
A Viewpoint-Based Framework for Discussing

the Use of Multiple Modelling Representations

Nigel Stanger

University of Otago, Dunedin, New Zealand
nstanger@infoscience.otago.ac.nz

Abstract. When modelling a real-world phenomenon, it can often be
useful to have multiple descriptions of the phenomenon, each expressed
using a different modelling approach or representation. Different repre-
sentations such as entity-relationship modelling, data flow modelling and
use case modelling allow analysts to describe different aspects of real-
world phenomena, thus providing a more thorough understanding than
if a single representation were used. Researchers working with multiple
representations have approached the problem from many different fields,
resulting in a diverse and potentially confusing set of terminologies. In
this paper is described a viewpoint-based framework for discussing the
use of multiple modelling representations to describe real-world phenom-
ena. This framework provides a consistent and integrated terminology for
researchers working with multiple representations. An abstract notation
is also defined for expressing concepts within the framework.

1 Introduction

In this paper is described a framework for discussing the use of multiple
modelling approaches or representations to describe a real-world phe-
nomenon. This framework is derived from work on viewpoint-oriented de-
sign, and provides a consistent and integrated terminology for researchers
working with multiple modelling representations. An abstract notation for
expressing various concepts within the framework is also defined.

Why is it useful to describe the same phenomenon using multiple
modelling representations? There are several reasons, such the ability to
provide a more complete description of the phenomenon in question, and
because some representations are better suited to particular problems
than others. The use of multiple representations and associated issues are
discussed in Sect. 2.

The framework described in this paper is primarily derived from ear-
lier work in the area of viewpoint-oriented design methods. The basic
concepts of viewpoint-oriented design methods are introduced in Sect. 3,
and a lack of clarity is identified with respect to the definitions of some

fundamental concepts (in particular, the meaning of the term ‘represen-
tation’).

The author’s framework arose out of the need to clarify the definitions
of various terms and also to integrate and simplify the potentially confus-
ing range of terminologies developed by other authors. The framework is
discussed in Sect. 4. In particular, the terms ‘representation’, ‘technique’
and ‘scheme’ are clarified, and the new terms ‘description’, ‘construct’
and ‘element’ are defined.

The author has also developed an abstract notation for expressing
various framework concepts in a concise manner. This notation is defined
in Sect. 5.

The paper is concluded in Sect. 6.

2 Using multiple representations to describe a
phenomenon

There are many different types of information to be considered when
designing an information system, and a wide variety of modelling ap-
proaches and notations have been developed to capture these different
types of information: entity-relationship diagrams (ERDs), data flow di-
agrams (DFDs), use case diagrams, the relational model, formal meth-
ods and so on. Problems can arise when useful information is omitted
from a design. Consider an information system whose data structures
are designed using entity-relationship diagrams and are implemented in
a relational database. Data entry forms derived from these models are
built using a rapid application development tool. Good design practices
are followed throughout, yet the finished application is difficult to use.
Some of the commonly used data entry forms have multiple states, but
the transitions between these states are unclear to users because state
information was not included in the system design.

While this is a purely theoretical example, it serves to illustrate an
important point. Information systems are typically built to handle the
data processing requirements of some real-world phenomenon. Such real-
world phenomena may often be too complex to describe using a single
modelling approach, or representation. This is supported by the plethora
of different representations that currently exist [26, 42], including those
that model the structure of data (such as entity-relationship modelling),
and those that model how data move around a system (such as data flow
diagrams). This implies that in order to completely model a phenomenon,

multiple descriptions of the phenomenon are required, expressed using
different representations.

Using multiple representations to describe a phenomenon is also im-
portant in other ways:

– If multiple developers are working on a project, each may prefer or be
required to use a different representation to describe their particular
part of the project [2]. Meyers [30] also notes that it can be very
useful to simultaneously view a system in several different ways when
multiple people are working on the system.

– Particular subproblems may be better described using some represen-
tations than others [15].

– Multiple representations are important when integrating heteroge-
neous data sources to form a federated or distributed system [2], as
each data source may potentially use a different logical data model.

The idea of using multiple representations to model a phenomenon is
not new. Grundy et al. have been examining the issues associated with
building multi-view editing systems and integrated software development
environments for many years [20, 21, 23], with emphasis on the issue of
maintaining consistency between different views or descriptions of the
same phenomenon [22, 24]. Grundy’s work was derived from earlier work
on multi-view editing systems for software engineering, such as FIELD
[35] and Zeus [5].

Atzeni and Torlone [3] suggested the idea of translating between dif-
ferent representations as a means of facilitating the use of multiple rep-
resentations. They proposed a formal model based on lattice theory [1]
that allowed them to express many different data modelling approaches
using primitive constructs of a single underlying representation.

Su et al. [40, 41] approached the use of multiple representations from
the point of view of integrating heterogeneous data sources in order to
build federated and distributed databases. Their approach is similar in
many respects to that taken by Atzeni and Torlone, except that the under-
lying representation is object-oriented rather than mathematically based.

