
Platforms for Agent-Oriented Software Engineering

Mariusz Nowostawski
Geoff Bush

Martin Purvis
Stephen Cranefield

The Information Science
Discussion Paper Series

Number 2000/13
August 2000

ISSN 1172-6024

University of Otago

Department of Information Science

The Department of Information Science is one of six departments that make up the
School of Business at the University of Otago. The department offers courses of study
leading to a major in Information Science within the BCom, BA and BSc degrees. In
addition to undergraduate teaching, the department is also strongly involved in post-
graduate research programmes leading to MCom, MA, MSc and PhD degrees. Re-
search projects in spatial information processing, connectionist-based information sys-
tems, software engineering and software development, information engineering and
database, software metrics, distributed information systems, multimedia information
systems and information systems security are particularly well supported.

The views expressed in this paper are not necessarily those of the department as a
whole. The accuracy of the information presented in this paper is the sole responsibil-
ity of the authors.

Copyright

Copyright remains with the authors. Permission to copy for research or teaching pur-
poses is granted on the condition that the authors and the Series are given due ac-
knowledgment. Reproduction in any form for purposes other than research or teach-
ing is forbidden unless prior written permission has been obtained from the authors.

Correspondence

This paper represents work to date and may not necessarily form the basis for the au-
thors’ final conclusions relating to this topic. It is likely, however, that the paper will ap-
pear in some form in a journal or in conference proceedings in the near future. The au-
thors would be pleased to receive correspondence in connection with any of the issues
raised in this paper, or for subsequent publication details. Please write directly to the
authors at the address provided below. (Details of final journal/conference publication
venues for these papers are also provided on the Department’s publications web pages:
http://www.otago.ac.nz/informationscience/pubs/publications.htm). Any other cor-
respondence concerning the Series should be sent to the DPS Coordinator.

Department of Information Science
University of Otago
P O Box 56
Dunedin
NEW ZEALAND

Fax: +64 3 479 8311
email: dps@infoscience.otago.ac.nz
www: http://www.otago.ac.nz/informationscience/

http://www.otago.ac.nz/informationscience/pubs/publications.htm
mailto:dps@infoscience.otago.ac.nz
http://www.otago.ac.nz/informationscience/

Platforms for Agent-Oriented Software Engineering

Mariusz Nowostawski Geoff Bush Martin Purvis Stephen Cranefield

Department of Information Science, University of Otago
P.O. Box 56, Dunedin, New Zealand

{mnowostawski, gbush, mpurvis, scranefield}@infoscience.otago.ac.nz

Abstract
 The use of modelling abstractions to map from items in
the real-world to objects in the computational domain is
useful both for the effective implementation of abstract
problem solutions and for the management of software
complexity. This paper discusses the new approach of
agent-oriented software engineering (AOSE), which uses the
notion of an autonomous agent as its fundamental
modelling abstraction. For the AOSE approach to be fully
exploited, software engineers must be able to gain leverage
from an agent software architecture and framework, and
there are several such frameworks now publicly available.
At the present time, however, there is little information
concerning the options that are available and what needs to
be considered when choosing or developing an agent
framework. We consider three different agent software
architectures that are (or will be) publicly available and
evaluate some of the design and architectural differences
and trade-offs that are associated with them and their
impact on agent-oriented software development. Our
discussion examines these frameworks in the context of an
example in the area of distributed information systems.

1. Introduction

Expansions and performance improvements in
hardware, data storage facilities, and telecommunications
has led to ever more ambitious software engineering
projects, which are approaching the point where they are so
complex that they are unmanageable. Just accessing all the
necessary data is made difficult by the fact that the various
information stores are often distributed across various
remote sites, stored on different platforms and in different
formats, and organised according to differing organisational
schemas and semantic models. Traditional software
engineering development techniques based on functional
analysis and data flow, or on object-oriented modelling, are
in many cases not sufficient, in themselves, to capture
needed dynamism and flexibility of some of the current
development tasks that are undertaken. Researchers are now

seeking new methods and approaches that can help software
engineers grapple with some of these problems. One of the
new approaches that has been proposed is agent-oriented
software engineering (AOSE) [16].

