diff --git a/output/comp101.html b/output/comp101.html index f9da266..88c2453 100644 --- a/output/comp101.html +++ b/output/comp101.html @@ -494,8 +494,6 @@
  • C:\Users\burga12p\COMP101\Labs\labs_git\tiddlers\content\labs\lab01\Entropy.svg
  • -
  • C:\Users\burga12p\COMP101\Labs\labs_git\tiddlers\content\labs\lab01\Images\_Labs_01_Images_HuffmanTreeCode.png
  • -
  • C:\Users\burga12p\COMP101\Labs\labs_git\tiddlers\content\labs\lab01\Images\drawing3.svg
  • C:\Users\burga12p\COMP101\Labs\labs_git\tiddlers\content\labs\lab01\Images\Entropy.svg
  • @@ -560,13 +558,13 @@ {"title":"/Coursework","tags":"home","type":"text/vnd.tiddlywiki","text":"\u003Cp class=\"no-print\">''NOTE'': Please reload this document in your web browser to ensure that you are looking at the latest version, and not an older version that your browser has cached.\u003C/p>\n\n! Labs\r\n\u003Cdiv class=\"tc-table-of-contents\">\r\n\u003C$list filter=\"[tag[lab]tag[toc]!tag[hidden]sort[title]]\">\r\n\u003C$set name=\"strippedTitle\" filter=\"[all[current]split[/]last[]]\">\r\n\u003C$link>\u003C\u003CstrippedTitle>>\u003C/$link>\u003Cbr>\r\n\u003C/$set>\r\n\u003C/$list>\r\n\u003C/div>\n\n! Reference Material\n\n\u003Cdiv class=\"tc-table-of-contents\">\r\n\u003C\u003Ccontents-tree \"/Reference/\">>\r\n\u003C/div>\n\n","revision":"0","bag":"default"}, -{"title":"/Labs/01/Computing Entropy","text":"As mentioned in lectures, entropy is measure of how much information content (“surprise”) is present in a system. \n\nGiven a set of N symbols, and the probability of each symbol occurring, we can compute the entropy (in bits) as: \n\n{{/Labs/01/Images/entropy.svg}} \n\nwhere p\u003Csub>i\u003C/sub> is the probability of encountering a given symbol. A worked example of computing entropy was given in lectures. For another example, consider a system with five symbols: A; B; C; D; and E, each occurring with probabilities: 0.0625; 0.25; 0.5; 0.0625; and 0.125. The entropy of this system is 1.875 bits, the computation of which is outlined in the following table: \n\n\u003Ctable>\n \u003Ctr>\n \u003Cth>Symbol\u003C/th>\n \u003Cth>i\u003C/th>\n\t \u003Cth>p\u003Csub>i\u003C/sub>\u003C/th>\n\t \u003Cth>log\u003Csub>2\u003C/sub>p\u003Csub>i\u003C/sub>\u003C/th>\n\t \u003Cth>-pi x log\u003Csub>2\u003C/sub>p\u003Csub>i\u003C/sub>\u003C/th>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>A\u003C/td>\u003Ctd>1\u003C/td>\u003Ctd>0.2\u003C/td>\u003Ctd>-2.322\u003C/td>\u003Ctd>0.464\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>B\u003C/td>\u003Ctd>2\u003C/td>\u003Ctd>0.1\u003C/td>\u003Ctd>-3.322\u003C/td>\u003Ctd>0.332\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>C\u003C/td>\u003Ctd>3\u003C/td>\u003Ctd>0.3\u003C/td>\u003Ctd>-1.737\u003C/td>\u003Ctd>0.521\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>D\u003C/td>\u003Ctd>4\u003C/td>\u003Ctd>0.3\u003C/td>\u003Ctd>-1.737\u003C/td>\u003Ctd>0.521\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>E\u003C/td>\u003Ctd>5\u003C/td>\u003Ctd>0.1\u003C/td>\u003Ctd>-3.322\u003C/td>\u003Ctd>0.332\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>\u003C/td>\u003Ctd>\u003C/td>\u003Ctd>\u003C/td>\u003Ctd>\u003C/td>\u003Ctd>s=2.171\u003C/td>\n \u003C/tr>\n\u003C/table>\n### Exercise \nUse the table below to help you compute the entropy of a system with five symbols (A, B, C, D, E) with the probabilities 0.0625, 0.25, 0.5, 0.0625 and 0.125 (respectively): \n\u003Ctable>\n \u003Ctr>\n \u003Cth>Symbol\u003C/th> \u003Cth>i\u003C/th>\t \u003Cth>p\u003Csub>i\u003C/sub>\u003C/th>\t \u003Cth>log\u003Csub>2\u003C/sub>p\u003Csub>i\u003C/sub>\u003C/th>\t \u003Cth>-p\u003Csub>i\u003C/sub> x log\u003Csub>2\u003C/sub>p\u003Csub>i\u003C/sub>\u003C/th>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>A\u003C/td>\u003Ctd>1\u003C/td>\u003Ctd>0.0625\u003C/td>\u003Ctd>\u003C/td>\u003Ctd>\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>B\u003C/td>\u003Ctd>2\u003C/td>\u003Ctd>0.25\u003C/td>\u003Ctd>\u003C/td>\u003Ctd>\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>C\u003C/td>\u003Ctd>3\u003C/td>\u003Ctd>0.5\u003C/td>\u003Ctd>\u003C/td>\u003Ctd>\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>D\u003C/td>\u003Ctd>4\u003C/td>\u003Ctd>0.0625\u003C/td>\u003Ctd>\u003C/td>\u003Ctd>\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>E\u003C/td>\u003Ctd>5\u003C/td>\u003Ctd>0.125\u003C/td>\u003Ctd>\u003C/td>\u003Ctd>\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>\u003C/td>\u003Ctd>\u003C/td>\u003Ctd>\u003C/td>\u003Ctd>\u003C/td>\u003Ctd>s= ?\u003C/td>\n \u003C/tr>\n\u003C/table>","type":"text/x-markdown","section":"2","tags":"lab lab01","revision":"0","bag":"default"}, +{"title":"/Labs/01/Computing Entropy","text":"As mentioned in lectures, entropy is measure of how much information content (“surprise”) is present in a system. \n\nGiven a set of N symbols, and the probability of each symbol occurring, we can compute the entropy (in bits) as: \n\n{{/Labs/01/Images/entropy.svg}} \n\nwhere p\u003Csub>i\u003C/sub> is the probability of encountering a given symbol. A worked example of computing entropy was given in lectures. For another example, consider a system with five symbols: A; B; C; D; and E, each occurring with probabilities: 0.0625; 0.25; 0.5; 0.0625; and 0.125. The entropy of this system is 1.875 bits, the computation of which is outlined in the following table: \n\n\u003Ctable>\n \u003Ctr>\n \u003Cth>Symbol\u003C/th>\n \u003Cth>i\u003C/th>\n\t \u003Cth>p\u003Csub>i\u003C/sub>\u003C/th>\n\t \u003Cth>log\u003Csub>2\u003C/sub>p\u003Csub>i\u003C/sub>\u003C/th>\n\t \u003Cth>-pi x log\u003Csub>2\u003C/sub>p\u003Csub>i\u003C/sub>\u003C/th>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>A\u003C/td>\u003Ctd>1\u003C/td>\u003Ctd>0.2\u003C/td>\u003Ctd>-2.322\u003C/td>\u003Ctd>0.464\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>B\u003C/td>\u003Ctd>2\u003C/td>\u003Ctd>0.1\u003C/td>\u003Ctd>-3.322\u003C/td>\u003Ctd>0.332\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>C\u003C/td>\u003Ctd>3\u003C/td>\u003Ctd>0.3\u003C/td>\u003Ctd>-1.737\u003C/td>\u003Ctd>0.521\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>D\u003C/td>\u003Ctd>4\u003C/td>\u003Ctd>0.3\u003C/td>\u003Ctd>-1.737\u003C/td>\u003Ctd>0.521\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>E\u003C/td>\u003Ctd>5\u003C/td>\u003Ctd>0.1\u003C/td>\u003Ctd>-3.322\u003C/td>\u003Ctd>0.332\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>\u003C/td>\u003Ctd>\u003C/td>\u003Ctd>\u003C/td>\u003Ctd>\u003C/td>\u003Ctd>s=2.171\u003C/td>\n \u003C/tr>\n\u003C/table>\n### Exercise \nUse the table below to help you compute the entropy of a system with five symbols (A, B, C, D, E) with the probabilities 0.0625, 0.25, 0.5, 0.0625 and 0.125 (respectively): \nNote:There is an editable worksheet doc on Blackboard you can use for your workings in this lab.