
University of Otago
Te Whare Wananga o Otago

Dunedin, New Zealand

Software process engineering for
measurement-driven software quality

programs — realism and idealism

Stephen G. MacDonell
Andrew R. Gray

The Information Science
Discussion Paper Series

Number 96/19
September 1996
ISSN 1172-6024

University of Otago

Department of Information Science

The Department of Information Science is one of six departments that make up the Division of Commerce at
the University of Otago. The department offers courses of study leading to a major in Information Science
within the BCom, BA and BSc degrees. In addition to undergraduate teaching, the department is also
strongly involved in postgraduate research programmes leading to MCom, MA, MSc and PhD degrees.
Research projects in software engineering and software development, information engineering and database,
software metrics, knowledge-based systems, natural language processing, spatial information systems, and
information systems security are particularly well supported.

Discussion Paper Series Editors

Every paper appearing in this Series has undergone editorial review within the Department of Information
Science. Current members of the Editorial Board are:

Assoc. Professor George Benwell Assoc. Professor Nikola Kasabov
Dr Geoffrey Kennedy Dr Stephen MacDonell
Dr Martin Purvis Professor Philip Sallis
Dr Henry Wolfe

The views expressed in this paper are not necessarily the same as those held by members of the editorial
board. The accuracy of the information presented in this paper is the sole responsibility of the authors.

Copyright

Copyright remains with the authors. Permission to copy for research or teaching purposes is granted on the
condition that the authors and the Series are given due acknowledgment. Reproduction in any form for
purposes other than research or teaching is forbidden unless prior written permission has been obtained from
the authors.

Correspondence

This paper represents work to date and may not necessarily form the basis for the authors’ final conclusions
relating to this topic. It is likely, however, that the paper will appear in some form in a journal or in
conference proceedings in the near future. The authors would be pleased to receive correspondence in
connection with any of the issues raised in this paper, or for subsequent publication details. Please write
directly to the authors at the address provided below. (Details of final journal/conference publication venues
for these papers are also provided on the Department’s publications web pages:
ht t p: / / di vcom. ot ago. ac. nz: 800/ COM/ I NFOSCI / Publ ct ns/ home. ht m). Any other
correspondence concerning the Series should be sent to the DPS Coordinator.

Department of Information Science
University of Otago
P O Box 56
Dunedin
NEW ZEALAND
Fax: +64 3 479 8311
email: dps@infoscience.otago.ac.nz
www: ht t p: / / di vcom. ot ago. ac. nz: 800/ com/ i nfo sc i/

1

Software Process Engineering for Measurement-
Driven Software Quality Programs - Realism and

Idealism
Stephen G. MacDonell and Andrew R. Gray

Department of Information Science

University of Otago

PO Box 56, Dunedin, New Zealand

email: stevemac@commerce.otago.ac.nz

Abstract

This paper brings together a set of commonsense recommendations relating
to the delivery of software quality, with some emphasis on the adoption of
realistic perspectives for software process/product stakeholders in the area
of process improvement. The use of software measurement is regarded as
an essential component for a quality development program, in terms of
prediction, control, and adaptation as well as the communication necessary
for stakeholdersÕ realistic perspectives. Some recipes for failure are briefly
considered so as to enable some degree of contrast between what is currently
perceived to be good and bad practices. This is followed by an evaluation
of the quality-at-all-costs model, including a brief pragmatic investigation of
quality in other, more mature, disciplines. Several programs that claim to
assist in the pursuit of quality are examined, with some suggestions made as
to how they may best be used in practice.

Introduction

Examining any software engineering text is almost certain to result in the reader finding a
selection of Ôwar storiesÕ in the first few pages. These stories point out the huge costs
of system development and software failure It is granted here that many of these stories
are exaggerations or omit certain crucial facts, such as the often cited study by The US
General Accounting Office (1979) which found that about three quarters of expenditure
on a set of projects never produced or contributed towards any working system. Most
citing papers have since failed to mention that these projects were selected on the basis
of already being in difficulty. The conclusion that most projects heading towards failure
do in fact fail is less significant than some of these authors would have their readers
believe.