All three groups developed their work independently of each other
over a similar time period (1991–94), and each approached the use of
multiple modelling representations from a different starting point. This
has resulted in a diverse and potentially confusing set of terminologies (see
Table 1). A single integrated terminology would reduce this potential for
confusion.

In addition to the three groups outlined above, viewpoint researchers
first suggested using multiple representations to describe viewpoints over

T
a
b
le

1
.

C
o
m

p
a
riso

n
o
f

v
iew

p
o
in

t/
rep

resen
ta

tio
n

term
in

o
lo

g
ies

C
o
r
r
e
sp

o
n
d
in

g
te

r
m

u
se

d
b
y
:

T
e
r
m

u
se

d
F

in
k
e
lste

in
E

a
ste

r
b
r
o
o
k

D
a
r
k
e

&
G

r
u
n
d
y

A
tz

e
n
i

&
S
u

e
t

a
l.

b
y

th
e

a
u
th

o
r

M
e
a
n
in

g
E

x
a
m

p
le

[1
7
]

[1
5
]

S
h
a
n
k
s

[1
1
]

e
t

a
l.

[2
1
]

T
o
r
lo

n
e

[3
]

[4
1
]

p
ersp

ectiv
e

A
d
escrip

tio
n

o
f

a
rea

l-w
o
rld

p
h
en

o
m

en
o
n

th
a
t

h
a
s

in
ter-

n
a
l

co
n
sisten

cy
a
n
d

a
n

id
en

-
tifi

a
b
le

fo
cu

s.

–
–

p
ersp

ectiv
e

p
ersp

ectiv
e

–
–

–

v
iew

p
o
in

t
T

h
e

fo
rm

a
tted

d
escrip

tio
n

o
f

a
p

ersp
ectiv

e.
–

V
iew

P
o
in

t
v
iew

p
o
in

t
v
iew

p
o
in

t
–

–
–

tech
n
iq

u
e

A
co

llectio
n

o
f

a
b
stra

ct
co

n
-

stru
cts

th
a
t

fo
rm

a
m

o
d
-

ellin
g

‘m
eth

o
d
’.

rela
tio

n
a
l

m
o
d
el

sty
le

sty
le

tech
n
iq

u
e

–

m
o
d
el

d
a
ta

m
o
d
el

sch
em

e
A

co
llectio

n
o
f

co
n
crete

co
n
-

stru
cts

th
a
t

fo
rm

a
m

o
d
-

ellin
g

‘n
o
ta

tio
n
’.

S
Q

L
/
9
2

sch
em

e
–

rep
resen

ta
tio

n
T

h
e

co
m

b
in

a
tio

n
o
f

a
p
a
rtic-

u
la

r
tech

n
iq

u
e

a
n
d

sch
em

e.
rela

tio
n
a
l

m
o
d
el

+
S
Q

L
/
9
2

rep
resen

ta
tio

n
rep

resen
ta

tio
n

d
escrip

tio
n

A
n

in
sta

n
tia

tio
n

o
f

a
rep

re-
sen

ta
tio

n
.

S
Q

L
/
9
2

sch
em

a
sp

ecifi
ca

tio
n

d
escrip

tio
n

–
v
iew

sch
em

e
sch

em
a

co
n
stru

ct
T

h
e

b
a
sic

u
n
it

o
f

a
rep

resen
-

ta
tio

n
.

a
rela

tio
n

–
–

–
–

co
n
stru

ct
cla

ss
a

elem
en

t
A

n
in

sta
n
tia

tio
n

o
f

a
co

n
-

stru
ct

w
ith

in
a

p
a
rticu

la
r

d
e-

scrip
tio

n
.

S
ta

ff
ta

b
le

–
–

–
co

m
p

o
n
en

t
va

ries
b

o
b

ject

N
o
te

s
o
n

T
a
b
le

1
:

a
A

lso
‘co

n
stru

ct’.
b

T
erm

s
u
sed

in
clu

d
e

‘co
m

p
o
n
en

t’,
‘elem

en
t’

a
n
d

‘co
n
cep

t’.
‘–

’
in

d
ica

tes
th

a
t

a
term

is
n
o
t

u
sed

b
y

th
a
t

a
u
th

o
r.

a decade ago [17]. A viewpoint is effectively a formalisation of the percep-
tions of stakeholders with respect to some real-world phenomenon. Since
we are dealing with the use of multiple representations to describe real-
world phenomena, viewpoints should provide a useful framework within
which to discuss such use [39]. The author’s framework will be described
in Sect. 4, but first the basic concepts of viewpoint-oriented methods must
be defined.

3 Viewpoint concepts

A viewpoint can be thought of as a formalisation of the perceptions of
a stakeholder group with respect to some real-world phenomenon that is
being modelled. The first viewpoint-oriented approach (Mullery’s CORE
method) was introduced in 1979 [32], but the concept of a viewpoint was
not formalised until ten years later [17].

Viewpoint-oriented methods were originally developed to assist with
requirements definition in a software engineering environment [32], and
subsequent research has followed a similar direction [15, 16, 28, 33]. The
focus of the author’s research has been on how to facilitate the use of
multiple representations to describe a single viewpoint [38, 39].

