
University of Otago
Te Whare Wananga o Otago

Dunedin, New Zealand

Planning and Matchmaking for
The Interoperation of

Information Processing Agents

Stephen J.S. Cranefield
Aurora Diaz

Martin K. Purvis

The Information Science
Discussion Paper Series

Number 97/01
February 1997

ISSN 1172-6024

University of Otago

Department of Information Science

The Department of Information Science is one of six departments that make up the Division of Commerce at
the University of Otago. The department offers courses of study leading to a major in Information Science
within the BCom, BA and BSc degrees. In addition to undergraduate teaching, the department is also
strongly involved in postgraduate research programmes leading to MCom, MA, MSc and PhD degrees.
Research projects in software engineering and software development, information engineering and database,
software metrics, knowledge-based systems, natural language processing, spatial information systems, and
information systems security are particularly well supported.

Discussion Paper Series Editors

Every paper appearing in this Series has undergone editorial review within the Department of Information
Science. Current members of the Editorial Board are:

Assoc. Professor George Benwell Assoc. Professor Nikola Kasabov
Dr Geoffrey Kennedy Dr Stephen MacDonell
Dr Martin Purvis Professor Philip Sallis
Dr Henry Wolfe

The views expressed in this paper are not necessarily the same as those held by members of the editorial
board. The accuracy of the information presented in this paper is the sole responsibility of the authors.

Copyright

Copyright remains with the authors. Permission to copy for research or teaching purposes is granted on the
condition that the authors and the Series are given due acknowledgment. Reproduction in any form for
purposes other than research or teaching is forbidden unless prior written permission has been obtained from
the authors.

Correspondence

This paper represents work to date and may not necessarily form the basis for the authors’ final conclusions
relating to this topic. It is likely, however, that the paper will appear in some form in a journal or in
conference proceedings in the near future. The authors would be pleased to receive correspondence in
connection with any of the issues raised in this paper, or for subsequent publication details. Please write
directly to the authors at the address provided below. (Details of final journal/conference publication venues
for these papers are also provided on the Department’s publications web pages:
ht t p: / / di vcom. ot ago. ac. nz: 800/ COM/ I NFOSCI / Publ ct ns/ home. ht m). Any other
correspondence concerning the Series should be sent to the DPS Coordinator.

Department of Information Science
University of Otago
P O Box 56
Dunedin
NEW ZEALAND
Fax: +64 3 479 8311
email: dps@infoscience.otago.ac.nz
www: ht t p: / / di vcom. ot ago. ac. nz: 800/ com/ i nfo sc i/

Submitted to IJCAI-97

Planning and Matchmaking for the Interoperation
of Information Processing Agents

Stephen Cranefield, Aurora Diaz and Martin Purvis
Department of Information Science, University of Otago

P.O. Box 56, Dunedin, New Zealand
fscranefield,adiaz,mpurvisg@commerce.otago.ac.nz

Abstract

In today’s open, distributed environments, there is
an increasing need for systems to assist the interop-
eration of tools and information resources. This pa-
per describes a multi-agent system, DALEKS, that
supports such activities for the information process-
ing domain. With this system, information process-
ing tasks are accomplished by the use of an agent
architecture incorporating task planning and infor-
mation agent matchmaking components. We dis-
cuss the characteristics of planning in this domain
and describe how information processing tools are
specified for the planner. We also describe the man-
ner in which planning, agent matchmaking, and
information task execution are interleaved in the
DALEKS system. An example application taken
from the domain of university course administra-
tion is provided to illustrate some of the activities
performed in this system.

1 Introduction
With the open and increasingly interconnected world of in-
formation sources, the problem of how to make effective use
of the information in a heterogeneous and distributed envi-
ronment is a significant challenge. A characteristic of this
emerging environment is that new information sources and
processing tools continually become available and can make
existing ones obsolete. Although facilities exist for searching
the Internet, there remain problems of organising and effec-
tively using information in such a dynamic environment.