2

However, given that there is at least some basis of truth in these project management
horror stories it may be expected that organizations would be greatly concerned about
the quality of their software development process and of the delivered product. While
this concern does seem to exist for many companies, few have actually gone as far as
taking a proactive stance towards improving their software quality. This is despite the
trend towards maturity accreditation which requires quality development processes. An
important question, which will be approached later, is why such companies appear to
pay lip service to something so crucial to their survival.

For those companies that do wish to measure and improve quality, a wide range of
guides, methodologies, and standards confront them, making the creation of a suitable,
and customised, quality-improvement program difficult. At the very least setting up
such a program is an expensive exercise in examining the many alternatives, rejecting and
altering these to suit the organisation, and finally in the actual implementation of the
program.

Even once such a program has been put in place, it requires support from a measurement
program. This measurement focus can be a subset of the quality framework or
standalone as providing services to the remainder of the organisation. Either way, the
integration of measurement and quality improvement is a critical, and delicate, task.

This paper brings together a set of commonsense recommendations relating to the
delivery of Ôsoftware qualityÕ, with an emphasis on measurement-driven quality
improvement. The need for realism in such a metrics program is also emphasised as
necessary to avoid an overly theoretical, potentially counter-productive, and certainly
costly exercise. The goal of this paper is to attempt the formulation of a set of
fundamental characteristics for successful quality measurement programs. This set of
characteristics is based on experience reports relating to successes and failures in quality
improvement, as well as on recent research into the various determinants of success in
software metrics programs. This could form a baseline, a minimum set of characteristics
that must exist if a metrics-driven quality improvement program is to succeed.

Drivers of Quality

There are many aspects of the software development process that affect quality in some
way. These include the tools, methods, and development staff used. While there have
been found to exist positive relationships between the sophistication of tool and
methodology support and the quality of the eventual system, simply ÔthrowingÕ these
costly resources at the development process is not sufficient. This ÔshotgunÕ approach
may result in isolated gains in productivity, or one-off project successes, but without a
disciplined, well-measured, software process these gains will most likely be sporadic at
best. It is suggested here that a Ôquality software processÕ is one that is defined, leveled,
accepted, used, monitored, controlled, reused and improved. Several of these steps
require some form of measurement as will be discussed later.

3

Quality Software
Development

Tools

Experience

Training

Standards

Incentives

Methodologies

Figure 1 A Sample of Quality-Drivers

Software Processes for Quality

A defined software process contains a series of steps towards goals, and therefore
requires measurement to determine the current stage of the process, the performance for
each stage, and also to identify when the process is ready to advance to a subsequent
stage. When the process is complete measurements are crucial for analysing the
strengths and weaknesses of development. This is obviously an important aspect of
quality-improvement. The leveling of the process allows for a hierarchy of
measurements, so that the process can be assessed at any desired magnification.

Software
Development Process

(amorphous blob
without

measurements)

Decision
Making

Measurement
Probes

Feedback In
Terms Of
Measures

Action

Figure 2 The Role of Measurement in Software Development

4

One of the first stages of designing such a process is to determine what is meant by the
term quality. This is difficult since as observed by Juran (1979), quality has many
meanings and its ambiguity can lead to many problems and disagreements. The
Software Engineering Technical Committee of the IEEE Computer Society (1983) is of
little further help when it defines software quality as ÒThe degree to which software
possesses a desired combination of attributes.Ó Other definitions from the same source
add at least some tangible meaning, ÒTotality of features and characteristics of a
software product that bear on its ability to satisfy given needs; for example, conform to
specificationsÓ and ÒThe degree to which a customer or user perceives that software
meets his or her composite expectations.Ó Still, the ambiguity inherent in these
definitions is troublesome. While the idea of a single definition of quality is unrealistic,
there needs to be some idea of what goes towards making up quality for a given
organisation. It is these components and sub-components of quality that should form
the goals of any software process.

Functionality

Correctness

Robustness

Performance

Timeliness

Documentation

Satisfaction

Figure 3 Some Slices of the Quality Pie

Software Metrics as one Aspect of Quality Software
Processes

It has been observed by Jones (1995) that Òsoftware progress monitoring is so poor that
several well-known software disasters were not anticipated until the very day of
expected deployment!". Measures are therefore vital to assess the development on a
continuous basis throughout its life-cycle. Similarly, process improvement requires
longitudinal measurement to determine that some improvement has in fact occurred. In
many cases there exists no objective basis on which to judge product quality. Thus it
then becomes impossible to measure or predict. Monitoring can be carried out
incorporating both objective and subjective measures and a single measure should never
be used to answer a question concerning performance (Debou et al 1994). Moreover,
measures need to be understood and collected across the organisation if a comprehensive
understanding of status and progress is to be attained (Krasner 1994).

