> NOMS2008) <

Using Trust for Key Distribution and Route
Selection 1n Wireless Sensor Networks

Nathan Lewis, Noria Foukia, and Donovan G. Govan,
Information Science Institute,
University of Otago PO Box 56, Dunedin New Zealand

{ndlewis, nfoukia, dgovan}@infoscience.otago.ac.nz

Abstract— This paper presents a new approach of dynamic
symmetric key distribution for encrypting the communication
between two nodes in a Wireless Sensor Network (WSN). The
distribution of a shared key can be performed by any sensor
node and does not always require that it is performed by the base
station (BS). Each node can be selected by one of its neighbor
nodes in order to distribute a pair-wise key for a communication
between two nodes. The selection is based on the local
computation of a trust value granted by the requesting nodes.
This scheme considerably reduces the cost of communication
between the BS and the nodes when setting up pair-wise keys
between neighboring nodes. This paper also describes a dynamic
route selection mechanisms based on trust and cost, that each
node performs to route data to neighbor nodes and to the BS.

Index Terms— Key Distribution, Trust, Wireless Sensor
Network, Route Selection.

I. INTRODUCTION

Wireless Sensor Network (WSN) consists of spatially

distributed autonomous nodes called sensors that monitor
physical or environmental conditions, such as temperature or
pressure at different locations [1]. They are used in a variety
of applications, such as climate sensing and control in office
buildings. The privacy and security issues posed by WSNs are
currently crucial issues of WSN research [2]. There are
different ways of compromising sensitive information in
WSNs. For example, an attacker can capture traffic from
individual sensor nodes, re-program nodes, or introduce her
own sensor nodes in the network to be accepted as legitimate
nodes. After taking control of sensor nodes, an attacker can
alter the sensor data and/or extract private information.
Because of the physical characteristics of a sensor network
that enables large data collection [2] and makes the sensor
information available from remote access, an attacker does not
require to be physically located at a sensor node, thereby
aggravating the security problem. To minimize this security
issue, this paper proposes an efficient dynamic distribution
mechanism of pair-wise keys based on the notion of local
trust. Any node in the WSN can be selected by one of its
neighbor nodes in order to distribute a pair-wise key for
encrypting the communication between two nodes.

Establishing a trust context will ensure that only trusted nodes
within the WSN can share sensed information.

While this method attempts to ensure the reliability of the
WSN, it does not guarantee that recorded data cannot later be
compromised. For this reason, our approach based on sensor
nodes allocating keys should only be used in WSNs where it
is less important to keep historical data secret and more
important that current communication is reliable: that is
detecting possible intruders or weak nodes under attack.

Moreover, in order to send data to the base station (BS), a
sensor node will select the best route to the BS via one of its
neighbors (that it shares a key with). This paper describes a
dynamic route selection mechanism based on trust, that each
node performs to route data to neighbor nodes and to the BS.

The structure of the paper is as follows: Section II describes
our shared-key distribution protocol and explains how our
approach is different from existing approaches of pair-wise
key distribution performed by the BS. Section III explains the
dynamic trust-routing protocol that we propose. Section IV
describes how trust is maintained in the trust-based routing
protocol., and finally in Section V, we provide a description of
future work and discussion.

II. THE SHARED-KEY DISTRIBUTION PROTOCOL

A. Neighbor-based shared-key distribution

1) BS vs. neighbor-based shared key distribution

There are many ways of defining trust [7][8]. We define the
notion of two "trusted" nodes as two nodes that share a private
unique symmetric key and as far as each of them are aware,
both nodes have not been compromised. Trusted nodes can be
immediate neighbors in the radio range of the requesting node
or multi-hop nodes not in the radio range. There are already
several papers about using the BS to create keys that pairs of
nodes share to talk to each other [3][4][6]. In all of these
works, the basic idea is that each node has a unique symmetric
key with the BS and every time that a node A wants to talk to
node B, it asks the BS for some information about node B. For
example, the BS may return a message confirming that node B

> NOMS2008) <

is trusted and a token' that node A can show to node B so that
node B knows that it can trust node A. Kerberos is one such
protocol [5].