In Fig. 1 are shown the relationships between the concepts of view-
point-oriented methods. This initial framework was derived by the author
[39] from the work of Finkelstein et al. [17], Easterbrook [15] and Darke
and Shanks [11]. Their terminologies are also summarised in Table 1.

3.1 Perspectives and viewpoints

Easterbrook [15] defines a perspective as “a description of an area of
knowledge which has internal consistency and an identifiable focus of
attention”. During the requirements definition phase of systems analysis,
developers may encounter many different perspectives on the problem
being modelled. Perspectives may overlap and/or conflict with each other
in various ways.

Finkelstein et al. [17] describe a viewpoint as comprising the following
parts:

– “a style, the representation scheme in which the ViewPoint [sic] ex-
presses what it can see (examples of styles are data flow analysis,
entity-relationship-attribute modelling, Petri nets, equational logic,
and so on);

Rep’n Rep’n

Technique

Scheme

Technique

Scheme

Technique

Scheme

Representation Representation Representation

Information system design environment using multiple modelling representations

Real-world phenomenon

formalised as a

using one or moreViewpoint integration

viewed from several

Perspective Perspective Perspective

Viewpoint Viewpoint Viewpoint

Scheme Scheme

Technique

Fig. 1. Relationship between perspectives, viewpoints and representations

– a domain defines which part of the ‘world’ delineated in the style
(given that the style defines a structured representation) can be seen
by the ViewPoint (for example, a lift-control system would include
domains such as user, lift and controller);

– a specification, the statements expressed in the ViewPoint’s style de-
scribing particular domains;

– a work plan, how and in what circumstances the contents of the spec-
ification can be changed; [and]

– a work record, an account of the current state of the development.”

Easterbrook [15] simplifies this description by defining a viewpoint
as “the formatted representation of a perspective”, and notes that a per-
spective is a “more abstract version of a viewpoint”. In effect, a viewpoint
is the formalisation of a particular perspective, so there is a one-to-one
correspondence between a viewpoint and the perspective it formalises, as
illustrated in Fig. 1.

The term ‘viewpoint’ is very similar to the term ‘view’ as used in
multi-view editing systems [5, 20, 27, 30]. These terms refer to different
concepts, however: a ‘view’ is more akin to the concept of a description,
which will be introduced in Sect. 4. The similarity of the two terms has

led to some confusion: the terms ‘viewpoint’ and ‘view’ have been used
interchangeably in the past [27].

Darke and Shanks [11] define two main types of viewpoint:

1. user viewpoints that capture “the perceptions and domain knowledge
of a particular user group, reflecting the particular portion of the
application domain relevant to that group”; and

2. developer viewpoints that capture “the perceptions, domain knowl-
edge and modelling perspective relevant to a systems analyst or other
developer responsible for producing some component of the require-
ments specification”.

Since a viewpoint is the formalisation of a perspective, some form of
model is required to provide the formalised structure. The concept of a
representation provides this.

3.2 Representations

Darke and Shanks [10] note that viewpoints may be described using dif-
ferent representation techniques, within each of which there may be avail-
able a number of representation schemes. Neither Darke and Shanks nor
Finkelstein et al. [17] clearly define the terms ‘representation’, ‘technique’
or ‘scheme’; rather, they introduce each term by means of examples. This
has led to some confusion in the use of this terminology. Darke and Shanks
use the terms ‘representation’ and ‘representation technique’ interchange-
ably, while Finkelstein et al., as can be seen in their definition of a ‘style’,
use the term ‘representation scheme’ in a similar way.

The intent appears to be that a representation should be thought
of as a structured modelling approach that can be used to describe the
content of a viewpoint. In order to clarify the confusion in terminology, the
author has refined this informal definition and defined a representation
as the combination of a particular technique and scheme to describe a
viewpoint. This will be discussed further in Sect. 4.

Darke and Shanks [11] group representations into three general cate-
gories:

1. informal representations that form unstructured descriptions, often
expressed using natural language or simple diagrams;

2. semi-formal representations that form structured descriptions, such
as entity-relationship modelling or data flow diagrams; and

3. formal representations that form structured descriptions and include a
set of operators for processing these descriptions, such as the relational
model or logic-based models.

Unlike informal representations, which are often ill-defined, inconsis-
tent and ambiguous, semi-formal and formal representations are well-
defined, consistent and generally unambiguous. A key feature of formal
representations that is lacking in semi-formal representations is the inclu-
sion of operators that allow assertions to be made about the viewpoints
being described; Greenspan et al. [19] describe this as the ability to ‘rea-
son’ about representations. User viewpoints are typically defined using
informal representations, whereas developer viewpoints are typically de-
fined using semi-formal or formal representations.