5

Miscommunication, or "loose language", makes a significant contribution to
development problems. A good measurement program provides unambiguous results
that allow for and encourage communication between stakeholders (ami 1995). Blame
attributing should not be the result of a measurement program. Both understanding and
a willingness to adhere to decisions resulting from the measurement program are required
from all process stakeholders. The program must be supported, both monetarily and
personally and its importance must be understood by all participants. While many of
these statements may appear to be nothing more than Ôcommon-knowledgeÕ or truisms
the difficulty comes with the actual implementation.

Given a monitoring program for a development process, it is then possible to assert
control. Juran (1979) explains that software quality control is the process of measuring
actual quality, comparing this to some standard, and then acting on the discrepancy. As
DeMarco stated, the ability to measure is a requisite for control (DeMarco 1982). This
control can consist of concentrating development effort on weaknesses in the quality of
the product and process.

Organizations must collect measures of both process and product quality. Data
collection should be automated wherever possible, and reporting should be focused on
exceptions (Arthur et al. 1993) rather than continuation of norms. Assessment should
be a continuous process (Bootstrap Project Team 1993) throughout development, not at
a small number of pre-specified points. The early identification of anomalies is crucial
for minimsing the costs of corrective action.

With the focus on cost minimisation, positive aspects of software quality metric
processes should be reusable for other projects. This is part of the Òmaximising lessons
learnedÓ principle. The iterative improvement of the measurement program should be a
stated goal.

Finally, the measurements extracted during the process can be used to improve future
development as part of a lessons learned philosophy. Three major principles in
software quality improvement are, firstly, to understand your baseline - an organisation
needs to be aware of current position in terms of products, processes and goals.
Secondly, not all software is the same - optimal software process for an organisation, or
even a project, may not be optimal for another organisation/project. Thirdly, let
experience drive change - all changes are experiments and should be treated as such
(McGarry 1995).

Recipes for Failure, and Even Some for Success

Failure of Quality Programs

Based on practical experience it is possible to identify a number of common mistakes
and misconceptions that can lead to an increased risk of failure for a software quality
program. Some of these have already been mentioned in sections above.

Some fairly obvious ways to increase the chance of failure are to fail to communicate
requirements to stakeholders. Ignore usersÕ requests for what they need, donÕt let
developers know what is expected of them, and assure management that this exact
amount of funds are necessary and the project will be delivered on this date.

6

Johnson (1995) reports the findings of a survey of 365 IT executive managers in the
USA concerning the development of more than 8000 applications. When asked why
projects failed, the following breakdown of responses was provided:

Incomplete requirements 13%

Lack of user involvement 12%

Lack of resources 11%

Unrealistic expectations 10%

Lack of management support 9%

Changing requirements 9%

Lack of planning 8%

Those factors emphasised (in italics) are directly influenced by the adequacy and
performance of an organisationÕs measurement program and serve to illustrate the
consequences of an absence of effective project management. Furthermore, lack of
resources and management support are as significant in determining the success of a
measurement and process improvement program as they are for development projects
themselves.

Keil (1995) suggests that a failure to carry out early and frequent risk assessment is a
common error that leads to project escalation. A further common error in terms of
process measurement, even under a goal-oriented framework, is to measure everything
from the outset. This can result in an overwhelming volume of information without the
infrastructure required to analyse and use it effectively (SPC 1994; Debou et al. 1994).

Quality Program Success

In contrast, successful projects exhibit the following characteristics (according to
JohnsonÕs survey (1995)):

User involvement 16%

Management support 14%

Clear requirements 13%

Proper planning 10%

Realistic expectations 8%

Smaller project milestones 8%

Again the emphasised factors are indicative of the influence of effective project
management, which is inherently based on measurement, for successful software
development. Johnson (1995) goes on to suggest a ÔSuccess PointsÕ grading scheme
which enables organisations to pre-determine whether they are likely to successfully
develop quality software systems.