From our reading of the different works dealing with pair-
wise key distributions in sensor networks, it has been
observed that they all require the nodes to communicate with
the BS. This means that in terms of communication cost, if
each node of the sensor network has d neighbors (d is the
average degree’ of nodes in the sensor network) and there are
N nodes in the sensor network, then the cost to set up all pair-
wise keys between all neighboring nodes will be N -d
communications between the BS and the nodes. This creates a
large amount of network traffic which is not desirable in a
WSN. An argument that differentiates our approach is that not
every node has to check with the BS before it can set up a
pair-wise key with a new neighbor, if it can get the key
directly from one of its already trusted neighbors. Consider
the case in Fig. 1 where, the BS already trusts A, B and C. A
and B are allocated a private unique pair-wise symmetric key
(Kag) by communicating with the BS, as are A and C (Kxc).
Instead of requesting the BS to provide a key when B and C
want to communicate, they can be allocated their new pair-
wise symmetric key by communicating with A, without the
need to check with the BS.

The way it work is as follows: Node B wants to
communicate with node C. B sends a message to all of its
trusted immediate (in the radio range of the requesting node)
neighbors asking them if they trust node C. If a trusted
neighbor A replies that it does, B then asks A to allocate them
a new pair-wise symmetric key Kgc, as described above with
the direct communication with the BS. If no neighbors reply,
B has no option but to ask the BS (perhaps through multiple
hops) to allocate the key.

In the present scheme, the cost of communications is
improved by a factor of d with N communications with the BS
needed instead of N -d as in the previous scheme. Initially,
each node needs to establish a pair-wise key with one other
neighbor via the BS. Later, a pair of nodes can establish a
pair-wise key via any trusted neighbor that they have in
common. Moreover, considering the physical distribution of
nodes, most nodes are far away from the BS. Rather than
having the majority of nodes using multi-hop communications
to establish keys with each of their immediate neighbors, they
only once need to use long distance multi-hop communication
to set up their first local trust relationship and then all further
trust relationships are established with single-hop
communications (immediate neighbor).

A token is a packet of information provided by a node that can show
evidences of authority, validity or identity.

% The number of overall immediate neighbors of a node is called its degree
d.

BS
O
AN
\\\\
" 5
8 | P g (o)
@ T
B s -0
g
A A
__ . Keyallocationby BSfor | -+ Key allocation by A for
communication between AB Communication between BC
,,,,,, » Key allocation by BS for

communication between AC

Fig. 1. BS-based key-distribution vs. Neighbor-based key distribution
2) Protocol description

To calculate the initial trust, suppose that we have 3 sensor
nodes A, B and C. Node A is the allocator of the key and has
trust values TN4_ g and TN_,c. B has a trust value TNg_,,. C
has a trust value TN¢_,. B can calculate the new trust value
TNg_c using TNg_,4 and TN, _,c using some local function. In
our approach we simply multiplying the values together, i.e.
TNp_Lc=TNp_A.TNA c. Multiply works well for limiting
cases, resulting in TNp_,=0 if either TNg_,,=0 or TN, =0
and resulting in TNp_,c=1 if TNg_,o=TN,_c=1. It also results
in sensible initial trust values with other values for TNz_,, and
TNA_,(}

