

University of Otago
Te Whare Wananga o Otago

Dunedin, New Zealand

Software Forensics: Extending Authorship Analysis

Techniques to Computer Programs

Andrew Gray, Philip Sallis and Stephen MacDonell

The Information Science
Discussion Paper Series

Number 97/14

December 1997
ISSN 1177-455X

 University of Otago

 Department of Information Science

The Department of Information Science is one of six departments that make up the Division of Commerce at
the University of Otago. The department offers courses of study leading to a major in Information Science
within the BCom, BA and BSc degrees. In addition to undergraduate teaching, the department is also
strongly involved in postgraduate research programmes leading to MCom, MA, MSc and PhD degrees.
Research projects in software engineering and software development, information engineering and database,
software metrics, knowledge-based systems, natural language processing, spatial information systems, and
information systems security are particularly well supported.

 Discussion Paper Series Editors

Every paper appearing in this Series has undergone editorial review within the Department of Information
Science. Current members of the Editorial Board are:

Assoc. Professor George Benwell Assoc. Professor Nikola Kasabov
Dr Geoffrey Kennedy Dr Stephen MacDonell
Dr Martin Purvis Professor Philip Sallis
Dr Henry Wolfe

The views expressed in this paper are not necessarily the same as those held by members of the editorial
board. The accuracy of the information presented in this paper is the sole responsibility of the authors.

 Copyright

Copyright remains with the authors. Permission to copy for research or teaching purposes is granted on the
condition that the authors and the Series are given due acknowledgment. Reproduction in any form for
purposes other than research or teaching is forbidden unless prior written permission has been obtained from
the authors.

 Correspondence

This paper represents work to date and may not necessarily form the basis for the authors’ final conclusions
relating to this topic. It is likely, however, that the paper will appear in some form in a journal or in
conference proceedings in the near future. The authors would be pleased to receive correspondence in
connection with any of the issues raised in this paper, or for subsequent publication details. Please write
directly to the authors at the address provided below. (Details of final journal/conference publication venues
for these papers are also provided on the Department’s publications web pages:
http://divcom.otago.ac.nz:800/COM/INFOSCI/Publctns/home.htm). Any other
correspondence concerning the Series should be sent to the DPS Coordinator.

Department of Information Science
University of Otago
P O Box 56
Dunedin
NEW ZEALAND
Fax: +64 3 479 8311
email: dps@infoscience.otago.ac.nz
www: http://divcom.otago.ac.nz:800/com/infosci/

Software Forensics: Extending Authorship Analysis
Techniques to Computer Programs

Andrew Gray Philip Sallis Stephen MacDonell

Software Metrics Research Laboratory
Department of information Science

University of Otago
PO Box 56, Dunedin, New Zealand

+64 3 479 5282

agray@commerceotago.ac.nz

ABSTRACT
The number of occurrences and severity of computer~
based attacks such as viruses and worms, logic bombs,
trojan horses, computer fraud, and plagiarism of code
have become of increasing concern. In an attempt to

better deal with these problems it is proposed that
methods for examining the authorship of computer
programs are necessary. This field is referred to here as

þÿ�b�‘�(�{�f�l�W�(�l�l�’�(�: �ff)I’(?!1.$’fCS.This involves the areas of author

discrimination, identification, and characterisation, as

well as intent analysis. Borrowing extensively from the

existing fields of linguistics and software metrics, this
can be seen as a new and exciting area for forensics to

extend into.

Keywords
Authorship analysis, computer programming, malicious

programs, software lorensics, software metrics, source

code

1. lN’I‘R()DUCTI()N

Computer programs are generally written in what is
referred to as þÿ�.�S�‘�0�l�.�l�l ��(�. ��(�?code. Source code is the textual
form of a computer program that is written by a computer
programmer. ln some cases source code is produced by
another program and this generated source code is based
on higher-level instructions (written in more abstract
source code or using a visual design environment)
created by a programmer. In any case (disregarding
visual programming), source code of all levels is written
in a computer þÿ�]�7�!�’�(�)�g�l�’�!�£�/�7 ��l�J�?�l�f�I�l�-�glanguage,

These programming languages can in some respects be
treated as a form of language t‘rom a linguistic
perspective, or more precisely as a series of languagesof
particular types. Languages for writing computer
programs differ in terms of their so-called generation
(roughly the time that they were devised and reflecting
their level of abstraction) and type (such as procedural,
declarative, object-oriented, and functional). in the same

manner as written text, such programs can also be
examined from a forensics viewpoint.

