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Abstract

In visual perception, finding regions of interest in a scene is very impor-
tant in the carrying out visual tasks. Recently there have been a number
of works proposing saliency detectors and visual attention models. In
this paper, we propose an extensible visual attention framework based on
MPEG-7 descriptors. Hotspots in an image are detected from the com-
bined saliency map obtained from multiple feature maps of multi-scales.
The saliency concept is then further extended and we propose a saliency
index for the ranking of images on their interestingness. Simulations on
hotspots detection and automatic image ranking are conducted and sta-
tistically tested with a user test. Results show that our method captures
more important regions of interest and the automatic ranking positively
agrees to user rankings.

1 INTRODUCTION

Selective visual attention is one of the most important function of the human
vision system. Our gaze can be directly oriented towards salient objects in a
cluttered visual scene. This is surely an attractive characteristic for artificial
vision systems, as selected attention gaining and shifting will enable efficient
pre-processing of the image and fast locating of the most important regions for
further processing. Automatic detection of salient regions within an image is
important to a range of scene analysis applications, such as landmark detection,
traffic and road sign recognition, and video surveillance. An area that has gained
a research focus is the modelling of visual attention in early vision, as shown in
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e.g. [1][2][3]. It has been suggested that saliency is computed in a pre-attentive,
bottom-up manner across the entire scene. Various feature schemes of colour,
intensity and texture contrast have been proposed to produce a saliency map
of the visual scene. On the other hand, it has been pointed out that visual
attention can also be biased by top-down, task-dependent cues [1].

The idea of using pre-attentive visual features to compute saliency maps has
been adopted in rapid scene analysis [4] and automatic video summarisation [5].
However, the concept of ‘saliency’ has been limited as image-based and defined
locally, and the saliency map merely consists of an array of local saliency values.

On the other hand, the rapid progress of content-based image retrieval
(CBIR) [6] research has resulted in a set of rigorously tested visual feature
descriptors obtained from very large-scale MPEG-7 core experiments carried
out world-wide. These MPEG-7 feature descriptors, defined on colour, texture,
shape and motion features, have demonstrated very good capabilities in model-
ing low-level visual similarity [7] as well as high-level semantics of image content
[8].

In this paper, we propose a visual attention model for image analysis built
on MPEG-7 colour and texture descriptors. We also extend the use of saliency
maps to calculate a global “interestingness” for an image so as to achieve image
rankings according to their visual interestingness. Such kind of image rankings
will be useful to organise large image collections and web search result sets, or
to prioritize image data for further analysis or processing.

The paper is organised in six sections. Section 2 reviews briefly the concept
of visual attention and summarises other research in the field of image saliency.
Section 3 introduces our visual attention model using MPEG-7 visual features.
The extension of the visual attention model for image ranking is proposed in
Section 4. Section 5 presents the simulation and the simulation results. The
paper is concluded in Section 6 with some discussion on future direction. The
main contributions of this paper are the MPEG-7 based visual attention model,
a novel approach to image ranking based on this model, and an evaluation of
image ranking methods using a user test.

2 RELATED WORK

2.1 Detection of interesting regions

The extraction of “interesting regions” using saliency has been used to model
characteristics of early human vision. It helps with efficient information extrac-
tion from an image and guides further object recognition processes. This is es-
pecially valuable as early vision processing is context independent and therefore
allows to derive image content descriptions without domain knowledge. In one of
the most influential work by Itti et al. [1], recent works on computational model-
ing of visual attention were reviewed and a bottom-up saliency-based framework
was presented. The framework incorporates early vision features such as inten-
sity contrast, colour contrast, orientation differences, and direction of motion.
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They also hypothesised that these features are integrated into one saliency map,
in which the combination of features determines the points that draw the most
attention. In [4] a system was implemented based on the framework, where
saliency points were presented in attended order. It was found that this model
can identify salient regions even when strong noise is introduced.

