate research programmes leading to MCom, MA,
MSc and PhD degrees. Research projects in spatial information processing, connectionist-based infor-
mation systems, software engineering and software development, information engineering and
database, software metrics, distributed information systems, multimedia information systems and in-
formation systems security are particularly well supported.

The views expressed in this paper are not necessarily those of the department as a whole. The accuracy
of the information presented in this paper is the sole responsibility of the authors.

Copyright

Copyright remains with the authors. Permission to copy for research or teaching purposes is granted on
the condition that the authors and the Series are given due acknowledgment. Reproduction in any form
for purposes other than research or teaching is forbidden unless prior written permission has been ob-
tained from the authors.

Correspondence

This paper represents work to date and may not necessarily form the basis for the authors’ final conclu-
sions relating to this topic. It is likely, however, that the paper will appear in some form in a journal or
in conference proceedings in the near future. The authors would be pleased to receive correspondence
in connection with any of the issues raised in this paper, or for subsequent publication details. Please
write directly to the authors at the address provided below. (Details of final journal/conference publica-
tion venues for these papers are also provided on the Department’s publications web pages:
http://www.otago.ac.nz/informationscience/pubs/publications.html). Any other correspondence con-
cerning the Series should be sent to the DPS Coordinator.

Department of Information Science
University of Otago
P O Box 56
Dunedin
NEW ZEALAND

Fax: +64 3 479 8311
email: dps@infoscience.otago.ac.nz
www: http://www.otago.ac.nz/informationscience/

Modifications to Smith’s method for deriving
normalised relations from a functional

dependency diagram

Nigel Stanger�

December 1999

Abstract

Smith’s method (Smith, 1985) is a formal technique for deriving a set of nor-
malised relations from a functional dependency diagram (FDD). Smith’s original
rules for deriving these relations are incomplete, as they do not fully address the
issue of determining the foreign key links between relations. In addition, one of the
rules for deriving foreign keys can produce incorrect results, while the other rule is
difficult to automate. In this paper are described solutions these issues.

1 Introduction

A functional dependency diagram (FDD) is a means of graphically modelling the depen-
dencies within a collection of attributes (Date, 1995, pp. 294–295). Smith’s method (Smith,
1985) is a formal technique for deriving a set of normalised relations from an FDD. As
part of this process, Smith defines two rules for deriving foreign keys (referred to by
the author as the target bubble rule and the domain flag rule respectively). There are three
major issues with these rules:

1. the target bubble rule does not always produce all possible foreign keys, even in
relatively simple FDDs;

2. the target bubble rule can in certain situations produce ‘foreign keys’ that violate
the relational definition of a foreign key; and

3. the domain flag rule is difficult to automate, because information that is important
to the correct derivation of foreign keys cannot be expressed using Smith’s original
FDD notation.

In this paper are described new rules for deriving foreign keys from an FDD. In addi-
tion, the author proposes some minor modifications to Smith’s original FDD notation to
facilitate the process of deriving foreign keys.

�Address correspondence to: N. Stanger, Department of Information Science, University of Otago,
P.O. Box 56, Dunedin, New Zealand. Fax: +64-3-479-8311. Email: nstanger@infoscience.otago.ac.nz

1

Smith’s original method is summarised in Section 2. The issues with deriving foreign
keys are then described in more detail in Section 3. In Section 4, modifications to Smith’s
FDD notation and two new foreign key derivation rules are proposed to address these
issues. An example of the new rules in use is presented in Section 5, and the paper
is concluded in Section 6. It is assumed that readers are familiar with the concepts
and terminology of relational dependency theory (Armstrong, 1974; Beeri, Fagin and
Howard, 1977; Date, 1995).

2 Overview of Smith’s method

As previously stated, a functional dependency diagram (FDD) is a graphical represen-
tation of the functional dependencies within a collection of attributes. Smith derives
FDDs from a set of plain English dependency-list statements, such that shown in Figure 1.

Anticipated design engineering work is organized into JOB NO engineering job
numbers. Each JOB NO has one TYPE JOB (i.e., ‘1’ = Basic Release, ‘2’ = Sustain-
ing, . . .), one RESP ENGR responsible engineer (entered as an employee number),
and one DUE DATE planned due date.

