
DUNEDIN    NEW ZEALAND

A Viewpoint-Based Framework for Discussing the
Use of Multiple Modelling Representations

Nigel Stanger

The Information Science
Discussion Paper Series

Number 2000/09
April 2000

ISSN 1172-6024



University of Otago

Department of Information Science

The Department of Information Science is one of six departments that make up the Division of Com-
merce at the University of Otago. The department offers courses of study leading to a major in
Information Science within the BCom, BA and BSc degrees. In addition to undergraduate teaching, the
department is also strongly involved in postgraduate research programmes leading to MCom, MA,
MSc and PhD degrees. Research projects in spatial information processing, connectionist-based infor-
mation systems, software engineering and software development, information engineering and
database, software metrics, distributed information systems, multimedia information systems and in-
formation systems security are particularly well supported.

The views expressed in this paper are not necessarily those of the department as a whole. The accuracy
of the information presented in this paper is the sole responsibility of the authors.

Copyright

Copyright remains with the authors. Permission to copy for research or teaching purposes is granted on
the condition that the authors and the Series are given due acknowledgment. Reproduction in any form
for purposes other than research or teaching is forbidden unless prior written permission has been ob-
tained from the authors.

Correspondence

This paper represents work to date and may not necessarily form the basis for the authors’ final conclu-
sions relating to this topic. It is likely, however, that the paper will appear in some form in a journal or
in conference proceedings in the near future. The authors would be pleased to receive correspondence
in connection with any of the issues raised in this paper, or for subsequent publication details. Please
write directly to the authors at the address provided below. (Details of final journal/conference publi-
cation venues for these papers are also provided on the Department’s publications web pages:
http://www.otago.ac.nz/informationscience/pubs/publications.html). Any other correspondence con-
cerning the Series should be sent to the DPS Coordinator.

Department of Information Science
University of Otago
P O Box 56
Dunedin
NEW ZEALAND

Fax: +64 3 479 8311
email: dps@infoscience.otago.ac.nz
www: http://www.otago.ac.nz/informationscience/



A Viewpoint-Based Framework for Discussing the
Use of Multiple Modelling Representations

Nigel Stanger

University of Otago, Dunedin, New Zealand
nstanger@infoscience.otago.ac.nz

Abstract
When modelling a real-world phenomenon, it can often be useful to have multi-

ple descriptions of the phenomenon, each expressed using a different modelling ap-
proach or representation. Different representations such as entity-relationship mod-
elling, data flow modelling and use case modelling allow analysts to describe differ-
ent aspects of real-world phenomena, thus providing a more thorough understand-
ing than if a single representation were used. Researchers working with multiple
representations have approached the problem from many different fields, resulting
in a diverse and potentially confusing set of terminologies. In this paper is described
a viewpoint-based framework for discussing the use of multiple modelling repre-
sentations to describe real-world phenomena. This framework provides a consistent
and integrated terminology for researchers working with multiple representations.
An abstract notation is also defined for expressing concepts within the framework.

1 Introduction

In this paper is described a framework for discussing the use of multiple modelling
approaches or representations to describe a real-world phenomenon. This framework
is derived from work on viewpoint-oriented design, and provides a consistent and inte-
grated terminology for researchers working with multiple modelling representations.
An abstract notation for expressing various concepts within the framework is also de-
fined.

Why is it useful to describe the same phenomenon using multiple modelling rep-
resentations? There are several reasons, such the ability to provide a more complete
description of the phenomenon in question, and because some representations are bet-
ter suited to particular problems than others. The use of multiple representations and
associated issues are discussed in Section 2.

The framework described in this paper is primarily derived from earlier work in the
area of viewpoint-oriented design methods. The basic concepts of viewpoint-oriented
design methods are introduced in Section 3, and a lack of clarity is identified with re-
spect to the definitions of some fundamental concepts (in particular, the meaning of the
term ‘representation’).

The author’s framework arose out of the need to clarify the definitions of various
terms and also to integrate and simplify the potentially confusing range of terminolo-
gies developed by other authors. The framework is discussed in Section 4. In particular,

1



the terms ‘representation’, ‘technique’ and ‘scheme’ are clarified, and the new terms
‘description’, ‘construct’ and ‘element’ are defined.

The author has also developed an abstract notation for expressing various frame-
work concepts in a concise manner. This notation is defined in Section 5.

The paper is concluded in Section 6.

2 Using multiple representations to describe a phenome-
non

There are many different types of information to be considered when designing an in-
formation system, and a wide variety of modelling approaches and notations have been
developed to capture these different types of information: entity-relationship diagrams
(ERDs), data flow diagrams (DFDs), use case diagrams, the relational model, formal
methods and so on. Problems can arise when useful information is omitted from a de-
sign. Consider an information system whose data structures are designed using entity-
relationship diagrams and are implemented in a relational database. Data entry forms
derived from these models are built using a rapid application development tool. Good
design practices are followed throughout, yet the finished application is difficult to use.
Some of the commonly used data entry forms have multiple states, but the transitions
between these states are unclear to users because state information was not included in
the system design.