\n\u003Ctable>\n \u003Ctr>\n \u003Cth>Symbol\u003C/th> \u003Cth>i\u003C/th>\t \u003Cth>p\u003Csub>i\u003C/sub>\u003C/th>\t \u003Cth>log\u003Csub>2\u003C/sub>p\u003Csub>i\u003C/sub>\u003C/th>\t \u003Cth>-p\u003Csub>i\u003C/sub> x log\u003Csub>2\u003C/sub>p\u003Csub>i\u003C/sub>\u003C/th>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>A\u003C/td>\u003Ctd>1\u003C/td>\u003Ctd>0.0625\u003C/td>\u003Ctd>\u003C/td>\u003Ctd>\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>B\u003C/td>\u003Ctd>2\u003C/td>\u003Ctd>0.25\u003C/td>\u003Ctd>\u003C/td>\u003Ctd>\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>C\u003C/td>\u003Ctd>3\u003C/td>\u003Ctd>0.5\u003C/td>\u003Ctd>\u003C/td>\u003Ctd>\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>D\u003C/td>\u003Ctd>4\u003C/td>\u003Ctd>0.0625\u003C/td>\u003Ctd>\u003C/td>\u003Ctd>\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>E\u003C/td>\u003Ctd>5\u003C/td>\u003Ctd>0.125\u003C/td>\u003Ctd>\u003C/td>\u003Ctd>\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>\u003C/td>\u003Ctd>\u003C/td>\u003Ctd>\u003C/td>\u003Ctd>\u003C/td>\u003Ctd>s= ?\u003C/td>\n \u003C/tr>\n\u003C/table>","type":"text/x-markdown","section":"2","tags":"lab lab01","revision":"0","bag":"default"}, {"title":"/Labs/01/Decoding and Encoding Data Sequences","text":"Recall in lectures that we presented a Huffman tree that was constructed by examining the frequency of characters on Wikipedia:\n{{/Labs/01/Images/fig3.svg}} \nThe corresponding Huffman coding for this tree is: \n{{/Labs/01/Images/HuffmanTreeCode}} \n\n\n\nUsing this coding, we can decode the sequence \n\n1100010100010100110100001100111001111011100111\n\nas:\n11000 = C (remaining bits: 10100010100110100001100111001111011100111)\n\n1010 = O (remaining bits: 0010100110100001100111001111011100111) \n\n001010 = M (remaining bits: 0110100001100111001111011100111)\n\n011010 = P (remaining bits: 0001100111001111011100111) \n\n000 = [space] (remaining bits: 1100111001111011100111) \n\n1100111 = 1 (remaining bits: 001111011100111) \n\n00111101 = 0 (remaining bits: 1100111) \n\n1100111 = 1 (no remaining bits, end of sequence) \n\nResulting in the string 'COMP 101'. \n### Exercise \nUse this Huffman coding to decode the following bits: 11010011001001001100110101001 \n\nAnswer? \n\n--- \n\n\n\nEncoding information using a Huffman coding follows the opposite direction (look up the symbol and emit the corresponding code). This is straightforward when the table describing the Huffman coding is sorted by symbol:\n\n{{/Labs/01/Images/HuffmanBySymbol.png}} \nNow, we can quickly confirm that the sequence ‘QWERTY’ would be encoded as 1000100001(Q) 100011(W) 111(E) 1011(R​) 0101(T) 0010000(Y) 1000100001100011111101101010010000 (34 bits). \n\n\n","type":"text/x-markdown","section":"4","tags":"lab lab01","revision":"0","bag":"default"}, {"title":"/Labs/01/Exercises","text":"1.\tUsing the Wikipedia-derived Huffman coding: \n a.\tencode your full name and count the number of bits required for the encoding (remember to encode the spaces between your names). \n\t b.\tencode your student user code and count the number of bits required for the encoding. \n\t c.\tEncode your student ID and count the number of bits required for the encoding. \n\t d.\tEncode the University of Otago contact number (+64 3 479 7000) and count the number of bits required for the encoding. \n\t e.\tEncode the University of Otago contact email (university@otago.ac.nz) and count the number of bits required for the encoding.\n2.\tThe Wikipedia-derived Huffman coding represents 48 characters – if these were encoded using a naïve coding, how many bits would be required per character?\n3.\tBased on the naïve coding, how many bits would be required to encode: \n a.\tyour full name (including spaces between names)? \n\t b.\tyour student user code? \n\t c.\tyour student ID? \n\t d.\tthe University of Otago contact phone number? \n\t e.\tthe University of Otago contact email address?\n4.\tBased on the results in steps 1 and 3, comment on the efficiency of the Wikipedia-derived Hufman coding for encoding the various types of information you worked with (names, IDs, numbers, etc.). \n\n\n### Final Exercises\n1 .\tIn the game Scrabble, each letter is given a score. Compare the letter scores in Scrabble to the code lengths for the corresponding letters in our Wikipedia-derived Huffman coding. Briefly comment on this comparison. We have extracted the letters for you in the table below (they are also available on Blackboard).\n\n{{/Labs/01/Images/HuffmanScrabble.png}}\n2 .\tPerform a similar comparison between the code lengths for letters in Morse code and those in our Wikipedia-derived Huffman coding. Briefly comment on this comparison.","type":"text/x-markdown","section":"5","tags":"lab lab01","revision":"0","bag":"default"}, -{"title":"/Labs/01/Huffman Coding","text":"Also mentioned in lectures was the concept of a Huffman code, which is a method of lossless data compression (reducing the amount of data needed to store or transmit information). Recall that a Huffman code can be extracted from a Huffman tree – one basic algorithm for building a Huffman tree is:\n1. Start with an empty set T \n2.\tAdd all the symbols to set T\n3.\tWhile there are multiple \"trees\" in the set: \n a.\tRemove the lowest probability tree from set T (break ties in terms of smaller tree size), and call this tree A \n b.\tRemove the lowest probability tree from set T (break ties in terms of smaller tree size), and call this tree B \n c.\tMake a new tree C by joining A and B, and set the probability of C to p(A) + p(B) \n d.\tAdd the new tree C to set T \n4.