The fundamental notion on which agent-oriented
software engineering is based is that of the autonomous
agent [13,20]. To see the advantages of this approach,
consider what has to be done when a complex, real-world
system is modelled. The model will comprise individual
components that are part of a larger structure. For the model
to be effective, we observe that
 a) it is natural to conceptualise the relevant features, i.e. the

behavioural components to be modelled, in terms of
simple and familiar elements; and

 b) the overall model structure and the number of individual
elements must be kept simple enough so that the entire
model can be easily understood, manipulated, and
modified, if necessary.

For complex systems, requirement b means that the
individual elements must represent rather complex
modelling “chunks”. It is appropriate to express these
dynamic “chunks” in terms of complex entities from the
world with which we are already familiar (due to
requirement a), i.e. human agents. Although the
anthropomorphic approach is decried in some elementary
science textbooks as medieval, this is a natural way to begin
building a model.

Agent modelling in software engineering is a relatively
young area, and there are, as yet, no standard methodologies,
development tools, or software architectures. There are,
however, some software frameworks that are beginning to
appear, and in this paper we describe three of them that use
agent-oriented technology and which are interesting
candidates to the software developer because they are (or are
about to be) freely available and come with the source code.
Here we
 – describe the software frameworks and the architectures

that they presume or prescribe, and
 – discuss some of the implications and trade-offs for

software engineering behind the differences between the
respective framework architectures.

The three AOSE frameworks that we will discuss are

1. The ZEUS [5,6,19] system toolkit, an agent-based system
developed at British Telecom Laboratories,

2. JADE [2] (Java Agent DEvelopment framework), an
open-source agent-based software development project at
the Telecom Italia Group Company, and

3. the agent-based infrastructure associated with the New
Zealand Distributed Information Systems (NZDIS)
project [22], which we will call the “NZDIS
architecture”.

2. Agent-oriented software engineering

The notions of intelligent agents and agent-based systems
have emerged from artificial intelligence research [28] and,
although there is still debate over what constitutes the
precise notion of an agent (see [13,20] for discussion), there
is now a movement towards applying these ideas to
mainstream software engineering practice [14]. Those
behind this movement assert that key techniques for
managing complexity, such as decomposition, abstraction,
and organisation [3] can be comfortably accommodated
within the agent-based modelling paradigm. But, in addition
as mentioned in the previous section, the agent-oriented
approach supports the notion of personification, a commonly
used real-world abstraction: it can be straightforward to
personify software components, endowing them with human-
like intentions and abilities. Consequently the promoters of
AOSE argue that “agent-oriented approaches can
significantly enhance our ability to model, design and build
complex (distributed) software systems” [16].

Agent-oriented techniques can be employed during both
the design phase, where agent-based techniques can be used
to model the problem domain and the system design, and
during the implementation phase, where agent-oriented
development tools would be used. The use of the agent-
based approach in both phases is a natural fit, but not
required. Not to use them together, however, would fail to
take advantage of the natural mapping from one phase to the
other and would be like implementing an object-oriented
design using a procedural programming language. Here we
will make reference to agent-oriented design but will
concentrate our discussion on agent-oriented development
frameworks.

At the present stage of AOSE development, there are no
commonly used agent-based programming languages, not to
mention compilers or interpreters. In fact there is a
significant range of opinion concerning what specific
properties that an agent should have and consequently some
difference of opinion concerning what should be the internal
workings of an agent. We do expect an agent to have at
least the following properties though:
• state: agents maintain a state that persists between

occasions when they are accessed from the outside;
• goals: agents have internal goals that they attempt to

meet; the goals are normally stored in a declarative

fashion.
• pro-activity: agents can take the initiative in order to

achieve their goals;
• autonomy: agents operate without direct intervention

from the outside and have control over their actions and
internal state;

Moreover there is considerable support for an internal
organisation of an agent that in some way accommodates the
symbolic representation of the beliefs, desires, intentions
(the BDI model) [10,23] of an agent.