While this is a purely theoretical example, it serves to illustrate an important point.
Information systems are typically built to handle the data processing requirements of
some real-world phenomenon. Such real-world phenomena may often be too complex
to describe using a single modelling approach, or representation. This is supported by
the plethora of different representations that currently exist [26, 42], including those
that model the structure of data (such as entity-relationship modelling), and those that
model how data move around a system (such as data flow diagrams). This implies that
in order to completely model a phenomenon, multiple descriptions of the phenomenon
are required, expressed using different representations.

Using multiple representations to describe a phenomenon is also important in other
ways:

• If multiple developers are working on a project, each may prefer or be required
to use a different representation to describe their particular part of the project [2].
Meyers [30] also notes that it can be very useful to simultaneously view a system
in several different ways when multiple people are working on the system.

• Particular subproblems may be better described using some representations than
others [15].

• Multiple representations are important when integrating heterogeneous data sour-
ces to form a federated or distributed system [2], as each data source may poten-
tially use a different logical data model.

The idea of using multiple representations to model a phenomenon is not new.
Grundy et al. have been examining the issues associated with building multi-view
editing systems and integrated software development environments for many years

2



[20, 21, 23], with emphasis on the issue of maintaining consistency between differ-
ent views or descriptions of the same phenomenon [22, 24]. Grundy’s work was de-
rived from earlier work on multi-view editing systems for software engineering, such
as FIELD [35] and Zeus [5].

Atzeni and Torlone [3] suggested the idea of translating between different represen-
tations as a means of facilitating the use of multiple representations. They proposed a
formal model based on lattice theory [1] that allowed them to express many different
data modelling approaches using primitive constructs of a single underlying represen-
tation.

Su et al. [40, 41] approached the use of multiple representations from the point of
view of integrating heterogeneous data sources in order to build federated and dis-
tributed databases. Their approach is similar in many respects to that taken by Atzeni
and Torlone, except that the underlying representation is object-oriented rather than
mathematically based.

All three groups developed their work independently of each other over a similar
time period (1991–94), and each approached the use of multiple modelling represen-
tations from a different starting point. This has resulted in a diverse and potentially
confusing set of terminologies (see Table 1). A single integrated terminology would
reduce this potential for confusion.

In addition to the three groups outlined above, viewpoint researchers first suggested
using multiple representations to describe viewpoints over a decade ago [17]. A view-
point is effectively a formalisation of the perceptions of stakeholders with respect to
some real-world phenomenon. Since we are dealing with the use of multiple represen-
tations to describe real-world phenomena, viewpoints should provide a useful frame-
work within which to discuss such use [39]. The author’s framework will be described
in Section 4, but first the basic concepts of viewpoint-oriented methods must be defined.

3 Viewpoint concepts

A viewpoint can be thought of as a formalisation of the perceptions of a stakeholder
group with respect to some real-world phenomenon that is being modelled. The first
viewpoint-oriented approach (Mullery’s CORE method) was introduced in 1979 [32],
but the concept of a viewpoint was not formalised until ten years later [17].

Viewpoint-oriented methods were originally developed to assist with requirements
definition in a software engineering environment [32], and subsequent research has fol-
lowed a similar direction [15, 16, 28, 33]. The focus of the author’s research has been
on how to facilitate the use of multiple representations to describe a single viewpoint
[38, 39].

In Fig. 1 are shown the relationships between the concepts of viewpoint-oriented
methods. This initial framework was derived by the author [39] from the work of Finkel-
stein et al. [17], Easterbrook [15] and Darke and Shanks [11]. Their terminologies are
also summarised in Table 1.

3.1 Perspectives and viewpoints

Easterbrook [15] defines a perspective as “a description of an area of knowledge which
has internal consistency and an identifiable focus of attention”. During the require-
ments definition phase of systems analysis, developers may encounter many different

3



Ta
bl

e
1:

C
om

pa
ri

so
n

of
vi

ew
po

in
t/

re
pr

es
en

ta
ti

on
te

rm
in

ol
og

ie
s

C
or

re
sp

on
d

in
g

te
rm

u
se

d
b

y:
Te

rm
u

se
d

Fi
n

k
el

st
ei

n
E

as
te

rb
ro

ok
D

ar
k

e
&

G
ru

n
d

y
A

tz
en

i&
S

u
et

al
.

b
y

th
e

au
th

or
M

ea
n

in
g

E
xa

m
p

le
[1

7]
[1

5]
S

h
an

k
s

[1
1]

et
al

.[
21

]
To

rl
on

e
[3

]
[4

1]

pe
rs

pe
ct

iv
e

A
d

es
cr

ip
ti

on
of

a
re

al
-w

or
ld

ph
en

om
en

on
th

at
ha

s
in

te
r-

na
lc

on
si

st
en

cy
an

d
an

id
en

ti
-

fi
ab

le
fo

cu
s.

–
–

pe
rs

pe
ct

iv
e

pe
rs

pe
ct

iv
e

–
–

–

vi
ew

po
in

t
T

he
fo

rm
at

te
d

d
es

cr
ip

ti
on

of
a

pe
rs

pe
ct

iv
e.

–
V

ie
w

Po
in

t
vi

ew
po

in
t

vi
ew

po
in

t
–

–
–

te
ch

ni
qu

e
A

co
lle

ct
io

n
of

ab
st

ra
ct

co
n-

st
ru

ct
s

th
at

fo
rm

a
m

od
el

lin
g

‘m
et

ho
d

’.

re
la

ti
on

al
m

od
el

                            

st
yl

e

                            

st
yl

e

te
ch

ni
qu

e
–

                            

m
od

el

                            

d
at

a
m

od
el

sc
he

m
e

A
co

lle
ct

io
n

of
co

nc
re

te
co

n-
st

ru
ct

s
th

at
fo

rm
a

m
od

el
lin

g
‘n

ot
at

io
n’

.