Figure 1: Example of a dependency-list statement (Smith, 1985, Figure 1)

2.1 Smith’s FDD notation

In Smith’s FDD notation, attributes (Smith refers to these as ‘fields’) are placed within
bubbles. Multiple attributes may be placed within the same bubble to simplify the dia-
gram (see Figure 2).

NAME

(a)

NAME

ADDRESS

PHONE

(b)

NAME+ADDRESS+PHONE

(c)

Figure 2: (a) A bubble that contains a single attribute; (b), (c) bubbles that contain mul-
tiple attributes

A functional or single-valued dependency A ! B is represented by a single-headed
arrow between the corresponding bubbles. The bubble at the start of the arrow is called
a prime-key bubble, as shown in Figure 3(a). The bubble at the end of the arrow is called
a target bubble.

A multivalued dependency C � D is represented by a double-headed arrow be-
tween the corresponding bubbles. If the bubble at the end of the arrow is a prime key
bubble, then the bubble at the start of the arrow is called an uplink-key bubble, otherwise
it is a prime-key bubble. If the bubble at the end of the arrow is not a prime key or an
uplink key, then it is known as an end-key bubble, as shown in Figure 3(b).

2

CUST NO

prime key

NAME

target

(a)

CUST NO ORDER NO

CUST NO ORDER NO

prime key end key

uplink key prime key

(b)

Figure 3: (a) Single- and (b) multivalued dependencies

Attributes may be placed within more than one bubble. ‘Multibubbles’ are often
used to show the linkage of a chain of uplink-key, prime-key and end-key bubbles, as
shown in Figure 4(a). Each bubble is independent of the others.

Domain flags are used to tag attributes which belong to the same domain. For ex-
ample, EMP NO and DEPT MGR both belong to the domain ‘employee number’, as
shown in Figure 4(b).

EMP NO

(a)

EMP NO DEPT NO DEPT NAME + DEPT MGR

11

1 Employee number

(b)

Figure 4: (a) Multiple bubbles and (b) domain flags

2.2 Smith’s method for deriving a set of relations from an FDD

2.2.1 Single-valued dependencies composed into relations

All target bubbles of a prime-key bubble, plus all associated uplink-key bubbles (if any)
become the attributes of a single relation. The primary key of this relation comprises
the concatenation of all attributes within the prime-key bubble plus all attributes within
associated uplink-key bubbles. An example is shown in Figure 5 on the following page.

Attributes within a target bubble become foreign keys of the derived relation if they
also function as a key bubble of any sort (referred to by the author as the target bub-

3

A B C

D
E

F

G

H + I

J

K

L

M

single-valued

dependence

single-valued

dependence

uplink key

uplink key

prime key

target

target

3

TABLE T1

B D G H
:

I
: :

J
:

PK FK FK

Figure 5: Deriving a relation from a single-valued dependency (Smith, 1985, p. 830)

ble rule), or are tagged with a domain flag (the domain flag rule). These rules shall be
revisited in Section 3.

2.2.2 End-key dependencies composed into relations

All attributes of an end-key bubble, its prime-key bubble and all associated uplink-key
bubbles become the primary key of a single relation. An example is shown in Figure 6.

2.2.3 Isolated bubbles composed into relations

An isolated bubble is one that has no arrows pointing either to or from it. All attributes
within an isolated bubble become the primary key of a single relation.

2.2.4 Practicable diagrams

Smith defines a practicable dependency diagram as one that does not produce a relation
with a primary key comprising three or more attributes. To correct an impracticable
FDD, the diagram is modified by adding surrogate keys (Date, 1995, pp. 368–369) to break
the offending relation(s) into two or more sub-relations (see Figure 7).

2.2.5 Additional guidelines

Smith also stated several additional guidelines for designing FDDs that generally pro-
duce a ‘better’ design (Smith, 1985, pp. 831–832). These guidelines do not have any
impact on the foreign key issues and are therefore not described here.