Among the recent works, Kadir and Brady [2] proposed to find corners in the
image and extract the optimal salient regions by maximising the local entropy
around the corner areas. A set of intuitive saliency features and weights were
used in [9] to extract regions of interest, but the integration of features was not
attempted. In [10], an evolutionary programming approach was introduced and
proven to work effectively even though with a high cost on computing time. In
[3] it was proposed to use directional features extracted by Gabor filtering to
find the most significant directions and select salient regions according to them.
They extend the saliency concept by ranking the salient regions, an approach
that has been used in image compression. In [11], salient regions in an image
are computed using the Euclidean distance between the RGB values of a pixel
and its neighbourhood. The salient regions are used to guide a robot’s vision
to interesting objects in its field of view. Colour contrasts in the LUV colour
space have been used to create a saliency map as well [12].

Although visual attention modeling usually poses an emphasis on the bottom-
up processes of feature extraction and saliency location, it has become obvious
that a more complete model of attention control must include top-down cues
generated from object or scene recognition [1]. Some recent works such as [13]
have been investigating the modeling of top-down attention bias in vision sys-
tems.

2.2 Image ranking

Apart from finding interesting regions, the calculated saliency of an image can
also be used to rank the interestingness of images. To our knowledge there
is little research on automatic image ranking or prioritisation based on image
saliency. In a NASA study, the prioritisation of Mars Rover images was validated
[14]. As there is only a limited bandwidth to send images from other planets
back to Earth, an automatic ranking of images can help to send back the images
with the highest scientific value. The ranking criterion however is a “scientific
value” which is specifically defined and judged by experts. Correlation analysis
was carried out so as to assess if rankings given by different experts agree to
each other.

As an important application, image ranking is closely related to image re-
trieval, where often a large number of images returned by image search engines
can be automatically ranked according to query conditions or some other crite-
ria. In a previous work, we used MPEG-7 feature descriptors to organise results
returned from contemporary image search engines according to visual similarity
[15]. In [16], an attention model was used which consists of saliency, face detec-
tion and query-dependent attention objects. Images were then cropped to the
most interesting regions and ranked according to the similarity of those regions.
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Another application of image ranking based on a visual attention model is
to select interesting frames in video. The visual attention model proposed by
[1] has been employed as part of a system for video summarisation in [5].

3 THE VISUAL ATTENTION MODEL

The visual attention model aims to describe the attention or saliency that an
image produces. Various features have been used in the literature to extract re-
gions of interest. Here we propose an extensible framework based on MPEG-7
visual feature descriptors. The adoption of MPEG-7 features is based on several
considerations. First, these MPEG-7 feature descriptors have been extensively
tested in content-based image retrieval studies, and their capabilities in mod-
eling low level visual similarity as well as semantic modeling have been proven
by CBIR researches. The generalisation ability of these feature descriptors is
therefore very promising. Secondly, such a framework can include bottom-up
early vision features as well as top-down task-dependent components such as
face detection and object recognition, since MPEG-7 includes visual feature
descriptors to support both feature extraction strategies. Being an extensible
framework, other features that can be used to create a feature map might be
included as well. The seperate feature maps are then combined and a global
saliency map is created. The framework is shown in Figure 1.

Figure 1: Extensible visual attention framework

Hereafter in this section, we describe the mechanisms of feature extraction,
feature map amplification and combination in our visual attention model.

3.1 Feature extraction

The bottom-up visual attention is guided by early visual features such as in-
tensity contrast, colour opponency, orientation, and direction and velocity of
motion. It is also noted that it is not the feature characteristics themselves but
the difference between a feature region and its neighbourhood that generates
attention. The MPEG-7 visual feature descriptors include multiple descriptors
for both colour and orientation features that have been rigorously tested in its
standardisation process. However, there is no feature descriptor that specifically
describes intensities, so we introduce our own intensity histogram descriptor as
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part of the visual attention model. Differing from [4], which calculates visual
features per pixel, MPEG-7 feature descriptors in our model are calculated from
images or image regions and the feature maps are obtained based on the differ-
ence between image regions.

