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Abstract

Modeling of financial market data for detecting important market characteristics as well as their ab-
normalities plays a key role in identifying their behavior. Researchers have proposed different types o
techniques to model market data [1]. One such model proposed by Sergie Maslov, models the behavi
of a limit order book. Being a very simple and interesting model, it has several drawbacks and limitations

This paper analyses the behavior of the Maslov model and proposes several variants of it to make tt
original Maslov model more realistic. The price signals generated from these models are analyzed b
comparing with real life stock data and it was shown that the proposed variants of the Maslov model ar
more realistic than the original Maslov model.



Chapter 1

Introduction

This paper is based on the research done by Sergie Maslov [2]. We propose two modifiédtigis) (to
the original Maslov model to make the model more realistic and their behavior in relation to the original
Maslov model and range of real financial data is analyzed.

In Chapter 2, we discuss the Maslov original model along with the proposed modifications. Chapte
3 discusses our contribution in this research and Chapter 4 deals with the results we have obtaine
The conclusion chapter summarizes the research findings and highlights the implication of the work an
future extensions. In the Appendix, we discuss some important time series and financial data comparis
techniques and their relevance to our study.

The following data sets are used in the analysis

Original Maslov simulation data, and modified Maslov dataA comprehensive description of these data
Is included in Chapter 2 along with the relevant information regarding the generation of these
datasets.

DowJons index data (1998-2009)This is the second oldest market index in the US. This index gives an
indication of how the prices of 30 large publicly owned companies traded in United States behave.

S&P 500 Index data (1998-2009)This is a price index which consists of 500 large-cap common stocks
actively traded in the United States.

General Electric (1962-2009)General Electric Company is a multinational American technology and
services company. In 2009 it was named as the world’s largest company. We used daily, weekly an
monthly returns of GE stocks traded in 2009 for our analysis.

MRO (2009): Marathon Oil is a leading integrated energy company with exploration and production ac-
tivities based on countries including United States, Angola, Indonesia, and Norway.

DELL - Nasdaq trades in February 2007Dell Inc is a multinational technology corporation residing in
the US. This company designs, develops, manufactures, sells, and supports personal computers ¢
other computer-related products. We used price returns of DELL stocks traded in the month of
February 2007 for our analysis.



Chapter 2

Maslov Model and its Variants

2.1 Maslov Limit Order Market Model( M)

Maslov model (denoted by/,) [2] simulates the behavior of a limit order book using a single stock with
one trader submitting limit and market orders based on random logic. This model can be considered ¢
a very basic layer of a complex financial market. As explained below, the author has used a very simpl
approach to model the market behavior of a limit order book. We define the behavior of Maslov’'s model
using the following general notation:

P, : Starting Last Traded Price

LTP : Last Traded Price

MO : Market Order

LO : Limit Order

A': Price Off-set

BBP : Best Bid Price

BAP : Best Ask Price

6 : Order Size

po . Probability of a buy order, with (1p,) the probability of a sell order.

p1 - Probability of a limit order given that it is a buy order and (4;} is the probability of a market order
given that it is a buy order.

po - Probability of a limit order given that it is a sell order and (4,} is the probability of a market order
given that it is a sell order.

The Maslov model simulates buy orders with probabitigyp, = 0.5), and sell orders with probability
1 - po. Depending on whether the order type is buy or sell, a limit order takes place with probabilities
p1 andp, respectively (where, = p, = 0.5). The price of a limit buy order is assumed to be LTR,-
where the price off-setY) is assumed to be a uniformly distributed discrete random variable in the range
1 < A < 4. The price of a sell limit order is assumed to be LTRA+.e., the Maslov model assumes
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that limit order buyers determine the buying price at a price slighkilylower than the last traded price &
limit order sellers at a price slightlyX) higher than the last traded price.

The Maslov model basically considers three transactions namely buy orders, sell orders, and matchir
of a buy and a sell order.

An execution of a buy/sell matching transaction takes place in the following two cases.

e When a sell market order (MO) is submitted and is matched with the best price (highest) of the buy
side of the book(i.e., BBP).

e When a buy market order (MO) is submitted and is matched with the best price (lowest) of the sell
side of the book(i.e., BAP).

The order book of the Maslov model is maintained according to the following rules.

e Once a buy/sell matching transaction is taken place, the two orders are removed from the order boc
immediately.

e Traders can trade a fixed number of shares at a timéiie gonstant.

¢ If a buy market order is submitted when there are no sell orders in the order book, the buy marke
order is converted to a buy limit order & vice-versa.

¢ All the limit orders are assumed to be “good till canceled”.

See Figure 2.1 and Algorithm 1 for additional details.

LTP generated from the Maslov model is recorded with time and it's behavior is analyzed. The Maslov
model enforces thaBBP < LTP < BAP which which is not always observed in the behavior of a real
stock market. Moreover, both limit buy and sell orders narrow the spread (the difference between the be
ask price and best bid price) while market orders widen it. This results in a repetition of “cone shapes” ir
the price signal(See the Figure 4.2(a) on page 4.2(a)). When the spread is high, some sudden large drt
and jumps in the price signal can be seen.

The original Maslov paper [2] analyzes the behavior of a stock market limit order book by relating its
behavior to some real financial market movements. Some of the features the author analyzesadre
property of the probability distribution of price fluctuations, crossovers between two power law regions in
the same distribution, long range correlations of the volatility, and the Hurst exponent of the price.

Maslov model addresses the following empirical theories and produces evidence to prove them usin
the numerical results produced by the model.

e The histogram of the short time lag increments of market price has a different Gaussian shape wit
sharp maximum and broad wings.

So, according to the current consensus on the shape of the distribution, it shows the characteristi
of a Pareto-Levy distribution [3, 4] up to a certain value, with a power low exponehttofr ~

2.4 — 2.7, and then it crosses over either to a steeper power law with an exponent @f~ 3.7 -

4.3 or to an exponential decay. In both these cases, this crossover ensures a finite variance (secc
moment) of the distribution.

e When computed with time scales less than several trading days, the graph of price vs. time have
Hurst exponent ([2, 5]H ~ 0.6 — 0.8, which is different to the value corresponding to the ordinary
random walk which ig{ ~ 0.5.
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e The volatility of price(second moment of price fluctuations) should exhibit a correlated behavior.
It should show some clustering of volatility i.e., having regions of high amplitude data separated
by relatively low amplitude regions visible in time vs. price increments plot. Volatility clustering
affects the shapes of the autocorrelation function of the volatility (price increments) as a function
of time. The autocorrelation function of price increments should decay according to the power law
with a very small exponent in the range 0.3 - 0.4 and with no apparent cut-off.