7

The Metricate framework (SPC 1994) provides the following definition of a metrics
program: ÒA metrics program is the formalization of procedures to collect and interpret
software metrics within an organization. A successful metrics program will have well-
defined goals, and provide feedback on how the software development process can be
improved.Ó

Recommendations

In order of frequency of occurrence in the literature (see the list of references at the end
of the paper), the following factors are recommended as those that are more likely to
lead to the development of quality software through the application of measurement-
driven software assessment and improvement programs:

• Executive management support - contemporary opinion clearly rates this factor as
the most important in implementing and using a measurement program as part of a
quality framework. Moreover, middle management support is also essential if the
programs are to succeed at the operational level.

• Adequate resources/funding for assessment and improvement - too often
measurement and improvement are expected to happen in addition to the Ôreal
workÕ of development, but experience clearly shows that this simply does not
happen. Separate and adequate funding is essential if these programs are to be of
real effect.

• An appropriate corporate culture - the measurement function, and the results of
measurement activities, must be seen to have value by all stakeholders. This may
involve the breaking down of barriers around information sources, barriers based on
political rather than organisational motivation. Actions resulting from measurement
outcomes also need to be monitored for impact.

• Realistic expectations of ÔrewardÕ - too often organisations expect immediate and
significant payback from the measurement function, but these expectations are
seldom achieved. More appropriate levels of anticipated benefits need to be set out
and communicated to all stakeholders.

• The appointment of a (preferably voluntary) measurement sponsor - an individual in
middle management to act as measurement sponsor can be influential regarding the
success of the program, particularly in terms of maintaining momentum after an
initial concentration of activity at the beginning of program use.

• Clearly defined and communicated measurement goals - ad hoc measurement is little
better than no measurement at all in terms of long-term process quality
improvement. Much measurement literature therefore emphasises the need to
specify in clearly defined terms the goals and objectives of the measurement
program.

• Verification methods - measurement will only succeed if the measures as defined are
collected consistently and effectively according to the specified definitions.

8

• Adequate analysis methods - data collection is one step in the establishment of a
successful measurement program, but the determination and use of appropriate
analysis techniques is also necessary if progress is to be made.

• Trade-off awareness - there is a clear trade-off between the accuracy and granularity
of the data collected in a metrics program and the effort required for that collection.
Again, unrealistic expectations of the value of a cheap metrics program can only
result in disillusionment with the measurement function.

• Feedback mechanisms - process and product measurement can be viewed as
unnecessary overhead by developers and operations managers if they fail to receive
adequate feedback on their data collection efforts. Facilities for communication in
both directions between the measurement group or sponsor and developers and
managers is needed to ensure the continuing worth and relevance of the measurement
function.

• Customer orientation - the almost obsessive nature of some quality frameworks in
terms of measuring product and/or process quality can mean a lack of attention on
the ultimate consumers of software, the users and customers. Measures of customer
and user satisfaction are required if organisations are to maintain process
improvement in a direction that can help to ensure the longer term viability of the
enterprise.

• A dynamic nature - the measurement function needs to be sufficiently flexible to
adapt as the needs and goals of the organisation change over time.

• Adequate training (including resources) - those responsible for measurement data
collection and analysis need to be trained in the discipline as well as in the rationale
for the procedures used. Again, funding for such activities is a further requirement
of a successful program.

• Tool support - software developers can be resistant to change, especially if they
perceive the change involves extra workload for themselves. Implementation of a
measurement program can be viewed as such a change. Moreover, self-reporting of
metrics data may not provide sufficiently accurate or reliable data to enable an
organisation to determine current status and levels of improvement. Thus the
availability of automated tool support for non-intrusive data collection is another
pre-requisite for successful metrics programs. Management-oriented monitoring and
control tools are also needed to support the administrative tasks associated with
measurement programs.

• Non-chaotic development environment - it almost goes without saying that a
managed software process is a necessary foundation on which a measurement
program can be built. Chaotic development by its very nature does not enable
measurement as part of a long term improvement framework.

Quality in other Disciplines

An interesting question to pose at this stage is ÒHow does the management of quality in
software development differ from other disciplinesÓ. A reason for raising this question

9

here are that there is always more to be learned from other fields. If software
engineering is to live up to the second half of its name, then much must be borrowed
from the engineering field.