The representation of agent state and goals in declarative
form has advantages with respect to the logical construction
of an agent and its extensibility and modification. It is then
also convenient for inter-agent communication messages to
have a declarative form, as well. As a consequence, efforts
have been make to construct standard protocols (called
“agent communication languages” or ACLs) for agent
message-passing with declarative content, irrespective of the
internal structure of the agent. Normally ACLs specify only
the basic intention of a message (typically by making
reference to one of a small set of standard “speech acts”
[27], which identify an implied expected action associated
with a message) and then include the message content as a
separate element. Two well-known ACLs that follow this
approach are KQML [18] and the Foundation for Intelligent
Physical Agents (FIPA) ACL [12]. The content of an agent
message can be understood by the participants in an agent
conversation if they also share a common ontology [15],
which is a separate, publicly available information model
that has been constructed for the given problem domain and
serves as a common dictionary for the agents.

Because of the general diversity of opinion concerning
the appropriate internal agent structures, the primary
development tool support for AOSE currently takes the form
of general agent-building toolkits (see the list of tools at [1]),
which provide some of the architectural building blocks for
the construction of software agents and support for one of
the basic ACLs.

2.1 An example agent application: distributed
information systems

The agent model can be used in connection with a number
of widely different specific application areas, which can, for
the given cases, entail rather distinctive agent architectures.
Thus for some applications mobile agents or a simulation
environment of numerous reactive agents may be
appropriate. Here, we are interested in “collaborative agent
systems” [20], and we examine some agent frameworks
associated with this type of system in the context of an
application from the area of distributed information systems.

Figure 1. An agent architecture for a distributed information system.

For the application example, we envision an information
system that seeks to provide a degree of integration in
connection with accessing a set of heterogeneous, distributed
information sources. The information sources may be either
data sets, stored according to their specific formats and
semantics, or computational modules. An example of the
architecture of such a system is shown in Figure 1.

The architecture shown in Figure 1 has five basic
components:
• one or more user agents which provide an integrated

interface for a user to query the information sytem;
• data source (or computational module) wrapper agents

that provide an “transducer” interface between between
conventional software modules and the agent system;

• resource broker agents that offer services so that other
agents can find distributed data sources

• the query processing subsystem – a collection of agents
that (a) construct a suitable plan for accessing multiple
agents in order to respond to a user query and then (b)
execute the plan;

• ontology agents – service agents that provide information
and translation mappings concerning various known
ontologies.

In the diagram all of the directed black arrows indicate agent
messages.

2.2 Agent-oriented architectural frameworks

We have selected two agent-oriented frameworks that
have received prominent mention in the agent research
community (ZEUS and JADE) and compare them with the
framework that is under development by the authors
(NZDIS). All three frameworks have been constructed
using the Java programming language, come with full
source code, and are available free-of-charge (and thus are
not commercial products). First, we provide a brief
overview of these frameworks.

2.2.1 The ZEUS Agent-Building Toolkit. The ZEUS
Agent Building Tookit contains a substantial number of
tools and utilities that are oriented towards the development
of collaborative agent systems [20] – systems of 'specialist'
agents that work together to solve a problem that is beyond
the capabilities of any one agent. ZEUS is implemented as
a collection of Java classes and can be roughly partitioned
into three components:
An agent component library, which forms the building-

blocks of individual agents. The classes provided in this
library include tools for knowledge storage and
representation, agent communication, agent-
coordination protocols, and a planning and scheduling
system.

Agent building software, which provides a collection of
tools accessed by means of graphical user interfaces
(GUIs). These tools are intended to simplify the process
of building an agent-based system by guiding developers
through the ZEUS agent development methodology [5].

Agent society visualisation tools – a suite of tools that
can be used at runtime to monitor and manage the
behaviour of a ZEUS agent society.

The underlying computational paradigm of individual ZEUS
agents is based of forward-chaining production systems,
which are similar to expert systems that have been
developed in the artificial intelligence community and which
are based on a flat fact structure (a fact cannot be embedded
inside another fact) and a Lisp-like syntax. The inference
engine used to evaluate and apply the rules in the system is
based on an implementation of the RETE algorithm [11].
Thus we can view ZEUS as essentially a distributed expert
system that is based on fact structures and if-then rules
(although ZEUS does add many agent-oriented extensions
to this).

2.2.2 JADE – Java Agent DEvelopment framework.
JADE is a development project that aims to provide a Java-
based implementation of the agent platform that has been
specified by the Foundation for Intelligent Physical Agents
(FIPA), an international, non-profit organisation dedicated
to promoting “the development of specifications of generic
agent technologies that maximise interoperability within and
across agent based applications.” [12]. This is currently the
most mature FIPA-compliant agent platform available and
provides a good representation of what the FIPA
specifications can offer.