The Maslov paper [2] presents the following empirical evidence to support the above empirical theo-
ries.

e It compares the price vs. time graph and price increments vs. time graph with ordinary randorr
walk graphs with similar attributes and shows that both graphs are drastically different from a ran-
dom walk. Unlike a random walk, the author has observed some price increment clustering wher
the regions with high volatility that are separated by some quiet regions. He computes the Hurs
exponent of the price graph using the Fourier transform of the price signal by taking the average
over many runs of the model. He also claims that the relationship of the Fourier transform of
the autocorrelation function of the price signal and the value of the Hurst exponent is of the form
S(f) ~ f~0+2H) Maslov results show that the log-log plot of S(f) of a price signal of lergth
averaged over multiple realizations resulted in a value of the Hurst estimate approximately equal t
0.25. This corresponds to the decay $ff) ~ f~3/2. But the value he obtained differs from the
short term Hurst exponef ~ 0.6 — 0.7, corresponding to real stock prices.

e Maslov argues that the amplitude of price fluctuations generated from his model has long range
correlations while signs of price fluctuations having short range correlations. He has used the au
tocorrelation function of the absolute values of price increméfits,,; to show this correlation
behavior. According to him, the autocorrelation function of the absolute values of price increments
behaves according to the power law tail with an exponerft(f,,s ~ t~'/2. He also derives the
Fourier transform of5(¢).,s which has a clear form of /2. The exponent he has got for his sim-
ulation was not very different from 0.3 which is the corresponding value for real data such as S&P
500 stock index. Then he analyses correlations of signs of price fluctuations (changes) using Fourie
transform of auto correlation function and the results shows that the behavior is much closer to fre
guency independent forms such as white noise characteristics. He compares this with real stoc
prices to show that real data also has similar long range (lag is less than 30 minutes) correlations ¢
signs of price increments.

e The histogram of price increments measured over time lags 1, 10, and 100 provides strong suppo
for non-Gaussian distribution which is very close to the shape of real stock prices. As the lag
increases the peak of the histogram gradually softens (gets closer to Gaussian), while the wing
remain strongly non-Gaussian. Also his analysis on the log-log plot of the histogram of lag 1 for
data collected during.5 x 107 time steps shows that log-log plot has two distinguishable power
low regions separated by a large crossover approximately around 1. According to Maslov the reasc
behind this is unknown. Exponents of these two regions are measured te be= 0.6 + 0.1 and
3+0.2. A similar crossover of two power low regions was reported in real stock price fluctuations in
NYSE with the exponents ranging betweeth— 1.7 and4 — 4.5. Power low exponent of the far tail,
1+ « = 3, stays right at the borderline, separating the Pareto-Levy region with power low exponent
1 + a < 3, where the distribution has an infinite second moment(i.e., variance). According to
the author, although his model shows very long range correlations in price fluctuations, one shoul
not expect convergence of a price fluctuation distribution to a Pareto-Levy or Gaussian as lag i
increased.
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We propose the following modifications to the original Maslov motigl(in order to make the original
Maslov model more realistic.

2.1.1 Modified Maslov Model 1(\/;)

In M7, the probabilitiesy,p1,p2) and the price determination logic remain as per Maslov original mogg!(
but A is assumed to be a uniformly distributed discrete random variable in the rangeA < 2 (Refer
the Algorithm 2 and Table 2.1) where &% assumes\ to be in the rangé < A < 4.

Maslov model does not allow the order price to overlap with the contra side of the order book; which
prevents probable trades of aggressive limit orders. In real markets when a trader wants to buy at the mark
price, he/she simply submits a market order with the awareness of the top of the book price, but before h
order arrives to the market, there can be some other orders that hit the book which would remove sever
top most price points. As a result, our trader might get an unexpected price. Hence market orders invol
some risk. Therefore some traders submit LOs with the price of top of the book in contra side instead o
submitting a market order in order to minimize the risk. This ensures him that he would not receive the
worst price even though he would miss the best price that he wanted to get. In order to incoperate th
behavior we select the values farin the range-1 < A < 2, which would allow the model to go into
either side of the LTP when determining the next LOP. This strategy allows the model to have aggressiv
limit order matchings. This type of trading cannot takes place in the original Maslov madel

2.1.2 Modified Maslov Model 2(\15)

In M, A is assumed to be a uniformly distributed discrete random variable in the tagga < 4 and
the probabilities are assumed tolpep;,p2 = 0.5 as per the original Maslov model,. The difference in
M, is that for buy orders it is assumed that LOP = BAR and for sell orders LOP = BBP A. When the
contra side is empty, limit buy and sell order prices are defined to be-L/KRand LTP-+A respectively
(See the Algorithm 3 and Table 2.1).

This modification is introduced taking in to account of the behavior of a rational market and it’s traders.
This is also based on observed patterns of traders who are trading in a market. The logic behind th
modification is that the top of the book price of the contra side being used to determine the limit order
price of a side.

Input :A=1,2,34
Output: LOP
[* Buy ? */
if (Buy)then
LOP =LTP -A;
end
[*  Sell */
else
LOP = LTP +A;
end

Algorithm 1: Algorithm for determining Limit Order Prices atl,.
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Start Simulation

Generate a Trader

Generate an Order [+

If Buy Side Empty

If Sell Side Empty By Buy or Sell el

True True

Compute Buy LOP Compute Sell LOP
v

B B Markel Order Markel Order i

Update BBP, Apply matching

Apply matching | Match with BAP | | Match with BEP | nules

rules | |
.| Record LTP with |
fime
|
Figure 2.1: Flow Diagram o#/,.
Input :A=-1,0,1,1
Output: LOP
/* Buy ? */
if (Buy)then
LOP =LTP -A;
end
/*  Sell */
else
LOP =LTP +A;

end

Algorithm 2 : Algorithm for determining Limit Order Prices af/,
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Input :A=1,234
Output: LOP
[* Buy ? */
if (Buy)then
[*  Sell Side Empty ? */
if (Sell Side Emptythen
LOP =LTP -A;
end
else
LOP =BAP -A;
end
end
/¥ Sell */
else
[* Buy Side Empty ? */
if (Buy Side Emptythen
LOP = LTP +A;
end
else
LOP =BBP +A;
end
end

Algorithm 3: Algorithm for determining Limit Order Prices af/,
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Chapter 3
Methodology

The contribution of our research is twofold.

¢ Analyze the behavior of time series and financial measures favthend its variants\/; and M.

e Compare these behaviors with real data.

In order to add some realness to the original Maslov mddgl we have been experimenting with
various forms of simple variations. These experiments were based on the price determination logic of th
limit orders. In order to make the models simple, we refrained from introducing any complex patterns or
special behaviors. Here the starting priég)(is selected as 1000. Price and time data were recorded over
10000 time steps after initial time steps of 1000 and all the results were computed and averaged over fiy
hundred simulations.

We used two measures to analyze the behavior of the datasets that were used in our research: the H
exponent and fitting a probability distribution to logarithmic price returns.

The following sections ( 3.1 and 3.2)) describe the two main measures used to explain the behavior c
the selected datasets.

3.1 Hurst Exponent

Hurst exponent (normally denoted by H) is used in areas such as applied mathematics, fractals and che
theory, long memory processes, and spectral analysis. It has different but related meanings in differe
contexts.

Hurst exponent is a measure of whether the data is a pure random walk or has underlying trenc
and hence, it is considered as a measure of predictability of a series. Random Gaussian process w
an underlying trend should have some degree of autocorrelation. If this autocorrelation has a very lon
(infinite) decay or long range correlations, it is referred to as a long memory process with a Hurst exponer
value0.5 < H < 1.0.

This long memory behavior could be due to a sudden impact that affects a process. In such proces
although the impact is sudden, the underlying process takes some time to come back to its normal behavi
This is due to the memory which is carried through with the process itself. For example, although a large
buy or sell order can cause a sudden change in stock price, stock price behavior takes some time to col
back to its normal operation. Hurst estimate can be used as an indication of this type of behavior o
processes. It can always be used to compare behaviors of memory-less processes like random walks [6

It is a measure of “dependence index” in fractal geometry. It is a measure of relative tendency of how
close it is to the mean or cluster in a direction. So it is a measure of persistence (i.e., the characteristic

9
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tendency of underlying series to continue in its current direction). If the Hurst exponent value is betweer
0.5 and 1, the process can be considered as a persistence series (which has positive autocorrelation) me
ing that if the process has an increment between times t-1 and t, then there is a high possibility of havin
an increment between times t and t+1 as well. If H is between 0 and 0.5, it is an anti-persistence serie
(which has negative auto-correlation). In other words, if the process shows an increase between times t
and t, there is a high possibility of having a decrease in between t and t+1. If it is equal or closer to 0.5
this implies that it is a random and unpredictable series. This behavior is called “mean reversion” [6, 7].