When a building is to be constructed a multitude of activities are performed before the
foundation is laid to ensure the correctness of the structure. Surveying is performed to
determine the exact location for the structure. Equations are used to verify the
soundness of the structure, possibly simulations will be used for the same purpose.
The building will be tested against both natural hazards such as earthquakes, and also
man-made such as fires. Standards must be followed for plumbing and electrical work.
All of these drivers of quality are used as a matter of course. No builder would claim to
be more mature than another simply because he employed a certified electrician.

Why is it then that measurement and quality-improvement programs for software
development are often regarded as significant and a sign of process maturity in both
practice and much research? Surely, it should be the lack of such basic engineering
requirements that attract attention.

Standards and Programs for Quality

An important aspect of a measurement-driven quality improvement program is the use
of quality standards and programs, such as:

• ISO9001 and its guide for software ISO9000-3 (Huyink and Westover 1994);

• Software Process Improvement and Capability Determination (SPICE) (Dorling
1993);

• Bootstrap (Bootstrap Project Team 1993);

• the Software Engineering InstituteÕs (SEI) Capability Maturity Model (CMM)
(Paulk et al. 1993a; 1993b).

In some of these, measurement is binary (in other words no partial achievements are
recognised). This is obviously not adequate in rewarding an organisation in the early
stages of quality improvement when many significant building blocks may be in place,
but none are entirely completed. The use of such programs is often politically
motivated, rather than installed by a genuine desire to improve quality through the use
of the program, the accreditation or implementation being used as a marketing tool. For
example, Dion (1995, p.2) remarks that ÒOne of the reasons that companies were (and
still are) driven by the desire to achieve a particular [maturity] level by a specific date is
the knowledge that some government contracts are being awarded using SEI level as a
selection criteria.Ó Thus the motivation is really not one of quality per se but of
competitiveness (Krasner 1994). Whilst there can be no argument that all organisations
should wish to maintain and extend their competitiveness, quality may begin to take a
less important role if the often significant costs of a quality program are seen as
dispensable as contract bids become more and more cut-throat.

10

An important determinant of whether a standard or program is suitable for a given
organisation is the type of development. There are several different types of software
as described by McManus (1992), namely, operating systems, mission-critical, real-
time, interactive, and business. Each of these has its own quality requirements and any
standard or program adopted should provide this level of quality.

The implication of adherence to a standard is that measurement and software quality
will follow: ÒIf they are certified for ISO9001 or have a well defined process,
organisations will normally have procedures in place that can be used in measurement
data analysis.Ó (ami 1995). This is by no means certain, however, particularly as the
existence of procedures does not guarantee appropriate use or subsequent analysis and
improvement.

Campbell (1995) also suggests that, since these quality assessment frameworks are
centred around the interview/audit approach, realistic outcomes are far from certain for a
number of reasons:

• the approach fosters a lack of trust between the participants

• organisations tend to hide problems from assessors

• organisations may be subjected to several customer-sponsored audits in a relatively
short period, using different instruments and producing different outcomes

• the processes are subject to wide interpretation

• the results are not optimised to business goals or organisational needs

• the costs of assessment and improvement can be prohibitive.

It is an indication of the inherent link between measurement programs and general
quality improvement frameworks that an almost identical list could be drawn up as
describing those factors that result in measurement program failure.

The inconsistencies between the various quality programs can also be disconcerting for
organisations wishing to improve their processes via measurement. The two most
widely used frameworks, the SEIÕs CMM and the ISO9000 set of standards, are
substantially different in terms of expectations of the measurement function. This is to
be expected, given the difference in focus of the two approaches - the CMM is an
evaluation of the ÔmaturityÕ of an organisationÕs software function, whereas the ISO
standards are concerned with organisational quality management systems. The fact
remains, however, that software organisations need to be aware of both approaches, and
some means of matching between the two is useful. Paulk (1994, p.11) provides the
following assertion regarding measurement in the ISO standards: ÒISO 9001 is
somewhat ambiguous about the role of measurement in the quality management
system... ISO 9001 requires that quality objectives be defined and documented, not that
they be quantitative.Ó Although this may be perceived as a somewhat biased view of
the ISO framework - Paulk was one of the main proponents of the CMM - there is
certainly some evidence that the ISO standards are more static and binary in their
assessment.