JADE consists of sets of classes that implement an
Agent Management System, a Directory Facilitator, and an
Agent Communication Channel, all of which are mandatory
components of any FIPA-compliant platform. As far as the
software developer is concerned, the JADE software
provides an object-oriented application programming
interface (API). Thus the programmer does not really use
any agent-oriented mechanism to interact with those
standard components. This is in contrast to ZEUS, where
the agent system developer interacts with the ZEUS
component by means of the GUI-based tools supplied by the
ZEUS system.

2.2.3 The NZDIS Architecture. The New Zealand
Distributed Information Systems project is a research project
conducted by the authors and others at the University of
Otago to develop distributed information systems (DIS)
software to support the integration of diverse, distributed
information sources. The infrastructure of this software is
agent-based and designed to conform with the FIPA
specifications. A signal characteristic of the NZDIS
Architecture is its use of standard object-oriented technology
(essentially that specified by the Object Management Group

[21]) as a technical basis. For example it makes novel use
object-oriented ontologies for specifying the content of
agent messages [7,8,9] and employs the OMG's Common
Object Request Broker Architecture (CORBA) to provide
the foundation for agent communication. This facilitates the
use CORBA for the transfer of large datasets in distributed
information system applications.

2.3 Mapping abstract design to implementation

A key part of the software engineering process is the
development of an abstract design and then the mapping of
the design into software objects, and we have already
indicated above that the agent modelling paradigm should
facilitate this process. However none of the three agent
platforms investigated here provide significant support in
this area. The ZEUS Agent Toolkit documentation does
somewhat address this area , though, and suggests the use of
a role-model [17] design process. They offer some template
role models in the documentation and an example of how to
do the implementation. But ZEUS is not predicated on role
modelling, and there is no specific support for roles in the
framework. The template roles offered by ZEUS are not
directly applicable to the distributed information systems
application discussed in this paper.

3 Agent Communication

The principle agent communication specifications
(KQML and FIPA ACL) separate a message into two layers:
an inner layer and an outer layer. The outer layer is
concerned with transporting and decoding the message,
while the inner layer contains the message content itself.
For both KQML and FIPA ACL the use of string-based
message content raises questions or concerns with respect to
efficiency when large or complex objects are to be passed
between agents.

3.1 ZEUS agent communication

ZEUS messages currently use the string-based KQML agent
communication language, and messages are transferred
between agents using string-based TCP/IP socket
connections. This allows direct peer-to-peer
communication, based on an agent's host name and TCP/IP
port; these details are obtained from an Agent Name Sever,
a default agent in every ZEUS system whose address is
well-known. Sockets are a relatively low-level form of
communication – ZEUS does not leverage the higher level
facilities offered by such tools as CORBA, but rather
implements these itself where needed. The content of
ZEUS messages is a `fact', represented using a Lisp-like
s-expression encoding. Such facts must first be defined in
an ontology (Section 4).

(<communicative-act>
 :sender <sender>
 :receiver <receiver>
 :ontology <ontology>
 :language <language>
 :content <content>
 :conversation-id <conv-id>
 etc.
)

(a) FIPA ACL string format

public class Message {
 private String performative;
 private Address sender;
 private Address receiver;
 private String ontology;
 private String language;
 private String content;
 private String conv_id;
//etc
}

(b) Object-oriented abstraction

Figure 2. FIPA ACL messages implemented as objects.

3.2 JADE agent communication.

JADE uses the FIPA ACL for agent communication,
which specifies that message-content for inter-platform
communication must be string-based, but that intre-platform
communication can employ method calls. Thus for the
JADE system agent-builder, messages are simply object-
oriented; the system will transparently translate messages to
a FIPA-compliant string representation when necessary (i.e.
when inter-platform message exchange is involved). For
message exchange on a local platform, local method call is
performed to skip parsing to and from a string representation
and Java serialisation is used to pass objects directly
between agents. From the developers point of view this
approach is convenient. There is, however, no enforcement
by the framework to ensure string-based message content for
inter-platform communication, which can lead to the
violation of the FIPA protocol for agent communication.
For intra-platform communication it is permissible to pass
custom Java objects, but the same operation will fail when
the recipient is located on a remote platform. Thus this is
not a fully seamless model, and in our opinion the
mechanism should either be more strict (for FIPA
conformance) or should be more flexible so that it can cope
with arbitrary Java objects on all levels of abstractions. If
arbitrary Java objects are allowed and they all are seamlessly
translated to string-based representations, then conformance
to the ontology would be the only necessary consideration
for interoperability.