At the beginning of shared-key distribution protocol, each
node sends a Hello message. Nodes that hear a Hello message
record the address of the sending node in their Neighbor table.
A BS that receives a Hello message will immediately send a
Key message to that node. This Key message informs the node
that the BS is within radio range. Once a node has a route to a
BS, it begins to look through its list of neighbors for any
neighbor that it does not yet have a shared pair-wise key. In a
standard Kerberos-based [5] system, the node would then ask
the BS for a pair-wise key that it can use to securely
communicate with that neighbor (the “zarget”). Here instead,
the requester node will send out an Allocator Request
message. If any immediate neighbor shares pair-wise keys
with both the requester and the target then that neighbor (the
“allocator”) can reply with an Allocator Reply message. If no
neighbor replies to the Allocator Request message before a
timer has expired then the requester has no choice other than
to send a Key Request to its BS (note that each node must
have at least one key allocated to it via a BS before it can
begin requesting keys with other neighbors). However if an
Allocator Reply message is received then the requester can
send a Key Request message directly to allocator. When a
node or BS receives a Key Request message, it generates a
new random key and sends it to the requester in a Key Reply
message. The requester receives and records the new pair-

> NOMS2008) <

wise key and creates a Key message that it sends to the target,
including a copy of the token that was in the Key Reply
message. The Key message is received by the target and it can
use the token to verify that the new pair-wise key came from
the trusted allocator.

B. Simulation, results and analysis

The neighbor-based shared-key distribution has been
simulated using the OMNet++ simulator [9] in C++ (see Fig.
1). To measure the efficiency of the algorithm, simulations
were run to record the total number of packets sent by all
nodes. These include Hello messages, Allocator Request and
Reply messages (of which there are none when the BS
performs all key allocations), Key Request and Key Reply
messages (counted once for each hop from the source to the
destination) and Key messages.

We compared the neighbor-based shared-key distribution to
distribution of pair-wise keys performed only by the BS (see
Fig. 1). In our simulations, we had one BS in the center of a
square region which contained randomly scattered nodes (see
Fig. 2). The size of the area was increased in proportion to the
number of nodes to keep a consistent average node density.
The experiments were repeated with average node densities of
10 and 15. Each simulation ended when all nodes had
acquired pair-wise keys with every one of their radio-range
neighbors. The results are the averages of each of the 20
iterations.

{WSN) wsn

2| =] @l ulea MM @) 2|1

[Wewshwan id=1) (puotoz7ssn)

- ——

d= Sval!
ok

A
Soa

,4";,\:-
h \g‘

Fig. 2. WSN simulation interface with one BS and 50 sensor nodes

The objective of using the neighbor-based shared-key
distribution scheme was to reduce the number of
transmissions required while forwarding additional Key
Request and Key Reply messages to and from the BS. The cost
of this is the number of transmissions required to find out if an
immediate neighbor would be able to perform the key
allocation, rather than having to ask a BS. We found (see
Fig.3) that when there are a small number of nodes, the

overhead of Allocator Request and Allocator Reply packets
exceeded the savings from reduced Key Request and Key
Reply forwarding. Nodes that are only a few hops away from
the BS send more transmissions with the proposed scheme
than with the simple BS distribution scheme. But the proposed
scheme scales well with increasing network size. As the
number of nodes increases, the proportion of nodes that are far
away from the BS increases. Beyond a certain network size,
our method may be able to give a substantial performance
increase which is appropriate for many application of WSNs.
The threshold and savings depend on the average node
density. From these results, we can see that the lower the
density, the smaller the network size needs to be, before we
begin to see the benefits of using our algorithm. Also, the rate
of increase in number of transmissions per node slows down
as the number of nodes increases when using our algorithm.

—a— Key Distribution by MNeighbors - Degree = 10
—4— Key Distribution by BS - Degree = 10
—a— Key Distribution by MNeighbors - Degree = 15
—i— Key Distribution by BS - Degree = 15

5 9
o G0 F____:_/_____fa
2 70 -
£ @ .,__f"'// —a
g £ 50 R
£3 e
e =
5
E 10
Z 0

100 200 00 400 500

Number of Nodes

Fig. 3. Number of transmissions/node required for all nodes to share a key
with their trusted neighbors.

III. DYNAMIC TRUST-BASED ROUTING PROTOCOL

A. Routing behavior

In a simple WSN, data is routed from the nodes to the BS
and global maintenance messages are flooded from a BS to
the nodes. When a node sends a request for information to the
BS a route must be maintained to allow the reply to be sent
back. In more complex situations a node may wish to send a
message to a specific node, perhaps for data aggregation.