Hurst exponent is related to fractal dimension as well. Fractal shapes can be identified as shapes whi
can be made with a large number of similar basic shapes. Some examples of this type of fractal shapes :
fern leaf and Sierpinski pyramid. Fractal dimension D is a statistical quantity which gives an indication
on how completely a fractal shape appears to fill the space. This fractal dimension is used to measu
the roughness of the coast line. Hurst estimation directly relates to the fractal dimension such that D :
2 - H and lies in between 0 and 1 with higher values indicating a smoother trend, less volatility, and les:
roughness. In fact, the Hurst exponent was developed in the field of hydrology as a result of an attempt 1
obtain the optimum dam size for the Nile River by analyzing changing rain and drought conditions over
a long period of time. It has been showed that the height of the Nile River measured annually over man
years gave a value of H = 0.77 [6].

For brown noise (Sometimes referred to as random walk or Gaussian noise), the estimated Hurst Exp
nent is around 0.5. For white noise, the value of the Hurst Exponent is around 0 and for the popular Lev
stable processes and truncated Levy processes with paramatelry Hurst Exponent =z/a for v < «a
and 1 fory = o (See Appendix A.2 for Stable Pareto Distributions).

In financial world, many economists and statisticians have been trying to model the stock marke
behavior using various models. One basic model used for this is the random walk model. In order tc
model stock market behavior using this model, they have assumed that the distribution of stock returr
follow a normal distribution. Under that assumption, methods like Value at Risk (risk of loss measured or
a specific portfolio of financial asset) have been developed. But later some argued that the distribution c
price returns does not follow a normal distribution and because of this, the rescaled range analysis or Hur
Exponent analysis was introduced. For example, daily return on stocks behave according to the Gaussi
distribution. In terms of correlation, return of yesterday may not have any relationship with the return
today. However, when the return period increases, the distribution gets closer to a log-normal distributior
Here the extreme values or tails of the distribution follow a power law. These longer return time series
shows some amount of autocorrelation and a non-random Hurst exponent. It is observed that the retu
period increases as the value of the Hurst exponent increases and gets closer to 1 (correlation increases
shows long memory behavior). Many researchers (mainly Peters, 1991) [8] have proved that stock returr
have characteristi€/ > 0.5, so that their behavior is distinct from random walk and is not generated by a
stochastic process generating non-correlated values. This was referred to as long term memory behav
in stock returns [5, 7].

There are various methods in practice to estimate the Hurst exponent value. Widely used methods a
rescaled-ranged computation, wavelet based method, and graphical methods.

The rescaled range is a statistical measure of the variability of a time series. In other words, it is
statistical technique used to detect the presence or absence of trend in time series by finding the Hul
exponent. It is computed by dividing the range of the values by the standard deviation over the sam
portion of time series. If the maximum, minimum, and standard deviation values of time series of size r
are x, y, and S respectively, which have a range, R = x -y, the rescaled range of the series is defined
R/S. When we increase the number of observations n, the rescaled range value also increases. The sl
of the doubly logarithmic plot of rescaled range (R/S) vs. sample size (n) gives the Hurst exponent H [6].

Wavelet based method is also used to estimate the Hurst exponent in many cases. In graphical methe

10
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price auto-correlation function and Fourier transform of price auto-correlation function is used. Fourier
transform of price auto-correlation function of the price signal S has a relationship with the Hurst exponen
H of the formS ~ f(1+2H)_ The slope of the doubly logarithmic plot of this is related to the Hurst exponent
as2H + 12, 5]. In along memory process, the decay of the autocorrelation function follows a power law.
The Hurst exponent relates to the power exponent as/2 {2].

The Hurst exponent is non deterministic so it is only an estimation based on observed data. The onl
way to test the estimated value is by comparing it with a dataset with known Hurst exponent.

In our research, the Hurst exponent values are estimated using the re-scaled range computation meth
Re-scaled range method was chosen after experimenting for consistency and accuracy with the other t
main methods. Here, the logarithmic price returns were used in order to reduce the overall market move
ment and all the aforementioned measures were computed for all the selected datasets and compared
values with each type of data available. All the results were computed and averaged over five hundre
simulations.

3.2 Fitting Pareto Levy Distribution to Logarithmic Price Returns

Researchers have shown that extreme high values of stock return values follow a simple power law distr
bution (Pareto-Levy distribution) and they have proposed various ways to estimate the parameters of th
distribution and to find the exact range of order statistics which follows this distribution, by estimating
cut-off valuey (See Appendix A.2). In order to get accurate estimates of parameters. There should be
minimum number of order statistics values, which is at least 50 [9].

Both arithmetic and logarithmic stock returns (daily, weekly, and monthly) can be modeled using the
Pareto Levy distribution (See Appendix A.2). In addition to stock prices, indexes variations, volumes anc
volatility decay distributions may also be modeled using the same distribution [9, 10, 11, 12, 13, 14].

Since we cannot deduce a closed form of the Stable-Pareto distribution (See Appendix A.2), we car
not fit it directly to a financial data series. Therefore, we use some closed form versions of that distributior
to fit for the data set. The most commonly used distribution to fit extreme variations of financial data is
the simple power law distribution and some of its variations. Power-law distributions include continuous
distributions such as simple power law, power law with cut-off, exponential distribution, stretched expo-
nential distribution, log-normal and discrete distributions such as power law, Yule distribution, exponential
distribution, Poisson distribution used for financial data analysis [9].

The following sections ( 3.2, 3.2, and 3.2) describe various methods that could be used to fit the
Pareto-Levy distribution [9, 15, 16, 17, 18, 19, 20].

We assumed that extreme values of logarithmic price returns follow the given power-law distribution
(Pareto-Levy distribution) and estimated the parameters.

flx) = aya=F) (2 > )

Wherea, v are parameters of the distribution.

Graphical Methods

The most commonly used method to fit this distribution is simple histogram analysis. The probability

density function of the Pareto-Levy distribution follows(f(x)) = —(1 + «) * In(x) + constant form.
This is actually a straight line in log-log plot of the histogram of data between In(f(x)) and In(x). So slope
S of the straight line is related to the exponent of the power law distribution as Scg.(THe starting
value that straitens the log-log plot is taken as the estimated value for

The following steps were used to fimdand~ values.

e Consider only positive logarithmic price returns.

11
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Plot a histogram with a suitable class size.

Divide the frequencies of each class by n to get probability values, where n is the sample size.

Plot log(probabilities) against the log(mid values) of each class.

Least squares linear regression is used to estimate the slope of the doubly logarithmic plot.

Computex using the slope and estimatausing the graphical method.

Repeat the same steps for negative price returns.
Some other alternative methods for estimating the cut-off value are

e Using the value which straightens the log-log plot of probability density or cumulative density func-
tions

¢ Identifying the point beyond which the plot of estimated power exponent and the minimum value
(cut-off) is stable (This is basically known as the Hill plot) [9].

Maximum Likelihood Method with Goodness of Fit Tests

When fitting a probability distribution to the price increments and logarithmic return values, we used
the Pareto Levy stable distribution (A simple power law distribution, See the Algorithm 6).