For each feature descriptor, the saliency of a region is defined as the average
difference of a region to its neighbouring regions. In our attention model, regions
have a rectangular shape and the neighbourhood of a region is defined as the
four regions sharing an edge with the current region plus the four regions sharing
only a corner with the current region. To capture contrast on different scales
within the image, we apply a multi-scale approach. For each scale, the image is
divided into regions of different size. In our implemenation, we start at a region
size of 8 × 8 pixels and create smaller scales by enlarging the region size by a
factor of two. The scaling process stops if the next scale would contain less than
8 regions in x or y direction.

Given a region Rc, denote its neighbours as Rn ∈ Ω, n = 1, 2, . . . , N . De-
note the feature code of a region as f(R), where f corresponds to the feature
descriptor being used. The saliency value of Region Rc, defined on fS , is:

θf (Rc) =
∑N

i=1 DIST{f(Rc), f(Ri)}
N

. (1)

Here the distance measure DIST{.} is dependent on the feature descriptor being
used and will be defined individually for the descriptors given as follows. More
details about these MPEG-7 feature descriptors can be found in [17].

3.1.1 Colour features - Scalable Colour Descriptor

The colour descriptor used in our model, the SCD, is a colour histogram in
the HSV colour space that is normalised and encoded by a Haar transform.
Finally, adjacent bins are summed up to create a 128-bin histogram. Detailed
information about the extraction process and the distance computation between
two Scalable Colour Descriptors as defined in the MPEG-7 standard can be
obtained from [17, pp.198–201] which also includes a schematic diagram of the
SCD generation.

As described in Eq.(1), the saliency of a region is calculated as the average
difference between the region’s SCD and the SCD of regions in its neighbour-
hood. For this process, the image is divided into rectangular regions on each
scale. The SCD feature maps of each scale are then amplified using the process
described in Section 3.2.

3.1.2 Orientational features - Edge Histogram Descriptor

Orientations within images are observable as edges and textures. In this imple-
mentation, we use the MPEG-7 Edge Histogram Descriptor (EHD) as orienta-
tional features.

The EHD describes the local edge distribution within an image or image
region. It detects non-directional edges as well as four directional edge categories
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(vertical, horizontal, 45◦ and 90◦). To achieve information about localised edge
distribution, each input image or region is divided into 4x4 subimages. For each
subimage, edges that fall in one of the five categories above are counted into
five bins, which are then normalised by the total number of edge and non-edge
pixels within the subimage. Also, one global and 13 semiglobal edge histograms
are calculated from the local histograms to capture global edge distribution as
well.

To calculate the EHD feature map, we apply Eq.(1) to the EHD of each
region on all scales. The distance measure between two Edge Histogram De-
scriptors takes into account the bin values for the local edge histograms hA(i)
and hB(i), the global edge histograms hg

A(i) and hg
B(i) and the semiglobal edge

histograms hS
A(i) and hS

B(i) which are all calculated from region A and B, re-
spectively. The indices equal the number of bins, which means there are 80 bins
locally (16 subimages × 5 edge types), 5 bins globally and 65 bins semiglobally
(13 semiglobal groupings of subimages × 5 edge types). To equalise weights,
the global histogram distance is multiplied by a factor of 5, resulting in the
following distance metrics:

DIST(EHDA,EHDB) =
∑79

i=0 |hA(i)− hB(i)|
+5×

∑4
j=0 |h

g
A(j)− hg

B(j)|
+

∑64
k=0 |hS

A(k)− hS
B(k)|

(2)

3.1.3 Intensity features - Intensity Histogram Descriptor

As the MPEG-7 visual feature descriptors do not include intensity descriptors,
we need to define our own intensity histogram descriptor (IHD) for the visual
attention model. Intensity differences can be calculated based on different fea-
tures such as luminance or brightness. For the sake of simplicity, we compute
intensity as the pixel value of the grey-scale transform of an input image. How-
ever, it can be obtained during the process of calculating other colour descriptors
such as SCD, as the V value in the HSV colour space already gives the intensity
value.