3.3 NZDIS agent communication

The NZDIS architecture also follows the FIPA ACL
specification and is quite similar to JADE. Agent
communication is achieved by means of string-based
discrete messages transported via the CORBA IIOP
protocol. Message content is encoded by means of XML.
Internally, messages are represented as objects, and simple
object manipulation can be performed on the message
object. Figure 2 shows how a FIPA-type message can be
represented as an object. Again marshalling and
unmarshalling procedures are performed for converting
between messages and objects.

The NZDIS group is also investigating extending their
agent communication protocol beyond the current FIPA
specification (but still keeping the “spirit” of FIPA
communication) by encoding object information, modelled
according to some ontology expressed in the Unified
Modelling Language [26] (see discussion below), as an
XML document together with an XML schema [7,8,9].

4 Ontologies

For communication, agents need to share a common
understanding for concepts (terms, objects, relations, etc.)
represented in their messages. FIPA ACL specifies a
structured form for the fundamental parts of an agent
message, but the language for the message content (the
“inner message layer” mentioned above) is left up to the
implementation. The representation and use of ontologies
is recognised an important aspect of agent communication,
but it is still a volatile area under exploration and likely to
change as new developments appear.

4.1 ZEUS ontologies

The domain concepts used in the message content of ZEUS
agent communication are modelled as facts – entities used in
the rule-base system upon which ZEUS' internal architecture
is grounded. Prior to building a ZEUS system all significant
concepts within the domain must be defined in an ontology;
there is a single system-wide ontology, to which every agent
in the system has access, defining all the concepts (facts)
that will be used in the system. A concept should be
included in the ontology if meaningful discourse between
agents can not occur without the agents being aware of the
concept. The generation of ontologies is supported by the
ZEUS ontology editor, which provides a graphical tool for
specifying the domain concepts in the system. The result of
the graphical specification process is an ad hoc structured

BEGIN_FACT_ITEM
 :name Query
 :parent NZDISFact
 BEGIN_ATTRIBUTE_LIST
 BEGIN_ATTRIBUTE_ITEM
 :name query-text
 :type String
 :restriction ""
 :default ""
 END_ATTRIBUTE_ITEM
 BEGIN_ATTRIBUTE_ITEM
 :name language
 :type String
 :restriction ""
 :default "OQL"
 END_ATTRIBUTE_ITEM
 END_ATTRIBUTE_LIST
END_FACT_ITEM

(a) Example of ontology representation in ZEUS.

(query (query-text "Select ... From
... Where ...")
 (language "OQL"))

(b) Example of ZEUS message content.

Figure 3. Representation of ontologies and message
content in ZEUS.

text representation of the ontology (ZEUS toolkit developers
have indicated that they intend to use XML for this in the
future). This text-based ontology is later used to generate a
Lisp-like s-expression representation of the fact, and this
format is subsequently used in agent discourse (see Figure
3.

4.2 JADE ontologies

JADE offers an object-oriented view of ontologies:
ontologies in JADE are Java objects and classes. This gives
the agent system developer a convenient object-oriented API
for the construction and manipulation of ontologies. JADE
distinguishes three major elements of the ontology:
Concepts, Predicates, and Actions. Concepts represent
“objects” (not necessarily just in the object-oriented sense)
of discourse; Predicates represent relations between
Concepts and constants. Actions represents a function or
method call, which might be performed on request.

JADE makes use of some object-oriented techniques via
its dependency on and usage of Java interfaces for useful
OO idioms, such as polymorphism and multiple inheritance
by means of interfaces can be exploited for the Java
representations of ontological objects.