We have used maximum likelihood estimation [21] combined with goodness of fit test [12] for param-
eter estimation. Maximum Likelihood method is a statistical method used to fit a statistical model to the
dataset in order to provide estimates for models parameter. Maximum likelihood Hill estimator method
is used to estimate the power exponent valugf the distribution and selected goodness of fit tests [12]
were carried out to get the best fitted paramet@ralong with the cut-off valuey). Normally power-law
exponent ¢) is assumed to be greater than one because exponent less than one is not normal and cani
exist in nature [9].

Maximum likelihood method is considered as the most accurate and robust method in practice. Max
imum Likelihood Method is more accurate than the Least Square regression method when fitting thes
distributions. This is because Least Square regression method (or graphical method in other words)
considered as a subjective method.

Parameters were estimated for each run and were averaged over five hundred runs.

In terms of goodness of fit methods, distance between empirical distribution and theoretical distributior
Is used to find the best fitted values of a distribution. Values obtained by Goodness of Fit tests or in othe
words the above mentioned distances are known as test statistic values. There are number of ways
calculating these test statistics. For non normal data, commonly used method is Kologorov-Smirnov (KS
method. There exists some other goodness of fit methods which compute the best fitting parameters f
a dataset such as Kuiper, Cramer-\Von-Mises/Watson and Anderson-Darling tests. Sometimes modifie
goodness of fit statistics gives more accurate results than normal statistics. Modification to goodness of
statistics is done by weighting data to avoid some insensitiveness around extreme limits. In these extren
limits of data, distribution tends to get close to zero or one. So re-weighting assures uniform sensitivity
across the whole range of test statistic values.

Cramer-Von-Mises test is minimum distance estimation method used to find goodness of fit by com:
paring probability distribution (theoretical) with a given empirical distribution function. Here the test
statistics values are used in hypothesis testing to find the best fitted parameters. This test can be performn
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3.2 Fitting Pareto Levy Distribution to Logarithmic Price Returns Methodology

in between two empirical distributions, and it is called the Cramer-Von-Mises two sample test [9]. Ac-
cording to many researchers, re-weighted KS and Kuiper methods are not much different from standat
KS statistics [9, 12].

In our research, Anderson-Darling minimum value test [10, 17] and hypothesis testing with Cramer-
Von-Mises/Watson statistics were used (See Algorithms 4) [16, 12].

[* Test Statistics Formulas of Goodness of Fit Tests */
Anderson — Darling(A?) = —n — [Si(2i — 1)(logz; + log(1 — zp11-5))]/n (3.1)
Cramer — Von — Mises(W?) = 1/12n+ (2 — (2i — 1/2n))? (3.2)
Watson(U?) = W?+4n(z—1/2)? (3.3)
Where,z; = F(x;) (3.4)
n = samplesize (3.5)
(3.6)

Algorithm 4 : Test Statistics Formulas of Goodness of Fit Tests

In Anderson-Darling minimum value test the minimum distance between empirical distribution and
theoretical distribution or in other words minimum test statics value is used to find the best fitting param-
eters of the distribution (See the Figure 3.1 on page 14).

In Cramer-Von-Mises/Watson test, P-Value associated with the test statistics is used for hypothes
testing (See the Figure 3.2 on page 15) [11]. Here the test statistics are often compared with tabulate
critical values (corresponding to significance levels) to take the decision of ruling out a hypothesis. Also
hypothesis testing is involved with comparing probability value (p-value) associated with the critical value
to take that decision. The NULL hypothesis (i.e., the empirical and theoretical distributions are identical)
is rejected if the calculated test statistics is greater than the critical value obtained from a critical value
table [12] for a given significance level or, if the calculated p-value is lower than the significance level.

P-value is defined as the probability of test statistic values which is larger than the critical level. P-
Value can be obtained by analyzing the empirical distribution and a larger number of synthetic distribution:
which have been derived from the power law distribution we used to fit, with the estimated exponent an
cut-off. This means compare the empirical test statistic value with test statistic values of each syntheti
distribution and its own distribution, and selecting the fraction of synthetic statistics which exceeds the
empirical test statistics as the P-Value of the empirical distribution. If the P-Value is large and close to one
the difference between empirical and theoretical distributions can be only due to statistical fluctuations. |
the value is small the theoretical distribution cannot be fit to the dataset [11, 12].

KS method is more accurate for small number of observations; roughly around 1000. A major draw-
back in Anderson-Darling method is that it estimates large numbers as the cut-offyvaiiven though
it is considered as a better method compared with KS statistics in terms of the sample size, it is mor
suitable for distributions with larger number of samples in the tail of the distribution. When the cui-off (
value is large, the number of samples taken in to consideration for fitting is less, so it leads to an increas
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3.2 Fitting Pareto Levy Distribution to Logarithmic Price Returns Methodology

in the statistical error of the estimated values and badly affects the ability of validating the most suitable
distribution for dataset [9].

Apart from those methods Anderson-Darling statistics were used in a similar way to the Cramer-\Von:-
Mises test for hypothesis testing and found that the results are similar to the Cramer test. In order t
increase the accuracy of the testing method, Anderson-Darling minimum value test was performed afte
removing the outliers (values greater than+ 3 « IQR) (See Appendix A.l) from the minimum value
selection range. In Hypothesis testing, if the method does not reject the hypothesis, we assumed all de
follows the given distribution and estimated the parameters from the whole dataset. Estimated values we
analyzed in all theses methods and their accuracy is investigated in each case.

After analyzing dataset parameters such as sample size and data distribution, and considering their ¢
vantages and disadvantages, we chose the set of fitted parameter values using the Cramer-Von-Mises/\We
goodness of fit test combined with maximum likelihood Hill estimator method [11] to analyze extreme
values of logarithmic price returns in our datasets.

/ Ordered logarithmic retums /

.

Apply quartile filter (Filter out only values greater than
lower quartile+ 3* inter quartile ranga)

statistics and estimate exponent value using maximum likelihood

Choose values for minimum order statislics in the range of order
estimation carresponding 1o all the minlmum values

Compute Andersor-Darling statistics for each minimum value and its
cormesponding exponent value

Flot minimum value against Anderson-Darling statistics and find the
lowest Anderson-Daring value

Chaoose corresponding minimum valee and exponent
value as fitted values

Figure 3.1: Anderson Darling Method
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Methodology

/ Crderad logarithmic refurns /

Choosa a MULL hypothesis and an alternative
hypothesis

!

Apply quintile filter (Filter out only values greater than
lower quintile + 37 inter quintile range)

v

maximum likelihood estimation

Choose minimum order statistics value and estimate exponent value using

F

b

Compute Cramer-Von-Missas value and Watson

valuea

Increase sample size by one |

Hypothasis festing with
P-Value ar Critical valug

Rejected

Choose cormesponding minimum value and exponent
value as fitted values

|

Do not reject

Figure 3.2: Cramer-Von-Mises test
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Chapter 4

A Comparison of Maslov, Variants and Real
Data

4.1 Numerical Results

When analyzing price time plots @f/, and its variants, it can be clearly observed thatdnthere is an
abnormal cone shape behavior of prices, which is not visible in real stock prices(See Figures 4.2 and 4.2
Apart from that the daily price deviation (i.e., the difference of daily high price and the daily low price)
Is very high inM, with compared ta\/; and M, (See the Figure 4.2))M, showed the lowest deviation
compared to the other two models (See Figure 4.9). The cone shapes that can be obsefyvackia
resultant of the behavior of limit and market orders with empty book states. Limit orders build the book
while market orders are consuming the book. Once it gets empty, formation of the cone shape stops al
the next order price is determined with respect to the LTP and again it starts to build the cone with limit
and market orders.