A grey-scale image is divided into regions for each scale and the IHD his-
togram is calculated for each region. The intensity histogram consists of 16 bins
that represent equal parts of the grey-scale value space between 0 and 255. For
each region, the pixels are sorted into the according bins and then normalised
by the total number of pixels in this region, so that each IHD bin describes the
percentage of grey values in this scale within the region.

The IHD feature map is created by using IHD features for Eq.(1). The
distance measure between intensity histograms IHDA and IHDB , similar to the
distance measure for the EHD, is defined using the city-block distance:

DIST(IHDA, IHDB) =
15∑

i=0

|IHDA(i)− IHDB(i)| (3)
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3.2 Feature map amplification

Early vision attention is triggered by feature contrast. The stronger the con-
trast, the stronger an area of an image “pops out”. As we are extracting multiple
feature maps on different scales and for different feature descriptors, we will ob-
tain different maxima for each feature map. To accurately simulate the popping
out of areas of strong contrast, we want to promote feature maps with strong
maxima. In [18], four feature combination strategies were compared, one of
them being global non-linear normalisation with following summarisation. This
strategy was described as computationally simple yet a good approximation to
human saliency and is used in our implementation.

3.3 Feature combination

After obtaining the multiple-scale feature maps for colour, orientation, and in-
tensity features as described in the previous sections, these maps can now be
combined in order to generate a saliency map to represent the attention that
parts of this image trigger.

First, the saliency maps from all scales are integrated into one map for each
descriptor using the feature map amplification described in Section 3.2. After
that, the three descriptor feature maps are amplified again and then summed
to one global saliency map. Upon evaluating the created feature map, we can
now locate the maxima and extract the most interesting spots from the image.
The overall computational diagram is shown in Figure 2.

An example of the different feature maps and their combination to one
saliency map, using a “coke can” image for example, can be found in Figure 3.

4 AUTOMATIC IMAGE RANKING

An “interest value” based on image saliency can be used as a ranking criterion
for image sets. Previously, it has been proposed to rank images based on their
saliency maps [5]. Ma’s method [5] proposes to use a saliency map to calculate
an attention value that takes position, size and brightness of salient regions
into account. There is, however, a problem in this approach, since feature
maps maps are created for each feature channel and normalised to grey-scale
images dependent on the feature map. The final saliency map is obtained by
integrating different normalised feature maps, hence there is no guarantee that
saliency maps of different images can be accurately compared. Also, a Gaussian
template was used to assign lesser weight to the outer regions of the image.
Although it is generally accepted that humans perceive the centre of the image
as more important, there are applications in which the outer regions can bear
just as much information, for example surveillance. In this study, we assume
that all image regions are equally important.

In order to create a saliency value that represents the interestingness of an
image relative to the other images within a given image set, we calculate a
global scalar value Θ for each (not-normalised) feature map of the image by
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Figure 2: Diagram for hotspots detection.
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(a) SCD feature map (b) EHD feature map (c) IHD feature map

(d) Saliency map

Figure 3: Feature maps for “coke can” test image

first summing up the average regional distances and dividing them by the total
number of regions, and then averaging the attention values for each scale over
the number of scales:

Θf =
1
M

M∑
s=1

∑Ns

i=1 θf (s)(i)
Ns

. (4)

Here the feature code f is one of SCD, EHD and IHD, θ(s)(i) is the saliency of
region i on the respective feature descriptor f and scale s, while i runs from 1
to Ns (the number of regions for scale s) and s runs from 1 to M (the number
of scales).

After calculating saliency values on each feature channel respectively, we
can then normalise each channel over the whole image set. Each channel is
normalised between 0 and 1. This step allows us to combine the feature channels
which use different value spaces but also to keep the original distance ratios
between images. Finally, the single feature values are combined to an overall
Saliency Index (SI) Θ:

Θ =
ΘSCD + ΘEHD + ΘIHD

3
(5)
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5 SIMULATIONS

5.1 Simulation setup

A system is constructed to detect hotspots in images as well as to rank images
according to their saliency values. The system is implemented in C++ based on
the MPEG-7 eXperimentation Model reference implementation [19]. A diagram
of the system is shown in Figure 2. Image ranking is implemented in two ways,
first using the global saliency values as described in Section 4 and second using
the combined saliency map.