One approach is to encapsulate tools and sources by
means of software agents that are capable of providing in-
formation to each other concerning their specific capabili-
ties. The advantage of such an approach, where tools and in-
formation sources can communicate using a common agent-
communication protocol, such as KQML[Genesereth and
Ketchpel, 1994], is that the user need not be burdened with
the details of how to address each of the individual informa-
tion sources. This enables the user to be concerned more with

the demands of the problems at hand, rather than with the
specifics of how to access tools and information. It also sup-
ports the frequently necessary “toolkit” approach to problem
solving, whereby a number of different tools, some general-
purpose and some custom-built, are combined to achieve a
user’s information processing goal. This toolkit approach is
a typical solution to information processing and management
problems at many sites, especially where legacy systems must
be used.

Although the notion of a software agent architecture of-
fers advantages concerning information access in a dynamic
environment, there still remains the problem of how to se-
lect and organise the appropriate tools in order to carry out
a particular task. This paper discusses the DALEKS (“Dis-
tributed Agents Linking Existing Knowledge Sources”) sys-
tem, which addresses this problem by offering planning and
matchmaking facilities to facilitate the goal of information
processing in a dynamic, open environment.

Other researchers have investigated the use of planners in
software agent frameworks[Goldenet al., 1994; Knoblock,
1995; Kwok and Weld, 1996; Williamsonet al., 1996], but
this work has primarily focused on planning purely for in-
formationgatheringactions (which do not change the world
state except to increase the agent’s knowledge of an exter-
nal but static body of information). The work presented in
this paper is concerned not only with planning for informa-
tion gathering tasks, but also with planning for information
processing tasks, where information can be created or altered
by the actions of agents.

Planning issues associated with information processing
domains are discussed in Section 3, the manner in which
planning, matchmaking and execution are interleaved in the
DALEKS system are discussed in Section 4, and an illustra-
tive example of the system applied to an application in univer-
sity course administration is discussed in the Section 5. Re-
lated work and conclusions are covered in Sections 6 and 7.

2 Organising Information Processing Tasks

Previous work[Cranefield and Purvis, 1995; 1996] has pro-
posed a “desktop utility agent architecture” to automate the

interoperation of disparate and distributed tools to achieve a
user’s information processing tasks. This architecture extends
the federation agent architecture developed by researchers in
the field of agent-based software engineering[Genesereth and
Ketchpel, 1994] by adding a planning agent and a user agent.
These components, in conjunction with the federation archi-
tecture’s facilitator agent, are used to automate the task of
determining when and how to access information or tools
so that the user is shielded from the constant change asso-
ciated with the available tools and information resources. In
the DALEKS system discussed in this paper, information pro-
cessing tasks are organised by separating the processes of task
selection (via planning) from that of tool selection (via match-
making). The planning agent chooses the appropriate generic
information processing tasks to be performed, and the facil-
itator agent then acts as a matchmaker, deciding which tool
can be used to perform each task in the plan. In this paper the
focus of the discussion is on

� the modelling of information processing tasks for the
purposes of planning,

� the representation of information resources, and

� the protocol for distributed control of interleaved plan-
ning and execution through the cooperation of a user
proxy agent, a Hierarchical Task Network (HTN) plan-
ning agent and a facilitator (matchmaker) agent.

3 The Formal Model

A natural way to model problems in the information process-
ing domain is to imagine an abstract “information state” that
contains at any moment the theoretical information content
of the domain. As a conceptual entity, this information state
is not accessible by agents but instead serves as a reference
to which the contents of real physical information resources
can be compared during planning. With this model, the pre-
and postconditions of planning operators must declare how
the operator affects the information state, what resources are
required and produced by the action, what information is con-
tained in them, and to what stage of the complete information
processing task the information corresponds.

3.1 The Model of Action

Traditionally in planning, actions are modelled as functions
that map a prior world state to the state of the world after the
action is performed. The world state is modelled by a set of
facts that hold in that state.