11

To illustrate the problems of inconsistency between quality frameworks, Paulk (1994)
states that there are organisations with ISO certification (implying quality) but that are
at just Level 1 (the ad hoc or chaotic level) of the CMM capability framework.
Furthermore, Paulk et al. (1995, p.11) remark that ÒAlthough the SEI is working with
ISOÕs SPICE project to build the best possible international standard, our participation
does not imply a commitment to use the standards eventually approved.Ó This may be
bewildering to software development organisations looking to adopt the ÔbestÕ quality
framework. On the other hand, the CMM approach has been criticised for its absence
of attention to quality from a customer perspective - this is surely equally important for
an organisationÕs long term prospects as the adequacy and improvement of software
processes (Denning 1992). Supporters of the CMM will suggest that a quality process
will inevitably lead to satisfied customers, but the determinants of quality from each
perspective are quite distinct. It is this absence of a customer focus in the CMM that
has been addressed, for instance, in the Trillium model for telecommunications software
(Bell Canada 1994). Denning (1992) provides further comment in this regard, suggesting
that there is now too much emphasis on quality from the developer perspective, to the
detriment of customer-centred quality. The assertion is that, since it is the customer
that evaluates product quality based on the work they do with software, measurement
should be focused on assuring customer oriented satisfaction. In a similar vein, Dion
(1995) and Hon (1990) suggest that, particularly for organisations at the lower levels of
software process maturity, the focus of improvement should be on customer- and/or
shareholder-oriented activities. Dion acknowledges that these are difficult to measure,
but this can be achieved through consistent and objective definition.

The existence of quality frameworks has yet to have the expected impact. The ISO
standards have been long established, with assessment and certification becoming
particularly popular in the last eight years. The CMM framework has been evolving for
a similar period. However, Dion (1995) reports that in 1994 the SEI suggested that 73%
of organisations involved in software development in the USA (the market most
influenced by the CMM) were still at Level 1 (the ad hoc level) maturity. The reasons
for the poor extent of infiltration of such frameworks, that may be equally applied to
the use of measurement programs, are as follows:

• Cost - there is still little empirical evidence of the costs incurred as a result of
adopting a measurement-driven quality approach (Jones 1996), although some
information has been made available through the SEI (Goldenson and Herbsleb
1995). They report that two thirds of 138 respondents who had undergone process
appraisals had found the costs of process improvement to be greater than they had
expected. Moreover, this does not consider the costs of assessment preparation or
those associated with the appraisal itself. In this area, Herbsleb et al. (1994) report
a median cost of US$1375 per software engineer per year of process improvement.

12

• Scale of assessment - the CMM is more than 500 pages long, with potentially 316
clauses to consider; the Trillium model developed by Bell Canada includes more than
500 clauses for assessment at various levels; the Bootstrap framework is applied
over a period of a week; the Basic Practices Guide of the SPICE framework includes
potentially more than 900 issues to be considered; and quality management systems
due for ISO certification must be assessed across the entire organisation. These
factors tend to illustrate the significant scale of each quality assessment framework,
making their applicability for small projects and small organisations (common in
Australasia) less certain. The People-CMM (Curtis et al. 1995) and the Personal
Software Process (Humphrey 1996), which have been developed to in part address
this issue, are even less prominent in industry. Analysis of organisations undergoing
Bootstrap assessment also suggests that there is a positive relationship between
organisation size and capability level (Lebsanft 1996), providing seemingly little
encouragement for small software organisations. It seems equally plausible,
however, that small organisations are equally likely to achieve quality as their larger
counterparts - a different method of assessment may be required in these cases.

• Return - the payback has been longer in coming than expected for those involved in
CMM appraisal - approximately two to three years pass before benefits are
obtained (Curtis et al 1992; Hayes and Zubrow 1995). Given the scale of
investment, this may be a significant deterrent for those considering program
adoption. Many felt that assistance on how to improve was needed after appraisal.
Similarly, many of those who had undergone assessment felt that the
recommendations that were made as a result were too ambitious to achieve in a
reasonable time period.