Finkelstein et al. [17] first mooted the idea of using multiple represen-
tations to describe a viewpoint in 1989, but there has been surprisingly
little work in this area since then. Darke and Shanks [12] found in a review
of twelve different viewpoint development approaches that only two sup-
ported multiple representations to describe a single viewpoint: the Soft
Systems methodology [7] and Scenario Analysis [25], both of which are
user viewpoint approaches rather than developer viewpoint approaches.

The author’s own research [38, 39] has followed the approach of using
multiple representations to describe a single developer viewpoint, and uses
an integrated terminology framework derived from viewpoint-oriented
methods. This framework will now be described.

4 The viewpoint framework for discussing the use of
multiple modelling representations

Looking at Table 1, there is an obvious dichotomy between the three view-
point terminologies on the left and the three multiple-view terminologies
on the right. The viewpoint terminologies deal primarily with ‘high level’
concepts and ignore how representations are internally structured; con-
versely, the multiple-view terminologies deal primarily with constructs
within representations and ignore higher-level structure. The two sets of
terminology are clearly related, yet the only real overlap between them is
at the representation level.

There are also many synonyms in the terminologies presented in Ta-
ble 1, for example, the terms ‘style’, ‘representation’, ‘model’ and ‘data
model’ are all used to refer to similar concepts. Conversely, the term
‘scheme’ is used to refer to two completely different concepts. Such vari-
ation can lead to confusion, so there is a definite need to develop a con-
sistent and integrated terminology framework.

The initial framework shown in Fig. 1 provides a good basis for ex-
tension, but the author has identified some confusion over the exact def-

initions of the terms ‘representation’, ‘technique’ and ‘scheme’. The au-
thor has addressed this confusion by clearly defining these terms, and
has extended the original framework with the concepts of descriptions,
constructs of representations and elements of descriptions (see Fig. 2).

Description Description Description

Information system design environment using multiple modelling representations

Real-world phenomenon

formalised as a

viewed from several

Perspective Perspective Perspective

Viewpoint Viewpoint

technique

scheme

Representation Representation Representation

Process

Data store

Data flow
Weak entity

Attribute

Relationship

Attribute

Dependency

Attribute set

emp_no
EMP_NO

A+B
create table
 staff ...

emp_no char(7)

primary key
 (emp_no)

Process modelling

G&S DFD Smith FDD

Functional Dep.

Martin ERD

ERM

SQL QUEL

{
{

Rep’n Rep’n

Table
Attribute

Primary key

Relational

Description

Viewpoint

described by one or more

expressed using expressed usingexpressed usingexpressed using

“s
pe

ci
al

is
ed

”
co

ns
tr

uc
ts

“g
en

er
ic

”
co

ns
tr

uc
ts

el
em

en
ts

 ...
create table result
(result_id integer,
 element_id integer not null,
 student_id char(7) not null,
 staff_id char(8) not null,
 date_submitted date,
 date_marked date,
 raw_mark smallint,
 comments char(500),

 primary key (result_id),
 foreign key (element_id)
 references element,
 foreign key (student_id)
 references student,
 foreign key (staff_id)
 references staff
); ...

Viewpoint integration

a

Student

P1

Mark
assignment

D1 Staff

Received
assignments

P2

Return
results

D3 Element

D4 Assignment

D2 Student

assignment

staff IDstudent ID

marking details

results

resultsresults

Student

Assignment Assessment
ElementStaff

marks

CRITERION_NAME

ADJUSTMENT_NO

ASSIGN_ID

DATE_SUBMITTED

DATE_MARKED
RAW_MARK

COMMENTS

MARK + COMMENTS

PARENT_ANSWER

REASON +
AMOUNT

2

ANSWER_ID
MARK +

COMMENTS

NAME +
TOTAL_MARK +

PERCENT + DUE_DATE +
LATE_PENALTY

ELEMENT_ID

2

NUMBER + MARKS +
GUIDELINES

PARENT_QUESTION 1

QUESTION_ID 1

STAFF_ID

STUDENT_ID

NAME +
PASSWORD

NAME +
PASSWORD

Fig. 2. The extended terminology framework

4.1 Representations

Informally, a data modelling representation can be thought of as compris-
ing two main parts:

1. a generic part that specifies the generic constructs that may be used
to describe a viewpoint, such as entities, relations, and so on; which
then determines

2. a specialised part that specifies the constructs peculiar to the rep-
resentation, along with their visual appearance or notation, such as
boxes for entities, SQL CREATE TABLE statements for relations, and
so on.

Finkelstein et al.’s [17] use of the term ‘style’ does not clearly distin-
guish between these two parts; conversely, the ‘techniques’ and ‘schemes’
of Darke and Shanks [10] match these two parts well. It is therefore pro-
posed to use the term technique to refer to the generic part of a rep-
resentation, and the term scheme to refer to the specialised part of a
representation. In practical terms, a technique can be thought of as a
modelling ‘approach’, such as the entity-relationship approach or the re-
lational model, and a scheme can be thought of as a particular ‘notation’
within that approach, such as a particular entity-relationship notation or
relational calculus. Another way to think of this is that a scheme is an
‘instantiation’ of a particular technique.