For the DALEKS system we wish to make explicit the role
played by the information resources required and produced
by actions. First, we assume there is a domain ontology,
called theDomain Information Model, describing the lan-
guage used to represent information about the domain. Cur-
rently we restrict this to being a relational data model, includ-
ing information about the candidate keys and foreign key re-

lationships between the base relations in the domain. We then
model the world state as consisting of three components:

The Information State This represents the current state of
the information processing domain. As actions are per-
formed, information may be created, become invalid or
be altered. For example, in a university course adminis-
tration domain a “mark assignments” action will create
new information: the marks awarded to each student for
the given assignment. A “re-mark assignment” action
will change the mark awarded to the given student for
that assignment. The information state represents the
theoretical information content of the current state. It
can be thought of as “God’s database” — this informa-
tion cannot be directly known by agents; they must in-
stead access physical resources that they know contain
an up-to-date copy of the information they require. For
example, although the “mark assignments” action cre-
ates information, the only way that information can be
accessed later is if the action stores the marks in some
physical resource (such as a file or database).

The Resource PoolThis is a set of descriptions of available
information resources. These descriptions specify the
location of the resource, the protocol used to access it,
the information contained by the resource, the ontology
used to express the information, and the (possibly prior)
state described by the information (resources may be-
come out of date as information processing actions are
performed). The contents of resources are described by
relational algebra expressions in terms of the base rela-
tions defined in the Domain Information Model.

These resource descriptions are collections of metadata
and can be represented as Uniform Resource Character-
istics (URCs)[LANL-ACL, 1995].

The Local State This is a set of facts as traditionally used
in planning to model the world. Here it represents the
aspects of the world not represented by the Information
State and the Resource Pool, such as the physical world
and the agent’s mental state. The Local State is directly
observable by agents.

3.2 Operator Specifications
As usual in planning, the domain actions are described by op-
erator specifications specifying the actions’ parameters, pre-
conditions and effects. In accordance with our decomposition
of the world state into three components, the operator’s pre-
conditions and effects are expressed separately for the Infor-
mation State, Resource Pool and Local State (see Figure 1 for
an example of an operator specification).

The Information State part of the operator specification de-
scribes the theoretical information processing operations per-
formed by the operator. New information may be generated,
even if this is not recorded anywhere for future use. The op-
erator specification lists the relations of the Domain Informa-

tion Model that are affected by the operator and describes the
changes to these relations using a set of constraints.

The resources required and produced by the operator are
also listed. At run time, each resource is described by a URC
which lists the resource’s location and other metadata such as
its intellectual content and format. The operator’s pre- and
postcondition resource specifications list can therefore spec-
ify values for any of the tags that may appear in a resource’s
URC, in particular, the required intellectual content of the re-
source can be expressed as a relational algebra expression in
terms of the Domain Information Model.

Finally, the Local State may be specified in terms of pre-
conditions and an add and delete list and is treated as in tra-
ditional planning frameworks. The Local State is not used in
the example discussed in this paper; however, its inclusion in
the formal model gives users the option of representing some
of an operator’s preconditions and effects using simple facts
without having to define their format in the Domain Informa-
tion Model.

Figure 1 shows an example operator specification in the
domain of university course administration.

mark(Ass, Class IDs, !ID Set)

Information State
affects: assess.
constraints:

rel(assess; After) = rel(assess; Before) [NewData,
key values(NewData; stu cmpt) = !ID Set� fAssg,
!ID Set� Class IDs.

Resources

pre:
R1 : ontology= coursedata,

content= rel(student; Before).
post:

R2 : ontology= coursedata,
content= rel(select(assess; [stu id 2 !ID Set;

cmpt id = Ass]),
After).

Local State No pre- or postconditions

Figure 1: An example operator specification

The Domain Information Model for this example is a re-
lational data model calledcourse_data . It includes the
base relationsstudent (recording student details including
the student identification number — attributestu_id) and
assess (which records student marks for each assessment
component, and has the attributesstu_id , cmpt_id and
mark).