In its most basic interpretation an ontology is a set of
entities that compose the domain of discourse, and in JADE,

each such entity can be represented as an
application-dependent Java class. By providing an object-
oriented API for ontology construction, JADE tries to make
manipulation of symbolic reasoning easier for the
application developer. JADE itself does not make any
extensions to the original ontology paradigm, as represented
for example in OKBC and Ontolingua [4]. This means that
the traditional predicate- and logic-based representation is
wrapped by an object-oriented Java-based representation,
leading to a paradigm mismatch, such that the inference
engine then needs to be implemented for symbolic,
predicate-based reasoning.

4.3 NZDIS ontologies

Ontologies represent the both the domain of discourse
and the knowledge about a specific domain in a machine-
readable (as well as human-readable) format. Traditionally
there are two major paradigms used – the predicate-
logic-based approach and the procedural reasoning
approach. The former is based on a declarative (logic-
based) specification of the relations between entities of the
discourse, while the latter is more focussed on the functional
description of “how-to”, and useful for procedural
reasoning. Ontologies are put to use in order to provide
interoperability between different agent systems, which
have not necessarily been built by the same team or at the
same time. By sharing a common understanding of the
domain of discourse, along with their objects and relations,
separately developed collections of agents can communicate
with one another using an ACL without having to know the
details of the “API” of each agent targeted for a message
(assuming low-level interoperability issues, such as
transport, have been resolved).

Since object-oriented technology has many features
which are valuable for dealing with large knowledge
repositories, such as encapsulation, modularity, well-
understood modelling abstractions, and polymorphism, it is
increasingly used for the modelling and implementation of
information systems. To represent ontological information
in terms of standard object-oriented modelling constructs
reduces the “impedance mismatch” that otherwise exists
when traditional logic-based schemes are used for ontology
representation in connection with such systems.
Consequently the NZDIS approach is to use UML as the
ontology modelling language [7,8].

We observe that it would also be desirable for an agent
platform that is built using an OO such as CORBA or Java
to provide an object-oriented interface to its Message
Transport Service (MTS). Ideally such an MTS would be
extensible so that interfaces corresponding to ontologies in
UML could be used to construct IDL or Java representations
of object diagrams conforming to those ontologies. It would
also be useful if the MTS interface included options to

support the transmission of objects either by value or
reference. At the present time, the object-oriented
modelling tool Rational Rose [25] (and possibly others)
provides proprietary mappings from UML models to IDL
and Java. Although it would be better to use a standard
mapping, for the short term this may be the simplest
approach for building an MTS interface that directly
supports the construction of object-oriented message
content.

5 Agent Conversations

For effective agent information exchange simple
request-response (client-server) communication is
insufficient, and the developer must implement protocols
that support more complex conversations. The only formal
specification in this area is that of FIPA [12]. The internal
(to the agent) state of a conversation is normally represented
by a finite state automaton, but Petri nets have also been
considered [24].

Some standard communication protocols are provided
with the ZEUS toolkit, for example the contract-net
protocol. The agent system builder selects one of the
standard protocols at design time, and then the given
protocol is automatically invoked by the ZEUS Planner at
runtime. The specification of new protocols not already
stored in the ZEUS system is a non-trivial task with the
ZEUS system.

JADE supports most of the predefined FIPA protocols
by providing abstract classes that can be subclassed by the
developer with behaviour for the transitions in a finite state
automaton. The developer must decide the behaviour at
design time, because it cannot be changed during runtime.
For simple cases where agent participation in a protocol can
be specified at design time, this approach is satisfactory.
For more dynamic cases, where it is appropriate to establish
the response at runtime, it is necessary to employ a
specialised subclass as a wrapper to another class which
chooses the behaviour dynamically.

Currently the NZDIS architecture leaves the
implementation of agent conversations up to the application
level. For complex conversations involving several agents,
this approach is the most flexible. However, from the
perspective of simple patterns, such as fipa-request and fipa-
contract protocols, the JADE approach is preferable. In the
future the NZDIS architecture will also support those
protocols and represent the state of agent conversations by
employing coloured Petri nets.