We expect our algorithm to exhibit the following properties:

e If a route will not succeed (there is some node on the
route that has an attributed trust value of 0.0) then nodes
will not use that route (trust value is between 0.0 and 1.0).

e The algorithm should avoid loops when a node is
selecting a new route.

e The algorithm should minimize the overhead of route and

> NOMS2008) <

trust information that nodes are transmitting to maintain
trusted routes to the BS.

B. Computing the trust and cost of a route

Node A use Formulas (1) and (2) to computes the trust
TRA_p_ps and cost CRs_p s of a route through node B to
BS (the destination may also be any node other than the BS)
by combining the trust TN, g (trust that node A grants to
node B) and CN,_,p (cost to transmit directly to B) that it has
for node B with the trust TR z_,gs and cost CR z_,gs that node
B has broadcast (see Fig. 4).

TR s = min(TN,_,, TR g_,ps) (D)
CRA_p-ps =CNj_g + CRp_gs (2

Fig. 4. Trust and cost parameters to compute the trust of routes.
1) Choosing between two routes

A node chooses a route according to the cost of a route as
well as its trust of the route. Cost can have any value > 0. For
simplicity, the cost for transmission from one node to an
immediate neighbor is 1 in our simulations, but any metric
may be used, such as latency or the radio power required to
reach the neighbor. A node wishes to minimize the cost while
maximizing the trust of the route it chooses to use.

Suppose that node A is given the choice between two routes
(to the BS or any other node). For simplicity we call these
routes Rg and R¢ with trust values TRg and TR¢ and costs
CRp and CRc respectively; there are four cases to consider:

e [f TRp=TR(then choose the cheaper route.

e [f CRp= CR(then choose the more trusted route.

e If one route is more trusted and cheaper than the other
route then choose that route.

e [f TRg > TR¢ and CRp > CRc then the node must have
some way of deciding if it is more important to find a
more reliable route or a cheaper one. The choice should
depend on both the cost and the trust.

According to Equation (3), we propose to take the trust and

cost of two routes and compare the cost of trying and failing
with one route vs. trying and failing with the other. Let Eg be
the Expenditure of choosing Rg. Then Ej is calculated as:

Ep=CRg + (1-TRp).CRc 3)

We assume that (1-TRg) is proportional to the probability that
using route Ry fails.

Similarly,
Ec =CRc¢ + (1-TR¢).CRp 4)

Comparing Eg to E, the route with the smaller Expenditure is
chosen by A.

We can test the formula and see that we get the same result as

earlier:

e If TRE=TR then the cheapest will always have a smaller
Expenditure.

e If CRg=CRc then the most trusted will always have a
smaller Expenditure.

e If one route is more trusted and cheaper than the other
route then the Expenditure will always be smaller for this
route.

2) Choosing between more than two routes

We can compare all "pairs" of available routes using the
method listed above. There is a potential problem: what if
node A is given the choice between three routes Rg, R¢ and
Rp where Eg < Ec, Ec < Ep and Ep < Eg? In this situation
there is no overall best route. We have tested this empirically
and found that for all possible values of TRy, TR¢, TRp, CRg,
CRc and CRp there is always one route that has a smaller
Expenditure when compared with the other two routes, except
in trivial cases such as when two or more routes have the same
TR and CR or when CRg= CR-=CRp=0.

In order to compare all the routes to find the best one, a
node doesn't need to compare all pairs. It only needs to
compare two routes and discard the route with the higher
Expenditure until it has eliminated all but one route, which is
its best choice.