SQ
L

/
92

sc
he

m
e

–

re
pr

es
en

ta
ti

on
T

he
co

m
bi

na
ti

on
of

a
pa

rt
ic

u-
la

r
te

ch
ni

qu
e

an
d

sc
he

m
e.

re
la

ti
on

al
m

od
el

+
SQ

L
/

92
re

pr
es

en
ta

ti
on

re
pr

es
en

ta
ti

on

d
es

cr
ip

ti
on

A
n

in
st

an
ti

at
io

n
of

a
re

pr
e-

se
nt

at
io

n.
SQ

L
/

92
sc

he
m

a
sp

ec
ifi

ca
ti

on
d

es
cr

ip
ti

on
–

vi
ew

sc
he

m
e

sc
he

m
a

co
ns

tr
uc

t
T

he
ba

si
c

un
it

of
a

re
pr

es
en

ta
-

ti
on

.
a

re
la

ti
on

–
–

–
–

co
ns

tr
uc

t
cl

as
sa

el
em

en
t

A
n

in
st

an
ti

at
io

n
of

a
co

ns
tr

uc
t

w
it

hi
n

a
pa

rt
ic

ul
ar

d
es

cr
ip

-
ti

on
.

S
ta

ff
ta

bl
e

–
–

–
co

m
po

ne
nt

va
ri

es
b

ob
je

ct

N
ot

es
on

Ta
b

le
1:

a
A

ls
o

‘c
on

st
ru

ct
’.

b
Te

rm
s

us
ed

in
cl

ud
e

‘c
om

po
ne

nt
’,

‘e
le

m
en

t’
an

d
‘c

on
ce

pt
’.

‘–
’i

nd
ic

at
es

th
at

a
te

rm
is

no
tu

se
d

by
th

at
au

th
or

.

4



Rep’n Rep’n

Technique

Scheme

Technique

Scheme

Technique

Scheme

Representation Representation Representation

Information system design environment using multiple modelling representations

Real-world phenomenon

formalised as a

using one or moreViewpoint integration

viewed from several

Perspective Perspective Perspective

Viewpoint Viewpoint Viewpoint

Scheme Scheme

Technique

Figure 1: Relationship between perspectives, viewpoints and representations

perspectives on the problem being modelled. Perspectives may overlap and/or conflict
with each other in various ways.

Finkelstein et al. [17] describe a viewpoint as comprising the following parts:

• “a style, the representation scheme in which the ViewPoint [sic] expresses what
it can see (examples of styles are data flow analysis, entity-relationship-attribute
modelling, Petri nets, equational logic, and so on);

• a domain defines which part of the ‘world’ delineated in the style (given that the
style defines a structured representation) can be seen by the ViewPoint (for exam-
ple, a lift-control system would include domains such as user, lift and controller);

• a specification, the statements expressed in the ViewPoint’s style describing partic-
ular domains;

• a work plan, how and in what circumstances the contents of the specification can
be changed; [and]

• a work record, an account of the current state of the development.”

Easterbrook [15] simplifies this description by defining a viewpoint as “the format-
ted representation of a perspective”, and notes that a perspective is a “more abstract
version of a viewpoint”. In effect, a viewpoint is the formalisation of a particular per-
spective, so there is a one-to-one correspondence between a viewpoint and the perspec-
tive it formalises, as illustrated in Fig. 1.

5



The term ‘viewpoint’ is very similar to the term ‘view’ as used in multi-view editing
systems [5, 20, 27, 30]. These terms refer to different concepts, however: a ‘view’ is more
akin to the concept of a description, which will be introduced in Section 4. The similarity
of the two terms has led to some confusion: the terms ‘viewpoint’ and ‘view’ have been
used interchangeably in the past [27].

Darke and Shanks [11] define two main types of viewpoint:

1. user viewpoints that capture “the perceptions and domain knowledge of a particu-
lar user group, reflecting the particular portion of the application domain relevant
to that group”; and

2. developer viewpoints that capture “the perceptions, domain knowledge and mod-
elling perspective relevant to a systems analyst or other developer responsible for
producing some component of the requirements specification”.

Since a viewpoint is the formalisation of a perspective, some form of model is re-
quired to provide the formalised structure. The concept of a representation provides this.

3.2 Representations

Darke and Shanks [10] note that viewpoints may be described using different repre-
sentation techniques, within each of which there may be available a number of repre-
sentation schemes. Neither Darke and Shanks nor Finkelstein et al. [17] clearly define
the terms ‘representation’, ‘technique’ or ‘scheme’; rather, they introduce each term by
means of examples. This has led to some confusion in the use of this terminology. Darke
and Shanks use the terms ‘representation’ and ‘representation technique’ interchange-
ably, while Finkelstein et al., as can be seen in their definition of a ‘style’, use the term
‘representation scheme’ in a similar way.

