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Abstract

Thispaperproposes novel View-basedConsistencynodel
for DistributedShaedMemory A view is a setof ordinary
data objectsthat a processorhas the right to accessin
a data-race-fiee program. The MView-basedConsistency
model only requires that the data objectsof a view are
updated before a processoraccesseshem. Compaed
with other memory consistencymodels, the View-based
Consistencynodelcan achieve data selectionwithoutuser
annotationand can reducemud false-sharingeffect. This
modelhas beenimplementedasedon TreadMarks. Per-
formanceresultshaveshownthat for all our applications
the View-basedConsistencymodel outperformsthe Lazy
ReleaseConsistencynodel.

Key Words: DistributedSharedMemory, SequentialCon-
sisteng, FalseSharing

1 Intr oduction

Distributed SharedMemory (DSM) has becomean ac-
tive areaof researchn parallelanddistributed computing
[16, 8,4, 3,1, 19]. A DSM systemcanprovide application
programmersheillusion of sharednemoryon top of mes-
sagepassingdistributed systemswhich facilitatesthe task
of parallel programmingin distributed systems. The goal
of our researchis to make DSM systemsamore corvenient
to useandmoreefficientto implement[10, 19]. In this pa-
per, we proposea View-basedConsisteng (VC) modelfor
DSM, whichis asignificantsteptoward our goal.

Theconsisteng modelof aDSM systenspecifiegheor-
deringconstraint®©nconcurrentnemoryaccessely multi-
ple processorsandhencehasfundamentaimpacton DSM
systemsprogrammingornvenienceandimplementatioref-
ficiengy [17]. The SequentiaConsisteng (SC)model[15]
hasbeenrecognizedasthe most naturaland usekfriendly
DSM consisteng model. The SCmodelguaranteethatthe
resultof anyexecutionis thesameasif theoperationsof all
processos were executedn somesequentiabrder, andthe
operations of eadh individual processorappearin this se-
quencen the order specifiedby its ownprogram[15]. This
meansthatin a SC-basedSM system,memoryaccesses
from all processorsnaybeinterleavedin arny sequentiabr-
derthatis consistentvith eachprocessos memoryaccess
order, andthe memoryaccesordersobsened by all pro-
cessorsare the same. Oneway to strictly implementthe
SC modelis to ensureall memory updatesbe totally or-
deredand memoryupdategperformedat one processobe
immediatelypropagatedo other processors.This imple-
mentationis correctbut it suffersfrom seriousperformance
problemg17].

In practice notall parallelapplicationgequireeachpro-
cessotto seeall memoryupdatesnadeby otherprocessors,
let aloneto seethemin order Many parallelapplications
regulatetheir accesse$o shareddataby synchronization,
sonotall valid inter-leavings of their memoryaccesseare
relevantto their real executions.Therefore|t is not neces-
saryfor the DSM systemto force a processoto propagate
all its updatedo every otherprocessofwith a copy of the
shareddata)at every memoryupdatetime. Under certain
conditionsthe DSM systencanselectthetime, theproces-



sor, andthedatafor makingsharednemoryupdategpublic
to improve the performancewhile still appearingo be se-
quentially consistent[1P Underthesecircumstancesthe
following threebasictechniquesanbe used: Time selec-
tion: Updateson a shareddataobjectby oneprocessoare
madevisibleto thepublic only at thetimewhenthedataob-
jectis to bereadby otherprocessorsProcessorselection:
Updateson a shareddataobjectare only propagatedrom
oneprocessoto the processothatis the next in sequence
to accesshesharediataobject.Data selection: Processors
only propagatdo eachotherthoseshared data objectsthat
arereally sharedamongthem.

To improve the performanceof the strict SC model, a
numberof wealer SCmodelshave beenproposed6, 9, 14,
2, 13], which performone or more of the above threese-
lectiontechniqueswhile appearingo be sequentiallycon-
sistent. However, noneof themcanachieve dataselection
withoutprogrammeannotatio19]. We arguedpreviously
[19] thata consisteng modelshouldnot imposeary extra
burdenon programmerssuchasannotatiorof lock-dataas-
sociationin the Entry Consisteng (EC) [2] andscope-data
associationn the ScopeConsisteng (ScC)[13] models.
In this paper we proposea View-basedConsistencyVC)
modelwhich, besidestime selectionand processoiselec-
tion, cantransparenthachieve dataselection.