\tReturn the only tree in set T as the Huffman tree \n\n(note: we will cover algorithm concepts is more detail in later classes, for now you only need to know the algorithm itself)\n\nAs with entropy, a worked example of building a Huffman tree is discussed in lectures. For example, one possible Huffman tree corresponding to the system shown earlier (with entropy of 2.171 bits) would be: \n\n{{/Labs/01/Images/fig1.svg}} \n\nThe Huffman coding can then be extract from this tree by walking the path along each symbol:\n\u003Ctable>\n \u003Ctr>\n \u003Cth>Symbol\u003C/th> \u003Cth>P(Symbol)\u003C/th> \u003Cth>Code\u003C/th> \u003Cth> |Code\u003C/th>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>A\u003C/td> \u003Ctd>0.2\u003C/td> \u003Ctd>11\u003C/td> \u003Ctd>2\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>B\u003C/td> \u003Ctd>0.1\u003C/td> \u003Ctd>100\u003C/td> \u003Ctd>3\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>C\u003C/td> \u003Ctd>0.3\u003C/td> \u003Ctd>00\u003C/td> \u003Ctd>2\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>D\u003C/td> \u003Ctd>0.3\u003C/td> \u003Ctd>01\u003C/td> \u003Ctd>2\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>E\u003C/td> \u003Ctd>0.1\u003C/td> \u003Ctd>101\u003C/td> \u003Ctd>3\u003C/td>\n \u003C/tr>\n\u003C/table> \nOn average, the code length in this system is 0.2 * 2 + 0.1 * 3 + 0.3 * 2 + 0.3 * 2 + 0.1 * 3 = 2.2 bits. Recall that the entropy of this system is 2.171 bits, so the efficiency of this Huffman coding is 2.171/2.200 = 98.7%. Contrast this with a naïve encoding of our symbols, with three bits per symbol: \n\u003Ctable>\n \u003Ctr>\n \u003Cth>Symbol\u003C/th> \u003Cth>P(Symbol)\u003C/th> \u003Cth>Code\u003C/th> \u003Cth> |Code\u003C/th>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>A\u003C/td> \u003Ctd>0.2\u003C/td> \u003Ctd>000\u003C/td> \u003Ctd>2\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>B\u003C/td> \u003Ctd>0.1\u003C/td> \u003Ctd>001\u003C/td> \u003Ctd>3\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>C\u003C/td> \u003Ctd>0.3\u003C/td> \u003Ctd>010\u003C/td> \u003Ctd>2\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>D\u003C/td> \u003Ctd>0.3\u003C/td> \u003Ctd>011\u003C/td> \u003Ctd>2\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>E\u003C/td> \u003Ctd>0.1\u003C/td> \u003Ctd>100\u003C/td> \u003Ctd>3\u003C/td>\n \u003C/tr>\n\u003C/table> \nThe code length here is 3 bits, so the efficiency of this system is 2.171/3.000 = 72.4%. In other words, the Huffman coding is over 25% more efficient than a naïve encoding. \n\n**Exercise** \nCompute the Huffman tree of the second example from the previous section (the one with entropy of 1.875 bits). Use this tree to extract the Huffman coding, and then compute its efficiency. In doing do, what do you note about the lengths of the codes, both overall and relative to the probabilities of the symbols that they represent? \n\n{{/Labs/01/Images/fig2.svg}}\n\n\n\n\n\u003Ctable>\n \u003Ctr>\n \u003Cth>Symbol\u003C/th> \u003Cth>P(Symbol)\u003C/th> \u003Cth>Code\u003C/th> \u003Cth> |Code\u003C/th>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>A\u003C/td> \u003Ctd>0.625\u003C/td> \u003Ctd>\u003C/td> \u003Ctd>\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>B\u003C/td> \u003Ctd>0.25\u003C/td> \u003Ctd>\u003C/td> \u003Ctd>\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>C\u003C/td> \u003Ctd>0.5\u003C/td> \u003Ctd>\u003C/td> \u003Ctd>\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>D\u003C/td> \u003Ctd>0.0625\u003C/td> \u003Ctd>\u003C/td> \u003Ctd>\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>E\u003C/td> \u003Ctd>0.125\u003C/td> \u003Ctd>\u003C/td> \u003Ctd>\u003C/td>\n \u003C/tr>\n\u003C/table> ","type":"text/x-markdown","section":"3","tags":"lab lab01","revision":"0","bag":"default"}, +{"title":"/Labs/01/Huffman Coding","text":"Also mentioned in lectures was the concept of a Huffman code, which is a method of lossless data compression (reducing the amount of data needed to store or transmit information). Recall that a Huffman code can be extracted from a Huffman tree – one basic algorithm for building a Huffman tree is:\n1. Start with an empty set T \n2.\tAdd all the symbols to set T\n3.\tWhile there are multiple \"trees\" in the set: \n a.\tRemove the lowest probability tree from set T (break ties in terms of smaller tree size), and call this tree A \n b.\tRemove the lowest probability tree from set T (break ties in terms of smaller tree size), and call this tree B \n c.\tMake a new tree C by joining A and B, and set the probability of C to p(A) + p(B) \n d.\tAdd the new tree C to set T \n4.\tReturn the only tree in set T as the Huffman tree \n\n(note: we will cover algorithm concepts is more detail in later classes, for now you only need to know the algorithm itself)\n\nAs with entropy, a worked example of building a Huffman tree is discussed in lectures. For example, one possible Huffman tree corresponding to the system shown earlier (with entropy of 2.171 bits) would be: \n\n{{/Labs/01/Images/fig1.svg}} \n\nThe Huffman coding can then be extract from this tree by walking the path along each symbol:\n\u003Ctable>\n \u003Ctr>\n \u003Cth>Symbol\u003C/th> \u003Cth>P(Symbol)\u003C/th> \u003Cth>Code\u003C/th> \u003Cth> |Code|\u003C/th>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>A\u003C/td> \u003Ctd>0.2\u003C/td> \u003Ctd>11\u003C/td> \u003Ctd>2\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>B\u003C/td> \u003Ctd>0.1\u003C/td> \u003Ctd>100\u003C/td> \u003Ctd>3\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>C\u003C/td> \u003Ctd>0.3\u003C/td> \u003Ctd>00\u003C/td> \u003Ctd>2\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>D\u003C/td> \u003Ctd>0.3\u003C/td> \u003Ctd>01\u003C/td> \u003Ctd>2\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>E\u003C/td> \u003Ctd>0.1\u003C/td> \u003Ctd>101\u003C/td> \u003Ctd>3\u003C/td>\n \u003C/tr>\n\u003C/table> \nOn average, the code length in this system is 0.2 * 2 + 0.1 * 3 + 0.3 * 2 + 0.3 * 2 + 0.1 * 3 = 2.2 bits. Recall that the entropy of this system is 2.171 bits, so the efficiency of this Huffman coding is 2.171/2.200 = 98.7%. Contrast this with a naïve encoding of our symbols, with three bits per symbol: \n\u003Ctable>\n \u003Ctr>\n \u003Cth>Symbol\u003C/th> \u003Cth>P(Symbol)\u003C/th> \u003Cth>Code\u003C/th> \u003Cth> |Code|\u003C/th>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>A\u003C/td> \u003Ctd>0.2\u003C/td> \u003Ctd>000\u003C/td> \u003Ctd>2\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>B\u003C/td> \u003Ctd>0.1\u003C/td> \u003Ctd>001\u003C/td> \u003Ctd>3\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>C\u003C/td> \u003Ctd>0.3\u003C/td> \u003Ctd>010\u003C/td> \u003Ctd>2\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>D\u003C/td> \u003Ctd>0.3\u003C/td> \u003Ctd>011\u003C/td> \u003Ctd>2\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>E\u003C/td> \u003Ctd>0.1\u003C/td> \u003Ctd>100\u003C/td> \u003Ctd>3\u003C/td>\n \u003C/tr>\n\u003C/table> \nThe code length here is 3 bits, so the efficiency of this system is 2.171/3.000 = 72.4%. In other words, the Huffman coding is over 25% more efficient than a naïve encoding. \n\n**Exercise** \nCompute the Huffman tree of the