The intent appears to be that a representation should be thought of as a structured
modelling approach that can be used to describe the content of a viewpoint. In order
to clarify the confusion in terminology, the author has refined this informal definition
and defined a representation as the combination of a particular technique and scheme
to describe a viewpoint. This will be discussed further in Section 4.

Darke and Shanks [11] group representations into three general categories:

1. informal representations that form unstructured descriptions, often expressed us-
ing natural language or simple diagrams;

2. semi-formal representations that form structured descriptions, such as entity-rela-
tionship modelling or data flow diagrams; and

3. formal representations that form structured descriptions and include a set of oper-
ators for processing these descriptions, such as the relational model or logic-based
models.

Unlike informal representations, which are often ill-defined, inconsistent and am-
biguous, semi-formal and formal representations are well-defined, consistent and gen-
erally unambiguous. A key feature of formal representations that is lacking in semi-
formal representations is the inclusion of operators that allow assertions to be made
about the viewpoints being described; Greenspan et al. [19] describe this as the ability
to ‘reason’ about representations. User viewpoints are typically defined using informal

6



representations, whereas developer viewpoints are typically defined using semi-formal
or formal representations.

Finkelstein et al. [17] first mooted the idea of using multiple representations to de-
scribe a viewpoint in 1989, but there has been surprisingly little work in this area since
then. Darke and Shanks [12] found in a review of twelve different viewpoint develop-
ment approaches that only two supported multiple representations to describe a single
viewpoint: the Soft Systems methodology [7] and Scenario Analysis [25], both of which
are user viewpoint approaches rather than developer viewpoint approaches.

The author’s own research [38, 39] has followed the approach of using multiple rep-
resentations to describe a single developer viewpoint, and uses an integrated terminol-
ogy framework derived from viewpoint-oriented methods. This framework will now
be described.

4 The viewpoint framework for discussing the use of mul-
tiple modelling representations

Looking at Table 1, there is an obvious dichotomy between the three viewpoint termi-
nologies on the left and the three multiple-view terminologies on the right. The view-
point terminologies deal primarily with ‘high level’ concepts and ignore how repre-
sentations are internally structured; conversely, the multiple-view terminologies deal
primarily with constructs within representations and ignore higher-level structure. The
two sets of terminology are clearly related, yet the only real overlap between them is at
the representation level.

There are also many synonyms in the terminologies presented in Table 1, for exam-
ple, the terms ‘style’, ‘representation’, ‘model’ and ‘data model’ are all used to refer
to similar concepts. Conversely, the term ‘scheme’ is used to refer to two completely
different concepts. Such variation can lead to confusion, so there is a definite need to
develop a consistent and integrated terminology framework.

The initial framework shown in Fig. 1 provides a good basis for extension, but the
author has identified some confusion over the exact definitions of the terms ‘represen-
tation’, ‘technique’ and ‘scheme’. The author has addressed this confusion by clearly
defining these terms, and has extended the original framework with the concepts of
descriptions, constructs of representations and elements of descriptions (see Fig. 2).

4.1 Representations

Informally, a data modelling representation can be thought of as comprising two main
parts:

1. a generic part that specifies the generic constructs that may be used to describe a
viewpoint, such as entities, relations, and so on; which then determines

2. a specialised part that specifies the constructs peculiar to the representation, along
with their visual appearance or notation, such as boxes for entities, SQL CREATE
TABLE statements for relations, and so on.

Finkelstein et al.’s [17] use of the term ‘style’ does not clearly distinguish between
these two parts; conversely, the ‘techniques’ and ‘schemes’ of Darke and Shanks [10]

7



Description Description Description

Information system design environment using multiple modelling representations

Real-world phenomenon

formalised as a

viewed from several

Perspective Perspective Perspective

Viewpoint Viewpoint

technique

scheme

Representation Representation Representation

Process

Data store

Data flow
Weak entity

Attribute

Relationship

Attribute

Dependency

Attribute set

emp_no
EMP_NO

A+B
create table
   staff ...

emp_no char(7)

primary key
  (emp_no)

Process modelling

G&S DFD Smith FDD

Functional Dep.

Martin ERD

ERM

SQL QUEL

{
{

Rep’n Rep’n

Table
Attribute

Primary key

Relational

Description

Viewpoint

described by one or more

expressed using expressed usingexpressed usingexpressed using
“s

pe
ci

al
is

ed
”

co
ns

tr
uc

ts
“g

en
er

ic
”

co
ns

tr
uc

ts

el
em

en
ts

        ...
create table result
( result_id       integer,
  element_id      integer not null,
  student_id      char(7) not null,
  staff_id        char(8) not null,
  date_submitted  date,
  date_marked     date,
  raw_mark        smallint,
  comments        char(500),
 
  primary key (result_id),
  foreign key (element_id)
    references element,
  foreign key (student_id)
    references student,
  foreign key (staff_id)
    references staff
);      ...