6 Summary and conclusions

The ZEUS, JADE, and NZDIS architectures all provide
sets of Java classes to support the construction of multi-
agent systems that communicate by means of the speech act
paradigm. All could be used for the construction of a

distributed information system shown in Figure 1.
The ZEUS toolkit supports agent communication using

KQML and sockets. It has the best user documentation and
GUI-based tools, which greatly facilitate the construction of
an agent-based system for the non-programmer. The ZEUS
team has gone the farthest in terms of developing specific
tools and accessories that support and simplify agent system
construction. However, ZEUS developers are rarely
concerned with the specifics of agent communication
protocols, however, because the ZEUS toolkit provides GUI
tools for the developer to construct messages. This appears
to represent a fundamental design decision on the part of the
ZEUS development team: even though the ZEUS source
code is provided, comments have been stripped out and
consequently the details of the ZEUS API are shielded from
the agent system builder. ZEUS users are, instead,
encouraged to access the ZEUS toolkit purely through the
GUI-based construction tools, and the communication
protocols are automatically invoked by the ZEUS Planner at
runtime.

This approach has both advantages and disadvantages.
On the positive side, one can say that the ZEUS GUI-based
tools are straightforward to use and accelerate the learning
curve for new users, especially those who are unfamiliar
with agent concepts. The documentation, too, is well
presented and offers tutorials and examples. The
disadvantage with this approach, however, is that along with
this ease-of-use comes a loss of flexibility. Agent-based
systems, such as the DIS example considered here, are often
complicated and require a certain amount of tuning and
customisation to get them right. Since the system builder is
discouraged from accessing the Java-based API, he or she is
forced to do things in a constrained manner that is offered by
the ZEUS control panels. Our assessment is that the full
construction of the DIS example shown in Figure 1, which
would require the use of sockets for inter-platform
communication, would be time-consuming using the ZEUS
toolkit.

JADE and NZDIS are similar, in that they both supply
sets of Java classes that use FIPA ACL for agent
communication. JADE is more oriented to a purely Java-
based solution, with even ontologies represented as Java
classes and all agents are assumed to be instances of Java
classes. This has implications for debugging, message
sniffing, and starting and shutting down individual agents.
Since everything is in Java, all agents can be run from a
single Java virtual machine or via Java Remote Method
Invocation. Consequently JADE provides the system
builder with a GUI-based Remote Management Agent,
which is responsible for starting, controlling, and stopping
agents on the platform.

The NZDIS architecture is implemented in Java, but
makes no fundamental assumptions about Java. It could
have been implemented in C++. It does make assumptions
that generic object-oriented technology (as specified by

OMG) is used in the infrastructure. Thus CORBA is
employed as the transport layer for agent communication,
and UML is used to represent ontological information. At
the present time the NZDIS software does not have GUI-
based tools that are as convenient as those of ZEUS or
JADE, but these are under development. On the other hand,
the NZDIS software may be well-suited for the flexible
incorporation of ontology manipulation and management
tools that will be need for future agent-based systems.

7 Acknowledgements

The work in this paper and the NZDIS software is funded by
the New Zealand government's Public Good Science Fund.
The NZDIS development team consists of Geoff Bush, Dan
Carter, Bryce McKinlay, Mariusz Nowostawski, Roy Ward,
Stephen Cranefield, and Martin Purvis.

8 References

[1] AgentBuilder Web site. Agent construction tools. Available
at http://www.agentbuilder.com/AgentTools/index.html.

[2] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa.
JADE - A FIPA-compliant agent framework.
http://sharon.cselt.it/projects/jade, 2000.

[3] Grady Booch. Object Oriented Analysis and Design with
Applications. Addison Wesley, 1994.

[4] Vinay K. Chaudhri, Adam Farquhar, Richard Fikes, Peter D.
Karp, James P. Rice. Open Knowledge Base Connectivity
2.0.31 –Proposed–, April, 1998.
http://ontolingua.stanford.edu/okbc/

[5] Jaron Collins and Divine Ndumu. Zeus methodology
documentation.
http://www.labs.bt.com/projects/agents/index.htm.

[6] J C Collis, D T Ndumu, H S Nwana, and L C Lee. The ZEUS
agent building toolkit. BT Technology Journal, 16(3), July
1998.

[7] S. Cranefield and M. Purvis. UML as an ontology modelling
language. In Proceedings of the Workshop on Intelligent
Information Integration, 16th International Joint Conference
on Artificial Intelligence (IJCAI-99), 1999.
http://sunsite.informatik.rwth-aachen.de/Publications/CEU
R-WS/Vol-23/cranefield-ijcai99-iii.pdf.