4

A B C

D
E

F

G

H + I

J

K

L

M

end-key

dependence

uplink key

uplink key

end key

3

TABLE T4

B D F

PK

Figure 6: Deriving a relation from an end-key dependency (Smith, 1985, p. 831)

M
N

O

P + Q

R

S

T10

M N O P Q R S

(a) Not practicable

M
N

O

S1
P + Q

R

S

T11

M N O
:::

S1

T12

S1 P Q R S

surrogate
key

(b) Practicable

Figure 7: Correcting an impracticable FDD (Smith, 1985, p. 832)

5

3 Issues with deriving foreign keys

3.1 Non-derivable foreign keys

There are some valid foreign keys that cannot be derived using the target bubble rule.
Consider Smith’s first example, shown in Figure 8; it is clear that CLASS + SECTION
in relation R222 is a foreign key to CLASS + SECTION in relation R212. This cannot be
derived using the target bubble rule, however, because the bubble containing CLASS
and SECTION is not a target bubble. Similarly, STUDENT in R11a is a foreign key to
STUDENT in R121, but cannot be derived from the diagram using the target bubble rule
because neither of the two STUDENT bubbles are target bubbles.

ROOM

DAY

MAJOR + YEAR

STUDENT

SUROG KEY

EXAM SCORE

RANK + SALARY

INSTRUCTOR

TEXT

CLASS

SECTION

R221

CLASS TEXT

R212

CLASS SECTION
::::::::

INSTRUCTOR

R211

INSTRUCTOR RANK SALARY

R11a

CLASS SECTION STUDENT
::::::::

SUROG KEY

R121

STUDENT MAJOR YEAR

R11b

SUROG KEY EXAM SCORE

R222

CLASS SECTION DAY ROOM

Figure 8: Foreign keys that cannot be derived using the existing rules (Smith, 1985,
Figure 3)

3.2 Invalid foreign keys

The target bubble rule can sometimes produce invalid foreign keys. The target bubble
rule states that attributes within a target bubble become foreign keys of the resultant
relation if they also function as a key bubble. Applying this rule to Smith’s second ex-
ample (Smith, 1985, Figures 4–7) results in several attributes being identified as foreign
keys when they are not, such as those highlighted in Figure 9 on the next page.

A foreign key is a set of attributes that act as a link between associated relations.
A foreign key links to a candidate key of some relation in the database; typically this
candidate key is also the primary key of the relation being linked to (Date, 1995, p. 117).
Referential integrity states that the value of a foreign key must be identical to a key value
in the linked relation, or it must be null (Date, 1995; Elmasri and Navathe, 1994). In
Figure 9 the highlighted ‘foreign keys’ do not reference candidate keys; rather they are
referencing only part of the primary key of the referenced relation.

6

PROJ

PROJ NO PROJ TITLE

BUDG

PROJ NO YEAR
::::

PI NO LABOR BUDG MATL BUDG OTHER BUDG

AI

PROJ NO YEAR AI NO

EMP

EMP NO EMP NAME
::::::

DEPT NO

2 DEPT

DEPT NO DEPT NAME COST HR

CONFG

PROJ NO AC CONFG CONFG DESC

FGEOM

PROJ NO AC CONFG FUS CONFG FCONF DESC FUS DIAM FUS LENGTH BOATAIL DIAM FUS WET FUS XSECT FUS UPSWP PLAN SIDE

1 FUS XTRAN FUS INTF FUS FORM
CASE

PROJ NO AC CONFG CASE NO
::::::

SUROG 1
:::::

LIFT ED
::::::

MACH ED DATE RUN
::::::

EXE EMP ALT RWING AREA RWING MAC

2

LIFT

LIFT ED LIFT COEF

MACHT

MACH ED MACH

FLOC

SUROG 1 FUS LOC
::::::::

FUS CONFG FLOC DESC

1
LIFMACH

LIFT COEF MACH
::::::

SUROG 2

FDRAG

SUROG 1 FUS CONFG SUROG 2 FORM FCTR BDREV DRAG BASE DRAG UPSWP DRAG MIN DRAG INTF DRAG CMPNT DRAG COMPR DRAG

Figure 9: Derivation of invalid foreign keys (Smith, 1985, Figure 7)

This issue arises because the term ‘prime-key bubble’ can be applied to bubbles at
the start of both single- and multivalued dependencies. Applying the target bubble
rule to a target bubble that is also the prime-key bubble of a multivalued dependency
produces the type of ‘foreign keys’ shown in Figure 9. The only effective way to address
this issue is to alter Smith’s bubble terminology (see Section 4).