Figure 1 shows two small code fragments that were

written in a popular programming language called C++

by two separate programmers. Both programs provide
thc same functionality (calculating the mathematical
function þÿ�f�f�l�C�f�(�)�l ��f�(�I�f�(�l�l�)�,normally written as /1!) from the
þÿ�u�s�e�r�s �perspective. That is to say, the same inputs will

generate the same outputs for each ofthcse programs.

// Factorial takes an integer as an input and returns
// the factorial of the input.
// This routine does not deal with negarive valueai

int Faccorial tint Input)
K

int Counter;
itil. Fact;

FdCt=l; // Initalises Fact ce l since factorial 0 is 1
for (Counter=Input; Councer>1; Councer=Counter-ll
(

Fact=Fac*ConnCer;
)
return Fact;

g

)

i int flint x)(
_uit 5, y=L;

if (lx) return 1; else return þÿ�x ��[�l�x�-�1�l�;�)

Figure l Program segments in C++

As should be apparent each programmer has solved the
same problem in both a different manner (algorithm) and
with a different style exhibited in his or her code. The
first algorithm is a simple loop through the values from l

through to the input into the function (in reverse), while
the second employs a more sophisticated (but also worse

performing) recursive definition. The stylistic
differences include the use of comments, variable names,
use of white space, indentation, and the levels of

readability in each function.

These fragments are obviously far too short to make any
substantial claims. l-Iowever, they do illustrate the ability
for programmers to write programs in a significantly
different manner to another programmer, without any
instruction to do so. Both of these functions were written
in the natural styles of their respective authors and so

should reflect the types of þÿ�d�i�1�‘�l ��e�r�c�n�c�e�sthat would be
evident in general between their programs.

Source code for most programming languages’is, as

shown in this figure, a series of statements that provide
instructions to the computer for the purpose of achieving
some task. ln this case the statements define very small

and simple functions that can be called from other parts
of the program. Such programs are usually structured

with distinct sections and a generalordering, or sequence,
of execution. This sequencing may include conditional

ordering (i.c. logical conditions may, when met, cause the

repetition, addition, or omission of certain instructions

contained within the code).

While source code is certainly much more formal and

restrictive than spoken or written languages, computer

programmers still have a large degree of flexibility when

writing a program to achieve a particular funct.ion. This

flexibility includes the manner in which the task is

achieved (the algorithm used to solve the problem), the

way that the source code is presented in terms ol‘ layout
(spacing, indentation, bordering characters used to set off

sections of code, ctc.), and the stylistic manner in which

the algorithm is implemented (the particular choice of

program statements used, variable names, etc.).

Other choices may also be available to the programmer,
such as selecting the computer platform, programming
language, compiler, and text editor to be used. These

additional decisions may allow the programmer some

further degrees of freedom, and thus expressiveness.

Many of these features of a computer program

(algorithm, layout., style, and environment) can be quite
specific to certain programmers or types of progranunerz.
This is especially true for particular combinations of

features and programming idioms that make up a

programmer‘s problem~solvingvocabulary. Therefore, it

seems that computer programs can contain some degree
ol‘ information that provides evidence ol‘ the þÿ�a�u�t�’�h�o�r ��s

identity and characteristics (Sallis ct al., l996).

Once the classification is made that program source code

is in fact a type of language that is suitable lor authorship
analysis, a number ol" applications and techniques
emerge. ln fact, as Sallis et al. (1996) note, a reasonable

proportion of the work already carried out in

computational linguistics for tcxt corpus authorship
analysis (such as Sallis, 1994) has parallels for source

code. Similarly, techniques used in forensics for

handwriting and linguistic analysis can also, in some

cases at least, be transferred in some respect to what is

referred to here as softwareforensics.

’
l-iere the focus is on what are referred to as third-

generation languages which include most of the popular
and common programming languages, although the

principles can in some manner be extended to higher and

lower level languages.
2

Ideally, such aspects have low within-programmer
variabiiity, and high between-programmer variability.

Here it is assumed that the term software forensics refers

to the use of measurements from software source code, or

object code as will be explained below, for some legal or

ryjqcrifzlpurpose. This is similar to, but in some respects
also distinct from, the use of the term in some literature

where the focus tends to be very much on malicious code

analysis.

2. APPLICATIONS ()F SOFTWARE F ORENSICS

The four principal aspects of authorship analysis that can

be applied to software source code, and that are of

interest to the discipline ol‘ software forensics, are as

follows.

l. /lu!/mr r/i.vThisisthetaskofdecidingThis is the task of deciding
whether some piecesof code were written by a single
author or by (some number of) different authors.