Therestof this paperis organizedasfollows. Section2
describesn detailthe VC modelandits propertiesln Sec-
tion 3theVC modelis comparedvith somerelatedmodels,
e.g. EC and ScC,in termsof userannotationdataselec-
tion, interfacefor programmersandfalse-sharingffectin
Section3. Issuesregardingan implementationof VC are
discussedndpresentedn Section4. Performanceesults
arepresented@ndevaluatedin Section5. Finally, the ma-
jor contributionsof this paperandareador futurework are
summarizedn Section6.

2 View-basedConsistency

During the executionof a DSM parallelprogram,multiple
processorsommunicatevith eachotherthroughthe shared
memory In sharedmemorysomedataobjectsare read-
only, and someread/write To prevent dataraces(where
multiple processorgead and write the samedata object
concurrently),a parallel programhasto guaranteehat a
processohasgainedexclusive accesshefore accessinga
read/write dataobject. This kind of parallel programsis

calleddataracefree.

We distinguishsyndironizationdataobjectsfrom ordi-
nary dataobjectsin sharedmemory just like mary other
DSM systems. Synchronizationdata objects are those
which are explicitly usedto enforce exclusive accessto
otherdataobjects,suchaslocks andbarriers. Therestof
the dataobjectsin sharednmemoryarecalledordinarydata
objects. Exclusive accesdo the synchronizatiordataob-
jectsis guaranteedby system-proided primitives,suchas
acquire, releaseandbarrier, while exclusive accesgo the
ordinary dataobjectshasto be guaranteedy usingthose
systemprimitives. Like mary Weak SequentialConsis-
tengyy models[1], sequentiakonsisteng for the synchro-
nization data objectsis guaranteecby the system; how-
ever, sequentiatonsisteng for the ordinarydataobjectsis
achiered conditionally dependingon the underlyingcon-
sisteng model. Therefore,we only needto be concerned
with the consisteng of theordinarydataobjects.

A view is a setof ordinarydataobjectsa processohas
the right to accessn sharedmemory We saya processor
hastheright to accessomedataobjectif andonly if it has
gainedexclusive accesgo the dataobjector the dataobject
is read-only At ary time point of an execution,suppose
ary two processors’; and P, have views V; and V5 re-
spectvely. ThenV; NV, mustonly containread-onlydata
objects;otherwisea dataraceoccurs.Fig. 1 shovs a snap-
shotof views of processorsn sharedmemory The over
lappedpart of differentviews only containsread-onlydata

objects.
read-only data

shared memon——

P1 P2 P3

Figurel: A snapshobf processorsviews

Many DSM systemgequireexplicit callsto acquire, re-
leaseandbarrier in programsto achierze weak sequential
consisteng. An executionof sucha DSM programcanbe

1A barrieris asynchronizatiomlevice thatrequiresall processet wait
for the last of themto arrive at the samesynchronizatiorpoint. It canbe
implementedy acquire andrelease



viewed asa sequencef barrier sessionshawn in Fig. 2.
A barriersessionbegins with a barrier and endswith an-
otherbarrier. Inside a barriersessiorthereis a sequence
of regionswhich aredelimitedby acquire, releaseandbar-
rier primitives.A critical region beginswith anacquireand
endswith areleasewhile anon-criticalregion beginswith
a release(the outermostonein nestedcritical regions) or
a barrier and endswith an acquire (the outermostonein
nestedcritical regions)or a barrier. A non-criticalregion
doesnot overlapwith ary critical region, but a critical re-
gionmayoverlapwith anothercritical regiondueto thepos-

sibility of nestectritical regions.

barrier
|sessio

non- - non- .
e critical o critical
g critical| A 7~~~ | R| critical | Al /n i eeeplocepge e
region region region region

program order

[<-mmmm barrier session------------- =

B: barrier  A: acquire R:release
Figure2: A view of a programexecutionbasedn thecon-
ceptof region

In aDSM program exclusive accesdo a dataobjectcan
only begainedin thefollowing threeways:

1. implicit assignmeniby theprogrammeinsideabarrier
sessionExclusive accesss guaranteetby barriers.