3.3 Automation of the domain flag rule

Smith’s method was an interesting candidate for the author’s research into automated
translations among different data modelling representations (Stanger and Pascoe, 1997a;
Stanger, 1999). However, the domain flag rule is difficult to automate in its current form.
The domain flag rule states that attributes within a target bubble become foreign keys
of that relation if they are tagged with a domain flag. When translating a collection of
domain flags into relational form, it is required to know which of the tagged attributes
is the ‘target’ attribute for the purposes of generating the correct foreign key references
(that is, the attribute that the foreign keys will reference). Smith’s FDD notation cannot
identify the ‘target’ attribute of a domain flag, so automation of this rule is problematic.

Smith gave no explanation of how to properly treat domain flags, yet in his exam-
ples, domain flags are translated correctly. This is possibly because Smith expected the
process to be carried out manually and used the dependency-list statements to resolve
ambiguities. This is, however, not particularly amenable to automation.

4 Proposed modifications

Smith’s target bubble rule needs to be replaced. To facilitate this change, the author has
modified Smith’s original terminology for bubble types. Smith uses the term prime key to
denote the start bubble of a single-valued dependency, and sometimes the start bubble

7

of a multivalued dependency. The term ‘prime’ implies that the prime key attributes
are sole determinants of the target attributes. Thus it seems rather counter-intuitive
that a prime-key bubble can be part of an uplink key chain, as it is no longer the sole
determinant. The following bubble terminology is therefore proposed:

Single-key bubble: the start bubble of a single-valued dependency.

Target bubble: the end bubble of a single-valued dependency.

Multi-key bubble: the start bubble of a multivalued dependency.

End-key bubble: the end bubble of a multivalued dependency.

Isolated bubble: a bubble with no attached dependencies (identical to Smith’s defini-
tion).

Bubbles may only be of one type. Smith did not enforce this restriction, for example,
target bubbles could also be prime-key bubbles, although he did state that the multiple
bubbles could be used to clarify such situations. Since the new terminology requires
every bubble to be of a single type, multiple bubbles become essential.

Having made these changes, it is now possible to replace Smith’s target bubble rule
with the following:

Key bubble rule: Let B be a bubble of any type, and RB be the derived relation to
which this bubble contributes. If the attributes of B form the entire contents of
a single-key bubble S (S 6= B, contributing to a derived relation RS), then the
attributes contained by S become a foreign key of RB that refers to RS .

Smith’s domain flag rule could remain unchanged, but it cannot be fully automated
in its current form. Consequently, the author has introduced the notation shown in
Figure 10 to indicate that the tagged attribute is the ‘target’ attribute for that domain
flag. The domain flag rule can now be redefined as:

New domain flag rule: Let B be a bubble of any type containing an attribute A that
is tagged with a domain flag, and let RB be the derived relation to which this
bubble contributes. The domain flag is ‘targeted’ on another attribute D that is
the sole attribute contained by a single-key bubble S (S 6= B, derived relation RS).
Attribute A becomes a foreign key of RB that refers to attribute D of RS .

1 EMP NO

Figure 10: ‘Target’ attribute domain flag notation

5 Example

It was originally planned to use Smith’s examples to illustrate the new rules in action.
However, upon closer examination, it was discovered that neither of the two examples
are particularly useful. The first example (that of a University database) is not really

8

complete enough illustrate the new rules. By contrast, the second example (a drag pre-
diction database) is far too complex, and has so many complicated dependencies among
attributes that it is arguable whether a relational implementation is the best solution.

Instead, an example devised by the author will be used. Consider a database that
stores assessment marks for a course. An entity-relationship diagram representing this
database is shown in Figure 11.

Staff

Assignment

Student

Mark
Adjustment

Answer

Assessment
Element

Question

Marking
Schedule

comprises comprises

marks

marked using

comprises

comprises

Figure 11: E-R description of the assessment marks viewpoint (normalised)

The final result for the course is determined by the results of a collection of assess-
ment elements (such as practical exercises and examinations), each of which comprises
a collection of questions. Each question may or may not comprise a collection of sub-
questions.