This can possibly include an estimate of the number

of distinct authors involved in writing a single piece
or all pieces of code". This involves the calculation

of some similarity between the two or more pieces of

code and possibility some estimate of between- and

within-subject variability. An example of this would

be showing that two pieces of code were probably
written by different authorsd, without actually
identifying the authors in question.

2. /tullwr ideiiti/ication. The goal here is to determine

the likelihood ofa particular author having written

some piece(s) of code, usually based on other code

samples from that programmer. This can also

involve having samples of code for several

programmers and determining the likelihood of a

new piece of code having been written by each

programmer. This application area is very similar to,

for example, the attempts to determine the authorship
of the Shakespearean plays or certain historical

passages. An example of this applied to source code

would be ascribing authorship of a new piece of

code, such as a computer virus, to an author where

the code matches the profile of other pieces of code

written by this author.

3. Author c/zamcteri.s’ation_ This is based on

determining some characteristics of the programmer
of a code fragment, such as personality and

educational background, based on their programming
style. An example of this would be determining that

a piece of code was most likely to have been written

by someone with a particular educational

background due to the progranuning style and

techniques used.

3
It is obviously necessary to distinguish between

identifying multiple authors for a series of programs and

co-authorship on a single program.

4
The converse that the code was written by the same

author can be used as a test for plagiarism from that

particular author. See Whale (1990) l‘or more on

plagiarism detection.

4. Author intent determination. It may be possible to

determine, in some cases, whether code that has had
an undesired effect was written with deliberate
malice, or was the result of an accidental error.

Since thesoftwarc development process is never

error free5 and some errors can have catastrophic
consequences, such questions can arise reasonably
frequently. This can also be extended to check for

negligence, where erroneous code is perhaps
suspected to bc much less rigorous than a

þÿ�p�r�o�g�r�a�m�m�e�r ��susual code.

Such forensic techniquesare not limited to analysingjust
the source code files written by a programmer and used
to create a program. Source code is, usually, compiled
into object þÿ�c�o�r�/�e�f �that is then combined (linked) into the
executable as shown in Figure 2. This executable is the

program in its usable form that the end~uscrs and use

for whatever purpose.

S __ Utiicct

þÿ�&�,�"�t�’�l ��; tunic t
.H C

. ,.-Ø’

Sunrt’e
þÿ�l ��\ ��t�i�g�|�z�u�n

(Toile 2 Lixecutalmlc

_ _,""-M

Sourceþÿ �t‘mlc 3

Uhiect
Code 2

__ ...»-/Z

Figure 2 Program source code being compiled and
linked into an executable

Inforrnation can also be extracted from the
object/executable code, by decornpiling it into source

code with information loss7 or from certain features
contained in the executable that suggest the compiler
and/or platform used.

Some prograinniing languages, instead of using the

compiling process described above, work on an

interpreter system. In this case, the executable is the
source code itself, and the program is executed within an

environment that translates the code into machine-
understandable instructions as the program operates.
This is less common for programming languagesas such,
but still popular for scripting languages. ln general. the
term executable refers to a compiled program.

Therefore, irrespective of whatever form the program
being examined takes (source code or compiled
executable) measurements can be taken and used for a

5
Errors in software programs are often referred to as

bugs.
"

This is the program trarzslated into the þÿ�c�o�m�p�u�t�e�r ��s
internal language.
7

Generally, compilers optimize the code, losing some

structure, and use symbols in place of names.

number of authorship analysis purposes. The types of
information available will obviously depend on the
progranfs form (source code or object code), and for
different cases one l‘orm may be superior to the other. ln

general, source code will provide the greatest amount of
information. l-Iowevcr, some information is always
available irrespective of the form of the program, and

may he useful when combined with other available

knowledgethat does not concern the program itseli‘.

3. MOTIVATION FOR SOFTWARE FORENSICS
If software forensics, the authorshipanalysis of software
source code, is then accepted as possible, it remains to

_justify the usefulness ofthe field in a practical sense. As
the incidence of computer related crime increases it will
become increasingly important to have techniques that
can be applied in a legal setting to assist the court in

makingjudgemcnts. Some types of these crimes include
attacks from malicious code (such as viruses, Worms,

trojan horses, and logic bombs), plagiarism (theft of

code), and computer fraud. lt is to be expected that the

frequency of these crimes will continue to rise as

increasing numbers of people gain the requisite technical
skills.

Some of these problems arc already faced with a variety
of techniques. What is proposed here is that a complete
and well-defined field is required, with its own

techniquesand tools. Without. the creation of the field of
software forensics, such issues as were just mentioned
will continue to be tackled in an ad hoc manner. As the

importanceand frequency of such cases increases, such a

strategy will not be adequateor acceptable to participants
in the process.