second example from the previous section (the one with entropy of 1.875 bits). Use this tree to extract the Huffman coding, and then compute its efficiency. In doing so, what do you note about the lengths of the codes, both overall and relative to the probabilities of the symbols that they represent? \n\n\nDraw your tree now to fill in the table below. \n\n\n\n\n\u003Ctable>\n \u003Ctr>\n \u003Cth>Symbol\u003C/th> \u003Cth>P(Symbol)\u003C/th> \u003Cth>Code\u003C/th> \u003Cth> |Code|\u003C/th>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>A\u003C/td> \u003Ctd>0.625\u003C/td> \u003Ctd>\u003C/td> \u003Ctd>\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>B\u003C/td> \u003Ctd>0.25\u003C/td> \u003Ctd>\u003C/td> \u003Ctd>\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>C\u003C/td> \u003Ctd>0.5\u003C/td> \u003Ctd>\u003C/td> \u003Ctd>\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>D\u003C/td> \u003Ctd>0.0625\u003C/td> \u003Ctd>\u003C/td> \u003Ctd>\u003C/td>\n \u003C/tr>\n \u003Ctr>\n \u003Ctd>E\u003C/td> \u003Ctd>0.125\u003C/td> \u003Ctd>\u003C/td> \u003Ctd>\u003C/td>\n \u003C/tr>\n\u003C/table> ","type":"text/x-markdown","section":"3","tags":"lab lab01","revision":"0","bag":"default"}, {"title":"/Labs/01/HuffmanBySymbol.png","text":"iVBORw0KGgoAAAANSUhEUgAADrEAABMiAQMAAAAuVQc+AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAGUExURff392NjY5yvT8IAAAAJcEhZcwAADsMAAA7DAcdvqGQAAP+TSURBVHja7P3NjtxIki4Mk8nMYXZiAKaELGAWL4bVggRIuoYB2ChIgJSrViK1/y7hLHsxGEZjpjFV2syRIG2/QgsSUNJFfBWNWfRyLqGjMYt3OdE4i4nBiQ7//N/DLNzD3eOPQaY/6C7J5CTD3R+6m9FoNMs2RU0S9o5FdnAkXg+AxOswkXgdJhKvw0TidZhIvA4TiddhIvE6TCReh4nE6zCReB0mOuA1ISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhIWFAaCf2f69nWUKPEcNrTsKuWc6zI0B1FL1YBhkf7rcwr81U/GnjtRC85mS0/prlUQQiVkcXDnn0vHr6l3i1Iu+S13YNr2UoryTrGs3iWHgleiIPz2tjpsDHa0nG3v4VnfOaEzI+Dl5Loifj4LyyWdCyndeGdY/trw2Z9YBXOpvT4+C1NnN7cF7ZLGjZzmvLusdmipCFt39ew2rvqAiZHQevdEEoTXdwXtksaNnJ65Q9OdClTXrAK53NuZ3XZpodFMSsmYPzymZBy3ZeCTuknrOlTX5r7d+SEXzQAVjROnltD8tr3iWvbRCvC/ZvlZPX6ph4Zd09Cl4LYvbCg/O6/Emjm1fC/o19X/oHH69Z17zmR8Nr2SGveSivzYxt2SG8TrJOQUf047Hwumg75PVHL6+zlow4r/+nB7wWZFYcB68VmVRd8cpnQcsOXqc15XVKVXHWHj+vJbVV/ukoeK3JOO+KVz4LWnbxWpIxbaMbduXn9cCTtwLa1+wfj4TXLO/KHuazoGUPr9Qk/m0veKUdYmOo2bM03Y74n82cd61m/rDDvEzkP0V3Y/bjf6G9qg/lipO8Mp3EPBRzOm4ur/BaKF7pfffvhB3PyGvH/M+SjBiv/BoZGXXNK5/HatFy/xhVHn9c8D+pIcFday0dIPm3g/AqPO8t//G/0p9tD7VmKa98FuidNGcdoJTUjCkrr5OcNeXkP/idR7fkGRmzP6k5NWE2dUVpr/9yLLwyE75gjxntfyz4n/Q//0GYf5uOgvx4OF5z5h9gT7LjfMlju19oXlvm2Sfidp5beM2XeGU+T3Z89T/0H9l5Lfkf/iDEnBf/hxvOnYLvdozXUcmmtP3Tgv9ZCl45x+Tng/Dasl8p2D3PnmTHxZLHds8/PJF7PpsF4fXiT7M2XsmEb7TqKLr3/l/6j/RPKnBeGcf1fx8Rr+OKDaYli0psJ+S/6MRyjpdcbPsE55VRKrpTHuhnDa+MLHY7MQLZCvTwOsvlrP2BiO3lr+wsxnFNjoBXtvuxiZxU4nZb8D9FMrYZ5/hQvM5kT9i8yNvsIGC8sp9ilE7YjTUt+Ap08ToWvM5zOWuM10kh8qtxro+Y10as1/rQvNaa1/rgvJaa1zKe11Ks1+IIeV001IxjzmL256KlvE5r0pAD8/ozGTMP7Jj/9EFgeP0vMq0Er9zctdjDbKM2vP6RH/8H8ed/UF6p0fn/kskx8NoIXv8v7RkdDueV/zkvJ3SiG2pFHYpXbiY1dGYor4zcRXk4XuUsjBg/nNzfOnktJa/tIqdbGedV/DmaV4Q9+Ape645Ddxv2+xW956bViPP6/+N/0nt2TC2+Zsb+Tv7xED3hjzUNNcEn7bymvLKfPsTvcl75LFB+qOYpWVxQTq0jC69/YLyOGK+zZpFPOZ///Qf2J13xs5qZ8tyP/F/HwitzpFDDgfKa8T/ZJNN/aqnRNzqQnhPOG/pYRXllHrtZfmBeKS0N5TXnJLUTmx9xiVfuNGwprxP+J9vJK/YckTWU13F2JLxmilfxEDlivWW8Thmvh1EVgtcp41V4Yg/O65zxOme8zq288u1Z8jrRvHKPBjuF87rgvGZHxWsuec1p/zvkdcp+tSNe54xSF6/tCq+N5LWZNkfJ60LzyiY3F/E7fO1w2/4gPeG80t8iU/mrh3qpo3hl78zn9D/tlP/HFi+Ra17HileupBp2CptGueaPh9fmaHhtO+S1Due17A2vzDwX7+YMr+wxuyNeCemOV+7+tcSZQl4LGVLP/lS8Mi/dkfFKJK8k8RrGay15rY+a10LyWiReXbxOIK+t5LU9Ql6FH5HxWkpey4545X7Ejnjls+DnlX1HJ/2IjFcieSVHzWslea0Qr6PueD3Yc46F19XnHMK+zVniNZe85ojX6XHxWkte68SrnVce17TEayF5LY6d13+XvP770nNOdrBQWMzrwQJwLbxyRlf8Eiu8zlrB66xdes4RnHbOK4+XYLw2C/H8yv7UvEpb5hDgrq4lXg8W+KXiJZZ45aS4eJ1IXksy5s+v/E/FK7tBjozXmeR1lnezXhGvB12viNe169XwmklegV/iOHiVcaYrvE4Ozit/B8qiwaYyMiE7EFQ8YsP8wzxu2slrxkziqZXX+bHxOs7+H8HrVPI65bzmkwPvwyw84n8xXifiDfYh92E+C4zXGf0Pce/D3LE6y4rfcl4XkteF4PUfwD7ccbxESVn7J8lrIXnl71+LCX+fkx2M15qM8hl7izNpZ+KLiQOBx/vTWWBvcWb1Qryny1y8ZvRxh32fw3ltJa/8/es/VjKzDju96ZzXWb6Q+3Ap92EWIzGrWByMslEPgZpMyhl7mz5u5+xF/8EmhvNKZ6Hm/JCCv1fP3LzSbfcPch8mch9mMRI5i4OpmKI+Bl7pw1eteK0kryzQZ9FMmjnbXepD8VqReUu3QfaxxKKhJib76YOAfyfJZkHw82/sBXpWjl28tuQ/ieQ1l7yyJU7+OC/J/5cuiWJyJLwSySuPQ2TPOQ2LaSKThswa8s/kcLwS9oM/smAcwoLX/vlwcWtiFmQsIeN1QtbwShSvf5S8/pHxSiivLDiqPQpec83rsr+JTS3jteYh7Ifhlech4D8u40zJ4Xjls1CqKGruKnfy2ihegb+pErzy2PLE6zI0r1mHvI53xmvH39OxbWWx4vdnIfd0S5pVB+SVf/PCf1B9LnQ4Xvks8Fh9TlLh5FXOzx9W/P70FGoa8O84OK/tEfA6t/I67oBXftt3xCujhWRhvP7WxuvsqHiVefTg+1f20SSdWf7J2MFSYDTi8yX+/Ws7zg/KK8+jR8T3r3+ailyIDl5lHj30/jUTH9jxQRwFr5zBOfdGzCmvzDakfxb8W8kp/8z4UN+N0z2CTRrPzsJ5Pdx3knwWKJuUSbKop+ILZ8yrCADPBIMjHi/x47Tin7j/yL/sz+mkNWyzm2XO5PKHQ6uWhbrF+J8te4k8ER/kHwg5/0iceWp5D+oDfq8uZoF5nYRjtyQOVyB376sNTOUJqeTXPczDXMivI0jnvN55xNRtCH58Sbx2jhhe68RrbxDFa6jO7zyfacI+eM0Tr51jP7x2nS88IYbXKvHaG0TxGviNd/f1OBJieC0Tr71BFK+hdQcTr50jhtci8dob7IXXo6vkePewl/qvidfOkeo1JyQkJCQkJCQkJAwGItV7wl6xSLwOEonXYSLxOkz0wZ34D5Hy30fKVaRcjuLkYrxedqFMoQ8JPcRVpHwRKZ9FyiejODn/1XrZhZOBr9fLSPk8Uj6NlE8i5dwju3CSDRtpvSYk9Ad/Fyn/baT8N5FyESnno/WyC0U2bPRNX67oz5FHdiBUD/cVyW4aJh5Hyn2zs1w4y4aNtA8PE4nXYSLp12Ei6ddhIu3Dw0TidZhI+nWYSPp1mEj78DCReB0mkn7tEXJHdknLvyf92iMUTl5XvupN+3CPkHj1Yui8Sv1ZqtR/DrlQqTz7rl/VzDj1q12HNR1XphOI4FXqT53v2SFX6sye69dSBeufuY8QFFYiObyoI5LLIgEds1u4fr9w7cOt4s0hN2pIPd+Ha1VfIHcfIZivp5xJwWspi3p0zasr6Unp4lV/dOKQWzUfPee1VXXAnbw28oh2mddKVJ84Wl4Lh37NNY92WVS1YOi5fuU1OWzXWT6C8crUrOG17h2vQn+a+id2mfEq7vOe61dCpAHo1K+S+QLw2sxF/Z3+8CrWV0FUbl27TCV5n/d8H+ZFZ6zX0UeM+RGV4rXmvE5rXnaob7yWc8gjlotFNgxe55mH15yIIxrGq5ytdtyOK/b3sm/6lXa4Ha+RKa+NmI+e69ffMDvXdh19PhFHtIxXSSPjlVNa9k2/0oc1yaNdpna05LX3/mHJq0u/Ui4Fr39aWq8jIigtu67rG7sPUx7BesQyHZCcj977Eaup/ToSlFe+5bb/YXilxgXbsTLR0iHieZ0gXpFcTu8MrzPB3j9VS7xmiteO6w6yDrFycCxhMvfsssoELNu1S7/WE/Y/t0wHJMfU+/ev1Xr9Sncmvtv+o+E1Z7zmjNe6e15ZGcR/qlhhTOYRbOhf2P9d+tXwaJcNr73Xr9V6/ap4zZZ4XVBSBa8d1zGjHSrpo1fb8IrwvJjpJCNLlruBWF+GR7tseB36PmzhtWC8ZozX5kh4bXlpWl6AlVV9nbl5Has9xi5TfSttht7zWq9/fqWWhHiaWeJ1znhl/rem4zpmTPkzXokszizrSc+d+pV2WN7HdplOhrTxe69fJa8u/Vqpx1bDa6l5bbvntZ62vL54Tv7IC3DPClZI36VfDY922fDae/3arPcP23idaV47TjbCeJ1UWbvgtxoZVYtixv/q2ocNj3bZ8Nr7fdjjRzx2XpkqaGflIqcadlzNillFNWziVdcODOJVvMTiM8d57boukuJ1yq3zZlzPst/QfpKkX3nFdNt1dDvkdSr+dkS8skr141xYcZSW/w/9Pxndef1a+eKbEK/sr2zmOKd514lMNa/8DqsZr6x37ejO78OVeoUauA9LbwQZ5cfC65irecErE+gjaeI1mle+31FeJ9wLe4y80v83ozuvXysSoV/zecOOpry2s/ZYeKW0tJmf1zunX2XcR4h+ZS9NxlydtXzldv1anT+/zjiv9H/reb1rzzklCX9+zbJM8lofD69E8Dqi99qYGVEsri7xqj/kiOCV7sWC165fqwv/8FjwykLV1/B65/zDzcx6HQXEK/M6Ul7LI+J1Knit1/N65/zDsgBsmH4VvPIocdJ9uIR4rz4XvLYk7cPLqOb266hmyCsduKzmTLoPl+DuQvpIzXkliVeAeF7F082i+3AJzis1nASvs1rwOsmy5B/WRm2gfqUDLzSvzTHwWpER4/W3hJLEeR1n2dr3r5M1MuN1IPFNktd1+lXFwWSCV34CW7Vdh0uInnFeyT8T8/yapfgm/W1wSHxTJm5ozWt7HLyOGa8sfj3xuoR4XrmYz7t/rS7oa4J4vXPxw8V6/brKq3hqZaeRY+F1RHmdref1zsUPe/SrhVf+F/6IkXUMTl9Nec0lrxNppKfvcxSvvu9zjF9C/KU8Jl7H+YK/sqO9u/TyOl4jM14Fz/3ndWa/jgTjdcqfJwSvYzlwSnbnr9X1PjwpFrSfzZiutd/w9ebSr7TX4HtXLNObfBDfv+Y6vt2lX+nTaj1la1rw2ipe6yPh9TeMV9pByithcWsz7hd1fv86V0aBXS4Xiud+69d85vMPF/R5fyJ5rbipJG7oZtL9a3VG3z+xr6zn1bxY5GRM/5hRqmp3HoIFykOwwPkmhpGHgC65dv0+nLMMFGx7ImRaTQrJ628yciS8tv9JmMt/VpCSpx+aVeTf3fHDJcrjg+VC54PpOa86H0y+5giWdKDlU8ZmgW1UPElM56/VOa9E8JrLdGEzHoS1Jn8TWSebPD8916+a13X5mySv8+PkdcF6M1W8Th286nxN83Wyyb/Wc/2q7891+Zsyw6v0RrRH8Vqdx60xXlmymlakbRQfTK7JjzhfKzeK18Hn0asNr2ybU7wujoRX9pl6y8IkW1KPM8L/Ml/H62St3Kj8pj3ntfHFD/OJK7keY6prLD+4YsPvPFyC0cfSSrQsmLniIetEZhBz6FceDrVOLgeSf7hQeVpP3EcY+hrlEa5I169eOSR9rathCSm/f48QwWvf1t/WfkTXdfqAxKsXQ+c11c/pEZJ+9SLpV4i0D3cIaauv8Jrq57iv0wdE8Jr0a48QwWvSrz1C2oe9GNg+vOLiTLz2D23AMUm/9g8hvCb9OkykfXiYSLwOE0m/DhNJvw4TaR8eJhKvvcDps0h8eQBx42m/fXsP4Imn/emL7wHee9o/PIS/f+1rfwd//9HDsHHj60bh8Lx+8zoON4+efl3Gl2tP+/0PoP32s6f9h2vQ/vXG0/7sM+zAE0/7gxvY/v5z2MDxdWPw6fC85vficPXTJ3Anvnnycn37LVzQz6887U/Rgn7jaf9wBRf0c0/79Ru48D7iDcEBfN0YPD48r9Hr9c1DcCt+/PRybfuX5/dB+6ub9e23H38AC/qnL+vbv756Bhb07e369tePP8KF9xS1O7By3Rh0sF6j4Xs+9bWfRrafRLbnke3JHhZIz6/DRN/Wn3d9/ioLQ9e5XfaMoe27yY8ogHm88rRjHi887ZjHM0/7it9itL59xW8RuF5PBr5esf781tPu492nX333hY93r37NwnCaDRvJjzhMYN4ee9oxb1eedszbhacdz/eZpz1L9rAVeB899bRjnk887fh6uad9ZR+N1K/JHhbA6/PS047X57mnHa/PU0/7iv70tSd72AofL7715+PNywuSV55zIp9fkz0sgHn71tPu26d9vPr2cd8+7dWvWRiGbg8n//AwkfzDw0TyDw8TyT88TCT/8DCR/MPDRPIP9whleCa/5B/uESIyNCb/cI8QwWvyD/cI1eb7cPIPHzHieS1VXtpvkbwj/7DObHGOZBevKsPJrv3D7dx+XfMDsmesA4VOT8urPZCuE0uX0fq1RvOuZcVbg3hW8qmjXdXAle2lyud8gmR1fgV5LlR+8h36h1n9m1zVLXDu17JnvAMVZ5LwuhWspeuCHGW0fm3VveiQdY3Mq0BZ1cCV+3St5sQh6xrXcp+u1Pzv0D/M6qSU3vz+sme8Azy7eM5zctPTKtJ14cH45xyC8vdrWe+bcH1q+cTenqkdTLY3KK++ltX6a2WXZXtN1AV35x+u+ApUHXNRJHvGO9CKZcr/cSz+0ymiec01j5dIxvr3FMmO9gLx2qL6Oy3iVetbw/t4uV1jC/9ws+B0+eusjFQHeJ2VWvA6Ef/pFNH61dTLuUIyzvd/juQLe7uuB2B4FAecIVnfB1C/6jncoX+4FbxOrdc1R4me8Q7wqiwN4f84pbYT6bhyQ7R+LRaFXD/fIlnq14ZA/dmgug64vSZQv5KR/IdzJOv7AurXdtza65Ju7h/OCS9938ys19WQPWMdyEnOFy2r1Ey7Q0ZNf3gV81wuMlSfDsoZQfusT27hPpzTOVne/7Bs6rjI9UfG0pDanX+Ym7PtpPLWp+M9Yx0oCKWXm8Its+vIqOodrzNVV/AxkrX+BbwZ+cranhHE6yKT9/oFkrX+Rby66j5u7h+uOK+jan29ZtUz1oFiTu+DkvH6GyrRlq4rI0Xr12qmHkBPkaz0789Afxr5xNqekT8B/UofMeS9niNZre//msLrqfq7u/MPV39dsF1W1ld3rWvZM96Bck4fw8sFtzQqxmvZH151/fQG1clvluur54sGrs8F9EPg9ozUQL/q6taKZy1L/dr+G9CvbA7t9e039w9Xf2G8qmqfLj0se8Y7wKuPl7Ne8ip4oTxKIq6QLHmbQ/+SkS+s7dmiBvswnS05J2dIVvtwBfZhOodyXe3OP1z9mfMqqy679mvZM94B+pdqWk45r+VR8Br+nCV4oyxIIr5FsuR1gnjV8qW1PZtCXsuZmpNzJEtefwN5pbMred2df7iixIj/2a6rIHvGO8BKNk/LUS95FbxgHo28G/8w5tHIdv+w4XW3/mHDq2u/XuFVFB7sHa9Cfxoe7bLh7SpQhvrV8GiXDa96ny7sdusW/mHAq8seXs9r5xUlg6HXJ7BPjexbnyeO9pV9GKw/I6vzV/ZhOf879A9LUon9PAnZM94B2ifGsbKbyBFUCg2G4I2yIvt8ieTQfXc9r/RiQF8a2c4rnc7cbrdu4R+WxhixXjcz/WAH8Q7QMRhep3n3fokIYB6vkOzTrxeOdqhfDY9nSLbr1yVed+cfhrw61quLV+ZvUj6wPkDoT8Pjt0j26ddLRzvUr4bHcyTb9avhdYfxw4BXlz3s4pU+zpNJ2/F7ugjgfdguu/dhl+zah+2yex/eYfww4NW1X7t4Ze/pZqS/vOL16+P1ytHu4hWvXx+vO4wfBry67GEHryV/YUey3gDr11Mk+/TriaPdpV9zJPv06w7jhwGvWZR+LWUcTNYb4PWJefbp13NHu0u/Yp59+nWH8cNb2MM8mK1SsXZ9AN6HsT3s24cvHO2ufRjbw97nnN3FD29hD/N3t3mfecX2sI/XS0e7i1dsD/t43WH88Bb2cMneL/eKV7sfIly/hvmH3fawT7/u1j+8qT1csjiBss/61S5v6x9228M+/bpb//AW9vCUxbz15+MPvD6xPbwb/7DbHvbtw7v1D29qD9PxzY4gzjQCyT8M4eR1nrV/Jsk/PDT/cDnPyLhJ/uGh+YfLRU6ypusP6sKR/MMQLl4LxmvZnwed5B+GcPPKItr6w2vyD0O4eM0XJjanD5DrE8WpNcHxTYH+YRSnVnnim8o5Xs8KW/qHFy47W0H2jHegXopvorzOVOxxH4DjD6+QvBv/sIlTO0OyM75p5/HDMG7txB3fZI1byxdLe0gPEBY/vK1/2Bs/7OR1t/7hDeKHe8prih+GcPFa9IxXGS88VcTY5a3jh+eKOLu8Ej+8gPu2wZbxw8QVl6wge8Y7QHUtG0YvedV+ggZ8T6fl3fiHC81jjmT7PrwUW79T/3Cmec3c3+dU00IE95eQ13n/7CZ6Z7ZioJdI3o1/mE6I/IdTJDt4JZh3he38wxkZIb2OwXtWznkHKJNsWJTXKfu6rlfPOYJH5v0UE3SF5N34h5kPTvzDGZId+ZvIqLbngdjOP5y1Y/l9pmu/5j3jw6+nlONW8EoX8bxY9MkvIb9PZ14yjm+RLPUrUR+kXyH50t7eEpA/IicjGXt7jmR5XzQqn4fUe2SMeFfY3D9cshw37aS2561Q4D0TTv5JQdh30CyFCnMNF5TqvvmHC53/xS6z/DDL8+yTGc9gHyUobw+W6X0A8j7o+2J3/uGKjUnfP879mvWM8so6wEY1Ktl/6P9nOZmSHvIqTYLHSDa8Lt/nRr6ytrPZAXqMqFiDCyQbXsFzDc4LpLFNfgn6m/rduDPfGueS8zrm2Y4Yr2MiWe7b+1d3vjWT32n5PUCO1iNuN7zK6znzrZn8TsBv6My3tkV+CcZYWL41llhC5VvjvPLto+0Tr1p/yi3mEskyv4RzfZ5b2w2vWn/C+6ZB+RE1r3Id1UoP7DC/hOR1ZL2uBuuZ4JX1aq55HZkccX2AXF86f9IVkn378IW1fWUf1jHVZ0h27MM6d+gO80swXgt9v4ych/HnGd6Bmg6C88pD/ase8lqrLn+L5B3lH9Z59XCePce+qvPq7Tj/cO7Ka6whe8Y7oLMDFiIbcX/MplSfbqBI9emGib6tvy38w+vPGxiGtu8Ouh5HBFJ9umEi1acbJs4j5dNI+SRSziPlO1WfLgKYt1SfbhhI9emGiVSfbpjw8eJbf6k+3XEC8/atp31D/7Dzej5ed+wfdl53aEj+4WEi+YeHieQfHiaSf3iYSP7hYSL5h4eJ5B/uBc6/j8QnJH9+AHH9DOIGy2/vATxC5z/B8gv4e+/Q+VdY/gR/7yU6/w2WX90Lwjcvvt8ch+f14mskPjyF8vtrKL99DXH9AcmPoPwCXf8zut7n+1D+hK5/8xnJPyAZ9ffLDZKfvw7Cq/tfN8fheT15EIeH//sj/Ifnj+Gt+RXe5vdfoPXw4D1cT6/hjvHDQ3S9t9fw957+Czz/3RWUX3xG6+w7eP7LCzSg22dB+HD9YGN8e3heY9frp894vX6E8vdw/dzc4PX6CsrP4Pr58gSv18dQ/vgEnH77Hq/X92idXcHzr/F6fRm0XG/f3XzdHNnxw/e+9SGSfe9b7yPZ9771F0j2vW899fmXkh+RY2jvW5NfQsD3vtW3nn3+Yd97Pd969vmHfe/1XBi6f3hw71vTPszhe9966ZF9/mLfPu7za/j8xb593IW7Frfm8wv6ePTtqz6/oJdHj52U9KuAT5/i9ezTp/i+8OlTfF/49OnKvp/ev1px7Puo1z+c9KsVvueavscTuzB0Xn37qM8e9q1n3z7qs4e96zk9v1rhe9/qs4d9z0k+u8q3j/uek7x2lQN3Lb7J53fw8eDbV33r2adPvX7DtA9z+PSnzx72+SF9PPvsYa8fMvFqRfIPDxPJPzxMJP/wMJH8w8NE8g8PE8k/PEwk//AwkfzDw0TyDw8TyT88TCT/8DAh12dJYJ0ULe/IP5wTWEclh3mrs0zl9t23f7id2a9rflD2TGQcnmRZrYsh9Sn/sJynWs3zJZJD67266iLp/N8yP/gpkuX1CpUffM/+Yf07Tv0qe8YPrBiTLEs4YRUcTB97AMljC/P5r8hZi3hsUT06LDegLhK9T2A+fyxXofn8t/QP61zuTv0qe8Y71LCc8KxkA+dV97EP0HUWQF2VlfocOYH1rbSM2xUvKs+7nL8G1UvA9Tl0/Y09+4f17zjXteyZrsdRscoFnFdTI6QHEPozX62XA+qsGH2L5VMky/uiQPn829V6OaDOSqPmbM/+4cbLq+wZP1Cu0pngtekTr6behpAvkSzXc4V4rBCPFVrPuC5Di3jDdY8aV32rHfuH2zmZWK9rjhA9a+T2O6pZpRDF6yTrC2R9q0Uh1w+WpT3cEKg/nbK2u0D914yMQL06I6v1PG5BfTqNHfuHnb+jIXvGDswJVS/1tJG86nP7ADFP5ULVjzy3yhlB+pOg9YvllgB7OCcjaUidWOWMzZ/42379w2Rcra9Pp3rGOlQwLutxyVUSWepjDyDrhFIVslzH18i63hXYd3PEo5G1HQbrhC6yBtQ907Jav1ltr8u6Y/8wyaqZ/Tx1Pdkz1qFinrWTv884r/TfdR/7AMEDHWyzXPfTyIq3n4H+NPI5ktX6+xOwh4uFKvB6imS1nnX99b36h5d+x3GE7Bk/kJUzm2SiSnO+MOf2AUJ/srrbgojHSJZ21KIB+tPIV0hW+3YN7GFW3Xq5Xp2R9XqWNXP36x82v+PSr7Jn/EBWh3uaifVazPNe1fUV8055rCdWWfI2h/4ktyz31cVKfXWwTows6zcvVI3r/fqH3b+jIHvGD6R/4WtX81r0rV4zZQHwamT5fDtB63OCeJ3A9ZxNa2AP0xkCvBpZr+fCvo526x/O5z5eZc94hyipmtdyVvSqvrqYJ8PjJZJ34x82PJ4iWa9fNWd79Q+b33Hp16Hwinl8bJXdPF45ZFg33/B4YZXd871b/7B7X1Bw8VpN+8Wr4IGyUC3X6TWyWn9If66sT7yea2AP06kCvBlZ8EKFXDgu9+sfNr+zZh9mPeMH0imQulbymvfnhY7Qn5QVwKuR1ftUpD+dvKr1DO1hejHAq5H1epZztl//sJ9X2TPeIToGzWs9NX3sA+w8Ghnvsy4e8XqG9jDm0ch6PTvme7f+4aV9wXGEhdeij7wK/Wl4xLKKl/DpU7yeoT1seMSy9m/JOduvf9jw6tKvTl4n/eJVzJN7H/bZw6cOGdrD7n1Y61s1Z3v1D9Mfid+HOa9Nz3jF+y7m1WcPY17t9rCbV20fO/bH3fqHN+KVe5macb94FTy49avPHnatZ2gPu/Wrfr512MM79g8vNtCvnNe2Z7xiexjrV589jPWrzx7G+tVnD+/YP0zErhqlX7knux312x7Gss8edq1nlz2MZZ89vOP4YTKuovdh/naOjPptD2NeffYw5tVnD2NeffbwjuOHyZTE8yrex/bbHrbbUdv6h9361WcP7zh+uFUBeRH6tVHvY/tsD9ufZ7f1D7v1q88e3nH8sOY1Qr+y0Gj28rV7XpvwLw6wPYz34d34h937sM8e3n38cPQ+zHgt+sbr3fIPb8Qri+ATr9t7xOvd8g9TPfmXWP2a95LXu+UfzjLf+9dVXgvxWr1nvN4t/3DGQ2Gs15FY5bU8Hl4jcLf8w9kGvHJ3U9U3Xu+WfzjLfPFNq7zWveRV2sMonqlBcWxb+4dRPFOF49jmkHeDneeXKGbW6yrInvEO1VMdSE3/WvYqvgnHlWJ5N/5hd5yp/B5gfpj44UzzGh5n2kpe+xW3FhY/vK1/+Fjih8VP26671Ix4FZ/DTrIUPyyvwHFc8cNZBn/X2gx5zfvJq+Rxqoh5bJW39Q9T3STtsAurLNx0DHvPP1yt//5V9ox3iOraeiLe19LhmT72AfJ7Os3jOZJ34x8uNI8nSJbf0xle951/uF7//SvvWTHjHWLG8ER8/dqOl/rYB8jv6WZZu/wds5F34x+m97r8hxMkq+8w8XOVws7zDzf2fAcKvGflnHeIrt1mLL6ho7Nh+tgHSD/eXH2ffonk3fiH6ZzI+TxFstwPycixjnaef7hdn1+C94wPv55SjttxNRf9W+pjHyD0Z8m+2rXK0h4m6oP0K4+s80GBfBLU+JAJnrCsvpcdQ541duwfnuYwX8kKeM8Yr7RDBcl43hCWmGu5j32A/H5c5385t8osP8zyfW7kU6vMeAbrT/N+Ypf1fbDv/BLePD/sCMor61Au88GQEb/L2z7lgxHrq0D5m4ys80uQZf+xkU+RbNbv8nMNz5jD/3KCZLlvt4hnjV3nl1D36zpeR4LXcS6z+9C/LZb72AfgfGuXSMa8XSAZ82x4A/66ZjUPV1i+tR37h4krX59GI3jV+dY4r+JTjv7lW8sIyoeoZZOna2qVr5Cs8wKRZX8SnR2YD7FBefpqNd979g8TV95UDdYzwStboXPO64g7JOo+5UfU8z61y5i3U4+s8vaoCZTzXqH8pVqW81sqnvfsH27VuJzrmvWMRUewDtV0ELXmtexTPlO5Pmu5LSpetbyj/MM4r16J8icWar737B9u1LicvMqe8Q5VYOPVfewDfLyk+nT9RKpPN0yk+nTDRKpPN0yk+nTDRKpPN0wc+z668/hh13UGhlSfbphI9emGiVSfbphI9emGCZ/+3JF/WMPnh9x7/LDjukND8g8PE8k/PEwk//AwkfzDw0TyDw8TyT88TCT/cC9w8iASv/4e4hOSP9+DePwM4gbL6Pz36PeeYBmdf41+7+otkj/C8x+h6z389CwIL198vzkOz+vF10i8fgrlD0h+/xri6QcoX2MZX+8ayp+x/A06/zOUb7D8Bp7/CY3n8y9eB+H6/tfNcXhezyPvvB++g/f/w/+N1sNzdJ///hVYPvdfQPneA3T+r3+Cv/fwMezAW3T+41v4e++uoPwCXu/7D2jE7/EG48CT6wcb49vD8xq9Xq/g/f/pM16vaD1ePIfL5wavV7Qef/cAiF+e4PX6CJ7/3Vsg3r7H6/UdPP/jDZR/fxu2Xr/76evmyI4f2J71+ZcuPOf7nmO87wVG68+P9mM4cNf8iH3zF6/4h7F97EDo81Bf4fNL4PXrey7C69f3XITXr++5KNaP4cJpNmz4/Ay+fdjnL/b5GXz7sG+fTf5hO/D69PmLfevb56fw7eO+9R3tZ3Rg6P4mn/70tZ9Gtp9Etnv3WcxjoH7N7ph+9fmLffGHPv3q28d98Ycr+3iyh63o/fuaZA9b4Xu/eh4pn0bKJ5GyN64tC8PQ7WHf+1Yfz773br716+XZF++U7GErfPGHPv3quy98fguffo2OJ072MMexx3V7378me9gKn3/p2OPGkz1sR/IPDxPJPzxMJP/wMJH8w8NE8g8PE8k/PEwk//AwkfzDfUITfDcm/3Cf0AYnQE7+4T6hCeY1+Yf7hHBeHf6lksA6KsVKvmApO+yuXOXqxfIFkhWvKo83lkP9w+3c3o6Bf3cFqmesA3yUFUtZ3CxYS+dlG+J5lWWQTF72KWiv1DyfI/kE/aJsL1U+8FMk5/b2QuXiPkGyWlcV4kOXnhLrM9f1GNzrlRVf0Dm/nfu17BnvAB9lw+hk5Qh0jvPu0ETrV5VHW9e/gfn+G8SDltX5LaxPVyOe6pV8/jDff4XqZFS4vkKN8olXM3B8iep92FAs1tQR0JA94x3go2QZ7gtWsqHpPg98tH4tFK+4PofkrVXzcWGXVbmhlXobZx5Z8w7rcazU52hRXv5G8SrWZ+Wqv7OEasH7DeqArEL2TNfjoDsBy/ZPySXd122I3ocrmM8/x7yiOklGlueXiNcW1VXR8jmSJa8Nqp+jZayfFR9ID9S6bpOb12axVAPHaQ/LnvEOsFEWjNdK8tq1sRXNK6rbkGPeCOKFIN4qZGe1iJd2tb4VaG9gPS0jSx4LZO/kitdMr295gFu/tgveb8+6lj3jHeClONgtTnmd5aT7+jnR+rVVvAp9WizUxqzqXeWAByPLfbshUL+SEeRJyxd2uR23oO6ZluW6qlC9jlKvV9HNZtKsr8PM+sx4zcj6uoOqZ6wDfJTlvCRUu9fzfJH3iFddHwfYw+UiA+uzIBmoG2hkxRvch3MyAnUEjZwjWZ0/loaR5EnLcl01aB+uCbSH24k0pNz2MDeFF6qOpWu/Vj1jHeCjrFjN0GZazvN5hLtnT4jdhwsC7WH6FEGW6z0Wc1Vf0y7nmFc6f9MgWfGa1bN1Mq5n1BBoD7cjUc9zjT1cMV6nsB+rUD1jHeCj5JW4m3G5yCdqzN0hntcW2MP05m+W636ywl7LPBpZ1av7GehX+kgB6vQa+czaTpcEqMO9JIt+tf8F9Wvz39AeliWpsjX2cPVXbgr66jWLnvEO8FHS49tRKyoPdl4nNNzvr9ZfC+xhVodbjEHWg52p+ThFsqxXt4D11Vk1a1QXX8rnSJb3Ba8Jx/+GZGV3/RvUr80foT1MMlEHfY09XP1lmVeXPSx7xjvAR0nvX6prRaXQHvEqeZi1wB6mvML1OUN172dovc1hPWdW4G25nqSRT6wynUa53gQvRlb7bIX24X+F9jDh3iQGp36t/ryQQ1s6bwWyZ7wDfJR0HhrKK6/sW/eHV7kPj1tgD9MBAF7pZFRTqyztrgnklc5IObPKF0jWPBdzqyzX1W8Qr/9QAnuY0iB5ddvDVb7Mq0sPy57xDvBR0oE1Y5L1k1fsHza8inY3r3b/sJvX3Nru5jXMP7zE63r/sOHVMUND4VX7d4E9bHgV69fweIpkdT7Ur3g9+tav4TFHsuKxQv7hEtjDhtc1/mHAq8seHgqv6j0btIfpAPD6BDxg2fCqeQP7qFvW6zNftnuwbHhV+2wJ7OF8ISY+W+cfzkPsYdkz3gE+SjqwekLEBDX93YeFPUwHA3ilPJczq6zOh7zSk4u5VT5Hsl7PYL0ZWa0rF6/6vpC8nnh5XfaXrEL2jHeAj5JOTM0sLs5r536JjXkV82541fuyg1c171C/unk9sba7eVU8OvWrWt9qvfr0a7PeP7yW17Y/vGL9KvSp4VXbx4BHI6t9HOpXN48XVhnzaGT9vtWhX08Qr2viJcQVof9zBWt57f59zsb6VfDm3ocvkIztYbw+z5CcI3llHx5BOfPoV7E+l3j1rNccvdfFWMdr0SNe8T4s5HD9iu1hn36178vufRjbwyt2E//vkn51jlRcsfLES6zjte4+XmJjXsX6Ddev2B726dcza/saXj3Przlarx57GMfbrGANrzXpEa9Yv2J72KdfsT3s06+Yd59+xfbwin7l/w22hytXnGNmfsfN6zTrGJvrV2wP+/Qrtod96/PEKrv1K7aHV/RrnD1sYgrj9at559sZNt+HsT3s06/YHvbpU2wP+/QrtodXnl/j7OHKF7e4ltfu49a29A+H61e7f9jNa25td/Ma5h8Otocrsrk9XJMe2cN2/3C4frX7h31+iHD9GuYfjrGHJ0v9WMVae5j0xy9h9w+H61e7f9itX+361q1fw/zDwfawDkTewB7OMpL8w0frH26X3/evYj2vXRvEyT9sgXxPN1s6bxVrea37w+ud8w974hbX89r1g07yD1sgrlgux1GtYi2vVX94vWv+YRTnuIKh8jpw/3AG941VrOW17A+vDv8wim+qUXyTkR3+YRTfZORzJEv9iuKbjBzoH17g+8ACwKvTHhY94x3go2zHWfMHGd9U9le/6vXoiDO9QLLdP1xq3s6QfGKVl+LURlAO8w+buDWvPYziHDHKdXFrnfMaDrt/ODZ+2M3rjuKHPf7hkPhhyOtG8cM95nXw8cMee3gtr1V/eHXED08VUTJ+eKZ4PkWyI354Dnk38imSZfzwAvJu5MD4YeJbh1mgPSx7xjvAR0lNjXZERsK53B9e7f7hSvOq1x/4fg7LeB8uNG9nHll/n6N4HNlkn384Iz69mSFend/TsZ4VM94BPkr23dWo7R2vdv8wHYD8B/1dJOR5Dr+jXOF1Ade3kc+RrL+LhDwTbJet9w9nZITuAwvYZj1R3Di/p2M9K+e8A3yUdOtinzcX82LcJz+i3T9MRyTfNcrvshYqPvMcyXb/MPvEe5lXI59Y2+mv1fA75xGKy1/vH2bflct/WKtf85n2BTpmiPeMD7+e8lFWM/lPhf4mujvE5kfMdR4Q+b3rIpeP+TLfBMlAnhAj67xAIN9ETkYgTtfIF1Y5I2OQp8DIJi8Q+G61JgSsz3bi+T4jY7l6FpTadv33dLxnjFfaAT7Kal6wT9gr9vV65+/p2sj8EgWB+VkKlNfH8H6B5BMtw/WH8uloOUeyyQ8D8j60KG9Lq3jUeQhUoNKvlCx5dX//Sn+T9XP993S8Z5RX1gE+SnY78NuoMLlkOkMbn1+CTKAM8jflFp6xDPQhzgPklHHeH7cM7J1GddDInjwvnNffovvXAs4l53XMR1myX2ZphIojyN+0Oa8435rOqwfzcqF8a4ZX2d4gHp351nRePcgjzremeTX5ncDzakC+NcbrCO8bq2gEr6v51vJe8ary+Kh5kfmHCcqP2KL8iFqW+SU0rzqfk7wvTpB8jmSpX2sUr43zGGpezX0B3veYOEMvr9nydVbBeiZ4FaPM2chKsXo7jwvfRL8CP4POlyRlHTt7gWRl76J9WMfpniH5xC7jPKNaVvklXPuwXJ+FjgFdq1+XYvZHzsO4r4t3gI+ypTPD81s13eczbaOfcxTk+kR59Vby5FUov5qGzks7scsXSJa84jx5BcqvpuHIP5yjfE4ulN78w7JnvAN8lA27YxilVff5h8OR6tMNE5iHVJ9uGEj16YaJVJ9umEj16YYJzEOqTzcMpPp0w0SqTzdMpPp0wwTmIdWnGwZSfbphwudf8vHss7t8/iUfz6H16VztLgzdHk7+4WEi+YeHieQfHiaSf3iYSP7hYSL5h4eJ5B/uBU4eROIGyb/+HuLzPYgnSH78DOIGnf8ey+j3nqDzr7GMfu/qIzz/0Tm8/pt7Ybj6fgscnteLr5F4huTXT6H8/jXEAyQ//QDla3T+WyR/uIby52/g+S/w9T5D+eYNOv8Gyj+h41149fTr5jg8r+eRd94PaH398B1aD8/R+vmC5N+/guvgATr/Fsm//gn+4Ft0/lMkP76Fv/cCnf/+Kbz+NTrehfcfH2yMbw/Pa/R6fYjkK7Qe3qP1cx/d9xfP0fpC6/EHtC5+9wDKnx/B85+h3/vuLVqv7+D5v38B5ZfPg5br7bs3XzdHdvwYml/iJD3ncFxGysf+nj2Ur7vmH/Y9z/p48T2/+p5nfe/lVvxEnvXtwl17n9O797Gh+67nukMDXo++fdfHu+99jW/f9fHujW8aOF+h8PmDfX5933r2+aOi/fqe40P1a5ENG3dVv96193R3Rr9mw8bQ9Gue3r9yDE2/hu6vdy1+uO/6NcXBCAxNvwa/f82GjcHp1ywMSb9CJP3aDyT9Okwk/TpMJP06TCT9Okwk/TpMJP3aI5TT4ETwSb/2CNU0OPFl0q89wha8Jv16xIjgNenXHiGC10D9Wqjcu1dIDtSvucr7e4rkQ+tXWV7drV9Vz1hC4+LIMg5H2E2KF1jHbEWuYH5wI6vzYf2cTJU9MvnAYR55LK/UPVLYsX4tUB7yVcie8QPFKAlPSz/l1WW6xQa8ovzgWpbruUE8YFlnntf1JSGvNcr3X6P8/rqU1J71q64D4ORV9qxiieX5KHOiyrgUXddtiOBVrkfd5Ssk4/ob9nocdPCgjlmWoTzwznocav21jn15x/oV1/1YheyZrsdBF7DitewRr3I9VgTvu5BXXcfiCsmyvUS8Fiiff4vqqrSI19yVz3/H+rVB9ZpWIXvGD+SjrHvJq663AXnFsrOukaOuA67L0KJ6RFjWdRr2rF/bOZmsP072jBdaIqIMh+K16h+v7cq+C/RrTnLAA5bpwKF+rRGvZATrUWlZrueKHEa/tuPWU8dO9owdKEYpFC37x7p3+jUnUL8aWdVNQvUktazqBqJ9