2. explicit acquisitionby calling the acquire primitive.
Exclusive accesss guaranteethy thelock mechanism
of critical regions.

3. implicit acquisitionby changingthe statusof dataob-
jectsprotectecby critical regions. For example exclu-
sive acces$o ataskfrom ataskqueues guaranteety
removing thetaskfrom thelock-protectedaskqueue.

Therefore,in an execution of a DSM program, only
when a processorcalls synchronizationprimitives, such
asbarrier, acquire, andrelease doesits view change,as
shavn in Fig. 3. A processos view is constantinside a
critical region or anon-criticalregion. Only whenaproces-
sormovesfrom oneregion to anothey doesit gain or lose
exclusive accesto somedataobjects.

According to this obsenation, views can be classified
as Critical Region Views (CRVs) and Non-critical Region
Views (NRVs). A processos CRV is its view while it ex-
ecutesinside a critical region. A processos NRV is its
view while it executesinside a non-critical region. More
precisely the following definitionsare given for CRV and
NRV.

lose exclusive
access to some data

objects in CR , but
still hold exclusive
access to some data
objects in NCR

/
Bl BB

requesting— . granting
exclusive access / exclusive access
to some data to some data
objects in CR objects in CR

RN NN

program ordel

get exclusive
access to some data
objects in CR

B: barrier A: acquire R:release
CR: critical region NCR: non-—critical region

Figure3: Views andtheirtransitions
Definition 1 Critical Region View (CRV)

A processos CRV comprisesread-onlydataobjectsand
thedataobjectsto which the processohasexclusive access
guaranteetdy thecurrentcritical regionandthecurrentbar
rier session.

Definition 2 Non-critical Region View (NRV)

A processos NRV comprisesread-onlydataobjectsand
the dataobjectsto which the processothasexclusive ac-
cessguaranteeddy the statusof critical-region-protected
dataobjectsandthecurrentbarriersession.

Basedon the definitionsof CRV andNRV, we propose
a iew-basedConsistency(VC) modelwith the following
consisteng conditions.

Definition 3 Conditionsfor View-basedConsistency

e Before a processorP; is allowed to entera critical
region or a non-critical region, all previous write ac-
cesseso the ordinarydataobjectsof the CRV or NRV
mustbeperformedwith respecto P; accordingo their
order

e Thesequentiatonsisteng of synchronizatiomataob-
jectsis guaranteedby the implementationof the sys-
temprimitivessuchasacquire, releaseandbarrier.

A write accesgo a memorylocationis saidto be per
formedwith respectto processorP; at a time point when



a subsequenteadaccesdgo thatlocationby P; returnsthe
valuesetby thewrite access.
TheVC modelhasthefollowing properties:

e In the VC model,only whena processomaovesfrom
oneregion to anothermregion doesits view change.A
processosview is constantvithin aregion.

e In the VC model,whena processochangego a new
region all the dataobjectsof its new view mustbe up-
dated.

e TheVC modelguaranteethe samesxecutionresultas
the SequentialConsisteng modelfor a data-race-free
DSM program.

e The VC modelcanachieve time selection,processor
selection,and data selection. Data selectioncan be
achieved by updatingonly the dataobjectsin the cur
rentview of aprocessar

3 Comparison of relatedmodels

Amongthedifferentconsisteng models,only ScC[13] and
EC [2] canachieve dataselection. But the VC modelis
differentfrom themin thefollowing aspects.

User annotation: VC requiresno userannotationto
achieve dataselection. EC requiresthe userto specifythe
associatiorbetweera synchronizatiorataobjects andthe
shareddata D,, where s controlsaccesdo a critical re-
gion protectingD;. This specificationis essentiafor EC
to achieve dataselection.If the specificationis not correct,
EC cannot achieve dataselectioncorrectly ScCalsore-
quiresthe userto specify scopeannotationfor somepro-
grams,thoughit candetectscopeautomaticallyfor some
otherprograms.