As is hopefully apparent from the above discussion,
software forensics can be seen as a new and exciting area

of both forensics and linguistics. There is the potential,
and it is claimed here also the necessity, for building on

current results and techniques from the associated l‘ields
as well as developing new and specialised methods of

analysing the authorshipof computer programs. The next

question that needs to be asked is how exactly can such a

discipline be performed in the real world?

4, THE PRACTICE OF SOFTWARE FORENSICS
Expert opinion can, potentially, be given on the degrees
of similarity and dil‘l‘erence between code fragments.
This could be based on general appearance or the use of

programming idioms. Psychologicalanalysis of code can

also he performed, even as a simple matter of opinion.

However, a more scientific approach may also be þÿ�t�a�k�e�n �
since both quantitative and qualitative measurements can

he made on comptltcr program source code and object
code. Qualitative measurements can be usefully
expressed using fuzzy logic techniques as shown in

Kilgour, et al. (1997). These measurements can be either

8
It would be strongly argued here by the authors that a

more scientific approach must be taken if the field is to

accomplish anything of use.

automatically extracted by analysis tools, calculated by
an expertu,or arrived at by using some combination of

these two methods. Here these measurements are

referred to as metrics for reasons of traditionm and

include some borrowed and adapted from conventional

software metrics and linguistics.

A vast number ofdifferent metrics can be extracted t‘rom

source code. Some examples ofthe types of metrics that

can be extracted and that may be usel‘t|l for authorship
analysis purposes include, but are not limited to, the

following list.

’ The number of each type of data structure used can

be indicative of the background and sophistication of

a program author. A preference for certain data

structures can also indicate a certain mental model

that they operate within.

’ The cyclomatic complexity of the control [low of the

program can show the characteristic style of a

programmer and may suggest the manner in which

the code was written. For example code tends to

appear quite different when written all at once or

over time, especially if significant new functionality
has been added.

’ The quantity and quality of comments in the code

can provide evidence of linguistic cliaracteristics

such as writing style, errors in spelling and grammar,

etc.

’ The types ot‘ variable names used within the program

(capitalisation, corrupted forms, etc.) can provide
clues as to background and personality.

’ The use of layout conventions such as indentation

and borders around sections of code tends to depend
on background and the þÿ�p�r�o�g�r�a�m�m�e�r ��spersonality.

These metrics, which obviously require more formal

definition to be useful, could all be expected to exhibit

larger between subject variation than within subject
variation. In other Words, it could be expected that a

given set of programs from one author would be more

similar in terms of these measurements than a set of

programs from a variety of authors. Many other such

°
Some metrics can only be calculated by an expert, such

as the degree to which comments in source code match

the behavior of the code itself. Other metrics, such as the

ratio of statement lines to blank lines, are obviously best

automated for large systems,
’O

Measurements made on software programs (and the

development process) lor the purposes of managing
software development are traditionally referred to as

þÿ�S�(�U ��f�l�r ��L ��(�U�’ ‹rnetritar. The term is also used for

measurements of software for educational reasons

(assessment, style, etc.), user satisfaction, and many other

purposes. Thus, software metrics can be regarded as a

generic label l‘or any measurements made on a computer

program.

metrics can also he extracted from code but this short. list

hopefully provides some of the flavour of candidate

metrics.

Many of the structural type metrics can be obtained,

perhaps with modifications to definitions, from the

software metrics literature. Software metric definitions,
and also extraction tools, are available l‘or such aspects of

computer programs as complexity, comprehensibility, the

degree of reuse made l‘rom other code, and various

measures of size. The customary uses of these metrics

are in managiii the software development process, but

many are transferable to authorship analysis. ln any case,

the fundamental concepts that have emerged within the

field of software metrics are very useful as starting points
for defining authorship metrics. In addition, the metrics

extracted from source code can often be similar, or even

identical, to stylistic tests used in computational
linguistics, especially where sufficient quantities of

comments are available.

While not part of source code analysis itselt‘, some

environmental ineasureineuts can sometimes also be

extracted from executable code such as the hardware

platform and the compiler employed for its production.
Executable code can also he fleaprocesswherea process where

a source program that could then be compiled into the

executable is created by reversing thc compiling process,
Since many source programs can be written to create the

same executable" there is considerable information loss,

but some of the source code metrics can still be

applicable. In the case of source code some information

about the editor and supporting tools used may also be

available from layout of the code and reused code.