A representation can thus be defined as the combination of a par-
ticular technique with a particular scheme, as illustrated in Fig. 2. In
general, a technique may have one or more associated schemes, but each
combination of a technique and a scheme forms a distinct representa-
tion. For example, the relational model is a technique, with SQL and
QUEL as two possible schemes, but the combinations (Relational ,SQL)1

and (Relational ,QUEL) form two distinct representations, as shown in
Fig. 3. Similarly, the entity-relationship approach (E -R) is a technique,
with ERDMartin and ERDChen as two possible schemes. The combinations
(E -R,ERDMartin) and (E -R,ERDChen) again form two distinct represen-
tations.

It is expected that a technique will not attempt to specify all possible
concepts for all possible schemes within that technique. Rather, a tech-
nique defines the ‘base’ model, which is then specialised and extended by
schemes to form a representation. This implies that a scheme may pro-
vide new constructs to a representation that have no direct analogue in
the technique. For example, the relational technique [9] does not include
general constraints, but they are an important feature of the relational
scheme SQL/92 [14]. Similarly, type hierarchies are not part of the base
E-R technique [8], but they do appear in some E-R schemes.
1 In practice, the many dialects of SQL will form many different representations. This

has been ignored here in the interests of clarity.

Martin Chen

Entity-relationship

SQL QUEL

Relational

Representation Representation

Fig. 3. Multiple schemes within a technique

4.2 Descriptions

Representations are an abstract concept, so they must be instantiated in
some way in order to describe the content of a viewpoint. One way to
view the instantiation of a representation is as a set of ‘statements’ that
describe a viewpoint or some subset thereof. Finkelstein et al. [17] refer to
this as a ‘specification’ or ‘description’; Easterbrook [15] also refers to this
concept as a description. The author has adopted the term ‘description’
as it emphasises the idea that they are used to describe a viewpoint.

A viewpoint is thus specified by a set of descriptions, each expressed
using some representation, as shown in Fig. 2. Each description may de-
scribe either the whole viewpoint or some subset of the viewpoint; this is
analogous to the concept of a ‘view’ as used in multi-view editing systems
[5, 20, 27, 30]. For example, a developer viewpoint might be specified by
union of the following four descriptions:

1. an object class description expressed using Unified Modelling Lan-
guage (UML) class diagram notation [31];

2. a functional dependency description expressed using Smith functional
dependency diagram notation [36, 37];

3. a relational description expressed using SQL/92; and
4. a data flow description expressed using Gane & Sarson data flow di-

agram notation [18].

Similarly, a user viewpoint might be specified by the union of a nat-
ural language description and a collection of diagrammatic descriptions.
Descriptions may be distinct from each other, or they may overlap in a
manner similar to viewpoints. Such redundancy can be useful in exposing
conflicts both between descriptions and between viewpoints [15].

4.3 Constructs and elements

Every representation comprises a collection of constructs. These may be
divided into generic constructs associated with the technique (technique-

level constructs) and specialised constructs associated with the scheme
(scheme-level constructs), as shown in Fig. 2. The nature of a construct
is defined by its properties, which include both its relationships with other
constructs, and its attributes, such as name, domain or cardinality2. For
instance, as illustrated in Fig. 4, a data store in a data flow diagram might
have the attributes name (the name of the data store), label and fields
(a list of data fields in the data store). The flows relationship specifies
an association between the data store construct and a list of data flow
constructs.

purchase_id
purchase_date
purchase_price
customer_no
salesrep_id
registration

D1 Purchase

fields

flowsname

label

Fig. 4. Properties of a construct

In the same way that a description is an instantiation of a representa-
tion, an element is an instantiation of a construct; elements are combined
to build descriptions. Examples of constructs include object classes, pro-
cesses and attributes; elements corresponding to these constructs could
be Order, Generate invoice and address.

5 A notation to express representations, descriptions,
constructs and elements

It can be cumbersome to discuss aspects of representations and descrip-
tions using natural language, for example, ‘the Staff regular entity element

2 The terms ‘property’, ‘attribute’ and ‘relationship’ come from the Object Data Man-
agement Group’s object model [6].

of the description D1 (expressed using Martin entity-relationship nota-
tion) of the managers’ viewpoint’. The author has therefore developed
a concise abstract notation for expressing representations, descriptions,
constructs of representations and elements of descriptions. This notation
is modelled in part on the data transfer notation of Pascoe and Penny
[34]. Using the notation, the statement above could be expressed as:

D1(Vmgrs,E -R,ERDMartin) [staff : RegularEntity] .

The notation is summarised in Table 2. The author has defined additional
notations for expressing translations of descriptions from one representa-
tion to another [38]. For example, the expression:

D1(V,FuncDep,FDDSmith)→ D2(V,E -R,ERDMartin)

denotes the translation within viewpoint V of a functional dependency
description D1 into an entity-relationship description D2. Such additions
are beyond the scope of this paper, however; only the base notation is
discussed here.