In Figures 4.4 and 4.5, we have given the histograms of price increments and logarithmic price return
for combined prices of one hundred runs of Maslov model and its variants. We can clearly observe th
sharp peak and fat tail characteristics in these graphs which can be seen in financial data graphs.

Also when analyzing the price density plots (See Figures 4.6 and 4.7) of all three models we car
clearly see thad/, has a multi modal price density plot which is a resultant of layered price values in the
price time graph. But when we analyzed this among one hundred simulations, all three models showe
similar characteristics. Real price graph of DELL data in NASDAQ (Figure 4.8) shows multi modal
characteristics but the range of price deviations is not as high as per Maslov models. The bi-modal cha
acteristic ofM, and M, price density plots leads to a much flatter distributed density plot Atigrwhich
has high price concentration around the starting value. In the spread histogrdpn ibfs observed that
the spread values are low when comparedfpand M.

When analyzing the spread histogram plot of three Maslov variants in Figure 4.9, we can clearly
observe that thé/, model shows a clear difference comparedtgand ;. In M, the number of small
size spread values is high compared to other two.

The Hurst exponent estimate, Pareto exponent estimate for negative and positive returns (includin
their standard errors) and auto correlation decay values have been computed using the aforementior
techniques fo/, and its variants are listed in Tables 4.1, 4.2 and 4.3 and the corresponding values fol
real data samples are listed in Table 4.5 and 4.7.

When comparing the behavior of the Hurst exponent, we can clearly see that in all the Maslov models
the Hurst exponent value is lower than the value obtained for real data samplesMBytiie can see this
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4.1 Numerical Results A Comparison of Maslov, Variants and Real Data

value is much lower than that dff, andM/;. We can observe that in both real data and Maslov data when
the return period increases the value of the Pareto exponent reduces.

In the auto correlation decay exponent, we can see that all indexes show a value slightly less than ths
0.4 while real prices show values closer to 0.3. In all Maslov models, there is no clear distinction in values
but they are much closer to price returns than index return values.

In terms of the Pareto exponemtwe can see that the values of the Pareto exponent are slightly higher
in all the Maslov Models when compared with real data. Specially in modification two, this value is much
higher than the other Maslov versions (See the Tables 4.3 and 4.5).

Closing Price Box-Plots

1200

1100

]
; o;___ﬂ__4 ;

a00
]
P

a00
]

Figure 4.1: Closing price box-plots of Maslov model and it’s variants.

Model | Prices Price| Logarithmic
Increments| Price Returns

My 0.19 0.31 0.31
Std Err| 0.00 0.00 0.00
M, 0.10 0.36 0.36
Std Err| 0.00 0.00 0.00
M, 0.08 0.28 0.28
Std Err| 0.00 0.00 0.00

Table 4.1: Hurst Exponent Estimates: This table summarizes values obtained for the Hurst exponent f
prices, price increments, and logarithmic price returns of three Maslov variants for 500 samples
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Price Time plot Price Time plot

1100
1100

1080
1080

1060
1060

Price
1040
Price
1040

1020

1000
|
e

1020

1000

=] o
@ — @ -
& E
T T T T T T T T T T T T
i 2000 4000 BO0O0 8000 10000 1} 000 4000 mO00 ao0n 10000
Time Tirme
(a) Mo (b) M,

Price Time plot

Frice
1020 1040 1060 1080 1100

1000
| |

980
|

T T T T T T
1} 2000 4000 600D 2000 10000

Time

(c) M

Figure 4.2: Price Vs. Time graphs over three Maslov variants using the same random seegg,=with
1000.
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Figure 4.4: Histograms of price increments over three Maslov variants when data belonging to 100 tim
series samples are combined. Price incremeRt is Pt — 1. We assumé? = 1000 and simulate a time
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Histogram of Logarithmic Price Returns Histogram of Logarithmic Price Returns
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Figure 4.5: Histograms of logarithmic price returns over three Maslov variants (All the logarithmic price
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= 1000 and simulate a time series of 10000 observations.
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4.1 Numerical Results

A Comparison of Maslov, Variants and Real Data
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Figure 4.6: Price density plots over three Maslov variants. For single time series shown in Figure 4.2.
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4.1 Numerical Results A Comparison of Maslov, Variants and Real Data

Price density plot Price density plot
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Figure 4.7: Price density plots Over three Maslov variants when data belonging to 100 time series sampl
each with 10000 observations are combined
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Price Density Plot Price Density Plot
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graph shows the same plot for the whole month of February
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4.1 Numerical Results A Comparison of Maslov, Variants and Real Data

Sample| Negative Pareto Distribution Positive Pareto Distribution
Mean Mode Variance Mean Mode Variance

M 0.0018 0.001 7.6388H° | 0.0018 0.001 7.6388H°°

M, 0.008 0.004 N/A*| 0.0103 0.005 N/A*

M, 0.0091 0.007 8.4808H° | 0.0092 0.007 9.2909H°

Table 4.4: Probability Distribution Analysis: This table summarizes mean, mode, and variance values o
the fitted Pareto distributions of negative and positive logarithmic returns over three Maslov variants.
(*: Variance does not exist when < 2.)

Histogram of Bid/Ask Spread Histogram of Bid/Ask Spread
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Figure 4.9: Spread histograms over three Maslov variants when data belonging to 100 time series sampl
each with 10000 observations are combined
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4.1 Numerical Results A Comparison of Maslov, Variants and Real Data

Sample Negative Pareto Distribution Positive Pareto Distribution
Mean Mode Variance Mean Mode Variance
Dow-Jons
Daily 0.033 0.02 0.001 0.016 0.01 0.0002
Weekly 0.099 0.07 0.002 0.037 0.02 0.004
Monthly 0.22 0.02 N/A*| 0.070 0.04 0.006
S&P 500
Daily 0.016 0.01 0.0001 0.030 0.02 0.0003
Weekly 0.034 0.02 0.001 0.031 0.02 0.0004
Monthly 0.0916 0.05 0.019 0.063 0.04 0.002
General Electrics
Daily 0.072 0.04 0.009 0.059 0.04 0.001
Weekly 0.117 0.06 0.169 0.095 0.06 0.004
Monthly 0.267 0.11 N/A*| 0.125 0.08 0.007
MRO
Daily 0.041 0.02 N/A*| 0.086 0.02 N/A*
DELL
0.931 0.39 N/A*| 1.699 0.75 N/A*

Table 4.6: Probability Distribution Analysis: This table summarizes mean, mode, and variance values o
the fitted Pareto distributions of negative and positive logarithmic returns of selected real data samples.
(*: Variance does not exist when < 2.)
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4.1 Numerical Results

A Comparison of Maslov, Variants and Real Data
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Chapter 5

Conclusion

Maslov [2] simulates the behavior of a limit order book using a single stock with one trader submitting
limit and market orders based on random logic. In our research we analyzed the properties of this mod
and compared its behavior to real data. In order to produce more realistic behavior the Maslov model, w
propose two variants of it and discuss their behavior in relation to the original Maslov model and some
real data samples.

Our numerical analysis reveals that the behavior of the Maslov model deviates from real financial dat:
and the modified versions (specially the second modificatiGh showed a much closer relationship to
the same. We could observe it mainly from the behavior of price vs time graph (See the Figure 4.2 ol
page 18). In analyzing the behavior of the Maslov model & it’s variants time series techniques such as th
Hurst exponent analysis and Histogram analysis were used.

