diff --git a/Koli_2017/Koli_2017_Stanger.tex b/Koli_2017/Koli_2017_Stanger.tex index 57a224e..28de681 100644 --- a/Koli_2017/Koli_2017_Stanger.tex +++ b/Koli_2017/Koli_2017_Stanger.tex @@ -131,7 +131,7 @@ To our knowledge there has been no work on automated grading of SQL DDL statements. While dealing with \texttt{CREATE} statements should be simpler than dealing with \texttt{SELECT} statements, the ability to at least semi-automate the grading of SQL schema definitions should reap rewards in terms of more consistent application of grading criteria, and faster turnaround time \cite{Douce.C-2005a-Automatic,Russell.G-2004a-Improving,Dekeyser.S-2007a-Computer,Prior.J-2004a-Backwash}. -Another branch of related work is systems that actively aid students in learning SQL. SQL-Tutor \cite{Mitrovic.A-1998a-Learning} was an intelligent teaching system that provided students with a guided discovery learning environment for SQL queries, and used constraint-based modeling \cite{Ohlsson.S-1992a-Constraint-based,Ohlsson.S-2016a-Constraint-based} to provide feedback to students. \citeauthor{Kenny.C-2005a-Automated} \cite{Kenny.C-2005a-Automated} described a similar SQL learning system that incorporated an assessment of a student's previous progress. This enabled a more personalized and adaptive approach to student learning, where feedback was tailored according to student progress. +Another branch of related work is systems that actively aid students in learning SQL, e.g., SQL-Tutor \cite{Mitrovic.A-1998a-Learning}, SQLator \cite{Sadiq.S-2004a-SQLator}, ActiveSQL \cite{Russell.G-2004a-Improving}, and aSQLg \cite{Kleiner.C-2013a-Automated}. SQL-Tutor is a typical example of this category. It was an intelligent teaching system that provided students with a guided discovery learning environment for SQL queries, and used constraint-based modeling \cite{Ohlsson.S-1992a-Constraint-based,Ohlsson.S-2016a-Constraint-based} to provide feedback to students. \citeauthor{Kenny.C-2005a-Automated} \cite{Kenny.C-2005a-Automated} described a similar SQL learning system that incorporated an assessment of a student's previous progress. This enabled a more personalized and adaptive approach to student learning, where feedback was tailored according to student progress. There is relatively little prior work on unit testing of databases. Most authors working in this area have focused on testing database \emph{applications} rather than the database itself (e.g., \cite{Binnig.C-2008a-Multi-RQP,Chays.D-2008a-Query-based,Marcozzi.M-2012a-Test,Haller.K-2010a-Test}). \citeauthor{Ambler.S-2006a-Database} discusses how to test the functionality of a database \cite{Ambler.S-2006a-Database}, while \citeauthor{Farre.C-2008a-SVTe} test the ``correctness'' of a schema \cite{Farre.C-2008a-SVTe}, focusing mainly on consistency of constraints. Neither consider whether a database schema conforms to the requirements of the original specification.