We use a test image database that includes 37 images, of which 13 were taken
from the University of Otago Library image series [20], and 24 from the iLab
Database [21]. Of the 24 iLab images, 6 images were part of the “autobahn”,
“coke” and “triangle” image sets [1] respectively, and 6 images were taken from
the “outdoor” image set [4].

The ranking of images according to their perceived interestingness can be
highly subjective. An ideal test bed should therefore involve a good user study.
It has to be noted that user tests are characterised by limitations such as the
number of available subjects, their time constraints and fatigue as well as finding
a suitable test design. We have undertaken a user study with 26 subjects for
image ranking evaluation, which gave some promising results that we present
as follows.

5.2 Evaluation of interesting spot detection

To assess the detected interesting spots, results obtained using our method are
compared with those of ezvision [22], an implementation of Itti’s model of visual
attention [1]. As this model has been validated by extensive user tests, we can
use the regions of attention found by ezvision as a good reference point.

We calculated the first four hotspots using our model and then had ezvision
calculate two sets of results which we used as a reference for comparison: 1)
the first four attended regions and 2) the first eight attended regions. We used
the two sets to compare how many of our interesting spots agree with the first
attended regions from ezvision. A hotspot was counted as agreeing with an
attended region if they cover the same or similar regions.

As we see, the agreement is quite variable over the image sets as shown
in Table 1. The average agreement of the hotspots with the first four attended
ezvision regions is at 46%. The average agreement rises to 58% when we compare
the hotspots with the first eight attended regions. The “library1” set shows a
significantly lower agreement than the average value. This might be due to the
complexity of the images. In particular, it contains a large number of objects
of similar visual characteristics. Figure 4 shows an example from the “library1”
test set where the interesting spots show only little agreement with the attended
regions calculated by ezvision. It can be seen that our approach finds more
significant spots, for example groups of people. If the “library1” set is taken
out as an ‘outlier’, the average agreement with the first 8 attended regions will
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Image sets Agreement Agreement
(First 4 Regions) (First 8 Regions)

“coke can” 79% 79%
“library1” 19% 19%
“library2” 42% 56%
“outdoor” 46% 71%
“traffic” 38% 54%

“triangle” 54% 67%
Average 46% 58%

Table 1: Agreement of interesting spots with attended regions calculated by
ezvision

rise to 65%, which suggests a reasonable agreement between ezvision and our
method in general.

Interesting results are obtained also on images from other sets, as shown
in Figure 5, where the first four hotspots are compared with the first four at-
tended regions reported by ezvision side-by-side. For the “traffic” image, our
approach manages to capture more traffic signs. For the “triangle” image, the
red triangle was missed by the ezvision method, but picked up by our method.
These differences can be explained with the different methods of calculating the
saliency map, especially the feature schemes used. Without aiming at biological
plausibility, we do not simulate inhibition of return for attended regions or alter
the saliency map when locating the next hotspot.

As the perception of the “interestingness” of an image is very subjective, it
is hard to assess the accuracy of our method in locating interesting spots solely
based on the comparison to another method. However, in comparison with
ezvision, our approach based on MPEG-7 features does give comparable and
in cases even better performance, presenting salient regions of higher semantic
significance, as indicated in the examples given.

The robustness of our approach is also tested with noise-added images. This
is shown in Figure 6, where an example is given for an “alps” image from the
“outdoor” image set. Noise was generated from a uniform distribution between
-30 and 30 and added onto the colour values of image pixels.

5.3 Evaluation of image ranking

In a second test case, we compare the image rankings derived from two different
methods with the rankings from users. The image test sets are the same as used
to assess the interesting spots. In our main study, 26 people were interviewed.
The users were given the 34 images, which were divided into six groups, and
asked to rank them according to the perceived interest.