Viewpoint integration

a

Student

P1

Mark
assignment

D1 Staff

Received
assignments

P2

Return
results

D3 Element

D4 Assignment

D2 Student

assignment

staff IDstudent ID

marking details

results

resultsresults

Student

Assignment Assessment
ElementStaff

marks

CRITERION_NAME

ADJUSTMENT_NO

ASSIGN_ID

DATE_SUBMITTED

DATE_MARKED
RAW_MARK

COMMENTS

MARK + COMMENTS

PARENT_ANSWER

REASON +
AMOUNT

2

ANSWER_ID
MARK +

COMMENTS

NAME +
TOTAL_MARK +

PERCENT + DUE_DATE +
LATE_PENALTY

ELEMENT_ID

2

NUMBER + MARKS  +
GUIDELINES

PARENT_QUESTION 1

QUESTION_ID 1

STAFF_ID

STUDENT_ID

NAME +
PASSWORD

NAME +
PASSWORD

Figure 2: The extended terminology framework

8



match these two parts well. It is therefore proposed to use the term technique to refer to
the generic part of a representation, and the term scheme to refer to the specialised part
of a representation. In practical terms, a technique can be thought of as a modelling ‘ap-
proach’, such as the entity-relationship approach or the relational model, and a scheme
can be thought of as a particular ‘notation’ within that approach, such as a particular
entity-relationship notation or relational calculus. Another way to think of this is that a
scheme is an ‘instantiation’ of a particular technique.

A representation can thus be defined as the combination of a particular technique
with a particular scheme, as illustrated in Fig. 2. In general, a technique may have
one or more associated schemes, but each combination of a technique and a scheme
forms a distinct representation. For example, the relational model is a technique, with
SQL and QUEL as two possible schemes, but the combinations (Relational , SQL)1 and
(Relational ,QUEL) form two distinct representations, as shown in Fig. 3. Similarly, the
entity-relationship approach (E -R) is a technique, with ERDMartin and ERDChen as two
possible schemes. The combinations (E -R,ERDMartin) and (E -R,ERDChen) again form
two distinct representations.

Martin Chen

Entity-relationship

SQL QUEL

Relational

Representation Representation

Figure 3: Multiple schemes within a technique

It is expected that a technique will not attempt to specify all possible concepts for all
possible schemes within that technique. Rather, a technique defines the ‘base’ model,
which is then specialised and extended by schemes to form a representation. This im-
plies that a scheme may provide new constructs to a representation that have no direct
analogue in the technique. For example, the relational technique [9] does not include
general constraints, but they are an important feature of the relational scheme SQL/92
[14]. Similarly, type hierarchies are not part of the base E-R technique [8], but they do
appear in some E-R schemes.

4.2 Descriptions

Representations are an abstract concept, so they must be instantiated in some way in
order to describe the content of a viewpoint. One way to view the instantiation of a rep-
resentation is as a set of ‘statements’ that describe a viewpoint or some subset thereof.
Finkelstein et al. [17] refer to this as a ‘specification’ or ‘description’; Easterbrook [15]
also refers to this concept as a description. The author has adopted the term ‘descrip-
tion’ as it emphasises the idea that they are used to describe a viewpoint.

A viewpoint is thus specified by a set of descriptions, each expressed using some
representation, as shown in Fig. 2. Each description may describe either the whole
viewpoint or some subset of the viewpoint; this is analogous to the concept of a ‘view’
as used in multi-view editing systems [5, 20, 27, 30]. For example, a developer viewpoint
might be specified by union of the following four descriptions:

1In practice, the many dialects of SQL will form many different representations. This has been ignored
here in the interests of clarity.

9



1. an object class description expressed using Unified Modelling Language (UML)
class diagram notation [31];

2. a functional dependency description expressed using Smith functional depen-
dency diagram notation [36, 37];

3. a relational description expressed using SQL/92; and

4. a data flow description expressed using Gane & Sarson data flow diagram nota-
tion [18].

Similarly, a user viewpoint might be specified by the union of a natural language
description and a collection of diagrammatic descriptions. Descriptions may be dis-
tinct from each other, or they may overlap in a manner similar to viewpoints. Such
redundancy can be useful in exposing conflicts both between descriptions and between
viewpoints [15].

4.3 Constructs and elements

Every representation comprises a collection of constructs. These may be divided into
generic constructs associated with the technique (technique-level constructs) and spe-
cialised constructs associated with the scheme (scheme-level constructs), as shown in
Fig. 2. The nature of a construct is defined by its properties, which include both its rela-
tionships with other constructs, and its attributes, such as name, domain or cardinality2.
For instance, as illustrated in Fig. 4, a data store in a data flow diagram might have the
attributes name (the name of the data store), label and fields (a list of data fields in the data
store). The flows relationship specifies an association between the data store construct
and a list of data flow constructs.

purchase_id
purchase_date
purchase_price
customer_no
salesrep_id
registration

D1 Purchase

fields

flowsname

label

Figure 4: Properties of a construct

In the same way that a description is an instantiation of a representation, an element is
an instantiation of a construct; elements are combined to build descriptions. Examples
of constructs include object classes, processes and attributes; elements corresponding to
these constructs could be Order, Generate invoice and address.

2The terms ‘property’, ‘attribute’ and ‘relationship’ come from the Object Data Management Group’s
object model [6].

10



5 A notation to express representations, descriptions, con-
structs and elements

It can be cumbersome to discuss aspects of representations and descriptions using nat-
ural language, for example, ‘the Staff regular entity element of the description D1 (ex-
pressed using Martin entity-relationship notation) of the managers’ viewpoint’. The au-
thor has therefore developed a concise abstract notation for expressing representations,
descriptions, constructs of representations and elements of descriptions. This notation
is modelled in part on the data transfer notation of Pascoe and Penny [34]. Using the
notation, the statement above could be expressed as:

D1(Vmgrs,E -R,ERDMartin) [staff : REGULARENTITY] .