The next step in our research involves introducing some complex behaviors to the model such a
considering the market conditions before computing the limit order price and introducing evolutionary
strategies to the order generation logic.
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Appendix A
Appendix

A.1 Methods for Time Series Analysis

In order to analyze the model data and financial data, we used various time series analysis and comparis
techniques [22].

A time series is a collection of data items observed through repeated measurements over a certe
period of time. There are two main types of time series available in practice, namely stock series and flo\
series. Stock series is a measure of certain attributes at a point in time. For example, the monthly lab
force survey is a stock measure because it indicates whether a person is employed in that particular mor
or not. Flow series is a measure of activity over a given period. For example, manufacturing is a flow
series measure, because daily manufactured amounts are summed to give a total value for production
that particular period of time [22, 23].

Systematic effects and calendar related effects which can occur in any kind of time series are calle
seasonal effects. For example, a sharp increase in stock trading can occur around December in respons
the Christmas period. Natural Conditions (unexpected weather patterns such as snow in summer), Busine
and Administrative decisions (Start and end of the school term) and Social and Cultural aspects (Christma
can cause seasonal variations in time series data. Seasonal effects can be identified by regularly spa
peaks/troughs which have a consistent direction and approximately the same magnitude every year, relat
to the trend. Another form of seasonal effect is the trading day effect, that is the number of trading day:
in a given month depends on holidays (the exact date of holidays such as Easter changes) which leads
different effects for the same reason in different periods.

Seasonal adjustment is removing seasonal effects from a time series. But when a time series is don
nated by the trend or irregular(random) components, the seasonality adjustments for that particular seri
may be inappropriate, and it is very difficult to identify and remove seasonality from a series. Hence mos
often introduction of an artificial seasonal element to the series is recommended [22, 23].

The trend of a time series is defined as the long term movement without any calendar related an
irregular effects. The irregular component of a time series or the residual part is what remains after th
seasonal and trend components are removed. Random variations of a time series are fluctuations whi
are not systematic or predictable. In a highly irregular series, this behavior could mask the trend an
seasonality behaviors and dominates the series.

It is very hard to compare two time series with periodic data, because of the inaccuracy and time
delays in the identification of turning points and structural shifts. Turning points are the points of time
where the direction of the underlying trend of the series changes. For example, it is very difficult to locate
the time point where a consistently decreasing series begins to rise steadily. When comparing two tim
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A.1 Methods for Time Series Analysis Appendix

series values, we may miss these turning points and leads to an inaccurate results [22, 23].

We can use decomposition methods to separate out these parts from a time series. The main deco
position models are additive or multiplicative, but there are some other forms in practice such as pseuc
additive. An additive model is suitable if the amplitudes of both the seasonal and irregular components d
not vary as the level of the trend varies. A multiplicative model is suitable if the amplitudes of both the
seasonal and irregular variations increase as the level of the trend increases. A multiplicative model cann
be used when the original time series contains very small or zero values for each of its components. |
this case, a pseudo additive model (a combination of additive and multiplicative models) is used. Pseuc
additive model assumes that seasonal and irregular variations are both dependent on the trend but inc
pendent of each other. The pseudo-additive model continues the convention of the multiplicative model t
have both the seasonal factor and the irregular factor centered around one [22, 23].

Extreme values or outliers are the values of a time series which are unusually different compared t
other data. These values could distort the overall underlying movement of a time series by affecting th
trend. It is necessary to detect and correct for outliers in order to improve modeling of the three time serie
components (trend, seasonal and irregular).

Quantile filtering is a common way of extracting outliers from a time series. The set of values beyond
the limit @, + 3 x IQ R are considered to be outliers of a series whigye(), and(); are the first, second,
and third quartiles of the dataset.The inter quartile rafigeR = ;3 — Q1) is defined as the spread of
the middle 50% of the data and is often used as a measure of spread. This is also known as the m
spread, and is a measure of statistical dispersion of data, calculated by difference between the third a
first quartiles [22, 23].

Trend breaks can be possible due to economic policy decisions, changes in population behavior ar
changes in the way an attribute is measured. Seasonal breaks are changes in the seasonality of a se
which do not affect the level or the trend of the series. They may be affected by social traditions, adminis
trative practices or technological innovations [22, 23].

In terms of detection and correction of these effects, forward factors and concurrent analysis are tw
main approaches to derive seasonal and trading day factors. The forward factors method is basically :
annual analysis of the latest available data to predict the seasonal and trading day factors for the ne
year. Concurrent analysis is re-estimating seasonal factors as each new data point becomes available. T
method is more computationally intensive than the forward factor method, but the seasonal factors wil
be more responsive to dynamic changes. Methods of adjustment can be divided in to two main method
indirect or aggregate method of adjustment and direct or disaggregate method of adjustment. The indire
method seasonally adjusts each of the lower component series individually, then sums all the values
obtain the seasonally adjusted series for the total. The direct method of adjustment involves summing L
of all the original series to form a total series and then seasonally adjusting the total series directly. If the
component series has very different seasonal patterns, then the indirect seasonal adjustment is appropri
However if seasonality is low and difficult to identify in the individual series, then using direct seasonal
adjustment can remove any residual seasonality from the aggregate series [22, 23].

Stationarity of a time series is a main characteristic that is analyzed in time series analysis. Mos
techniques used in time series forecasting expect stationarity condition to be satisfied. i.e, a time seri
must follow a first and second order stationary process. First Order Stationarity implies that its expecte
value remains the same at any time. For example, a financial time series becomes first order statione
when its trend component is removed by some mechanism such as differencing. A series is second orc
stationary, if it is first order stationary and the covariance between two time seres values is a functiol
of time difference only. In case of financial time series, they can be made second order stationary if wi
remove its variance by applying some kind of mechanism such as taking the square root [22, 23].

Filtering techniques are used to extract useful information such as the cyclic component from a time
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series. These filters are a direct implementations of input-output relationships. Differencing and filtering
are used as data pre-processing techniques before applying effective and efficient time series modeli
methods [22, 23].

A.1.1 Smoothing Techniques

Smoothing is a technique used to reduce the variability of a dataset. Smoothing reduces variance by a
eraging over the periodogram of neighboring frequencies and introduces bias because the expectation
neighboring periodogram values is not identical to the selected frequency. Over smoothing is a seriot
issue. Tapering corrects the bias introduced from the finiteness of the data. The expected value of the pe
odogram at a certain frequency is not quite equal to the spectral density. It can be affected by the spectt
density at neighboring frequencies. For the spectral density which is more dynamic, more tapering is re
quired. Smoothing introduces bias, but reduces variance. Tapering decreases bias and introduces varia
and also attempts to remove the influence of side lobes that are introduced by the spectral window [22, 2z

Exponential smoothing: Exponential smoothing is a technique that can be applied to time series data
to prepare smoothed data and to make forecasts. In exponential smoothing, the weighted avera
of the time series are calculated by assigning exponentially decreasing weights with time. i.e., th
exponentially smoothed value for time period tSis= ax; 1 + (1 — a)s;_1, wherea is smoothing
factor andl < o < 2.

Exponential smoothing is a commonly used technique in financial market and economic data.

Simple moving average: The simplest way to smooth a time series is to calculate a simple (unweighted)
moving average. The smoothed value is just the mean of the last k observations of the series. Or
main disadvantage of this technique is that it cannot be used to smooth the first k -1 terms of the tim
series. When calculating the simple moving average for period k, unlike in exponential smoothing,
is this equal weight is given for each observation.