• Inadequate coverage - discussion relating to some of the inadequacies of the ISO
standards in terms of measurement (from a CMM perspective) appeared above.
Thirty-eight percent of CMM survey respondents, however, felt that the
assessment missed important operational areas.

Realism in the Drive for Quality
The goal of this paper is not to suggest that quality should not be a goal. It should in
fact be paramount amongst the targets of any software development organisation.
However, the organisation needs to keep a larger perspective - realistic expectations
form the basis for realistic plans and estimates, leading to real satisfaction from quality
software development. Schedules and budgets are indeed routinely exceeded, but often
because they are based on unrealistic measurements and estimates. Moreover, for all the
attention we can place on the software process, there is still extensive uncertainty in
large scale software development that we simply cannot always control (Kraut and
Streeter 1995; Mackey 1996). Human nature means that there is a focus on failure -
success is expected and generally not so widely reported. But there have been many
successes in software development, particularly when it is considered that software
systems are so pervasive in spite of the fact that this is an extremely young industry.
Finally, software development is at least in part a social activity that cannot always be
modelled and constrained as we would prefer - thus even the most comprehensive
measurement-driven software quality framework cannot ensure success (King and
Galliers 1994).

13

Conclusions

This paper has considered the many available means of trying to improve the quality of
a software development process. While many different tools and methods are available,
along with a multitude of standards and quality-improvement programs, one essential
element is that of measurement. It is simply unfeasible and unrealistic to expect a
processes quality to improve without some form of assessment and feedback.

Bibliography

ami (ami Consortium) (1995). ami - Application of Metrics in Industry, ami
Consortium, London.

Arthur, J.D., Nance, R.E., and Balci, O. (1993). Establishing Software Development
Process Control: Technical Objectives, Operational Requirements, and the Foundational
Framework. Journal of Systems and Software 22: 117-128.

Bell Canada (1994). Trillium: Model for Telecom Product Development and Support
Process Capability. Bell Canada, Quebec, 1994.

Bootstrap Project Team (1993). Bootstrap: EuropeÕs Assessment Method. IEEE
Software May: 93-95.

Campbell, M. (1995). Tool Support for Software Process Improvement and Capability
Determination: Changing the Paradigm of Assessment. Software Process Newsletter 4:
12-15.

 Curtis, B., Kellner, M.I., and Over, J. (1992). Process Modeling. Communications of
the ACM 35(9): 75-90.

Curtis, B., Hefley, W.E., Miller, S., and Konrad, M. (1995). The People-CMM.
Software Process Newsletter 4: 7-10.

DeMarco, T. (1982). Controlling Software Projects. Yourdon, New York.

Debou, C., Liptak, J., and Schippers, H. (1994). Decision Making for Software Process
Improvement: A Quantitative Approach. Journal of Systems and Software 26: 43-52.

Denning, P.J. (1992). Editorial - What is Software Quality? Communications of the
ACM 35(1): 13-15.

Dion, R. (1995). Starting the Climb Towards the CMM Level 2 Plateau. Software
Process Newsletter 4: 1-2.

Dorling, A. (1993). SPICE: Software Process Improvement and Capability
Determination. Information and Software Technology 35(6/7): 404-406.

Goldenson, D.R., and Herbsleb, J.D. (1995). After the Appraisal: A Systematic Survey
of Process Improvement, its Benefits, and Factors that Influence Success. Technical
Report CMU/SEI-95-TR-009, Software Engineering Institute, Pittsburgh.

Gottesdiener, E. (1996). What Is Your Development Maturity? Application
Development Trends March: 60-73.

14

Hayes, W., and Zubrow, D. (1995). Moving On Up: Data and Experience Doing
CMM-Based Process Improvement. Technical Report CMU/SEI-95-TR-008, Software
Engineering Institute, Pittsburgh.

Herbsleb, J., Carleton, A., Rozum, J., Siegel, J., and Zubrow, D. (1994). Benefits of
CMM-Based Software Process Improvement: Initial Results. Technical Report
CMU/SEI-94-TR-14, Software Engineering Institute, Pittsburgh.

Hollom, J.H., and Pulford, K.J. Experience of Software Measurement Programmes and
Application of the ami Method Within GEC. GEC Journal of Research 12(1): 17-25.