Data selection: To selectvely updatedataobjects,VC
usesa concepiof view, while EC usesguardedshareddata
D, andScCscope However, the view in VC is different
from D, in EC andthe scopein ScC.Both D, andscope
are staticand fixed with a particularsynchronizatiordata
objector a critical region. Evenif somedataobjectsare
notaccessebly a processom acritical region, they areup-
datedsimply becausehey are associatedvith the lock or
the critical region. However, the view in VC is dynamic
and may be differentfrom region to region. Even for the
regions protectedby the samelock, the views in themare
differentand dependon the dataobjectsactually accessed
by the processoin theregions. Becausef this difference,

VC is moreselectie thanEC andScCin termsof datase-
lection. For example,supposdock [ is usedto protecta set
of shareddataobjectsS = {si,...s,}. Becauset is com-
mon for a processoto accesonly somedataobjectsin S
afterit acquiresdock [, we canassumehe setof accessed
dataobjectsis S’ C S. Thenwhenthe processoentersthe
critical region, the D, in EC andthe scopein ScCare S,
while theview in VC is S’. EC andScChave to updateall
dataobjectsin S, while VC only updatesiataobjectsin S'.

Interface for programmers: VC providesa simpleand
clear interfacefor the programmer:if a programis data
racefree, VC canguarantegahe sameexecutionresultas
SequentialConsisteng. But EC requiresthe programmer
to provide correctlock-dataassociationlf thelock-dataas-
sociationis not correct,EC doesnot guarantedhe correct
executionof the program. Similarly, ScCdoesnot guaran-
teethe sameexecutionresultasSequentialConsisteng for
somedata-race-freprogramsf explicit scopeannotatioris
not correctlyprovidedby the programmer

Apartfrom theabove differencesyYC hasmorepotential
to reducethe effect of falsesharing in page-base®SM.
It canreducethe falsesharingeffect in the following two
ways:

1. Restrictthe propagatiorof invalidationnotices. Only
theinvalidationnoticesthatareusefulfor updatingthe
dataobjectsin a processos new view arepropagated
to theprocessor;

2. Restrict the effective scopeof invalidation notices.
Eventhoughsomeinvalidationnoticeshave beenprop-
agatedo aprocessqronly theinvalidationnoticesthat
areusefulfor updatingthe dataobjectsof the current
view of theprocessoareeffectivein thecurrentregion
of theprocessar

We have shovn examplesn [12] to explainhow VC can
reducdalse-sharingffectin theabovetwo waysin contrast
with LRC and ScC. In the following section,we discuss
someissuesdn theimplementatiorof the VC model.

4 Implementation

Therearetwo technicalissuesn theimplementatiorof VC.
Oneis view detectionandtheotheris view transition View

2Falsesharingoccurswhenoneprocessomodifiesa sharediataobject
that lies in the samememory consisteng unit (e.g. a page)as another
shareddataobijectlies, while anothemprocessoreadsor writes the other
shareddataobject.



detectionmeanghatbeforea processoentersanew region
we shouldfind outall thedataobjectsin its new view. View
transitionmeansthatwhena processos view changesve
shouldupdateall the dataobjectsof its new view. Any im-
plementatiorof theVC modelshouldguarante¢hatbefore
a processotentersa new region, view detectionand view
transitionareachievedcorrectly

We have implementedhe VC modelin the framework
of TreadMarkq1], whichis a page-base®SM system.In
ourimplementatiorof the VC model,we regarda pageas
thebasicunit of dataobjects.Thusaview in ourimplemen-
tationconsistof pages.

4.1 View detection

View detectionis implementecat run time. In view detec-
tion, if a pageis not modifiedit is not necessaryo record
it in a view, becausdt hasno changeand thus doesnot
needconsisteng maintenance.Therefore,only the modi-
fied pagesarerecordedn aview in view detection.