The operatormark(Ass, Class_IDs, !ID_Set)
represents the invocation of an interactive tool that allows a

tutor to systematically run each student’s submission for a
particular programming assignment (Ass) and record a mark
for it. Not all submissions may be marked in one session, so
the third argument, a list of student IDs, is declared (using
the “!” prefix) to be a run-time variable[Ambros-Ingerson
and Steel, 1988] — one that will be instantiated at run time to
indicate which students’ assignments were marked during the
execution of this operator.

Theaffects clause in the Information State part of the
specification is used to address the frame problem for the In-
formation State. It states that the operator only alters the re-
lationassess .

The first two Information State constraints specify how
this operator changes the relationassess (using the spe-
cial variables Before and After to name the states before
and after this operator is executed). In brief, this opera-
tor is declared to create new information in the Information
State: marks for the assessment componentAss for all stu-
dents in!ID_Set . The first constraint declares that the con-
tents of theassess relation after the operator executes is
the union of the contents ofassess beforehand, and a set
of new tuples, represented by the variableNewData . This
set is then constrained to consist of a tuple for each student
in !ID_Set , with each tuple having itscmpt_id attribute
equal toAss (the constraint states that the set of values in
NewData for the key stu_cmpt , consisting of the pair
of attributes(stu_id, cmpt_id) , is equal to the cross
product of!ID_Set and the singleton set{Ass}).

Integrity constraints in the Domain Information Model also
cause implicit constraints to be asserted when this operator
is used, for example, there should not already be marks in
assess for componentAss and the students in!ID_Set ,
otherwise the new set of tuples inassess would violate the
constraint thatstu_id andcmpt_id together are the pri-
mary key forassess .

The final part of the operator specification declares the re-
sources required and produced by this operator. Before the
operator is executed, there must be a resource available con-
taining up-to-date information about the students taking the
course (the student relation). Once the operator has been exe-
cuted, the resource postcondition guarantees the existence of
a physical resource containing the new information. The con-
tent of this will be a subset of the tuples that will now belong
to the Information State, in particular, those representing the
new marks that have been awarded.

3.3 Information State Constraints

Information State constraints do not necessarily completely
specify the information processing process performed by the
operator. They can instead be regarded as a specification that
valid implementations of the operator must satisfy. For the
example above, the assignment marks for each student are
left unspecified. It is not for the planner to completely simu-
late the marking process, instead its role is to determine when

to perform the marking task as a step in a larger process. In
our current framework, a hierarchical task network (HTN)
planner[Erol et al., 1994] is used and the incorporation of
tasks into the plan is performed by the application of user-
defined methods to expand tasks into sequences of subtasks1.
The task networks used to represent plans in an HTN planner
consist of a set of compound (as yet unrefined) and primitive
tasks, together with a set of constraints on their ordering, vari-
able bindings, etc. Incorporating each selected operator’s In-
formation State constraints into the current task network and
defining appropriate constraint reduction rules is a straight-
forward extension of this procedure.

3.4 Constraints in Task Reduction Methods
The extension of task networks to include more general
types of constraint (compared to existing HTN planners,
e.g. [Erol et al., 1994]) also allows task reduction meth-
ods to be more expressive. For instance, Figure 2 shows
a method for splitting an assignment marking task into two
parts: first to mark the submitted course assessment compo-
nent (namedCmpt) for students whose identification num-
bers appear in the set!ID_Set1 , and then to (recursively)
mark the rest of the students’ work. When this method is

Mark-and-update(Cmpt, IDSet)
+

Mark-and-update-some(Cmpt, IDSet, !ID Set1)!
Mark-and-update(Cmpt, IDSet2)

Constraint: fID Set = !ID Set1[ID Set2g

Figure 2: An example task reduction method

used, it is intended that the taskMark-and-update will
be called withID_Set instantiated. !ID_Set1 is a run-
time variable and its value will only be known after the task
Mark-and-update-some has been executed (this task in-
volves executing a tool which a tutor can use to systematically
mark student assignments, however it cannot be predicted in
advance how many assignments will be marked in a single
session). The constraint ensures thatID_Set2 will then be-
come instantiated to the set of identification numbers for stu-
dents whose work have not yet been marked.

4 Planning, Matchmaking and Execution
In information processing domains, the user’s task of achiev-
ing some information processing goal involves the use of a
variety of software tools, where each tool can be seen to pro-
duce or consume information. Making two tools interact in-
volves matching the information produced by one to the in-
formation consumed by another. The DALEKS system fa-

1We restrict ourselves to sequential plans until the problem of
reasoning about the currency of resources in the presence of partially
ordered plans has been studied further.

cilitates the interoperation of diverse software tools by ex-
plicitly representing and reasoning about the properties of its
information resources, in particular, their intrinsic properties
which include intellectual content and physical form.

Two tools may create and use information resources with
similar intellectual content but of differing physical forms.
Intellectual content properties of an information resource can
thus be seen as being more general (less tool-specific) than
its physical form properties (such as the format of the infor-
mation and the protocol used to access it). DALEKS takes
advantage of this by separating information processing task
selection (planning) from tool and resource selection (match-
making). Planning, which determines what has to be done
to achieve a goal, uses the more general intellectual content
properties. Matchmaking, on the other hand, also includes
the more variable physical form properties in its reasoning
process. Extracting and explicitly representing the intellec-
tual content produced or consumed by an information source,
and separating it from its physical form, provides physical
data independence, thus protecting a plan from the more vari-
able aspects of an information source and allowing plans to
be made independent of the physical forms used.

Execution in the DALEKS system consists of three steps:
(1) determining the information processing tasks required to
achieve the user’s goal, (2) for each task, selecting a tool to
use to execute it, and (3) invoking the selected tool.

The control is distributed among three special-purpose
agents: the planner, the facilitator and the user agent.

Planner This determines the sequence of information pro-
cessing steps to perform. It generates a plan that does
not specifically identify the resources to use or tool to
invoke for each step in the plan. Instead, it specifies
what has to be done in a plan step and the intellectual
content of both the input and output of the plan step (as
described above in the operator specification section).
The domain specifications needed by the HTN planner
form the input required by the planning agent. These are
passed to the planner from the agent requesting the plan
via the facilitator.

Facilitator This performs tool selection and determines how
each task is to be executed. It uses the matchmaking
technique[Kuokka and Harada, 1995] and brings infor-
mation providers together with information consumers.
This matching process is made possible by information
providers actively advertising their capabilities to the fa-
cilitator and information consumers sending requests for
some service to the same facilitator. The facilitator then
identifies the advertisements that are relevant to the re-
quests and creates a communication link between the
two parties.

A domain is initially set up by supplying the facilitator
with Domain Information Models, Domain tasks and the
HTN methods for expanding them, and the generic op-

erators for these domains.

When agent-encapsulated tools become available to the
system, they send planning operators to the facilitator
to advertise their capabilities. At present these must be
more specialised versions of task operators for some do-
main; meaning that these advertisements include addi-
tional resource information for the inputs and outputs of
the tool.

User agent This contains the user’s goals and other infor-
mation pertinent to a particular user. It initiates plan-
ning when required and triggers execution by sending
recruit requests to the facilitator for each step in the
plan. In addition, the user agent keeps track of the cur-
rent plan and the current system state (what operators
have been executed and the URCs of the available re-
sources).

5 Application: University Course
Administration

In the domain of university course administration, informa-
tion processing and management tasks include the addition
or deletion of students from the class roll, marking student
assignments, changing marks when errors in marking are de-
tected, producing statistical summaries of the class marks,
etc. Information may be created, deleted or modified at each
stage of the process. At the authors’ institution, these tasks
are performed using a toolkit approach: the course adminis-
trator uses a number of different tools to perform the tasks,
some being general-purpose tools he is familiar with, and
some being specially written for work in this problem do-
main. This domain is therefore ideal as a testbed for the
DALEKS system.