uIX6NScjUEfQyJLnhhxGv5Jx5a07yHtGxvWUj5JX5hHWft07/VoQuO8WmNd51i7XOTOyaM8xrwTq13yhamyeIlnv04fRr8RX/1X1jGT1jI+y5Lzy2Wh6tw8XpEW8QpkV9lquF2lkxevPUL+SP4F9uFjAOr1Yztr/Ooh+pc8soN73KmTP+IF8lOVC89p2zuukCT1Urcd2ZJdlPdiZesA8tcr5AtZXzwj0S7Dq1sv10o2s7OV/O4h+zRchdbhn8kA+ynLWS17l+pzB+upGFjzTEVZTqyz32Tmsw50taqBfWcG35f3PyGofrg6iXyldnvr6smf8QD7Kcqp5JW1/eJX6dYz24THklc56tVwv0shyH54gXqc10K90hiSPp0iW8/ub6iD6NZ8rXl36VfasYAfyUZYjzeuid/uwzz9seDxFcph/2M3rYf3DhebVddwKr9w/zHnNF21/ecWyWM9uXhUvSL86ecWy8g9XB9GvW/FqjI4eAK/PKyTrfVjygGXFC9qHM6hf6cFg/zOyWn+H0a/0R/OF9XcUZM/4gXKUveRVvX917cOCR8qS5PEKyXgfxrwK3ukMSR5PkYx53a9+Nby69KvsGR1dvpCjVLyWsx7xGqZfDY+nSA7Tr25eD65f88Xa44bKq12/unkN0694fRr54Pp1c16ryeD0K16fRg7Tr4bHMyQfVr9SUj361cErC5yoJ0m/Hql+NbxG6lf+Inac9OuR6lfDa+Q+zN5rNOOkX49Uv+aEOfZt181MP+y8TqiSTfr1SPUre/+6iX7l8YjtKOnXI9WvGZmSTfRr/a/UcCJZ0q9Hql9Z9NIm+zAdz7zfvA5bv27Daz7Pkn49Vv1aK17j9CuLEOkXr3dMv2pe4/Qr/YdFMUv69Wj1a07+stk+nC/KWdKvR6tfM9/71zW8TpN+PVr9ykNhbL+TmX44eK0IUR+b9QB3TL9qXmP1q+B1kfUFd0y/brEPM167/gA2HIH6FcUz1ZHxTRWKb6o6im/KWAit9boKsmcli2+qdXxT/3gNjm8C8YdGDo5vAvHDK3Gmh9Ovxcz6Owr2uLX+8RqmX33xwz796o0fPpx+Ldd/n7Oe16Hp16HED2ea17g400y8tlXJFnqAwPjhGfzuCsve+OG5Ig7LB9ev1frvX2XPigWlV46S88pf25KhPb+WM/j9nJHD9GuheTxD8sH1a73++1fes2LGvrualZjXwfmH6V0sibtCcph+pbMC1reRD65fwffVq+A9K+c5oT2So5R+/ywbnn+YjrZdzjtg5DD9SqdJzuepVT6gfm3X55fgPaMkklE9laOkvFJF20tec5QHxMjqe/YM5A3BMsuwsbye2XvO5fWYk5G8D7As93GRmCPbu36dqrwYbl5pzxiv42bCR1mwp5tF1jBzq3f+4QLxYmQf7xdaBuuPKJ4w72dINvli7M+Vu45v8uZvYkdQXtmNyUdZsv8Q0b3e6ddC83KJZMOjOP4KyaYd8wj8Sc48QYZXu9921/FNqt9na44YCV7HfJSM17Gcjt7tw25epb7V+dVOkYx5NXm8wPprEK/Nap4uu992x/pV8+o8rhG86nxrA+EVy9JeblE+RCQbXk0+NsQrzI/YoPyITl53rF9Vt9bxynNQ1OwGYKNUvPJe9lG/gjw+iGc6TJi/VMtGv9r3YZ3/VN4HZ0jG+/Ce9WvryhOlwXrGkkywG4+NkvMqk2H28PlVwZF/uEL51HDePA1H/uES5cHEefY09p4fcWT/HQ3Zs0Ikzhurf5xm/QLmJeX3HwZ8vKT8/v1Eyu8/TKT6OcNE0q/DRNKvw0TSr8NE0q/DRNKvw0TSr8NE0q/DRNKvw0TSr8NE0q/DRNKvw0TSr8NE0q/DRNKvw0TSr73AyYNIvEbyr7+H+HwP4ulbKD9+BnGDzv/wAsrv0e89Qedff0Iy+v2rj/D8R+h6j+6F4RvUrygcnteLr5F4+xTKz5H8/jXEiw9QfoDka3T+p2v0e0j+/A08/+YR+r3PqP3N+ut/eh2GV/e/bo7D83oee+vdQvGHG7QenqP19BTJX17BdfAAnf8NWk+3P8EffIvOv0D7wdNb+Hsv0PkfHiP5WRg+XD/YGN8entfo9foDWl/X6P5/j9bjMyQ/QusLn/8Rye/eQfkzOv8Vkl++ROv13frrf3wStFxv39183RzZ8eOxR/Y9v2LZ9/yKZd/zK5Z9dtNJsoc5Tj3t2F722ZH4Pshjf9/Di+/5NfQ5Z+j+Jsxb39bvps+vQ/c39e55NVJ2Yej7MLbtfOvT58fw+Rl969N3X6z4GUfrZRfumh8Rw+cf9l3Pp8d8/uHMd70N9+G79j7n7zzteH3+racdr8+/8bTj9Vl42pN+tQOvF997uhNPu2/9+d7TYV729Z7urvn9zyPl00j5JFL28Zb0qx2+5xTMu+85BfPue05Z4d3DU9KvYcD2sO959tjiKZJ+tcP3HOPjxdd+EtmeR7Yn/WqH73nVtx59+tT3vOpbj0m/bgZfHIvPP+zTr744Fp9/OOnXzeCLUzv29Zz0qx2+9enzA/r0q9f+xXJ6ft0JsD3sW48+v6LPrvKtR59fI+nXMPj2UR+PvvXr20e98cNJv24E3/Opzz/suy98z6c+/3DSr8uoJqFHJv9wnxDOa/IP9wl1MK/JP9wn1MEFfJJ/uE9ognmV816qjKyXSHbwUqg8s+dIlu25K8+vqx3ne1byrvVrO/ccp3rGOqBHJVB1XhepCe6AXI+1mudzu4zrWVVq3k/tcqnyRqv1COuumHYpFyp/+BmSd6hfWSmy3JsHXvaMd0CMip/B7vO28yzE4bzqvO6Slysk63o6kledxx3ypmV9XyBeZLkcxZtu1/eFKtU4gvIO9SsrWVWiehGrkD3jHeCjygWvrPBV57y2wUdK3nSpRCzL9ZyjfRnVbTCyvC9wXYYM7dMNrNMiyiQwnNhljS30a8VXIFlf70r1TNdtoLdCxsY/Ycnx+8OrrpsCeDUy1r+mbgpoJ6v1OsQE630V8tqiddNoHkdIRv3dQr82PGM/WV/vSvWMd4CPqla8lt3zGl5/VtjDtno4y7LJdK/Xs6MejuEN1DnD+fxbxFuD6io1rvnfQr+2gtf19SRVz3gH+KgaNhPsvqzIj/3hVdVVySUvV0iWPDYE1BWkrWS5DpmR1fodt6CuYE2gftXt6j6YNGC+tbw7/ZqzLaiZ1uvrNauesQ6IUfE7nN2X9Tz7X1m3CK8rLPQnK6C4zKORpX4lsB4HNUEAj0ZW+7qq76fr44B9eKWdjJrlOqJG3p1+5ZVT2nG9vl6z6hnrAB9VYXjtvCZHHs6rmGdWuEvwcolkvS8De5iOuAF1lBYr9SJrsP7ICq+wDisZVdIAH0F5d/q1EryW87XHqZ6xDvBRlZzXiva/CXbi7Qv5PPhQXWcb8IjlnLTAHi5nkEcsF3PFm9K/PwP9atqFTG9EwKORd6dfq/+7YArKw6vsGe8AH1X5V8Yr0yPdV+GO4FXXwW8mVlnZxw2wh1kl46lVlut3rnhR++qPQL+adrl+F2q+BS9YNthcv1b/w3ktFvbrSMie8Q7wUZXz4+G1COdV2MPVBPJoZKFf81kD7OFyCnk0stS/M8WbtKPmqC63bpd211zxeIrk3enX6g8LZnhIXp31mkXPeAf4qMoJ47X50yTi4XFfiOBVzDud9XqZVyPLfXgK62zT9Vwt82pkvS+XQD/OIK+4vZirPudI3qF+/e2CLUNpe7iOkz3jHeCjKseK1/CHjH0hglexHjGPWMb+Ycyjm1e7f9jN6xmSd+sf3oBX8dDY0v6HG6P7QgSvggfD4xWSlX+4Afaw4fECydquKqHdUwP9atq1naX6PILyDv3DgFeXfnXwSo6D11nwoXLfHSv9iGX1/hXWxaf6F+hPI4v7gmomoC8Nr6eo/UJ1GNgzWDbYwj/MSJ1LN75Tv8qe8Q7IUbETFvUk757XMpxXwQNlrVrm1ch4HxY8UJbKZV6NrPflAtbVhryadr0vq3U0QjLq7xb+YXpF9qNk7XGyZ7wDclSEPQ/0jVdhD2Me3bxquwrw6OZVnQ/1q5vXUyTvVr9uzCu15yMeHveFCF4xj/b1a3jFPNrXL+YN61fTbucRr1+D7fSr4dWlX+28Fr3jVehP9z6M9au2qxz7sLaXi2X96d6HtV8jX36udO/D2+lXw6tLv9p5LWeM16ZrZiN4FfMcrl/FPIfrV2wP+/RrdpT6lfFa/JV0Hd9Uhr95sPPo5tXOo5tXbA/79CuWj0O/VlPKK9EvP7pCFc4r1qc+/Yr1qU+/YnvYp19X7OGj0K+K147f6ETwiu1hn37F9rBPv2J72KdfV3hG/e1Gv9ZjwWvHb2AjeMX7rk+/4n3Xp1+xPezTryv2MOpvN/q14bzO23C7ZS+I4BXbwz79iu1hn361+4fdvGJ7+Dj0azNivI7q/vCK7WGffsX2sE+/2v3Dbv2aHaV+bTmvyvfZGarN7WGffsX7rk+/2v3Dbv1qt48NutGvLe1/Me8Tr8k/DGHnlQhei/7wmvzDEFZe6ZmC145d/1vYw8k/vIbXvD+8Jv8whJVX9uhK+sVr8g9DuHn9517xanhcjmfCss0eXo5nwjKbnWWebfp1Ob6JTePcKu9ev66Pb5I94x2Qo5K8/nuveMXxTL74JhzP5ItvsvuHS2d808kxxjdxXv+w6BOvwh52x5na/cOVM85UxjfN4D69Et+E4hUNjys8o/5uGd+0gHp8FUfNaxlrD/vih7E9XMXGD2fdxw9vEWd6NLzGxkuk+GGF0h5nmjUTqZ67RHS8ROX5Pgfbw2Xw9zl2/3Dh/D4n29v3OZzR+O9zJK/1NCd94lXry2Zsle3+YTbiiVWW3+fM4frF+7Bpl9/nLOD6xbLBdvo1I9i/icF7Vsx4ByoxKsHrJO/e71/Gxg/TEYDvX41s9w/TAYLvX40seVuo9Wv3D5t2ySPR30mOkIz6u51+zcjI953kgn9DxzsgRyV5Ned2hjI2friaZzIm69wqY3u4XCjeT61yQSDvWL+adsXrCHwva+Qd528iY8d3tQq8Z/xzfUqvGJXhter4/WsRGz9cLmB+CSObPCGIN5BfwsjqO+gRzC/Rwvw6pl199zyG+SW0vDv9WrIcN+3Ek1+C94yuS9YBPqpCpFChvLaTpmteY7+nK3X+l0sky+9fdcyWyitCwHo2ss4bBHjPdGzQqbMd5FXS8g6/f2VjalU/3PklaM8Yr7QDfFSlGBrjtfO4tejv6XLEqy3vD8wHAXl15/nR+SVkAjfcjvP8ZCMo7zK/BO1jWJ4fplhVnp9S3IKU16ZPvGoe5SnnLpmA9wAE5cHDcovydGleT1C74XVklXeYX0LyOrZeR4P1TPA64qMCvHYcPxydX4KOZm6Xzfpdfi6hY5Q8YlnnR5S8mX0V+ItrxHuleR1ZZY0t8kvI1WfP46ZRC14rkZJrmdeq83j/CH+XzD+s8ytdIhnrV52nS7oqz5Es74ta5c00+zR4ntXt8r6o1H10iuQd69cS5U1dBesZfZ7gHWCjMvpVn9sZInh15MmrPPmHS5R/uET5DwtP/mHcnqP8w/m+8g+r+8V5nOwZ70AJFSrp2ByO4TXVp+sTYvOtGaT6dMeM8JQ0qT5dnxCbf9gg1ac7ZoTzmurT9Qlt8IOWbx9N9emOCeG8pvp0fUJ4/Rw8z6k+3TEjnNdUn65PCK9jlurT9Ql18AulVJ+uTwivE+p7jvHx4ms/iWzPI9vvln4NR/IPDxPJPzxMJP/wMJH8w8NE8g8PE8k/PEwk/3AvcPosEs/vQTxC8gU6/rvvId4h+XcPIH6Jzn+Jr/cW/t7lR3j+QyT/8gX8vTfvYPujh2HjfomuE4XD8/rN60i8guLtFyR/RMc//gpxi+RXT6H8Hp3/FF/vA5Sv0fkf8PWuofzxBrV/Dhv3Q3SdGHw6PK/5vUh8A+/v579A8jVaTzdoffwLkj+jdfDlJTz/OyTffILr6PYTPP/3D9H1buDvPX0Df/Dj+7dB436JrhODx4fnNXq9vnwExNvPUL65QcdfvYP37g2UvzxB6+vNS3j+Eyjfvkfr9flDtP4+QfkarbPvP8J/ePrsQ8iwb2/ffN0YHazXaGA7yfd+5z6Sfe93foFk7/sdn78JySvPK6H2cMeh+/sGtme/jTz+0nO873kWw/c8u3L8hs+vQ3/OObbnFt96PPE91/wqC8Jd8w/7nmcxfPcFhu++wPDdF5lvX3Zg6P4mnz/Jt15973d879186zWL1K956Hq9Y/r1MvJ43/r0+Y8xfP7jleNHccfHHtdX+Ozfv0Oyz/79WyT77N+/QbLPDirQ8ck/bAden773O77zfevR914g81zP91yT3ucI+N634na8Hn3PMSvr0XM+Xo+x8U5Z0q8cmIfHHtlnV2HZZ1dh2WdXxT4XuXDX9Ktv/fn2UZ+d5Ft/0c8xuD09v3L44pu6jg/27rsb2sN3Tb/2LV4i+Yft8PmHffrVd1/4vtPy6VdfHFzyD9vh21eP/bur5B+2IzZe2Gf/+vZpnx/SZ/967aYsDHfdP+xr9+2zvvUX7XfwHJ/8wwI+P4RPv/rWs+85yKdfY9/rJf+wgG9f9elX33OM1