The notation is summarised in Table 2. The author has defined additional notations
for expressing translations of descriptions from one representation to another [38]. For
example, the expression:

D1(V,FuncDep,FDDSmith)→ D2(V,E -R,ERDMartin)

denotes the translation within viewpoint V of a functional dependency description D1

into an entity-relationship description D2. Such additions are beyond the scope of this
paper, however; only the base notation is discussed here.

5.1 Description and representation notation

The notation D(V, T, S) denotes that description D of viewpoint V is expressed using
constructs of technique T and scheme S (this may be abbreviated to D when V , T and
S are clear). Thus, D1(Vp,E -R,ERDMartin) denotes a description D1 of the viewpoint
Vp that is expressed using constructs of the entity-relationship technique (E -R) and the
Martin ERD scheme (ERDMartin) [29].

The notation R(T, S) denotes a representation R that comprises a collection of con-
structs defined by the combination of technique T and scheme S (this may be abbrevi-
ated toRwhen T and S are clear). Thus,Re(E -R,ERDMartin) denotes the representation
Re formed by combining the constructs of the entity-relationship technique (E -R) with
the Martin ERD scheme (ERDMartin). This notation is similar to that used by Finkelstein
et al. to describe viewpoint styles [17], but focuses on the technique and scheme used
rather than individual constructs within a representation.

The combination of technique T and scheme S forms the representationR(T, S), so it
is also possible to denote the descriptionD(V, T, S) byD(V,R(T, S)), or simplyD(V,R).
Thus, the notations D1(Vp,E -R, ERDMartin), D1(Vp,Re(E -R,ERDMartin)) and D1(Vp,Re)
are equivalent. The first form is preferred by the author as it clearly distinguishes be-
tween the technique and scheme.

Representations may differ in both the technique and scheme used, or they may
share the same technique and differ only in the scheme. Thus, two descriptions D1 and
D2 of viewpoint V that are expressed using representations having different schemes
Si and Sj are denoted by D1(V, T, Si) and D2(V, T, Sj) respectively. Similarly, two de-
scriptions D3 and D4 of viewpoint V that are expressed using representations having
different techniques (Tk, Tl) and schemes (Sm, Sn) are denoted by D3(V, Tk, Sm) and
D4(V, Tl, Sn) respectively.

11



Table 2: Summary of the abstract notation
Notation Associated term Definition

V Viewpoint A formatted expression of a perspec-
tive on a real-world phenomenon.

T Technique A collection of generic constructs
that form a modelling ‘method’, for
example, the relational model or ob-
ject modelling.

S Scheme A collection of specialised constructs
that form a modelling ‘notation’, for
example, SQL/92 or UML class dia-
gram notation.

R(T, S) orR Representation Representation R comprises con-
structs defined by the combination of
technique T and scheme S.

D(V, T, S) or D Description Description D of viewpoint V is
expressed using constructs of tech-
nique T & scheme S.

R(T, S) [CON],
R [CON], or CON

Construct of a
representation

CON specifies a construct of repre-
sentationR(T, S).

D(V, T, S) [e : CON],
D [e : CON], or D [e]

Element of a
description

e specifies an element (instantiated
from construct CON) of description
D(V, T, S).

Consider a viewpoint Vq that has three descriptions D1, D2 and D3. D1 is expressed
using the entity-relationship technique and the Martin ERD scheme, and is denoted
by D1(Vq,E -R,ERDMartin). D2 is expressed using the functional dependency technique
and the Smith functional dependency diagram (FDD) scheme, and is denoted by D2(Vq,
FuncDep, FDDSmith). D1 and D2 differ in both the technique and the scheme used. D3 is
expressed using the entity-relationship technique and the Chen scheme, and is denoted
by D3(Vq,E -R,ERDChen). D3 differs from D1 only in the scheme used.

If the viewpoint, technique or scheme are unspecified, they may be omitted from the
notation. Thus, the notation Rr(Relational , ) denotes any relational representation, and
D1(, Object, CDUML) denotes a UML class diagram in an unspecified viewpoint.

5.2 Construct and element notation

Constructs are the fundamental components of a representation, whereas elements are
the fundamental components of a description. Given a representation R(T, S), a con-
struct CON of R is denoted by R(T, S) [CON], or, if T and S are clear, simply R [CON].
OftenRmay also be clear from the context, allowing theR [] notation to also be omitted,
leaving just CON. The name of the construct itself is denoted by SMALL CAPS.

12



The construct CON can be thought of as analogous to the concept of a relational
domain in that it specifies a pool of possible ‘values’ from which an element e may be
drawn. The notation e : CON is used here to denote that e is a member of the set of
all possible elements corresponding to the construct CON. This use of the ‘:’ notation is
similar to both domain calculus [13] and Z [4], where it is interpreted as meaning ‘e is a
member of the set CON’.

Now consider a description D(V, T, S) (alternatively, D(V,R(T, S))). An element e
of D (instantiated from construct R [CON]) is denoted by D(V, T, S) [e : CON], or, if V ,
T and S are clear, simply D [e : CON]. The construct may also be omitted if it is clear
from the context, that is, D [e]. The representation R is omitted from the construct CON

because R is implied by T and S in the description and would therefore be redundant.
Some examples of construct and element expressions are given in Table 3. Both types

of expression may specify a list, as illustrated by the last two examples.