To compare the results from the user test with computed rankings, we need
to establish whether viewers agree on a common ranking and how significant
this common ranking is. This problem is known in many situations where sets
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(a) First four hotspots (b) First four attended
regions

(c) First eight attended
regions

Figure 4: lib1d (from the “library1” set)
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(a) “traffic2”: MVA (b) “traffic2”: ezvision

(c) “traffic3”: MVA (d) “traffic2”: ezvision

(e) “triangle1”: MVA (f) “triangle1”: ezvision

Figure 5: Comparison of the first four hotspots.

13



(a) alps

(b) alps with noise

Figure 6: Robustness of hotspots location in presence of image noise.

of objects are rated by multiple judges, for example figure skating competi-
tions or product comparisons. The overall mean of average ranks is defined as
R = 1

2 (s+1), with s being the number of judged elements. One way to measure
the overall closeness of a calculated average ranking to the overall mean is Fried-
man’s statistic [23], which for example has been applied to assess the statistical
significance of wine taste rankings [24]. Friedman’s statistic is defined as

Q =
12N

s(s + 1)

s∑
i=1

[Ri −
1
2
(s + 1)]2, (6)

where N is the number of judges, s the number of judged cases and Ri the
average rank of case i. Q is high when the average ranks Ri are significantly
different from each other. This leads to our first hypothesis to be verified:
H1 The average rankings of each image in the test set are significantly
different from each other.

Table 2 shows Q for the six image sets used in our user test calculated for
N = 26 and s = 6 for “coke”, “outdoor”, “autobahn” and “triangle”, s = 4
for “lib1” and s = 9 for “lib2”. For large numbers of N , the critical values c
for Friedman’s statistic can be approximated with a χ2 distribution with s− 1
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degrees of freedom. The probabilities of Q being greater than or equal to the
critical value c are stated in Table 2. Hypothesis H1 is true for all image sets
except “triangle” with values for Q that are significant at the 99.9% level. The
“triangle” set has a low value for Q, which also has a significance of lower than
90%.

Image set “coke” “lib1” “lib2” “outdoor” “autobahn” “triangle”
Q 25.605 16.292 62.561 40.879 92.374 9.07
W 0.197 0.209 0.301 0.314 0.711 0.07

P (Q ≥ c) 0.000 0.001 0.000 0.000 0.000 0.106

Table 2: Friedman’s statistic and Kendall’s W for user rankings of test image
sets

These results indicate that the images in each image set are rather ‘rankable’,
except those from the “triangle” set. After confirming this, we can proceed
further to examine how well the average rankings represent the opinion of single
users. A test for the overall agreement of judges’ rankings is Kendall’s coefficient
of concordance W , which is statistically equivalent to Friedman’s statistic [25].
Kendall’s coefficient is computed as

W =
s∑

i=1

(Ri −R)2
N
12 (N2 − 1)

, (7)

where Ri is the average rank for case i, R the overall mean of average ranks
and N the number of judges. W is ranging between 0 and 1 with 0 being
complete disagreement and 1 being complete agreement of judges. Like Q, W
is distributed as χ2 with s− 1 degrees of freedom for large N .

Using the values for W in Table 2, we evaluate the second hypothesis:
H2 Users strongly agree on the image rankings.

Simular to Q values, the values of W for almost all test sets indicate a strong
agreement among users and are significant at the 99.9% level. Therefore Hy-
pothesis H2 can be accepted for these cases. The only exception is again the
“triangle” set. This is however not surprising, given the finding that Hypothesis
H1 does not hold for the “triangle” set. On the other hand, it was expected
to show a low agreement as its images present a red triangle in very different
settings. This makes it very hard for a viewer to establish a metric on which
to rank the images. One user also mentioned how he associated the triangles
with accident scenes, which influenced his ranking. While it is true for any test
case that interestingness is a very subjective concept and that every viewer has
his own interpretation of image content influenced by cultural and educational
background, personal interest or aesthetic perception, this seems to be particu-
larly strong for the “triangle” test set. This set of images therefore is omitted
in the comparison with computed rankings.