Once these metrics have been extracted, a number of

different modelling techniques, such as cluster analysis,
logistic regression, and discriminant analysis, can be used

to derive models. The form ofthe model, the technique
used, and the metrics of use all depend greatly on the

purpose of the analysis and on the information available.

The fundamental assumption of software forensics is that

programmers tend to have coding styles that are distinct,
at least to some degree. As such these styles and features

are often recognisable to their colleagues, or to experts in

source code analysis who are provided with samples of

their code (Sallis et al., l996). However, as Sallis et al.

note, the issue of how well this individuality can be

hidden, or mimicked, is also of obvious importance when

ascribing authorship to an individual. Spafford and

Weber (1993) comment that, in their opinion, there might
still be evidence of identity remaining after the þÿ�a�u�t�h�o�r ��s

attempts to disguise their identity. ln other words, that

some aspects ofa þÿ�p�r�o�g�r�a�m�m�e�r ��sstyle cannot be changed
if they are to program in an effective manner. Another

important question is whether or not authorship can be

U
Thcorctically, an infinite number of programs could be

written to simulate the executable.

.rrgf/icienrlyaccrtmtely recognised in itself, even without
masking attempts.

These points lead to the fundamental question of whether
or not there is in tact sufficient information available
using these techniques to provide adequate authorship
evidence for use within a legal context. ln other words,
the question is whether authorship identification or

characterisation can be performed at levels of sul‘ficient
certainty for these results to then be presented as legal
argument. Such evidence could be statistical or expert-
opinion based. ll‘ the argument, as presented here, that
there is such information is accepted then certain
requirements from a legal perspective need to be met
before such evidence is admissible. ln addition, a means

of quantifying the strength ofthe evidence is necessary,
as is a method for presenting such evidence to

laypersons.

As was mentioned above, software code authorship
analysis could be, and in some cases has been, used for a

number of diverse tasks. These include the principal
areas of malicious code analysis and the detection ot‘
plagiarism. Each of these application areas requires a

specialised approach, although there is also some degree
ol‘ overlap. Some other less common, and also in general
less forensically applicable, reasons for authorship
analysis include psychological studies of prograrnrning,
assessingsource code for quality, and identifying authors
ol‘ code for maintenance purposes.

Atrthor Authorship
Discrimination Characterization

(Plagarisml J
A

-V þÿ�,�’ � ��,�_�_�’�;�-�’�-
A

,- Software
-»~

_ Forensics
~_‘__

2 » fessr
Author intent Author

Analysis identification

Figure 3 Software forensics

The locus in this paper is on software forensics, which
has already been defined as the þÿ�g ‹�f�l�(��)�‘�l�l�f�_�}�q�(�: ��f�(�fqf‘a11alysz’rtg
mrriprtter]}l‘f)_Ql’(II)1. atrrhorslrip for legal 1’c’u.rrms.

However, in order to indicate the place of this area within
the entire range ol‘ authorship analysis activities for
source code Figure 3 shows the relationslrip between
some of these areas.

S. DE’I‘ERMIN1N(} AUTHORSHIP AND INTENT
OF MALICIOUS CODE
This aspect of software forensics assumes that some

undesirable behaviour, such as deleting records, incorrect
calculations, or suclrlike has been observed in a system.

Two possibilities exist here, that the malicious code is
part ol‘ another system (such as a logic bomb) or that the
code is an application itself(suclr as a virus).

5.1. Types of code available for analysis
/\s has already been discussed above, the code that an

analyst.has available will generally be either source code
(text) or the executable. Many ol‘ the identifying features
in executable code can also be found in source code as

was discussed above. Each type of code however
requires a dil‘fcrent approach to its analysis,

5.1. l . Ewftrtttrzblt’ code

The most common types of executable code that may
attack a system are:

’ Viruses. A virus can be defined as a program that
attaches itself to other programs in order to replicate.

’ Worms. A worrn is a standalone program that

propagates through ,makingcopies of itself, similar to
a virus but without a host program.

’ Trojan horse. A trojan horse is a program that
carries out undesirable behaviour while

masquerading as a useful program. This can either
be a program written as a trojan, or may be the result
of modifications made to an existing program.

°’ Logic bomb. A logic bomb is a part of a program
that is written to cause undesirable actions when a

certain event triggers its execution.