Weighted moving average: This calculated as a weighted moving average using a set of weighting fac-
tors. Sum of all the weight factors should be equal to one. Weight factors are chosen in such a wa
that more weight is given for most recent time series values and less weight is given for old time
series values. This technique has the same disadvantage as the simple moving average technique

Exponential moving average: In this case, the current smoothed valyg {s computed as the simple
weighted average of the current observation gt)tdnd the previous smoothed value at ty1 (),
wherea is the smoothing factor, arfd< « < 1 gives the formulay; = (1 — a)y;_; + ay;.

If the value ofa is close to one, it gives less smoothing effect and gives greater weight to recent
changes in the data. # closer to zero, it gives a greater smoothing effect and is less responsive
to recent changes. There is no formalized and correct procedure for cheossggnetimes expert
knowledge is used to choose an appropriate factor and least squares method is used to optimize t
selected value.

A.1.2 Time Series Models

Time domain models and frequency domain models are used for time series analysis. One way of an
lyzing financial time series is to model the process using some statistical methods. An accepted mod
for stock price series is the famous random walk or Brownian motion model proposed by Osborne ir
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1959 [24]. Osborne suggests that stock return is a random variable that follows zero-mean Gaussian di
tribution. Other models, such as the linear correlative model for stock returns have also been used in tt
research literature.

A.1.3 Autocorrelation Analysis of a Time Series

Autocorrelation and partial auto correlation are used in modeling a time series model for analysis. Au
tocorrelation measures the similarity between time separated observations as a function. Simply, it is tt
cross correlation of a signal with itself. Autocorrelation is a mathematical tool measures the repeate
patterns in a time series. It can also be used to identify the missing fundamental frequencies in a sign
implied by its harmonic frequencies. Autocorrelation of a random time series process describes the co
relation between values of the series at different points in time and provides a strong scale free measu
of the strength of statistical dependence, as a function of the two times or of the time difference. Its valu
must lie in the range [-1, 1]. When the autocorrelation function is normalized by mean and variance o
that particular series, it is referred to as the autocorrelation coefficient [22, 23].

Partial autocorrelation function is very important when identifying autoregressive and autoregressive
moving average models for time aeries using the Box-Jenkins approach [22]. Partial autocorrelation c
lag k is the autocorrelation between t and t + k with the linear dependence of t + 1 throughtot + k - 1
removed. This is useful in identifying the order of an autoregressive model. The partial autocorrelation o
an AR(p) process for lags greater than p is zero. If the sample autocorrelation plot indicates that an Al
model may be appropriate, then the sample partial autocorrelation plot is examined to identify the order ¢
the AR process [22, 23].

Model Selection Criteria [22, 23]:

¢ If none of the simple autocorrelation coefficients are significantly different from zero, the series can
be identified as a random number of white noise series. This kind of series cannot be modeled by a
autoregressive model as there is no information involve for modelling.

¢ If the simple autocorrelation coefficients decrease linearly, pass through zero and become negativ
or if the simple autocorrelations show a wave like cyclic pattern while cutting the zero line several
times, this series can be identified as not stationary; it should be differenced once or more time
using an appropriate transformation to convert the series in to a stationary one before it is modele
with an autoregressive model.

¢ If the simple autocorrelation coefficients indicate seasonal patterns, (i.e., if there are almost equall
spaced cyclic autocorrelation peaks) the series is not stationary and it should be differenced with
gap (approximately equal to the seasonal interval) before applying a model.

¢ If the simple autocorrelation coefficients are decreasing exponentially but approaching zero gradu
ally while the partial autocorrelation coefficients are significantly non zero for some small number
of lags and also if they are not significantly different from zero, this series could be modeled with
an autoregressive process(AR(p) process).

e If the partial autocorrelation coefficients are decreasing exponentially but approaching zero gradu
ally while the simple autocorrelations are significantly non-zero for some small number of lags and
they are not significantly different from zero, this series could be modeled with a moving average
process(MA(Q) process).
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¢ If the partial and simple autocorrelations both converge to zero for longer lags, but neither actually
reaches zero after any particular lag, this series may be modeled by a combination of autoregressi
and moving average processes(ARMA(p,q) process.

A.2 Pareto-Levy Stable Distributions

Many empirical quantities of financial data cluster around extreme values [25]. As a result of this, the
Pareto-Levy family of distributions always go hand in hand with financial data. We have used a simple
power-law distribution (a member of Pareto-Levy distribution family) to fit extreme variations of logarith-
mic returns of various datasets used in our research (See the Algorithm 6).

Prior to Paul Levy’s mathematical analysis, some analysts investigated histograms of some variable
which generally looked like normal distributions but deviated from the actual shape of the normal distri-
butions. They identified some sharp peak and fat-tailed characteristics in these distributions and nam:
them leptokurtic. In 1915, economist Wesley Claire Mitchell [26] showed that the distribution of the
percentage changes in stock prices deviate from the normal distribution. This means that the probabili
of having extremely large fluctuations or extremely small fluctuations is high compared to having mod-
erate fluctuations (higher proportion of probability is in the tails of the distribution compared to normal
distribution).

Distribution of a random variable can be considered as stable if the linear combination of two inde-
pendent copies of that particular random variable has the same distribution. So in general, if x and y at
random variables of two stable distributions, x+y also has a stable distribution. These stable distribution
are called Levy alpha-stable distributions [3, E): If z; andx, are two independent copies of random
variable x, then the distribution of:a+bz, has the same distribution as + d. It becomes strictly stable
only ifd = 0.

The normal distribution is one variation of stable distribution. According to the central limit theorem, a
properly normed sum of a set of random variables with finite variance converges into a normal distributior
as the number of variables increases. Stable distributions which are not normal are called stable Pareti
distributions after Vilfredo Pareto. All stable distributions are infinitely divisible (See A.2.1). Gnedenko
and Kolmogorov state that the sum of random variables drawn from a power law tail distributiéne)
with exponentl + « will converge to a stable distribution as the number of variables increases [3, 4].

It is not possible to analytically derive the probability density function for general stable distributions.
However Paul Levy discovered a generic characteristic formula (See Algorithm 5) for all stable distribu-
tions [3, 4].

There are four main parameters in stable Pareto distributions:

a @ Stability parametet, also known as characteristic exponent or peakedness of the distribution deter-
mines the type of the distribution whebe< « < 2. For normal distributionv = 2. The second
(variance) or higher moments exist only whens= 2.

G : Skewness parameter. This is a measure of asymmetry, identified as the third central moment of tr
distribution (Whem < 2 the second or higher moments does not exist for the distributidsian
be any real value in the range [-1,1]. For normal distribution or any other symmetric distributions
£ =0. Wheng < 0org > 0, the distribution skews left and right, respectively.

c: Scale or dispersion parameter (which is a measure of the width of the distribution). This can refel
to any positive real value and this value is related to the standard deviation of normal distributions
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In non-normal distributions this is not related to the standard deviation but in non normal stable
distributions it is infinite.

i - This represents the shift of the distribution, Also known as the mean or a measure of centrality. This
can refer to any real value. Distribution mean exists and equal to the valuerdy whena > 1.

In general, the parametefisanda are considered to be shape parameters whaad c are location
and scale parameters respectively.