5.1 Description and representation notation

The notation D(V, T, S) denotes that description D of viewpoint V is
expressed using constructs of technique T and scheme S (this may be ab-
breviated toD when V , T and S are clear). Thus,D1(Vp,E -R,ERDMartin)
denotes a description D1 of the viewpoint Vp that is expressed using con-
structs of the entity-relationship technique (E -R) and the Martin ERD
scheme (ERDMartin) [29].

The notation R(T, S) denotes a representation R that comprises a
collection of constructs defined by the combination of technique T and
scheme S (this may be abbreviated to R when T and S are clear). Thus,
Re(E -R,ERDMartin) denotes the representation Re formed by combining
the constructs of the entity-relationship technique (E -R) with the Mar-
tin ERD scheme (ERDMartin). This notation is similar to that used by
Finkelstein et al. to describe viewpoint styles [17], but focuses on the
technique and scheme used rather than individual constructs within a
representation.

The combination of technique T and scheme S forms the representa-
tion R(T, S), so it is also possible to denote the description D(V, T, S)
by D(V,R(T, S)), or simply D(V,R). Thus, the notations D1(Vp,E -R,
ERDMartin), D1(Vp,Re(E -R,ERDMartin)) and D1(Vp,Re) are equivalent.

Table 2. Summary of the abstract notation

Notation Associated term Definition

V Viewpoint A formatted expression of a perspective on
a real-world phenomenon.

T Technique A collection of generic constructs that form
a modelling ‘method’, for example, the rela-
tional model or object modelling.

S Scheme A collection of specialised constructs that
form a modelling ‘notation’, for example,
SQL/92 or UML class diagram notation.

R(T, S) or R Representation Representation R comprises constructs de-
fined by the combination of technique T and
scheme S.

D(V, T, S) or D Description Description D of viewpoint V is expressed
using constructs of technique T & scheme S.

R(T, S) [con], Construct of a con specifies a construct of representation
R [con], or con representation R(T, S).

D(V, T, S) [e : con], Element of a e specifies an element (instantiated from con-
D [e : con], or D [e] description struct con) of description D(V, T, S).

The first form is preferred by the author as it clearly distinguishes be-
tween the technique and scheme.

Representations may differ in both the technique and scheme used, or
they may share the same technique and differ only in the scheme. Thus,
two descriptionsD1 andD2 of viewpoint V that are expressed using repre-
sentations having different schemes Si and Sj are denoted by D1(V, T, Si)
and D2(V, T, Sj) respectively. Similarly, two descriptions D3 and D4 of
viewpoint V that are expressed using representations having different
techniques (Tk, Tl) and schemes (Sm, Sn) are denoted by D3(V, Tk, Sm)
and D4(V, Tl, Sn) respectively.

Consider a viewpoint Vq that has three descriptions D1, D2 and D3.
D1 is expressed using the entity-relationship technique and the Martin
ERD scheme, and is denoted by D1(Vq,E -R,ERDMartin). D2 is expressed
using the functional dependency technique and the Smith functional de-
pendency diagram (FDD) scheme, and is denoted by D2(Vq,FuncDep,
FDDSmith). D1 and D2 differ in both the technique and the scheme used.

D3 is expressed using the entity-relationship technique and the Chen
scheme, and is denoted by D3(Vq,E -R,ERDChen). D3 differs from D1

only in the scheme used.

If the viewpoint, technique or scheme are unspecified, they may be
omitted from the notation. Thus, the notation Rr(Relational ,) denotes
any relational representation, and D1(, Object, CDUML) denotes a UML
class diagram in an unspecified viewpoint.

5.2 Construct and element notation

Constructs are the fundamental components of a representation, whereas
elements are the fundamental components of a description. Given a rep-
resentation R(T, S), a construct con of R is denoted by R(T, S) [con],
or, if T and S are clear, simply R [con]. Often R may also be clear from
the context, allowing the R [] notation to also be omitted, leaving just
con. The name of the construct itself is denoted by small caps.

The construct con can be thought of as analogous to the concept of a
relational domain in that it specifies a pool of possible ‘values’ from which
an element e may be drawn. The notation e : con is used here to denote
that e is a member of the set of all possible elements corresponding to
the construct con. This use of the ‘:’ notation is similar to both domain
calculus [13] and Z [4], where it is interpreted as meaning ‘e is a member
of the set con’.

Now consider a description D(V, T, S) (alternatively, D(V,R(T, S))).
An element e of D (instantiated from construct R [con]) is denoted by
D(V, T, S) [e : con], or, if V , T and S are clear, simply D [e : con]. The
construct may also be omitted if it is clear from the context, that is, D [e].
The representation R is omitted from the construct con because R is
implied by T and S in the description and would therefore be redundant.

Some examples of construct and element expressions are given in Ta-
ble 3. Both types of expression may specify a list, as illustrated by the
last two examples.