As Spafford and Weber (IQ93) note, viruses usually leave
their code in infected programs, and code remaining after
a variety of attack methods nray include source code,
object. code, executables, scripts, etc. However, for
compiled code much evidence is lost, including variable
names, layout, and comments. Compilers may also
perform optimisations that lead to the executable code

having a significantly different structure to the original
source code. lrrespective of the loss of some

int‘orrnation. Spafford and Weber are still able to point
out some features that will remain, ’1‘l’|ese include (with
some additional points not made by Spafford and
Weber):

H Data structures and al goritlrms. This can be a useful
indication ol‘ the þÿ�p�r�o�g�r�a�m�r�n�e�r ��sbackground since
they are more likely to use certain algorithms that
they have been taught or had exposure to, and are

tlrerelbre more contfortable with. Non-optimal
choices may indicate a lack of knowledge or even

that the programmer uses another þÿ�l�a�n�g�u�a�g�c ��s
programming style, perhaps indicating their

preferred or first progrannning language.
" Compiler and system information. Executable code

contains a number of signs that may indicate the

compiler used.

’ Level of programming skill and areas of knowledge.
’l‘h_e degree of sophistication and optimisation can

provide useful indications ofthe author. Diflcrences
in sophistication within a program may indicate a

mixture of authors or an author who specialises in a

particular area.

’ Use of system and library calls. These may provide
some information regarding the þÿ�a�u�t�h�o�r ��sbackground.

°’ Errors present in the code. Almost all code contains

errors, and any complex system will almost certainly
have detects. Programmers are often consistent in

terms ofthe errors that they make.

° Symbol table. If an executable is produced using a

dt:/Jagniodclg,rather then a f’(?lf?(I.S‘6mode, then much

information that is part þÿ�o�l �the source code will still

remain.

5. I .2. Source’ code

When undesirable modifications are made to software

developed within an organisation the source code will

generally be available l‘or examination". Source code

may also be available for some of the other t.ypes þÿ�o�t �

attack programs mentioned above where the program was

written using an interpreted language or (more

commonly) a scripting language.

Spafl‘ord and Weber (1993) suggest a number þÿ�o�l �features

that can be used to analyse source code for malicious

programs and the following list of features is a subset of

these, as well as containing some additional features.

’ Prograinming language. The language choice can

indicate a number of features about the author. This

can include their background (since they would be

unlikely to use a language that they were not already
familiar with). Not noted by Spafford and Weber

(l9§3), but important nonetheless, are the

psychological preferences that some programmers

may feel for certain languages.

’ Fortnatting of code. The manner in which the source

code is formatted can indicate both author features

and some psychological information about the

author. Pretty~printcrs are commonly used to

automatically format source code and while this

removes author--specific features it introduces

information about what pretty-printer may have been

used.

" Special features such as macros may be used that

indicate to some degree which compiler or library
was used.

U
A debug version of a program contains much extra

information in the object code that the compiler uses to

give feedback while the program is executing.
Surprisingly often, programmers release programs that

contain this additional data. A release version simply
lacks this superfluous information, making it smaller and

faster to execute.

’3
An obvious exception to this is where the code, or part

of thc code. self-destructs upon activation or a certain

event. Even in this case however, backups should enable

analysts to obtain copies ofthe full code.

" Commenting style. This can be a very distinctive

aspect of a þÿ�p�r�o�g�r�a�m�m�e�r ��sstyle. If comments are

sufficiently iarge then traditional textual linguistic
analysis may be appropriate.

= Variable naming conventions are another distinctive

aspect. of an þÿ�a�u�t�h�o�r ��sstyle. The use of meaningful
versus non-meaningful names, the use of standards

(such as Hungarian notation), and the capitalisation
of variable names are all features that programmers

can adopt.

" Spelling and grammar. Where comments are

available an examination of their spelling and

grainmar can be a useful indication þÿ�o�l �authorship.

Spelling errors may also be present in function and

variable names.

’ Use of language features. Some programmers prefer
to use certain aspects of a language than others.

’ Size. The size of routines can indicate the degree of

cognitive chunking used by the [)l‘Ogl‘1t1Tl|ilCl‘.

þÿ � Errors. As noted in the section above on executable

code, programmers often consistently make the same

or similar errors.

’ Also not mentioned by Spafford and Weber (1993),

but nonetheless important is reuse of code. lf code

from a previously identified author has been reused

then this could indicate authorship or association.

5.2. Analysis of malicious code

In order to ascertain the circumstances that led to such a

defect’ in code or a malicious application, a series of

questions need to bc answered.

1. What docs the code do? While this may appear

tri\-’ial, in complex real-world systems determining
the eflect of a piece of code can involve considerable

effort, or may even be impractical. This is especially
likely for legacy systems where the original

progranm’iei’s have since left the organisation, ’],‘his

question is not an authorship question per se. and

should be left to software engineers.

2. Who wrote the code? This is the authorship question
that is the main focus of this section. As noted in

Spafford and Weber (1993), the anonymous nature

þÿ�o�l �computer crimes such as viruses, worms, and

logic bombs makes the attacks even more attractive.