3) Avoiding loops

Our method of selecting a route to use does not guarantee
that loops do not occur. When node A changes the trust or
cost for a neighbor or route, it would immediately choose a
new best route from all those it has available. But the best
available route may contain node A. Such situations occur
because the change in trust or cost needs to be transferred to
node A’s neighbors, which would then be aggregated into
their route trust and cost values and then transmitted back.
Even then there is a potential for loops to occur due to

> NOMS2008) <

synchronization. To prevent these problems, we had the node
send a Route Test message before using or broadcasting an
updated route. The Route Test message is sent to the
destination using the route to be tested. If a node or BS
receives a Route Test message then it replies with a Route
Confirm message. If a Route Confirm message is received
then the node can start using that route and transmit a Route
Update message to all neighbors. If a Route Test message
comes back to the node that it originated from then the node
knows that using that route will cause a loop, so it excludes
that route and chooses a new best route from those it has
available.

Fig. 5 show the simulation interface of the dynamic trust-
based routing with four BS and 50 nodes tracing their route to
their respective BS.

N
=

N

VN
R\
=N

e :
i P
vl

ot N, |
host41] = «—17‘1;("%?- w

Fig. 5. Dynamic trust-based routing with four BSs.

C. Simulation, results and analysis

We implemented our algorithm and ran a number of
simulations. We occasionally observed short (two-hop) loops
or routes that were obviously not optimal (e.g., node A routes
through B which then routes through C, when node A could
have routed directly through node C) but these were caused by
routing messages failing to reach nodes (due to collisions) and
we found that the network rapidly returned to a loop-free and
efficient state.

Table.l1 and Table.2 show the average number of
transmissions per node to perform routing updates in two
situations. The first simulations are with no mechanism for
change in the trust and cost values of nodes, thus routing
updates only occur when shorter routes are detected during the
initial key setup. In the second test, each time a node sent a
certain number of messages (500), that node increased the cost
for other nodes to route through it to the BS by sending a
Route Update message with an increased cost (CR increased

by 1). Each simulation (topology with 100, 200 and 300
nodes) has been run 20 times and the results have been
averaged over these 20 iterations.

TABLE I
AVERAGE NUMBER OF MESSAGES PER NODE
WITH DIFFERENT SIZE OF WSN (100, 200, 300) AND NO CHANGE IN COST AND

TRUST
Type of Messages 100 200 300
CreateRoute
TestMessage 1.92 2.01 1.89
ForwardRoute
TestMessage 3.67 5.9 7.42
ForwardRoute
ConfirmMessage 3.64 5.83 7.29
CreateRoute
UpdateMessage 0 0.01 0.04
TABLE II

AVERAGE NUMBER OF MESSAGES PER NODE
WITH DIFFERENT SIZE OF WSN (100, 200, 300) WITH COST ADJUSTED

Type of Messages 100 200 300
CreateRoute 291 3.82 13.26
TestMessage
ForwardRoute
TestMessage 5.72 11.69 64.72
ForwardRoute

ConfirmMessage 5.15 10.31 43.06
CreateRoute

UpdateMessage 0.25 0.69 3.62

IV. MAINTAINING TRUST

This section explains other mechanisms that have been
added to the trust-based routing protocol to adjust the trust
based on the following criteria:

e The the age of the trust values that a node has for each
neighbor (TN).

e The direct behavior of a neighbor node.

e The reputation of a node provided by neighbor nodes.

A. Decay of trust

If a node does not receive any new information from a
neighbor for a significant period of time (such as a missing
ack packet acknowledging that a packet has been received), it
should become less confident in its estimate of the trust value
granted to this neighbor with increasing time: high trust values
should decrease, and low trust values should increase
(gradually correcting a mistake in labeling benign node as
malicious or acting in an inappropriate way). For this reasons,
trust in a given node (named 7 here instead if 7N for
simplicity) slowly decays exponentially towards an
intermediate default value according to Equation (5),

> NOMS2008) <

-t

T =Ty+(a-Ty)-|1-e'
©)

where T is a trust value at a given time ¢, 7 is the initial
trust value, « is the default trust value (& could chosen based
on different characteristics and configurations of the WSN
such as the type of applications, the type of sensor nodes, the
topology of covered areas, etc., and 7, is the time constant for
the decay by 0.63 (i.e., 1-e ') towards the default trust value.