Two image ranking methods were compared with the user rankings. To
compute the saliency ranking of images and compare it with the average user
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rankings, we use the method as described in Section 4 to rank on the overall
saliency indeces calculated from multiple feature maps. This method is then con-
trasted with the Ma’s ranking method based on saliency maps. These saliency
maps are generated by ezvision.

The third hypothesis we want to test on is:
H3 The computed rankings are positively correlated with the user
rankings.

Both methods of automatic ranking are assessed on how well the rankings
generated agree with the average user ranking. We use the Spearman Rank
Correlation Coefficient [23] to calculate the agreement between two rankings of
the same data set, in our case a set of images. Let X = {x1, . . . , xn} be a set
of n images, then Ai and Bi are the rank of xi according to Ranking A and B,
respectively. The Spearman rank correlation coefficient is defined as

r = 1− 6
n∑

i=1

(Ai −Bi)2

n(n2 − 1)
(8)

The correlation coefficient ranges from -1 to 1, with -1 indicating complete
disagreement and 1 complete agreement of two rankings.

The correlation coefficients between the mean user rankings and the two
automatic methods are listed in Table 3. On average, the method based on the
saliency index of our visual attention model (noted as “SI-MPEG7”) shows a
correlation with the user rankings of 0.55, while “MAP-ezvision”, which is based
on the ezvision saliency map, shows an average correlation of 0.35. The difficulty
of simulating user rankings computationally is shown by the fact that only two
correlations are significant at the 99% and one at the 95% level. Correlations
in Table 3 that are significant at the 95% and 99% level are marked with ∗

and ∗∗, respectively. Despite there are a few weaker cases such as “library1”
and “outdoors”, we believe Hypothesis H3 can be accepted for our SI-MPEG7
method with an average correlation coefficient of 0.55.

Image set MAP-ezvision SI-MPEG7
“coke” −0.029 0.928∗∗

“library1” 0.8 0.2
“library2” 0 0.65
“outdoor” 0.086 0.143

“autobahn” 0.943∗∗ 0.829∗

average 0.36 0.55

Table 3: Correlation of mean user rankings with the automatic ranking methods

6 CONCLUSIONS

In this paper, we introduced an MPEG-7 based visual attention model which
we used to select interest hotspots and to rank images according to perceived
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interestingness. A comprehensive comparison of user rankings with rankings
achieved by two computational methods indicates that our method ranks im-
ages closely to the users’ perception of relative interestingness. Our approach of
image ranking based on the attention model shows a higher average agreement
with user rankings than the method based on ezvision’s saliency map. Also,
the correlations between MAP-ezvision and user rankings showed higher vari-
ances between the different image sets, ranging from -0.029 to 0.943, while the
performance of SI-MPEG7 was all positive and stabler.

An interesting observation in the user tests was the time taken to rank
images. Although not measured, the time needed to rank images seemed to
increase significantly when people were asked to rank the nine images of the
“lib2” image set. Psychology research has indicated that people’s minds can
only hold about four objects they have just seen [26] and that this capacity varies
across individuals [27] which will affect ranking of larger image sets. Further,
it will be become harder to establish differences and rank them with growing
numbers of images. This is where the great advantage of automatic image
ranking lies - in organising large collections that would be too time- and work-
intensive for humans to process.

So far we have only made use of several colour and texture descriptors in our
model, but this model can be extended using more MPEG-7 descriptors, e.g. of
shape and motion features. Other task-related or customly defined features can
also be introduced into the extensible visual attention model, hence enhancing
the reliability of hotspots detection and image ranking. Object recognition can
be conducted to simulate the top-down bias for visual attention.

The calculation of MPEG-7 descriptors is a time consuming task that is
repetitively performed on multiple image regions. This makes our model well
suited for parallel calculation. In further development we plan to parallelise the
computation process of the attention model. This will hopefully leverage the
efficiency of our visual attention model so that it can be used to detect and rank
video key-frames in real-time for the task of automatic video summarisation.
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