Identifying the author of the malicious code is not

necessarily the same as identifying the author of the

system. Since many systems involve a large number

of developers the identification ol’ the most likely
author can lic difficult. even more so il‘ the code

could have been written by non-members of the

programming team. In the case of standalone

systems such as viruses, code may be matched to

viruses already attributed to a certain author.

3. When was the code writtcti? Since þÿ�p�r�o�g�r�a�m�m�e�r�s �
styles change over time it may be possible to

identify, roughly. when the malicious code was

written. At the very least, for malicious code
contained in a larger system it may be possible to

determine whether or not the code was part of the

original system or added at a later date. Also the
structure of programs tends to be quite different

depending on the order in which the code was

written.

4. What is the intent of the code? in many cases this
will be obvious, but in others it may be the case that
the code could be an error or deliberate.

An application for authorship analysis that has not been
found in any literature by the authors is the answering of
the fourth question above: determination of intent, malice
or otherwise, once code has been found that could have
been maliciously programmed. Certain cases, such as

salami attacks and logic bombs that are triggered by the
removal of an employee from the þÿ�o�r�g�a�n�i�s�a�t�i�o�n ��spayroll,
are prima jkzcie malicious. However, there may also exist
cases where undesirable behaviour in an application
could be either maliciously programmed, or could simply
be the inevitability of defects in the code.

5.3. Case studies
The two most discussed cases where malicious source

code has been examined are the WANK and OILZ
worms (Longstaff and Schultz, l993) and the Internet
Worm (Spaflord, l989).

5. 3, J _ The Internet Worm
In Spafford (l989) the Internet Worm, written by Robert
Morris and released onto the Internet on November 1988
is discussed from the perspective of authorship analysis
and technical analysis. Here the focus only on the
former aspect.

þÿ�S�p�a�f�f�o�r�d ��s(1989) analysis ofthe Internet Worm is based
on three separately reversed-engineered versions of the
worm. The three versions were created independently
and agree in almost all details suggesting that they do
indeed reflect the original code. Some ofthe conclusions
that Spafford was able to make are:

’ The code is not well written and contains many
errors and inefficiencies.

’ The code is not portable.
’ The code was probably not checked using lint"
" The code contains little error-handling behaviour,

suggesting that the author was sloppy and performed
little testing. Another possibility is that the worm‘s
release was premature,

’ The code indicates that the linal version would have
been much more comprehensive.

I The structures used are all linked lists that were

inefficient and indicated a lack of advanced

programming ability and/or tuition.

N
A very popular programming utility.

I’ The code contains redundancyof processing.
" A section that performs cryptographic functions is

exceptionallyefficient and provides functionality not

used by the worm. According to Spaflbrd (1989)
this does not appear to be written by the author of the
rest ofthe worm.

’ The code seemed to have been written over a long
period of time.

This list of observations made by Spafford (1989) is

impressive and indicates the amount of knowledge that
can be extracted from such source code. Especially
important are the observations of the lack of ability of the
author, the suggestion that the release may have been

premature, the dual authorship, and the suggestion that
the code was written over a considerable period of time.

By comparing the code to Robert þÿ�M�o�r�r�i�s �(and also to

other potential suspects), while this was not necessary, it
seems likely that the above list of features as well as

more detailed metrics would have led to þÿ�M�o�r�r�i�s �
identification as the author. lt is unfortunate that this was

not performed, since there is a lack of real-world case

studies of such events.

5_3.2. The WANK and OILZ worms

ln lsongstaff and Schultz (1993) the WANK and OILZ
worms were studied. These were released in 1989

attacking NASA and DOE systems. The worms were

both written in DCL, with the WANK worm proceeding
OILZ by about two weeks. The locus of this paper is on

analysing the response to the threat, predicting the

response to similar threats, exploring the evolution of the
code, and examining the þÿ�c�o�d�e ��sauthorship. Only the
later two are of interest here.

The fact that the worms were written in D(ll_,, a scripting
language, i.e. not compiled, provides much more

information than a compiled version, The WAN K worm

is 785 lines long and exhibits structural coding.
Longstaff and Schultz (l993) suggest the following:
H Three distinct authors worked on the systetn.
" Author one:

" Academic style ofprogramming
’ Descriptive and lower case variable names

’ Flow based on variables, gotos, and subroutines
and is complex

’ High level of understanding
þÿ � Experimentation rather t_han malicious intent

’ Author two:

’ Malicious code with hostile intent

’ Use of profanities
’ Capitalisalion
" Simple programming style

’ Author three:

I Combined the þÿ�o�t�h�e�r�s �code

’ Mixed case

H l\lon-descriptive variable names

I Simple coding that resembles BASIC

" Attempts to correct bugs in the code - the OILZ

worm corrects some bugs in WANK.