6 Conclusion

In this paper has been described a framework for discussing the use of
multiple modelling representations to describe a viewpoint. Earlier work
on the use of multiple representations has produced a diverse and poten-
tially confusing set of terminologies, none of which provides a complete
set of terms covering all concepts in the area. Viewpoint concepts provide

Table 3. Examples of construct and element expressions

Re(E -R,ERDMartin) [EntityType]
denotes the generic entity construct of the E-R/Martin representation Re

D1(V,FuncDep,FDDSmith) [s : SingleValued]
denotes a single-valued dependency element in the Smith notation
functional dependency description D1

D2(V,Relational ,SQL/92) [c1, . . . , cn : Column]
denotes a collection of column elements in the SQL/92 description D2

Rd(DataFlow ,DFDG&S)[DataStore,DataFlow]
denotes the data store and data flow constructs of the data flow
modelling/Gane & Sarson representation Rd

a useful framework within which to discuss the use of multiple represen-
tations, but there is a lack of clarity over the definitions of the terms
‘representation’, ‘technique’ and ‘scheme’.

To remedy these issues, the author has clarified the definitions of
‘representation’, ‘technique’ and ‘scheme’, and extended the viewpoint
framework with the concepts of description, construct of a representation
and element of a description. Also described was an abstract notation for
writing representation, description, construct and element expressions.

The framework described in this paper provides a consistent, inte-
grated terminology and notation for researchers working on the use of
multiple representations to describe a viewpoint.

References

[1] Paolo Atzeni and Riccardo Torlone. Schema translation between heterogeneous
data models in a lattice framework. In Robert Meersman and Leo Mark, editors,
Database Applications Semantics, Sixth IFIP TC-2 Working Conference on Data
Semantics (DS-6), pages 345–361, Stone Mountain, Atlanta, Georgia, USA, May
30–June 2 1995. IFIP, Chapman & Hall, London.

[2] Paolo Atzeni and Riccardo Torlone. Management of multiple models in an extensi-
ble database design tool. In P. Apers, M. Bouzeghoub, and G. Gardarin, editors,
Fifth International Conference on Extending Database Technology (EDBT’96),
volume 1057 of Lecture Notes in Computer Science, pages 79–95, Avignon, France,
March 25–29 1996. Springer-Verlag.

[3] Paolo Atzeni and Riccardo Torlone. MDM: A multiple-data-model tool for the
management of heterogeneous database schemes. In Joan M. Peckman, editor,
SIGMOD 1997 International Conference on the Management of Data, pages 528–
531, Tucson, Arizona, May 13–15 1997. ACM, ACM Press.

[4] S. M. Brien and J. E. Nicholls. Z base standard. Technical Monograph PRG-107,
Oxford University Computing Laboratory, Oxford, UK, nov 1992.

[5] Marc H. Brown. Zeus: A system for algorithm animation and multi-view editing.
Research Report 75, Digital Equipment Corporation, Systems Research Center,
Palo Alto, California, 28 February 1992.

[6] R.G.G. Cattell, Douglas K. Barry, Mark Berler, Jeff Eastman, David Jordan,
Craig Russell, Olaf Schadow, Torsten Stanienda, and Fernando Velez. The Object
Data Standard: ODMG 3.0. Morgan Kaufmann, San Francisco, California, 2000.

[7] P.B. Checkland. Systems Thinking, Systems Practice. John Wiley & Sons, Chich-
ester, England, 1981.

[8] Peter Pin-Shan Chen. The entity-relationship model — Toward a unified view
of data. ACM Transactions on Database Systems, 1(1), 1976.

[9] E.F. Codd. A relational model of data for large shared data banks. Communica-
tions of the ACM, 13(6), 1970.

[10] Peta Darke and Graeme Shanks. Viewpoint developments for requirements def-
inition: An analysis of concepts, issues and approaches. Working Paper 21/94,
Department of Information Systems, Monash University, Melbourne, Australia,
December 1994.

[11] Peta Darke and Graeme Shanks. Viewpoint development for requirements def-
inition: Towards a conceptual framework. In Sixth Australasian Conference on
Information Systems (ACIS’95), pages 277–288, Perth, Australia, September 26–
29 1995.

[12] Peta Darke and Graeme Shanks. Stakeholder viewpoints in requirements defi-
nition: A framework for understanding viewpoint development approaches. Re-
quirements Engineering, 1:88–105, 1996.

[13] C.J. Date. An Introduction to Database Systems. Addison-Wesley, Reading,
Massachusetts, seventh edition, 2000.

[14] C.J. Date and Hugh Darwen. A Guide to the SQL Standard. Addison-Wesley,
Reading, Massachusetts, fourth edition, 1997.

[15] Steve M. Easterbrook. Elicitation of Requirements from Multiple Perspectives.
PhD thesis, Imperial College of Science Technology and Medicine, University of
London, London, 1991.

[16] Steve M. Easterbrook and Bashar A. Nuseibeh. Using ViewPoints for inconsis-
tency management. Software Engineering Journal, 11(1):31–43, 1996.

[17] A.C.W. Finkelstein, M. Goedicke, J. Kramer, and C. Niskier. ViewPoint oriented
software development: Methods and viewpoints in requirements engineering. In
J.A. Bergstra and L.M.G. Feijs, editors, Second Meteor Workshop on Methods for
Formal Specification, volume 490 of Lecture Notes in Computer Science, pages
29–54, Mierlo, The Netherlands, September 1989. Springer-Verlag.