B. Reward and punishment

A good behavior is defined as a behavior that improves the
efficiency and integrity of the network, while a bad behavior
is the opposite. An example of good behavior is when a node
is forwarding consistent packets of data received from
neighbors to other nodes. An example of bad behavior is when
a node is failing to forward packets of data (either through its
own fault or the fault of other nodes further down the route),
indicating a malfunction or potentially an attack.

Good or bad behavior add or subtract certain amounts of
trust depending upon the expected frequency and severity of
the events according to Equation (6). In particular, we should
try to arrange so that:

pbad\good ’ ATt'aad = pgood\good : AT‘;'ood (6)

where Ppadigood is the probability that a node is deemed to
have misbehaved when it was really being good (false alarm
rate for this node), Pgoodigood 18 the probability that a node is
deemed to have been good when being good; (Ppadigood and

Pgoodigood sum to 1), and AT}, is the amount that trust is
reduced when bad behavior is suspected (punishment), and
AT, is the increase in trust if good behavior is suspected
(reward). One can see that if Equation (6) holds, and there is
no attacker, then trust will maintain a constant level around
the default value o, on average. Therefore, when choosing our
parameters, we suggest a larger reward (ATy,,,) than required
to maintain the intermediate trust value of o, and Ppadigood
should be quite small (this is consistent with what we expect
in reality), so that AT, is much greater than AT,y
Consequently, trust will slowly climb to a relatively high
value through the course of normal interactions between
nodes. If bad behavior from a real malicious node is detected,
then trust granted by its neighbors will quickly fall to zero.

V. DISCUSSION AND FUTURE WORK

A. The neighbor-based shared-key distribution

One security issue about our scheme it that a node that
allocates keys will have access to that key and may use it
maliciously. Our scheme makes the assumption that if a node
is trusted it should not act maliciously by storing keys that it
has distributed, but it will immediately forget them.

Obviously, if a node 4 is compromised, any pair-wise key it
allocates from that point on will be compromised. However,
this effect can be minimized by each node reducing the trust
of every node that it witnesses allocating a key.

The sensor nodes can also negotiate pair-wise keys with
malicious nodes that may be a long way out of the normal
radio range supported by the senor node, but again we may
minimize this effect by reducing the trust of nodes who set up
keys.

There is also the possibility that an attacker can record
some conversations then later compromise a node. For
instance, suppose that A allocates the key Kgc. A immediately
"forgets" the key Kgc (A is currently trustworthy and so erases
Kpc from memory immediately after transmitting it to B and
C). Later, if A is compromised, an attacker may be able to use
the keys Kap and Kac to decode the messages that A sent
when allocating Kpc, thus being able to read any message
transmitted using the link BC, including any key allocation
messages that are sent via BC.

This highlights an important fact. If we are not using public
key encryption then we must assume that any message sent
across the network may be readable by an attacker, except
those sent between the nodes and BS using keys that were pre-
distributed and those between nodes where the BS allocated
the keys. This effect can be minimized by revoking keys
allocated by un-trusted nodes. But as it has been mentioned at
the beginning this idea of nodes allocating keys should only
be used in sensor networks where it is less important to keep
historical data secret and more important that current
communication is reliable: that is detecting possible intruders
or weak nodes under attack.

Further improvements of the method may include:

e node B asks all of the nodes it trusts (even those at
multiple hop range) if any of them trust C. However,
in a WSN, it is sufficient for nodes to securely
communicate with their immediate neighbors and the
B]é, so the list of immediate neighbors is probably
similar to the list of all trusted nodes. A common
trusted node is likely to be within radio range of both
nodes anyway. Also, using multi-hop communication
incurls additional resource cost that is undesirable.

e B could ask A for its list of trusted nodes instead of
only asking A if it trusts C. This is not secure
because an attacker could then work out who in the
WSN trusts who and can use that information to her
advantage.