A Log-log plot of probability density functions of symmetric centered stable distributions show power
law behavior for large x, with the slope or power law exponent equat (e + 1). So the parameter
« increases the peakedness of the distribution goes down while the slope of the log-log plot become
steeper. Log-log plot of skewed centered stable distributions probability density functions show the powe
law behavior for large x. The slope of the linear portions is equal (i@ + 1).

/*  Characteristic Function (Pareto-Levy Distribution) *
CharacteristicFunction = ¢(w) (A.1)
log(p(w)) = ww—|cw|* (1 —18F(w,a,c)) (A-2)
F(w,a,¢) = sgn(w)tan(ra/2),if(a #1) (A.3)
= —(2/m)log(| cw |),if(a=1) (A.4)
sgn(w) = Lw>0 (A.5)
= 0,w=0 (A.6)
= —Lw<0 (A.7)

Algorithm 5: Characteristic Function (Pareto-Levy Distribution)

A.2.1 Flavors of stable distributions

Following distributions can be defined as special cases of Stable Pareto Distribution.
Some of the derived distributions of stable Pareto distributions [3, 4].

Normal Distribution : For the normal distribution. = 2, 3 = 0, variances® = 2¢%, andy = mean.

Cauchy Distribution : For Cauchy distributiony = 1, 5 = 0. Cauchy distribution does not have a mean
value, so the central moments are not defined.
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Levy Distribution : For Levy distributionsp = 1/2 and3 = 1, where c is the scale parameter of the
distribution.

Except for the normal distribution with = 2, all other stable distributions are leptokurtotic and
heavy-tailed in shape. The normal distribution, Cauchy distribution, and Levy distribution are considerec
as special cases of stable distribution because all of them posses the aforementioned characteristics.

When relating this behavior with financial data, it is observed that the linear behavior with slepé
can be observed after some valuercf v and in the rangéy, oo]. Determination of the exponef + 1)
and the cut-off parameter (or threshotd)s done by performing a simple graphical method (obtaining
the value which separate two power law regions) to the log-log scale. But this procedure is considered ¢
subjective. Hence methods such as goodness of fit tests 3.2 can be used to estimate the cut-off param:
of the distribution.

Problems Associated with Fitting Data to a Probability Distribution [9, 10, 11]:

The main problem of fitting financial data to a distribution is to choose the best distribution to fit.
Commonly used method to address this issue is by means of a hypothesis which states that the given d
set has been drawn from a particular distribution and to rule out the other competing hypothesis whils
proving the selected one.

When selecting an appropriate data range to fit to a given distribution, we often use a cut-off value
Choosing this cut-off value is also problematic because if we choose a very low value we may be selectin
data which have not come from the selected distribution. On the other hand, if we chose a very larg
cut-off value we might be omitting legitimate values which actually follow the selected distribution.

When we fit a data set to a distribution, maximum likelihood or any other method gives us only the
best fit of the given distribution to the given data set. But it doesnt give any warnings or errors if the given
dataset does not follow the given distribution. In fact, there can be some other distributions which woulc
be best fits to the given dataset. So our fitting method does not imply that our dataset actually follows th
given distribution.

There can be deviations when we try to fit a known distribution to a data set which was drawn from
that particular distribution, because of the random nature of the sampling. Addressing the issue of findin
the best distribution type to fit a given data set is a big problem in financial world [9, 10, 11].

Methods that can be Used to Validate the Fitted Values :

Likelihood ratio test is used to compare distributions with one another. It simply calculates the like-
lihood of two distributions and chooses the one with the higher likelihood. Also sign of the logarithmic
ratio between two likelihood values can be used to find the best fit. Non parametric bootstrap method ca
be used overcome the uncertainty of estimated data. It is done by randomly selecting a large humber
sequences (1000) from the original dataset and estimating cut-off and exponent values for each of tho
datasets to get the average of the estimated values. We have used this method when fitting real data to
distribution.

Monte-Carlo power test is used to find the best goodness of fit method. It is simply analyzing the tes
statistic values and gives evidence on the speed of convergence of the method and effect on values of 1
parameters for convergence. According to this test, modified Cramer-Von-Mises test gives more accura
and robust values above all the other methods [9]. We can use the p-value approach to find out the be
fitting distribution. We can simply calculate the p-value of competing distributions and compare with the
main (assumed) distribution to get the best fit. If the P-value of our assumed distribution is large, then th:
assumption is not ruled out [11].

The following sections ( A.2.1 and A.2.1)) describe the terms used to describe a probability distribu-
tion.
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Infinite divisibility If x is any random variable with cumulative distribution function F, and F is
infinitely divisible for every positive integer n, then there exist n different independent identically dis-
tributed random variables, +x,+....+z,, (with a cumulative distribution functioi;,) whose sum is equal
to x. Normal distribution, Cauchy distribution and all other members of the stable distribution family, Pois-
son distribution, negative binomial distribution, exponential distribution, geometric distribution, Gamma
distribution and degenerate distribution are examples of infinitely divisible distributions. The uniform dis-
tribution and binomial distribution are not infinitely divisible. Also if a given characteristic function F can
be represented as thé" power of some other characteristic function for every integer n, both F and the
corresponding density function are called infinitely divisible [3, 4].

First few central moments and their interpretations

e The zeroth central moment is one.

e The first central moment is zero.

e The second central moment is variance; the square root of it represents the standard deviation.
e The third central moment represents skewness

e The fourth central moment represents kurtosis
Pareto Levy Relationship with Maslov paper|[2]

e Histogram of short time lag increments of market price, generated by the Maslov model has a Gaus
sian shape with sharp maximum and broad wings (i.e., high data concentration in extreme values
So according to the current consensus of this peculiar distribution, up to a certain level it shows the
characteristics of Pareto-Levy distribution, with a power law exponemtioty; ~ 2.4 — 2.7, and
then it crosses over either to a steeper power law with an expanent, ~ 3.7 — 4.3 or to an
exponential decay. In both cases this crossover ensures a finite variance (second moment) of tl
distribution [2].

e Maslov analyzed the histogram of price increments measured within time lags of 1, 10, and 100
The overall shape of these histograms is strongly non Gaussian and it is very close to the shape:
real stock prices. As the lag increases the sharp maximum peak of the histogram gradually softer
(close to Gaussian), while the wings remain strongly non Gaussian. Also his analysis on the log
log plot of histogram with lag 1 for data collected during 3.50° time stamps shows the log-log
plot has two distinguishable power law regions separated by a large crossover around the increme
approximately equal to 1 due to some unknown reason. The exponents of these two regions al
measured to bé + o1 ~ 0.6 £ 0.1 and1 + a, ~ 3 £ 0.2. A similar crossover of two power law
regions was reported in real stock price fluctuations in NYSE with the expohents ~ 1.4 —1.7
and1 + as ~ 4 — 4.5. The power law exponent of far tdil+ « = 3 stays right at the borderline,
separating the Pareto-Levy region with power law exponental 43, where the distribution has
infinite second moment(variance). And also he does not expect a convergence of a price fluctuatic
distribution to a universal Pareto-Levy or Gaussian as lag is increased [2].
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[* Probability Distribution Function of Simple Power-Law
Distribution: */
Fr) = 1—(y/z)" (A.8)
Wherea is power exponent andis cut-off (X ¢7).
[*  Probability Density Function of Simple Power-Law Distribution:
*/
fla) = (ay)/a*" o >0y >a (A.9)
Mean = avy/(a—1),a>1 (A.10)
Mode = ~ (A.11)
Variance = ~*a/(a—1)*(a—2),a > 2 (A.12)

Algorithm 6 : Pareto-Levy Distribution
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