Students individually complete several assessment elements during the course, sub-
mitting each as an assignment that is marked by a single staff member. As with as-
sessment elements, an assignment comprises a collection of answers (corresponding to
questions), which in turn comprise a collection of sub-answers.

The total mark for an assignment is broken down into a collection of marks for each
individual answer. Each answer is marked according to a marking schedule that speci-
fies a set of marking criteria and the marks allocation for each criterion. Marks may be
adjusted at a later date for reasons of illness or technical difficulties.

In Figure 12 on the next page is shown a functional dependency diagram for the
example, based on the following set of dependencies:

� student id ! name, password

� staff id ! name, password

9

CRITERION_NAME

ADJUSTMENT_NO

ASSIGN_ID

DATE_SUBMITTED

DATE_MARKED
RAW_MARK

COMMENTS

MARK + COMMENTS

PARENT_ANSWER

REASON +
AMOUNT

2

ANSWER_ID
MARK +

COMMENTS

NAME +
TOTAL_MARK +

PERCENT + DUE_DATE +
LATE_PENALTY

ELEMENT_ID

2

NUMBER + MARKS +
GUIDELINES

PARENT_QUESTION 1

QUESTION_ID 1

STAFF_ID

STUDENT_ID

NAME +
PASSWORD

NAME +
PASSWORD

Figure 12: Functional dependency description of the assessment marks viewpoint

� element id ! name, total mark, percent, due date, late penalty

� element id� question id

� question id ! number, marks, guidelines, parent question (question id)

� assign id ! date submitted, date marked, raw mark, comments, student id,
staff id, element id

� assign id� answer id

� answer id ! mark, comments, question id, parent answer (answer id)

� assign id, adjustment no ! reason, amount

� answer id, criterion name ! mark, comments

The last two functional dependencies include the embedded multivalued dependencies
(Date, 1995, p. 341) assign id � adjustment no and answer id � criterion name respec-
tively. The relations corresponding to this set of dependencies are in at least fourth
normal form.

Applying Smith’s original foreign key rules to the FDD shown in Figure 12, the fol-
lowing set of relations can be derived (primary keys are underlined):

1. Staff(staff id, name, password)

2. Student(student id, name, password)

10

3. Element(element id, name, total mark, percent, date due, late penalty)

4. Assignment(assign id, element id, student id, staff id, date submitted,
raw mark, comments)
element id is a foreign key to Element (target bubble rule)
student id is a foreign key to Student (target bubble rule)
staff id is a foreign key to Staff (target bubble rule)

5. Adjustment(assign id, adjustment no, reason, amount)
assign id should be a foreign key to Assignment, but this cannot be derived be-
cause none of the bubbles containing assign id are target bubbles.

6. Question(question id, number, marks, guidelines, parent question)
parent question is a foreign key to Question (domain flag rule)

7. Answer(answer id, question id, mark, comments, parent answer)
question id is a foreign key to Question (target bubble rule)
parent answer is a foreign key to Answer (domain flag rule)

8. Criterion(answer id, criterion name, mark, comments)
answer id should be a foreign key to Answer, but this cannot be derived because
none of the bubbles containing answer id are target bubbles.

9. Assign Answer(assign id, answer id)
assign id should be a foreign key to Assignment and answer id should be a for-
eign key to Answer, but these cannot be derived because neither of the bubbles
involved are target bubbles.

10. Element Question(element id, question id)
element id should be a foreign key to Element and question id should be a foreign
key to Question, but these cannot be derived because neither of the bubbles in-
volved are target bubbles.