5.1 Example

Using the DALEKS system to support work in the university
course administration domain involves initially starting up
the facilitator, planning and user agents, plus the tool agents
encapsulating the available tools. When the tool agents are
started, they sendadvertise messages that contain specifi-
cations of their capabilities to the facilitator. These advertise-
ments contain the specialised operators that define the actions
the tool can perform, including resource information such as
the formats of its inputs and outputs. They are used by the
facilitator, at run time, to select a tool agent to invoke.

The user agent initiates planning and plan execution, and
keeps a library of plans it can use to process the user’s goals.
Figure 3 shows an example plan from the university course
administration domain. This is a linearly ordered plan with
the tree structure depicting its hierarchical development from
the initial non-primitive taskDo-marking (task parameters
naming the assessment component to be marked have been
omitted). The marking task is decomposed into the generic
information processing operations of finding an information

resource for thestudent relation and then repeatedly mark-
ing batches of student assignments and recording the marks
in an information resource for theassess relation.

Planning and execution may be interleaved and in this case,
as the recursive call to the taskmark-and-update (under-
lined) is a non-primitive task, once the user agent has asked
the facilitator to execute the actions appearing in the other leaf
nodes (causing the run-time variable!ID_Set to be instan-
tiated), it must then request the facilitator to recruit a planning
agent to further elaborate the plan2.

Mark-and-update(ID_Set2)

Do-marking

Locate-relation(student) Mark-and-update(ID_Set)

Mark-and-update-some(ID_Set,

Update-relation(assess)Mark(ID_Set, !ID_Set1)

!ID_Set1)

Figure 3: An example plan for the marking task

Another situation where planning is interleaved with ex-
ecution is when the input of a tool does not match any of
the resources that have been produced so far (for example, a
mismatch in resource formats). After selecting a tool to use
to execute a plan step, the facilitator, using the tool advertise-
ments, will determine if the tool’s input requirements are met.
It may find that, although a resource exists with the required
information content, this resource is not in a format readable
by the selected tool. The facilitator then calls the planner to
derive a plan to do the translation and format conversion. This
plan causes the creation of a new resource, which is added to
the list of URCs stored in the user agent.

6 Related Work

There are a number of planners designed to plan for gather-
ing information from large dynamic networks of information
sources ([Goldenet al., 1994; Knoblock, 1995; Kwok and
Weld, 1996; Williamsonet al., 1996]).

XII [Goldenet al., 1994] is a general-purpose planner to
allow for sensing of the world as well as causal actions. Al-
though its actions can change the world, it makes a distinc-
tion between information goals and causal goals. Although it

2The question of how far the planner should expand the plan each
time is a subject for further research: in this case, the presence of
the run-time variable!ID_Set1 and the constraint in the method
for Mark-and-update (See Figure 2) could be used to infer
that expansion of the underlined task be delayed untilID_Set2
is instantiated.

could probably be applied to information processing tasks, its
action language is not designed to describe such domains.

Occam[Kwok and Weld, 1996] is an algorithm to generate
plans for efficiently accessing multiple information sources in
order to satisfy information gathering queries. Occam models
the available information as a relational database schema, but
as Occam plans for information gathering from an unchang-
ing world, this information model is regarded as static. The
available information resources are modelled by associating
information retrieval actions with the relations of the world
model that are returned when these actions are executed.

Williamson et al. [1996] extend the HTN planning
paradigm by explicitly modelling tasks’provisions(named
interface ‘slots’ with an attached queue for storing incoming
values),outcomes(indicating the result status of the task) and
its result (a value produced by executing the task). Task net-
works are extended to include links between the results and
provisions of tasks, indicating a flow of information. This
mechanism is claimed to unify and generalise the methods by
which operators can obtain information in traditional plan-
ning frameworks: by parameter binding, the passing of infor-
mation from other operators via the world state, and through
the use of run-time variables. Provisions also have a role
to play in controlling the execution of plans, with primitive
tasks being (re)activated whenever all their required inputs
are available.