[8] S. Cranefield and M. Purvis. Extending agent messaging to
enable OO information exchange. In R. Trappl, editor,
Proceedings of the 2nd International Symposium `From
Agent Theory to Agent Implementation' (AT2AI-2) at the 5th

European Meeting on Cybernetics and Systems Research
(EMCSR 2000), pages 573--578, Vienna, April 2000.
Austrian Society for Cybernetic Studies. Published under the
title `Cybernetics and Systems 2000'.

[9] Stephen Cranefield, Martin Purvis, and Mariusz
Nowostawski. Is it an ontology, a meta-model or an abstract
syntax? Modelling FIPA agent communication. In
Proceedings of the Workshop on Applications of Ontologies
and Problem Solving Methods, 14th European Conference
on Artificial Intelligence, pages 16.1-16.4, 2000.

[10] Jacques Ferber. Multi-Agent Systems - An Introduction to
Distributed Artificial Intelligence. Addison-Wesley, 1999.

[11] Charles L. Forgy. Rete: A fast algorithm for the many pattern
many object pattern match problem. Artificial Intelligence 19
(1982), 17-37.

[12] Foundation For Intelligent Physical Agents (FIPA) web site.
Located at http://www.fipa.org/.

[13] Stan Franklin and Art Graesser. Is it an agent, or just a
program? : A taxonomy for autonomous agents. In Jorg P.
Muller, Michael J. Wooldridge, and Nicholas R. Jennings,
editors, Intelligent Agents III. P}roceedings of the Third
International Workshop on Agent Theories, Architectures
and Languages, volume 1193 of Lecture Notes in Computer
Science. Springer, 1996.

[14] Michael R. Genesereth and Steven P. Ketchpel. Software
agents. Communications of the ACM, 37(7):48--53, July
1994.

[15] T. R. Gruber, “A Translation Approach to Portable Ontology
Specifications”, Knowledge Acquisition, 5(2), 1993, pp. 199-
220.

[16] Nicholas R. Jennings and Michael Wooldridge.
Agent-oriented software engineering. In J. Bradshaw, editor,
Handbook of Agent Technology. AAAI/MIT Press, 2000.

[17] E. A. Kendall. Agent roles and role models: New
abstractions for multiagent system analysis and design. In
International Workshop on Intelligent Agents in Information
and Process Management, Germany, September 1998.

[18] Yannis Labrou and Tim Finin, A Proposal for a new KQML
Specification. TR CS-97-03, Computer Science and
Electrical Engineering Department, University of Maryland
Baltimore County, Baltimore, February 1997.

[19] Hyacinth Nwana, Divine Ndumu, Lyndon Lee, and Jaron
Collis. ZEUS: A Tool-Kit for Building Distributed
Multi-Agent Systems. Applied Artifical Intelligence Journal,
13(1):129-186, 1999.

[20] Hyacinth S Nwana. Software agents: An overview.
Knowledge Engineering Review, 11(3):1-40, September
1996.

[21] Object Management Group (OMG) web site. Located at
www.omg.org.

[22] Martin Purvis, Stephen Cranefield, Geoff Bush, Daniel
Carter, Bryce McKinlay, Mariusz Nowostawski, and Roy
Ward. The NZDIS Project: an Agent-based Distributed
Information Systems Architecture. In R.H. Sprague Jr.,
editor, CDROM Proceedings of the Hawaii International
Conference on System Sciences (HICSS-33). IEEE
Computer Society Press, 2000.

[23] Anand S. Rao and Michael P. Georgeff. BDI Agents: From
Theory to Practice. In Proceedings of the First International
Conference on Multi-Agent Systems (ICMAS-95), San
Francisco, USA, June 1995.

[24] Wolfgang Reisig. A Primer in Petri Net Design.
Springer-Verlag, 1992. based on a German edition.

[25] Rational web site. Located at www.rational.com.

[26] James Rumbaugh, Ivar Jacobson, and Grady Booch. The
Unified Modeling Language Reference Manual.
Addison-Wesley, 1998.

[27] John R. Searle. Speech Acts. Cambridge University Press,
Cambridge, 1969.

[28] Michael Wooldridge. Agent-Based Software Engineering.
IEE Proc Software Engineering, 144:26--37, 1997.