> NOMS2008) <

e If we choose to use only single-hop communication
and B is unable to find a trusted immediate neighbor
who trusts C, then B could delegate the task of
finding a common trusted neighbor to C. C would
then use the same process and ask its immediate
neighbors if one of them trusts B. If B asks all trusted
nodes if they trust C and finds none that do, then
there is no need for C to do the same because it
should come to the same conclusion (if A tells C that
it trusts B then A should have told B that it trusts C).

We must also consider the case of an attacker
compromising nodes and trying to impersonate as many
identities as it compromises. By recording all keys it
distributes it can read all communications that use those keys.
It may also impersonate the nodes at either end of the links it
has established’, but only to communicate along the links it
established.

An attacker could try to set up pair-wise keys with every
node in the network. Then whenever a node tells its neighbors
that it wishes to establish a new pair-wise connection, the
attacker could volunteer to assign the key. For this reason,
each node should only check with its immediate neighbors
when trying to establish connections and not ask multi-hop
neighbors. This will minimize the effect that an attacker could
have in this situation.

B. The dynamic trust-based routing protocol

In our WSN protocol, nodes immediately send an
acknowledgement packet (ack) after they receive a packet of
data. If C wants to send data to BS via B then it transmits and
waits for the ack from B. If it gets the ack then it can increase
its trust of B. If it doesn't get the ack then it could C
temporarily set its trust of B to 0. When it hears from B it will
return its trust of B back to the previous value minus some
amount based on how long B was absent according to the
decay of trust Equation (5).

Another thing to consider is that a very cheap and
unreliable route may actually have a lower Expenditure than a
more reliable, costly one. First instinct is to discard a very
unreliable route, perhaps by using a minimum trust threshold.
But if we choose to use the cheap route and it fails, we haven't
lost much (low cost) and we will punish the route further so
that next time its Expenditure will be higher. If it succeeds
then we have just successfully found a more efficient route
and we will have increased our trust of that route in the
process (assuming we increase the trust of a route whenever it
is used successfully). So there is no reason to have any type of
threshold for the routes that we are considering using.

? We say that a node A has established a link between a node B and C if A
distributed the key for the secure communication between B and C.

(1]

(2]

(3]

(4]

131

(6]

REFERENCES

K. Romer and F. Mattern, The Design Space of Wireless Sensor
Networks, in IEEE Wireless Communications 11 (6): 54-61, December
2004.

H. Chan and A. Perrig, Security and Privacy in Sensor Networks, In
IEEE Computer, 36(10), October 2003, pp103-105.

S. A. Camtepe and B. Yener, Key Distribution Mechanisms for Wireless
Sensor Networks: a Survey, Department of Computer Science,
Rensselaer Polytechnic Institute, Troy, New York, USA, TR-05-07,
2005.

W. Du, J. Deng, Y. S Han, S. Chen, and P. K. Varshney, 4 Key
Management Scheme for Wireless Sensor Networks Using Deployment
Knowledge, in IEEE INFOCOM, 2004.

B. C. Neuman and T. Tso, Kerberos: An authentication service for
computer networks, in EEE Communications, vol. 32, no. 9, pp. 33—
38,September 1994.

G. Gaubatz, J. P. Kaps and B. Sunar, Public Key Cryptography in Sensor
Networks - Revisited, In Proceedings of ESAS'04, C. Castelluccia and H.
Hartenstein (Eds.), LNCS 3313, pp. 2-19, Springer, Heidelberg, 2004.

H. Zhu, B. Feng, and R. H. Deng, Computing of Trust in Distributed
Networks, Cryptology ePrint Archive: Report 2003/056, Available at:
http://eprint.iacr.org, 2003.

D. Artz and Y. Gil, 4 Survey of Trust in Computer Science and the
Semantic Web, Information Sciences Institute, USC, USA, March 15,
2007.

OMNeT-++: http://www.omnetpp.org/