These pieces ol‘ evidence are of considerable value in an

investigation of the attack. The main points that emerged
are the multiple authors and some ol‘ the differences

between them. While such information is unlikely to

lead directly to identifying those involved, it does provide
additional evidence that may be sufiicient to reach a

satisfactory level of certainty.

6. CONCLUSIONS

In this paper the concept of authorship analysis for

software source code has been briefly introduced, and a

subset of the field has been identified that is called

software forensics. This is a lield that it is believed will

become increasingly important as part of criminal and

civil proceedings, as well as in other official matters such

as academic plagiarism detection.

The authors are currently developing a toolkit called

IDENTIFIED (Integrated Dictionary-based Extraction of

Non-language-dependentToken Information l‘or Forensic

Identification, Examination, and Discrimination) (Gray,
et al., l998). This assists with the automatic extraction of

a wide variety of metrics (some of which have been

mentioned in this paper) that can he used for software

forensics. The package also contains modules for case-

bascd reasoning, discriminant analysis, and other analysis
techniques.

The work described here is also being extended by the

collection ofa number of formally defined metrics that

can he used for software forensics; with the eventual goal
of producing a list that is for all intensive purposes

complete for certain subsets ofthe task. These metrics

are included as a dictionary tile in IDEN’l‘lFIED.

Other issues such as statistical models of certainty and

combining evidence for source code authorship analysis
are also being investigated. ’l‘he next stage lor the work

described here is to determine the legal issues that would

be involved in using such evidence.

REFERENCES

Gray, A.R., Sallis, PJ., and lvlacDonell. S.G. (l998).
IDEENTIFIED (Integrated Dictionary-based Extraction of

Non-language-dependent Token Information for Forensic

Identification, Examination, and Discrimination): A

dictionary-based system for extracting source code

metrics for software forensics. Submitted to þÿ�S�E�:�E�&�P ��9�8

þÿ�S�c�U ��i�w�a�/�’�z�aEizginzwring: Eclitcatinn & Practice. Dunedin.

New Zealand.

Kilgour, R.I., Gray, A.R., Sallis, Pal., and MacDonell,

S.G. (1997). A Fuzzy Logic Approach to Computer

Software Source Code Authorship Analysis. Accepted
for T/ze Fourth lnterrzrztional C(JYI_fkf’(?}’l(f(Zon Neural

þÿ�[�l�l�f�I�)�}�’�N�1�(�l�l�l�(�)�I ��lProcessing -- The Annual þÿ�C ��(�)�f�l�f�@�.�V � ‹�f�l�.�(�f�Hof the

Asian Pac.’UiNeuralNetworkAssembly(1CONlP’97).Neural Network Assembly (1CONlP’97).
Dunedin. New Zealand.

Longstaff, ’T‘.A., and Schultz, E.E. (1993). Beyond
Preliminary Analysis ofthe WANK and OILZ Worms: A

Case Study of Malicious Code. Cornputerx & Security.
l2:6l-77.

Sallis, P.J. (1994). Contemporary Computing .Methods

for the Authorship Characterisation Problem in

Computational Linguistics. New Zmlcmd Journal of
Computing. 5(l):85-95.

Sallis P., Aakjaer, A., and MacDonell, S. (IQ96).
Software Forensics: Old Methods for a New Science.

þÿ�l ��r ��0�c�e�c�>�r�l�i�n�.�g�sof SE:E&P’90 (Software þÿ�E�l ��1�¢�(�§�f�l�l�8�(��l�‘�l�H�g�. �
þÿ�E�c�1�u�I ��m�c�t�i�c�r�f�_�)�.�D�u�n�e�d�i�n�.�N�e�w�Z�e�a�l�a�n�d�.�I�E�E�Eþÿ�I ��m�c�t�i�c�r�f�_�)�.Dunedin. New Zealand. IEEE

Computer Society Press. 367-371.

Spafford, Ii.H. (1989). The Internet Worm Program: An

Analysis. Computer Communicc1Iion.r Review. l9(l):l7-
49.

Spafford, E.H., and Weeber, S.A. (1993). Software

Forensics: Can we track Code to its Authors? Cwnputcrx
&Securiry. 12:585-595.

Whale, G. (l990). Software lvletrics and Plagiarism
Detection. Journal of Systems and Sryitvure. l3:l?>l-

I38.