Table 3: Examples of construct and element expressions

Re(E -R,ERDMartin) [ENTITYTYPE]
denotes the generic entity construct of the E-R/Martin representationR e

D1(V,FuncDep,FDDSmith) [s : SINGLEVALUED ]
denotes a single-valued dependency element in the Smith notation
functional dependency description D1

D2(V,Relational ,SQL/92 ) [c1, . . . , cn : COLUMN]
denotes a collection of column elements in the SQL/92 description D2

Rd(DataFlow ,DFDG&S )[DATASTORE,DATAFLOW]
denotes the data store and data flow constructs of the data flow
modelling/Gane & Sarson representationRd

6 Conclusion

In this paper has been described a framework for discussing the use of multiple mod-
elling representations to describe a viewpoint. Earlier work on the use of multiple repre-
sentations has produced a diverse and potentially confusing set of terminologies, none
of which provides a complete set of terms covering all concepts in the area. Viewpoint
concepts provide a useful framework within which to discuss the use of multiple repre-
sentations, but there is a lack of clarity over the definitions of the terms ‘representation’,
‘technique’ and ‘scheme’.

To remedy these issues, the author has clarified the definitions of ‘representation’,
‘technique’ and ‘scheme’, and extended the viewpoint framework with the concepts of
description, construct of a representation and element of a description. Also described
was an abstract notation for writing representation, description, construct and element
expressions.

The framework described in this paper provides a consistent, integrated terminol-
ogy and notation for researchers working on the use of multiple representations to de-
scribe a viewpoint.

13



References
[1] Paolo Atzeni and Riccardo Torlone. Schema translation between heterogeneous data mod-

els in a lattice framework. In Robert Meersman and Leo Mark, editors, Database Applications
Semantics, Sixth IFIP TC-2 Working Conference on Data Semantics (DS-6), pages 345–361, Stone
Mountain, Atlanta, Georgia, USA, May 30–June 2 1995. IFIP, Chapman & Hall, London.

[2] Paolo Atzeni and Riccardo Torlone. Management of multiple models in an extensible
database design tool. In P. Apers, M. Bouzeghoub, and G. Gardarin, editors, Fifth Interna-
tional Conference on Extending Database Technology (EDBT’96), volume 1057 of Lecture Notes
in Computer Science, pages 79–95, Avignon, France, March 25–29 1996. Springer-Verlag.

[3] Paolo Atzeni and Riccardo Torlone. MDM: A multiple-data-model tool for the manage-
ment of heterogeneous database schemes. In Joan M. Peckman, editor, SIGMOD 1997 Inter-
national Conference on the Management of Data, pages 528–531, Tucson, Arizona, May 13–15
1997. ACM, ACM Press.

[4] S. M. Brien and J. E. Nicholls. Z base standard. Technical Monograph PRG-107, Oxford
University Computing Laboratory, Oxford, UK, nov 1992.

[5] Marc H. Brown. Zeus: A system for algorithm animation and multi-view editing. Research
Report 75, Digital Equipment Corporation, Systems Research Center, Palo Alto, California,
28 February 1992.

[6] R.G.G. Cattell, Douglas K. Barry, Mark Berler, Jeff Eastman, David Jordan, Craig Russell,
Olaf Schadow, Torsten Stanienda, and Fernando Velez. The Object Data Standard: ODMG
3.0. Morgan Kaufmann, San Francisco, California, 2000.

[7] P.B. Checkland. Systems Thinking, Systems Practice. John Wiley & Sons, Chichester, England,
1981.

[8] Peter Pin-Shan Chen. The entity-relationship model — Toward a unified view of data.
ACM Transactions on Database Systems, 1(1), 1976.

[9] E.F. Codd. A relational model of data for large shared data banks. Communications of the
ACM, 13(6), 1970.

[10] Peta Darke and Graeme Shanks. Viewpoint developments for requirements definition: An
analysis of concepts, issues and approaches. Working Paper 21/94, Department of Infor-
mation Systems, Monash University, Melbourne, Australia, December 1994.

[11] Peta Darke and Graeme Shanks. Viewpoint development for requirements definition: To-
wards a conceptual framework. In Sixth Australasian Conference on Information Systems
(ACIS’95), pages 277–288, Perth, Australia, September 26–29 1995.

[12] Peta Darke and Graeme Shanks. Stakeholder viewpoints in requirements definition: A
framework for understanding viewpoint development approaches. Requirements Engineer-
ing, 1:88–105, 1996.

[13] C.J. Date. An Introduction to Database Systems. Addison-Wesley, Reading, Massachusetts,
seventh edition, 2000.

[14] C.J. Date and Hugh Darwen. A Guide to the SQL Standard. Addison-Wesley, Reading, Mas-
sachusetts, fourth edition, 1997.

[15] Steve M. Easterbrook. Elicitation of Requirements from Multiple Perspectives. PhD thesis,
Imperial College of Science Technology and Medicine, University of London, London, 1991.

14



[16] Steve M. Easterbrook and Bashar A. Nuseibeh. Using ViewPoints for inconsistency man-
agement. Software Engineering Journal, 11(1):31–43, 1996.