[18] C. Gane and T. Sarson. Structured Systems Analysis: Tools and Techniques.
Prentice-Hall Software Series. Prentice-Hall, Englewood Cliffs, New Jersey, 1979.

[19] S. Greenspan, J. Mylopoulos, and A. Borgida. On formal requirements model-
ing languages: RML revisited. In Bruno Fadini, editor, Sixteenth International
Conference on Software Engineering, pages 135–148, Sorrento, Italy, May 1994.
IEEE Computer Society Press.

[20] John C. Grundy. Multiple Textual and Graphical Views for Interactive Software
Development Environments. PhD thesis, Department of Computer Science, Uni-
versity of Auckland, Auckland, New Zealand, June 1993.

[21] John C. Grundy and John G. Hosking. Constructing integrated software devel-
opment environments with MViews. International Journal of Applied Software
Technology, 2(3/4):133–160, 1997.

[22] John C. Grundy, John G. Hosking, and Warwick B. Mugridge. Supporting flexible
consistency management via discrete change description propagation. Software
— Practice and Experience, 26(9):1053–1083, September 1996.

[23] John C. Grundy and John R. Venable. Providing integrated support for multiple
development notations. In Seventh Conference on Advanced Information Systems
Engineering (CAiSE’95), volume 932 of Lecture Notes in Computer Science, pages
255–268, Finland, June 1995. Springer-Verlag.

[24] John G. Hosking, Warwick Mugridge, Robert Amor, and John Grundy. Keeping
things consistent. New Zealand Journal of Computing, 6(1):353–362, August
1995.

[25] P. Hsia, J. Samuel, J. Gao, D. Kung, Y. Toyoshima, and C. Chen. Formal ap-
proach to scenario analysis. IEEE Software, 11(2):33–41, March 1994.

[26] Richard Hull and Roger King. Semantic database modeling: Survey, applications,
and research issues. ACM Computing Surveys, 19(3):201–260, 1987.

[27] D.A. Jacobs and C.D. Marlin. Software process representation to support multiple
views. International Journal of Software Engineering and Knowledge Engineer-
ing, 5(4), December 1995.

[28] Gerald Kotonya and Ian Sommerville. Requirements engineering with viewpoints.
Software Engineering Journal, 11(1):5–18, 1996.

[29] James Martin. Information Engineering, Book II: Planning and Analysis.
Prentice-Hall, Englewood Cliffs, New Jersey, revised edition, 1990.

[30] S. Meyers. Difficulties in integrating multiview environments. IEEE Software,
8(1):49–57, January 1991.

[31] Pierre-Alain Muller. Instant UML. Wrox Press, Birmingham, 1997.

[32] G. Mullery. CORE — A method for controlled requirements specification. In
Fourth International Conference on Software Engineering, pages 126–135, Mu-
nich, Germany, September 17–19 1979. IEEE Computer Society Press.

[33] B. Nuseibeh, J. Kramer, and A.C.W. Finkelstein. A framework for expressing
the relationships between multiple views in requirements specification. IEEE
Transactions on Software Engineering, 20(10):760–773, 1994.

[34] Richard T. Pascoe and John P. Penny. Constructing interfaces between (and
within) geographical information systems. International Journal of Geographical
Information Systems, 9(3):275–291, 1995.

[35] Steven P. Reiss. Connecting tools using message passing in the Field environment.
IEEE Software, 7(7):57–66, July 1990.

[36] Henry C. Smith. Database design: Composing fully normalized tables from a
rigorous dependency diagram. Communications of the ACM, 28(8):826–838, 1985.

[37] Nigel Stanger. Modifications to Smith’s method for deriving normalised relations
from a functional dependency diagram. Discussion paper 99/23, Department
of Information Science, University of Otago, Dunedin, New Zealand, December
1999.

[38] Nigel Stanger. Using Multiple Representations Within a Viewpoint. PhD thesis,
Department of Information Science, University of Otago, Dunedin, New Zealand,
December 1999.

[39] Nigel Stanger and Richard Pascoe. Environments for viewpoint representations.
In Robert Galliers, Sven Carlsson, Claudia Loebbecke, Ciaran Murphy, Hans
Hansen, and Ramon O’Callaghan, editors, Fifth European Conference on Infor-
mation Systems (ECIS’97), volume I, pages 367–382, Cork, Ireland, June 19–21
1997. Cork Publishing.

[40] S.Y.W. Su and S.C. Fang. A neutral semantic representation for data model
and schema translation. Technical report TR-93-023, University of Florida,
Gainesville, Florida, July 1993.

[41] S.Y.W. Su, S.C. Fang, and H. Lam. An object-oriented rule-based approach to
data model and schema translation. Technical report TR-92-015, University of
Florida, Gainesville, Florida, 1992.

[42] D. Tsichritzis and F. Lochovsky. Data Models. Prentice-Hall, 1982.