Hon, S.E. III, (1990). Assuring Software Quality through Measurements: A BuyerÕs
Perspective. Journal of Systems and Software 13: 117-130.

Humphrey, W.S. (1996). Using a Defined and Measured Personal Software Process.
IEEE Software May: 77-88.

Huyink, D., and Westover, C. (1994). ISO 9000. Irwin, New York.

Jeffery, R., and Berry, M. (1993). A Framework for Evaluation and Prediction of
Metrics Program Success. In Proceedings of the First International Software Metrics
Symposium, Baltimore MA, IEEE Computer Society Press, pp. 28-39.

Johnson, J. (1995). Chaos: The Dollar Drain of IT Project Failures. Application
Development Trends January: 41-47.

Jones, C. (1995). Patterns of Large Software Systems: Failure and Success. Computer
March: 86-87.

Jones, C. (1996). The Pragmatics of Software Process Improvements. Software Process
Newsletter 5: 1-4.

Juran, J.M. (1979). ÒBasic ConceptsÓ in Quality Control Handbook, ed. Juran, J.M.,
Gryna, F.M., and Bingham, F.M., 3rd Edition, New York: McGraw-Hill, pp. 2-5.

Keil, M. (1995). Pulling the Plug: Software Project Management and the Problem of
Project Escalation. MIS Quarterly December: 421-447.

King, S., and Galliers, R. (1994). Modelling the CASE Process: Empirical Issues and
Future Directions. Information and Software Technology 36(10): 587-596.

Koch, G.R. (1993). Process Assessment: the Bootstrap Approach. Information and
Software Technology 35(6/7): 387-403.

Krasner, H. (1994). The Payoff for Software Process Improvement (SPI): What it is
and How to get it. Software Process Newsletter 1: 3-8.

Kraut, R.E., and Streeter, L.A. (1995). Coordination in Software Development.
Communications of the ACM 38(3): 69-81.

Lebsanft, E. (1996). BOOTSTRAP: Experiences with EuropeÕs Software Process
Assessment and Improvement Method. Krasner, H. (1994). Software Process
Newsletter 5: 6-10.

15

Mackey, K. (1996). Why Bad Things Happen to Good Projects. IEEE Software May:
27-32.

McGarry, F. E. (1995). Product-Driven Process Improvement. Software Process
Newsletter 3:1-3.

McManus, J.I. (1992), ÒHow Does Software Quality Assurance Fit In?Ó, in Handbook
of Software Quality Assurance, ed. Schulmeyer, G.G., and McManus, J.I., New York:
Van Nostrand Reinhold, pp. 14-24.

Paulk, M.C., Curtis, B., Chrissis, M., and Weber, C.V. (1993a), Capability Maturity
Model for Software (Ver 1.1), Technical Report CMU/SEI-93-TR-24, Software
Engineering Institute, Pittsburgh.

Paulk, M.C., Weber, C.V., Garcia, S.M., Chrissis, M., and Bush, M. (1993b). Key
Practices of the Capability Maturity Model (Ver 1.1), Technical Report CMU/SEI-93-
TR-25, Software Engineering Institute, Pittsburgh.

Paulk, M.C. (1994). A Comparison of ISO 9001 and the Capability Maturity Model
for Software. Technical Report CMU/SEI-94-TR-12, Software Engineering Institute,
Pittsburgh.

Paulk, M.C., Konrad, M.D., and Garcia, S.M. (1995). CMM Versus SPICE
Architectures. Software Process Newsletter 3: 7-11.

Rada, R. (1996). ISO 9000 Reflects the Best in Standards. Communications of the ACM
39(3): 17-20.

Schwaber, K. (1996). Defining Process vs. Problem-Solving. Application Development
Trends March: 76-81.

Software Engineering Technical Committee of the IEEE Computer Society (1983). IEEE
Standard Glossary of Software Engineering Terminology, IEEE-STD-729-1983, New
York: IEEE, p.32.

SPC (Software Productivity Centre) (1994). Metricate: Metrics Implementation Guide
for Software Quality Professionals, Software Productivity Centre, Vancouver.

US Government Accounting Office (1979). Contracting for Computer Software
Development-Serious Problems Require Management Attention to Avoid Wasting
Additional Millions. Report FGMSD-80-4. November.