To detectmodified pagesin view detection,our imple-
mentationtakes advantageof the following two existing
mechanismseededy otherschemesn the DSM system:

1. Whena write accesss performedon an invalidated
pageapagefaultwill occur Thepagefaulthandlerin
the DSM systemcanbe extendedto recordthe faulty
pages identifierin the correspondingiew, aswell as
fetchingan updatedcopy of the faulty pagefrom an-
otherprocessar

2. Whenawrite accesss performedon awrite-protected
page,a protectionviolation interruptwill occur The
interrupthandlerin the DSM systemcan be extended
to recordthe modified pages identifier in the corre-
spondingview, aswell as making a twin of the ac-
cessegbagein themultiple-writerschemeor obtaining
theownershipof theaccessegagein thesingle-writer
schemd5].

Becausghe above two mechanisméave alreadybeenpro-
vided by the underlyingDSM system,thereis little extra
overheadfor recordingthe identifiers of modified pages.
However, if a pageis alreadywritable beforea new view
is entered,that pagewill not be detectedandrecordedin
thenew view if it will bemodifiedin theview. To detectall
modifiedpageof aview, we make all writable pageswrite-
protectedread-only)beforea new view is entered.This is
the additionaloverheadrequiredfor view detection. From

our experimentalresultswe know this additionaloverhead
is trivial.

The CRVs detectedn our implementatiorarecomplete
andaccuratesincea processoenteringa critical region has
exclusive accesdo thosepagesmodified by otherproces-
sorsin the samecritical region. UnfortunatelyanNRV de-
tectedin ourimplementatiorconsistsof all pagesmodified
by otherprocessorsn non-criticalregions. That meansa
processolenteringa non-critical region may not have ex-
clusive accesgo somepagesin its NRV. Thus a detected
NRV maybebiggerthantherealone. Thisinaccurag only
affectsthe performancenot the correctnes®f our imple-
mentation.

4.2 View transition

Beforea new view is enteredview transitionneedsto be
done. View transitioncanbe eitherbasedon the invalida-
tion protocol, which only invalidatesthosemodified pages
in the new view, or basedon the updateprotocol, which
only updateghosemodifiedpagesin the new view. If the
invalidation protocolis usedin view transition,the pages
thatarenotin thenew view but aremodifiedstayvalid until
somelaterview transitionneedgo invalidatethem.

Theupdateprotocolis suitablefor VC, asis theinvalida-
tion protocolfor LRC, becaus&/C hasdonedataselection
throughtheuseof views andthusthe pagesn thenew view
aremostlikely to be accesseth the correspondingritical
region. Thereforeupdatingthemstraightforwardly helpsto
reducethe numberof messagesequestingipdatesandthus
is moreefficientthantheinvalidationprotocol.[19]

However, sincethe detected\RVs are not accurateve
adopta hybrid protocol, which incorporatesboth the in-
validation protocol and the updateprotocol, in our imple-
mentation. The hybrid protocolis similar to the SLEUP
protocol[19. It usesthe updateprotocolfor the modified
pagesn CRVs, but the invalidationprotocolfor the modi-
fied pagesn NRvs.

5 Experimental results

In this sectionwe presentanexperimentakvaluationof the
LRC modelandourimplementatiorof theVC model.Both
of themareimplementedn TreadMarks[1]. The experi-
mentalplatform consistsof 8 PCsrunningLinux Red Hat
6.1, which are connecteddy a 10 Mbps Ethernet. Eachof



thePCshasa500MHz processoand128 Mbytesmemory
Thepagesizein thevirtual memoryis 4 KB.

TreadMarkshas adopteda multiple-writer scheme[5],
which was proposedto minimize the effect of falseshar
ing. In the multiple-writerschemeinitially a pageis write-
protected.Whena write-protectedpageis first updatedby
a processaratwin of the pageis createdandstoredin the
systemspace Whenthe updateson the pageareneededy
anothemprocessqgra comparisorof thetwin andthecurrent
versionof the pageis doneto createa diff, which canthen

be usedto updatecopiesof the pagein other processors.

Thusin the multiple-writer schemehe pagediff, insteadof
thewholepage,is usedto renav anold copy.