Using the new rules defined in Section 4, the following set of relations can be de-
rived:

1. Staff(staff id, name, password)

2. Student(student id, name, password)

3. Element(element id, name, total mark, percent, date due, late penalty)

4. Assignment(assign id, element id, student id, staff id, date submitted,
raw mark, comments)
element id is a foreign key to Element (key bubble rule)
student id is a foreign key to Student (key bubble rule)
staff id is a foreign key to Staff (key bubble rule)

5. Adjustment(assign id, adjustment no, reason, amount)
assign id is a foreign key to Assignment (key bubble rule)

6. Question(question id, number, marks, guidelines, parent question)
parent question is a foreign key to Question (new domain flag rule)

11

7. Answer(answer id, question id, mark, comments, parent answer)
question id is a foreign key to Question (key bubble rule)
parent answer is a foreign key to Answer (new domain flag rule)

8. Criterion(answer id, criterion name, mark, comments)
answer id is a foreign key to Answer (key bubble rule)

9. Assign Answer(assign id, answer id)
assign id is a foreign key to Assignment (key bubble rule)
answer id is a foreign key to Answer (key bubble rule)

10. Element Question(element id, question id)
element id is a foreign key to Element (key bubble rule)
question id is a foreign key to Question (key bubble rule)

It can be seen from this example that the key bubble rule has allowed the derivation
of six foreign keys that could not be identified using the original target bubble rule (in
relations Adjustment, Criterion, Assign Answer and Element Question). The new do-
main flag rule has not produced any additional foreign keys, but this is to be expected as
this rule was intended primarily to support the automation of Smith’s method (Stanger
and Pascoe, 1997a; Stanger and Pascoe, 1997b; Stanger and Pascoe, 1997c).

6 Conclusion

Smith’s method is a technique that allows the derivation of normalised relations from a
functional dependency diagram. Smith’s original rules for deriving foreign keys were
difficult to automate, failed to produce some foreign keys and could also produce in-
valid foreign keys under certain conditions. In this paper, new rules that address these
issues were defined to replace Smith’s original rules. These new rules allow the deriva-
tion of all foreign keys, and do not produce invalid foreign keys. To facilitate these
rule changes, some modifications were also made to Smith’s bubble terminology. These
changes have resulted in a robust method for deriving relations from functional depen-
dency diagrams that can be easily automated.

References

Armstrong, W. (1974). Dependency structures of data base relationships, in J. L. Rosen-
feld (ed.), IFIP Congress ’74 (Information Processing ’74), North-Holland, Stockholm,
Sweden, pp. 580–583.

Beeri, C., Fagin, R. and Howard, J. H. (1977). A complete axiomatization for func-
tional and multivalued dependencies in database relations, in D. C. Smith (ed.),
1977 ACM SIGMOD International Conference on Management of Data, ACM, Toronto,
Canada, pp. 47–61.

Date, C. (1995). An Introduction to Database Systems, sixth edn, Addison-Wesley, Reading,
Massachusetts.

Elmasri, R. and Navathe, S. B. (1994). Fundamentals of Database Systems, second edn,
Benjamin/Cummings, Redwood City, California.

12

Smith, H. C. (1985). Database design: Composing fully normalized tables from a rigor-
ous dependency diagram, Communications of the ACM 28(8): 826–838.

Stanger, N. (1999). Using Multiple Representations Within a Viewpoint, PhD thesis, Depart-
ment of Information Science, University of Otago, Dunedin, New Zealand.

Stanger, N. and Pascoe, R. (1997a). Environments for viewpoint representations, in
R. Galliers, S. Carlsson, C. Loebbecke, C. Murphy, H. Hansen and R. O’Callaghan
(eds), Fifth European Conference on Information Systems (ECIS’97), Vol. I, Cork Pub-
lishing, Cork, Ireland, pp. 367–382.

Stanger, N. and Pascoe, R. (1997b). Exploiting the advantages of object-oriented pro-
gramming in the implementation of a database design environment, Information
Science Discussion Paper 97/08, Department of Information Science, University of
Otago, Dunedin, New Zealand.
URL: hhttp://divcom.otago.ac.nz/ infosci/publctns/complete/papers/dp9708ns.zipi

Stanger, N. and Pascoe, R. (1997c). Exploiting the advantages of object-oriented pro-
gramming in the implementation of a database design environment, Joint 1997 Asia
Pacific Software Engineering Conference and International Computer Science Conference
(APSEC’97/ICSC’97), IEEE Press, Hong Kong.
URL: hhttp://divcom.otago.ac.nz/ infosci/darc/publications/APSEC97.pdf i

13