[17] A.C.W. Finkelstein, M. Goedicke, J. Kramer, and C. Niskier. ViewPoint oriented software
development: Methods and viewpoints in requirements engineering. In J.A. Bergstra and
L.M.G. Feijs, editors, Second Meteor Workshop on Methods for Formal Specification, volume 490
of Lecture Notes in Computer Science, pages 29–54, Mierlo, The Netherlands, September 1989.
Springer-Verlag.

[18] C. Gane and T. Sarson. Structured Systems Analysis: Tools and Techniques. Prentice-Hall
Software Series. Prentice-Hall, Englewood Cliffs, New Jersey, 1979.

[19] S. Greenspan, J. Mylopoulos, and A. Borgida. On formal requirements modeling languages:
RML revisited. In Bruno Fadini, editor, Sixteenth International Conference on Software Engi-
neering, pages 135–148, Sorrento, Italy, May 1994. IEEE Computer Society Press.

[20] John C. Grundy. Multiple Textual and Graphical Views for Interactive Software Development En-
vironments. PhD thesis, Department of Computer Science, University of Auckland, Auck-
land, New Zealand, June 1993.

[21] John C. Grundy and John G. Hosking. Constructing integrated software development envi-
ronments with MViews. International Journal of Applied Software Technology, 2(3/4):133–160,
1997.

[22] John C. Grundy, John G. Hosking, and Warwick B. Mugridge. Supporting flexible consis-
tency management via discrete change description propagation. Software — Practice and
Experience, 26(9):1053–1083, September 1996.

[23] John C. Grundy and John R. Venable. Providing integrated support for multiple de-
velopment notations. In Seventh Conference on Advanced Information Systems Engineering
(CAiSE’95), volume 932 of Lecture Notes in Computer Science, pages 255–268, Finland, June
1995. Springer-Verlag.

[24] John G. Hosking, Warwick Mugridge, Robert Amor, and John Grundy. Keeping things
consistent. New Zealand Journal of Computing, 6(1):353–362, August 1995.

[25] P. Hsia, J. Samuel, J. Gao, D. Kung, Y. Toyoshima, and C. Chen. Formal approach to scenario
analysis. IEEE Software, 11(2):33–41, March 1994.

[26] Richard Hull and Roger King. Semantic database modeling: Survey, applications, and
research issues. ACM Computing Surveys, 19(3):201–260, 1987.

[27] D.A. Jacobs and C.D. Marlin. Software process representation to support multiple views.
International Journal of Software Engineering and Knowledge Engineering, 5(4), December 1995.

[28] Gerald Kotonya and Ian Sommerville. Requirements engineering with viewpoints. Software
Engineering Journal, 11(1):5–18, 1996.

[29] James Martin. Information Engineering, Book II: Planning and Analysis. Prentice-Hall, Engle-
wood Cliffs, New Jersey, revised edition, 1990.

[30] S. Meyers. Difficulties in integrating multiview environments. IEEE Software, 8(1):49–57,
January 1991.

[31] Pierre-Alain Muller. Instant UML. Wrox Press, Birmingham, 1997.

15



[32] G. Mullery. CORE — A method for controlled requirements specification. In Fourth Interna-
tional Conference on Software Engineering, pages 126–135, Munich, Germany, September 17–
19 1979. IEEE Computer Society Press.

[33] B. Nuseibeh, J. Kramer, and A.C.W. Finkelstein. A framework for expressing the relation-
ships between multiple views in requirements specification. IEEE Transactions on Software
Engineering, 20(10):760–773, 1994.

[34] Richard T. Pascoe and John P. Penny. Constructing interfaces between (and within) ge-
ographical information systems. International Journal of Geographical Information Systems,
9(3):275–291, 1995.

[35] Steven P. Reiss. Connecting tools using message passing in the Field environment. IEEE
Software, 7(7):57–66, July 1990.

[36] Henry C. Smith. Database design: Composing fully normalized tables from a rigorous
dependency diagram. Communications of the ACM, 28(8):826–838, 1985.

[37] Nigel Stanger. Modifications to Smith’s method for deriving normalised relations from
a functional dependency diagram. Discussion paper 99/23, Department of Information
Science, University of Otago, Dunedin, New Zealand, December 1999.

[38] Nigel Stanger. Using Multiple Representations Within a Viewpoint. PhD thesis, Department of
Information Science, University of Otago, Dunedin, New Zealand, December 1999.

[39] Nigel Stanger and Richard Pascoe. Environments for viewpoint representations. In Robert
Galliers, Sven Carlsson, Claudia Loebbecke, Ciaran Murphy, Hans Hansen, and Ramon
O’Callaghan, editors, Fifth European Conference on Information Systems (ECIS’97), volume I,
pages 367–382, Cork, Ireland, June 19–21 1997. Cork Publishing.

[40] S.Y.W. Su and S.C. Fang. A neutral semantic representation for data model and schema
translation. Technical report TR-93-023, University of Florida, Gainesville, Florida, July
1993.

[41] S.Y.W. Su, S.C. Fang, and H. Lam. An object-oriented rule-based approach to data model
and schema translation. Technical report TR-92-015, University of Florida, Gainesville,
Florida, 1992.

[42] D. Tsichritzis and F. Lochovsky. Data Models. Prentice-Hall, 1982.

16