Since our implementationof VC is basedon Tread-
Marks,we haveto adapto themultiple-writerschemeatthe
price of false-sharingffect. Therearetwo kinds of false-
sharingeffect: write/readandwrite/write. Write/readfalse-
sharingeffect occurswhenoneprocessomodifiesa shared
dataobjectthat lies in the samememoryconsisteng unit
(e.g. a page)asanothershareddataobject, while another
processoreadsthe other shareddataobject. Write/write
false-sharingeffect occurswhen one processomodifiesa
shareddataobjectthatliesin the samememoryconsisteng
unit (e.g. a page)asanothershareddataobject, while an-
otherprocessowritesto theothersharediataobject.In our
implementationwe can completelyremove the write/read
false-sharingeffect. However, to work with the multiple-
writer schemeproperly, our implementatiorhasto tolerate
the write/write false-sharingeffect. Thus the write/write
false-sharingffecthasnotbeenremovedin ourcurrentim-
plementation.

We usedfour applicationsin the experiment: TSR QS,
BT and Water. TSR QS and Water are provided by the
TreadMarksresearctgroup. All the programsare written
in the C language TSPis the Travelling SalespersoRrob-
lem. QSis arecursve sortingalgorithm.BT is analgorithm
thatcreatesa fixed-depthbinary tree. Water is a molecular
dynamicssimulation. Theseapplicationsarerepresentatie
of bothnumericalcomputing(Water andQS), andsymbolic
computingTSPandBT). Tablel givesthe performancee-
sults.

In the table, VC.i is the VC implementationbasedon
the invalidation protocol, VC_h is the VC implementation
basedon thehybrid protocol. Timeis thetotal runningtime
of anapplicationprogram,Diff_Reqis the numberof mes-
sagedor diff requestsRPFis the reductionin pagefaults

APP | Model | Time | Diff_Req| RPF | RFS | Mesgs
(Sec.)
LRC 2.54 962 - - 2763
TSP | VC.i 2.56 960 - 0 2756
VC_h 1.65 25 937 0 911
LRC 7.09 3267 - - 12209
QS | VCii 7.15 3330 - 0 12375
VC_h 4.59 791 1044 0 5301
LRC 28.26 11437 - - 79468
BT VC.i 27.59 11347 - 792 | 79426
VCh | 25.73 7429 3441 | 776 | 69342
LRC | 19.86| 12428 - - 96600
Wa- | VC.i 19.91 12423 - 3 96600
ter | VCh | 19.09| 11891 | 511 3 95478

Table 1: PerformanceStatisticsfor applicationson eight
processors

dueto the useof the hybrid protocolin the VC model,RFS
is the reductionin pagefaults dueto the reductionof the
false-sharingffectin the VC model,andMesgsis thetotal
numberof messages.

VC_hvs.LRC

VC outperformd.RC for all four applicationgested.From
Table1 we know VC_h hasimprovedthe performancesig-
nificantly comparedwith LRC (35% for T'S P, 35.3%for
@S, 9% for BT, and 3.9% for Water). The numberof
diff requesmessages VC_h is significantlylessthanthat
in LRC (97.4%lessin TSP, 75.8%lessin @S, 35%]less
in BT, and4.3%lessin Water). The hybrid protocolhas
contributedvery muchto the reductionof diff requesimes-
sagesConsequentlyhe numberof total messagem VC_h
hasbeengreatlyreducedccomparedvith LRC.

VC.vs.LRC

The implementationof VC_i aimsat investigatingthe ex-
tra overheadof maintainingthe views in VC andthefalse-
sharingeffect of applicationprograms.

FromTablel1 we know someapplicationssuchasT' S P
and @S, do not benefitfrom the implementationof VC_i
becausehereis no false-sharingffectin TSP andno re-
ductionin falsesharingin Q.S dueto theinaccurag of NRV
in the implementation.However, the performanceof VC_i
is not significantlyworsethanthatof LRC (0.7%worsefor
TSP, and0.8% worsefor )S). This demonstrateshat
theoverheadf view maintenancéncludingview detection



andview transition)is only atrivial portion of the expense
of thewholesystem.