Our framework takes a different approach to representing
and reasoning about information flow between actions. By
explicitly modelling the domain’s information state and the
changes that operators make to it, the intellectual content of
information resources can be described in terms of which
relation in the information state they correspond to, and at
which stage of the information processing process (described
by the sequence of actions that have been executed to reach
that state). Together with our use of matchmaking, this allows
agents to use any available resource that contains the required
information— the provider of the information does not need
to be hard-wired into the plan.

7 Conclusions
We have described the DALEKS system for information tool
interoperation, which separates higher-level planning from
lower-level matchmaking activities. This facilitates the de-
velopment of an information processing domain model that
can include information creation and other changes to the in-
formation state as operations are conducted. It also enables
the interleaving of planning, matchmaking, and execution so
that dynamic changes to the environment can be more easily
accommodated.

Work on the system is continuing in order to extend the
domain model beyond the relational model (such as using
concepts and roles, as in SIMS[Knoblock, 1995]) and also
to operate with existing information represented in different
ontologies.

References
[Ambros-Ingerson and Steel, 1988] J. Ambros-Ingerson and

S. Steel. Integrating planning, execution and monitoring.
In Proceedings of the 7th National Conference on Artificial
Intelligence (AAAI-88), pages 735–740, 1988.

[Cranefield and Purvis, 1995] S. J. S. Cranefield and M. K.
Purvis. Agent-based integration of general-purpose tools.
In Proceedings of the Workshop on Intelligent Information
Agents, Fourth International Conference on Information
and Knowledge Management, December 1995.

[Cranefield and Purvis, 1996] S. J. S. Cranefield and M. K.
Purvis. An agent-based architecture for software tool co-
ordination. InProceedings of the Workshop on Theoretical
and Practical Foundations of Intelligent Agents, Pacific
Rim International Conference on Artificial Intelligence,
1996. (to appear in Lecture Notes in Artificial Intellence,
Springer, 1997).

[Erol et al., 1994] K. Erol, J. Hendler, and D. S. Nau.
UMCP: A sound and complete procedure for hierarchical
task-network planning. In K. Hammond, editor,Proceed-
ings of the 2nd International Conference on AI Planning
Systems, pages 249–254, 1994.

[Genesereth and Ketchpel, 1994] M. R. Genesereth and S. P.
Ketchpel. Software agents.Communications of the ACM,
37(7):48–53, July 1994.

[Goldenet al., 1994] K. Golden, O. Etzioni, and D. Weld.
Omnipotence without omniscience: Efficient sensor man-
agement for planning. InProceedings of the 12th National
Conference on Artificial Intelligence (AAAI-94), pages
1048–1054, 1994.

[Knoblock, 1995] C. A. Knoblock. Planning, executing,
sensing, and replanning for information gathering. InPro-
ceedings of the 14th International Joint Conference on Ar-
tificial Intelligence, volume 2, pages 1686–1693, 1995.

[Kuokka and Harada, 1995] D. Kuokka and L. Harada.
Matchmaking for information agents. InProceedings of
the 14th International Joint Conference on Artificial Intel-
ligence, volume 1, pages 672–678, 1995.

[Kwok and Weld, 1996] C. Kwok and D. Weld. Planning to
gather information. InProceedings of the 13th National
Conference on Artificial Intelligence (AAAI-96), 1996.

[LANL-ACL, 1995] Uniform Resource Characteristics Web
page, Advanced Computing Laboratory, Los Alamos Na-
tional Laboratory. http://www.acl.lanl.gov/URC/, Novem-
ber 1995.

[Williamsonet al., 1996] M. Williamson, K. Decker, and
K. Sycara. Unified information and control flow in hier-
archical task networks. InProceedings of the AAAI-96
Workshop on Theories of Planning, Action, and Control,
1996.