As we mentioneckarlyin this sectionour currentimple-
mentationof VC removesary write/readfalse-sharingef-
fect,but doesnotremovethewrite/write false-sharingffect
asaresultof compromisewith the multiple-writer scheme
in TreadMarks.Thusthe RF'S shavedin Table1 is only
the reducednumberof pagefaultsdueto the reductionof
thewrite/readfalse-sharingffect. Amongthefour applica-
tions,only BT andW ater havethewrite/readfalse-sharing
effect,and6% of pagefaultsin BT aredueto thewrite/read
false-sharingffect. We have collectedthe total numberof
pagefaultsthataredueto false-sharingffectinsidecritical
regions,andtheresultsareshavn in Table2.

APP | TPF | RFS| TFS
TSP | 1002 0 58
Qs 3084 0 2

BT | 13963| 792 | 4347
Water | 12046| 3 6

Table2: Numberof pagefaultsdueto the false-sharingf-
fect

In Table2, T PF is thetotalnumberof pagefaults; RF'S
is the numberof pagefaultsthat are dueto the write/read
false-sharingffectinsidecritical regions;T F'S is thenum-
berof pagefaultsthataredueto all false-sharingffects(in-
cludingwrite/readandwrite/write false-sharinghsidecrit-
ical regions.FromTable2, we know thereducedwrite/read
false-sharingffectin our currentimplementatiorof VC is
only asmallportionof thetotal false-sharingffect (0% for
TSP, 0% for @S, 18.2%for BT, and 50% for Water).
Furtherresearchwill be neededo remove the write/write
false-sharingffectin VC implementation.

Exceptfor BT, however, the performanceof mostap-
plicationsis lessaffectedby the false-sharingeffect inside
thecritical regions,consideringheratio of thetotalnumber
of pagefaultsthataredueto the false-sharingffect inside
critical regionsto the total numberof pagefaults(5.8%for
TSP,0.06%for QS, 31%for BT, and0.05%for W ater).
Thusthereis not muchpotentialfor VC to furtherimprove
their performancef thefalse-sharingffectinsidethe non-
critical regionsis not considered. Detectingthe accurate
NRVs is animportanttaskto remove the false-sharingef-
fect inside the non-critical regionsandto further improve
the performanceof the applications.

6 Conclusion

In this paperwe have proposeda novel View-basedConsis-
tency(VC) modelfor DSM anddiscussedmportantissues
for its implementation.Comparedwvith otherDSM consis-
tengy models thismodelcanachiere dataselectiorwithout
userannotatiorandreducemoreof falsesharingeffects.Its
only consisteng requirementis thatall the dataobjectsin
aprocessosnew view mustbeupdatediuringview transi-
tion. Thefurtherrelaxationon consisteng requiremenen-
ablesVC to have moreroomfor optimizationin theimple-
mentationof DSM. TheVC modelcanguarante¢he same
executionresult as the SequentialConsisteng model for
data-race-fre@programs. Performanceesultshave shovn
thatfor all our applicationshe VC modeloutperformsthe
LRC model.We have alsodemonstratethattheextraover
headof view maintenancés trivial.

TheVC modelappeargo bethe appropriatdramenork
for future DSM implementationsinceVC hasthe potential
performanceadvantageo achieve the maximumrelaxation
of constraint®nupdatepropagatiorandexecutionfor data-
race-freeprograms. It is genericenoughfor the previous
modelsto be consideredaslimited versionsof the VC im-
plementationAs aconsequencit would appeathatfuture
implementatiorof DSM would bestbe devotedto optimiz-
ing dataselectionin theVC model.

Furtherresearctshouldbe carriedout underthe frame-
work of the VC model. (1) Accuratedetectionof NRVs.
Run-time and compile-timetechniquesneedto be devel-
opedfor the detection. Thesetechniquesredifferentfrom
previous work on compile-time optimization, e.g.[7, or
run-time optimization,e.g.[1§, which work at the level of
updatepropagationprotocol in LRC, insteadof the level
of a consisteng model. (2) Efficient view representation.
The currentimplementationusesa pageas the basicunit
of aview. A pageis too coarsefor the representatiorof
views andmay resultin propagatiorof uselessipdateson
the samepage.(3) Reductionof the write/write falseshar
ing. A new updaterepresentatioschemeyatherthanthe
single-writerandthe multiple-writer schemesis neededo
reducethewrite/write falsesharing.
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