+7xybHxEclu4oj1Dx/bc9Cd8g9X4flUY/3DnX+34WkftH84/LPm5B/uEyJ4Tf7hHiG6nqRbTv7hI0K5Oa8Ou6hYyS8s5UC7KFf5hrv2D7cz+3XNBWVPWbLhAuYfrrrOF17G1lkxGdq+RbLUr5XKqXyKZFznTN0XsF5OVsJ6AaZd3Rdqi9mzf7hQOb+d61r2lB8oRsmTw7I82y0JXy97QRFb7ypTZZD0vCO5Qbw0KG+7Kouk5Qau7xrPZwN5V+Wv9u0frlB9iFXInlasAAEfZS54ZYWvOuc1th4HvT3h+iwQr7p+xpVdzgniFe3Tur7GBWpX89s69ukd+4f99ThkT/mBfJQlG2lO+1t0zmsezatWHadINvWuQDtBdVJKVA+gQLy1qG4K1tda/+7ZP6xrpTj3a9lTfiAfZa14LfvEq66LAnms0frFdY9wXSRd50Gu33KV1+U6aKZdrt/CxeuO/cPt/zjqLZkjRE91XST6t0zchxX5sWtew/P76311ZJd1vTlcfw7WIWvQPlyj9UjGsh7dGWqX81u56nfs2D/cTpqp9Xc0ZE/ZgWKUfGdi92E9z/5X1ikieNV1j4A9bGRZf26h6gpeIVnv05DXFq5HantIXs9Ru5zfZtPnoEj/sLNOpb6+7CkZNVM+ysLw2vFqzWLqcQheCswjgfsyHSGu7wrknCD9SiBvdLZAvVfTru8Dxz68Y/+wrvXp4l/1lB3IR1lyXiva36bj6nRZTD0OtR6hPsUyfSAGPBpZ1Y9soX4lP8N6r3NYt9u0S7n9k4PX3fqH6UZWra8TKnvKD+SjLP/Ky4RSXtuOq9Nl8fU4ikUL7GEjmzrbU6us1mMD92Hy40rdbVBPV7cru+o/HPp1t/7hpbrtjiNW6quX817yKvfZaTuyy5LHqeLxCsnSjpohXufQn1TMYJ180y7n958qh37drX/Y8Opa17Kn9ImC8spGWU4Yr82fJhGTujeE122QPE5aYA8bWdfRB3XwjSztoimsq5/NIG/lTPk2z1C75PkfXX7E3fqHKa/SZ+PSr7Kn9KhizkdZjhWv4cptb4ivs7LeP+zmNcw/bHjt1j/M6Vrq1ypWeBXGSkv723U1ySyG1yt0xrlVNjxiWfuDkR8RrkfD6wlqV3J1EP8wpSvfiFfSN14v0RmPkSx5nCj9eGWV3byK9Ug1ldRrF6gd87pf/zDjdbH2ONlTqmaLhRwl43VRT/Ij4LXZmNdTJIt2VtV22e4xsn4/g+rFQt4oa3L/y1G7+r3qIP5hw6trv5Y9paPLF3KUhNn7R8JrsEmO9137+nXzeo5+0a5fDa/29ezmdbf+4SVeHUc4eKX2e4TTfW9oouvnQHsY78OYRyNfoF+061fD6xlq9+nX3fqHN+W16B2veH1iexjzeIVkbA/b16Ph1b5Pu/Xrbv3DxcKnX+28ljPGa9M5s5vzat+X3fswtod9+hXbwz79ulv/cL7YTL8yXou/kq7jm7bQr4+tsptXbA/79Cu2h336def+4Y324WpKeSX65UZnqDfWr9ge9ulXbA/79Cu2h336dcf+YcK2YuvvmH6s4bXrNzr1xvuwfV9261dsD/v0K2736dcd+4fJuNpEv9ZjwWvXb2A35xWvX59+xfawT79ie9inX3ccP0ymZBP92nBe5214nOd+UEfXHVzvH3bzGuYfdtvDB44fpmtuk324GTFeR3V/eA3zD7v1a5h/2G0PH9Y/zMLRNuG15bwqX2h3COc1zD/s1q9h/mG3PXxY/7DhNU6/trS/xbzPvA7bP8zC+DfRr0TwWvSH17vlH84K8ucN9mH6zCt47dr1v7l+HbZ/OMs28ksoXvP+8Hq3/MOZ/hYiSr+yR1fSb16H7R/ONK9R+pXz+s/HwOse/MPLcS9GDvcPw327G/9wlvnim2RPGa9zOUrJ678fAa/Njv3D7vimMP+wiW/q1j+cZRvFrXFe/7DoE69h/mHD4xWSw/zDhtdu/cOZ/ubbGd80UF7t/mFf/LBPv67ED3flH9Y5GoLjh3vK692KH850TpXIONOsmZiY8u6wuX61+4fd3+eE+YfN9zkd+4czbBdgrHyfI3mtp+zdbX94DfMPsxEufz+HZZ9+ZbMF9+2O/MNZ5vn+lfe0mDFeZ5UYpeB1kh+B339zXu3+YTog+J2klsP8w8UCz2dH/mHaUbleHfs172k5pyRWMzlKyWtGRt3zuvH3Ofb1Wy7UV4KnSA7zDxcE3hed+Yd1QiLnPsx6yngdUXrFKA2vVdfvX2O/z8l1HhAsq+/XM5BfwsjqO2WUF6RVsUDqe/YRzC+h23UeAmLXezv2D09VQiIXr7yndF2ScTPloyxE6hvKaztp+sOrzkMgx/stknVeAsC7kXV+CsBjpmOBLnQ7WN8E8Uh5hs9BCrvOL4HyDa2A95TxSgfER1mKUxiv3cetbcKr6PM5kk3+JnHJU6uca54Mb8D+1Xl+TlC7Wd92f/yu80vofGuuGWoFrzrPTyluScprcwS8Bh+JeXxslTP1OtrwKmWzbwN/sYVX8ZcL1H6h2+287tg/TLz5EVlPBa8jfjTgtev44fBPq82+CvK9oPVLxyTnA8sqv4Ti1axnsB5rxWuO2g3vDr/tbv3D6mfcvNaC10qk5Frmteo+3j+cV6xfsax5lPbqFZJVnq71+pXOFsyHGqxfd+wf1lupc12zntLH84rdAGyURr+WpPMvJWN5NXDkHy5RvqUyMv9wcST5h2u1lTr1q+xpzu6zEipU0rU5HPHJfKpP1yPE50fUSPXpjhjxeWo1Un26I8YWvJ5Gtvv2Wd/6i/Y7eI4fdH26Ijr/sEaqT3fEiOA11afrESLqNqT6dD1CuTmvqT7dESOiLlKqT9cjRNQxS/XpeoSIuoOpPl2PsAWvx2YX7Tx+2HHdoSH5h4eJ5B8eJpJ/eJhI/uFhIvmHh4nkHx4mkn+4Fzh9FokP9yAuUPuXBxCPPPLtW3i9+x756YvvAX7wyB8ewv5dv0MdeHUvCN+g60bh8Lx+8zoOt79H8lco3zx6+hXgLZK/QPnL/Q/wAi+QfAvl2x+u4fU+Ifkrkp99htd7cIP6EzgDL9E4YvDp8Lzm9yLxFN7+z7+D6+nqp0/wVv2M7vPfQfnN7Q284M0nKH8H5edPn8Dl9uQGyr9E8ocr2MHrN6gDN2H71M13DzbG48PzGrter38H5VePoXzz5iG8V9+h+/wGrdfn99G6QD16AuXbjz/AC3x6A6//HsmvnsEF//gjXNAf3wWN++bN183RwXqNBraD8L3o8xP67CLc7rOLYp9jfM9FTgz8+dX3/ib5h/sJ33NL7/zDgbyeDny9+t7f+Hj0+Yd98RI+HmP9w2m9CvjWI16/Pl7w+T5eVu4Dz/rzvn8NxND9w7716Wv3+aN8+7LvPon1D+eh+3A2bPjsoL75h9N7OoHY96/H/h4v1G46y4YN3/sbn371vbfzrU+ffo2NHw59/5rdMXs4Vr92HT9xp+KHI+Bbn72LH87CcNfs4Vj96ms/iWyP/m5jU79ENmz4ePLpV59/2LeP+vTryZ7im+6aPRyrX33+Yd9949Ovsf7hUL7umj3cd/9w8DpM/mGAY/cPp7g1gaH5h1P8sMDg/MNZGJJ/eL2c/MPHieQfHiaSf3iYSP7hYSL5h4eJ5B8eJnQ+YVj/RssO/VqE5h+W+2Yemn+4c/+w6ilLNsxHWelkzhXpzyKXvNUw/7eR1fpFdY8qlWPZV59O3zcytV+3/mGW13xhvY6G7GnBjuOjbOktTnixlZaE50/qGpKHFvGkZV03CfLaKJ5OUbuSG8hr7aqXcFj/sOHVuV/LnlaMSDbKnGWsF7ySHvEq7WE9XFx/Q/Koygkt1UURf7myt2cE1p9rVM2Dbv3DhlenPSx7WrMCB2yUBas8wHkt+sSrrruwsMs6v7/kzdRJEX85Qe3yPtD619S3stcjOqx/eInXNfVzWBMvqsJGWWpeyz7xKtZnrnk6R7JcvxXiDdU5M+1y/eI6Dy2qc6ZxWP+w4dVpD8ue6rpIFWnmgteK/NgfXsX4CpKDumRG1voU8EpbYX26Bu3DNeKVjGF9Oo0D+4c1r87jZE/bSTPlo6zmrPwg47WeZ/8r6wtUHVDF42Mk6/UJeCsWGai3g9vpRAD9mpNM8tq5f7hYbw+rnpJRM+WjrKf8DPrvdX9Wq67TO4d1P42s6woC/UqH2sB6kSv7NNCvZlY69w8X6+1h1VNWFJSPkhdq5v/edF2dLgbCHq6mkFcjK/0Ln3PKmRrlFWpX9el+xnW4Ja+d+4cLR70008x6mi9YXV82ymYseNUVb/sBzWOzXD/SyEqfNphXsP5Mu9KnPzrqq3fuH5Y1l531mnF9dTowppKKnvEq1mM1UTxiWfI6g7yVU1hHH7dnc1SveaZ47dw/XNr7oSB7ms8Zr9MlXucRRTqPAGJ8lIV6mUcjS/06bYB+pesZ1ME37VK/zmqgX8uZms/O/cOOfUNB9pTSWMz5KOnAWDVdVuo36xEEb25e7f5hw2uYf9jw2nn8sOy3yx5e4ZWSynmdZZ1Xk4yB4AGvT8yzm9dT1K5kF6+dxw+rpxXHfm3jtRnxZd4rXoU9XI/VeB8jGfMqeKL6V+5nV9Z2w6vgiWoqaa90Hj9cT6y/qyB7StVsseCjZLyO2Z2c94pXwRvteTW1ynifFbywKrdw/SH9mkH9Si8mny86jx+W9qDLHpY9paPLF3yUkte6Z7yK9enm1a5fDa94Pdv1q+G18/jhxu6nVnDyOoko5ngEEOPD6xPz7Ob1ArXb9avhtfP4YdlR13FD4RXzaF+/mDfD66W1HetXw2vn/uFWHOCyh1d5HfOxNeN83vSIWbFvbq5fsT3s06+d+4clr1mofm0Ur8VfSY/im4Q9vLl+xfawT7927h8m9t9RcPHajgqiX270APb1Ga5fsT3s06+d+4cVr8HrdcIdw4LX/rzRwfo0Vr/a2936tWv/cC55DbaHmxmP3SKc177FS2yuX7E97NOvXfuHFa/B9nC9qBWv8za8rm7XsO+74fo1zD/stocP7R9Wr9WD7eGaq9WchSOO6v7wiu3hWP0a5h9228OH9g8rXoPt4dLwqnyhfQC2h2P1a5h/2G0PH9o/rKgJtocFr/R2KOZ94vWu+Yc1r6HrNV/itegPr3fNPyy7HW4PZ+2cjk2QWvTH9X/X/MPy9WK4PZzxsZWc1x690rlr/uHK8b3mUvsqryP2Z794vWv+YR3cHapfM85r1TdejT28HPdiZLd+FRMU7h+G+7bCof3DcB9Zhewp43WuRtmOJN094tUefxge3xTmHzbxTV37h1XQ/klofFPGeaXLnJLaI15lPBOKP3TzqtffWv27Et80c8XtHto/jPuJYeWVD6dfvIbFD2P9iuOHffr1eOKHVdB+cPxwxl8BNX3j9a7FD6vX6sHxw/TfFnx4+aJPfgnBg+/7HMyr+T4nzD9svs/p2j+seM1Cv8/hf+e8kj7xqr+na5a/nzOyXX+yES9/T+fTr2y24L6tcGj/MHH8rgLvaTFjvM4qMUrmZaK3Q9693z8idE7uqzP0neQMfv+K9SsdYAPjq9frVzo1cn137R8mrt+R4D1ln3Wz7yTFKEvBa0ZGXfMasV/I9TnPwPfpRrbr13IB7wOffi0I/A7a4MD+YfVa3f09Hesp/1yf0itGyfZlMhKfOmedIoJXua8uYH4JI5s8Ics80tHD/BIE5QVpVSyQ+p59dBz5JTSvufMA2lP28dy4mfJR/n3WSF7bSdMfXiWPKP9LackPs8xTofPBXFrbMx0LdKLb4fpWOLB/WL+RceeXoD0teQaYCR9lzUbCb4e287i1CF5VHgFXnh/DG7B7NK+nqN2sb/C8qvP8dOwfNm/a1uRvYrzqPD+G16ZPvAp7mPIC8hca2eR3QrzJCbpC7Sq/hOIV52fr2D+sLR9nvjXWU8HriI+ylq/VZaquTlHE2sN0NPKUSySb9Qt4bWC+Q9Nu9mHAa00ccYAH9g8bXt35ETmvFeO1EbyOBK9V5/H+0fawybeEZbt+pSOerm1H+pXOjiNO4cD+YRUu4c63xnpKj6rYjc1GWbO/8AktSdduxDLWHl7Jk1d58g+XkfmHi97kH5Y9zdmNyEZZEG0Ek67DTMvwDqT6dD1CxPNzqk/XI1Th9niqT9cjRPDqW4+pPt0RoQ5/zkr16XqECF7x+FJ9uiNGE77JpPp0PUIEr6k+XY/wT+GHpvp0PUIEr7716dOvvvXn20cPnl9C/U4f12sEUn26YcLHk0+/BvqHnfLR+YcHguQfHiaSf3iYSP7hYSL5h4eJ5B8eJpJ/eJhI/uFe4PRZJD7fg7hA7V8eQLxG8iMk376F13uK5Pu4/cX3AB+Q/ANufwj7d/0O9efVvSBcfnywOQ7P6zev43DzBMq3H1H7o6dfAZ5B8esX2P7l/gd4gQfoB29h++0P1/B6b9HvfUXtzz6j69+g8wNn4Br/TgR+Ojyv+b04XH2Et//za7iern76hNbLOZR/B9fTm9sbtJ7+BcrffYK/9/QJWm/fQfmXN1D+cAU7eP0GduDzTdg+dYvGFYM3h+c1dr0+R+v15gbJbx7Ce/UFundv0Hp9fh9e4CH6wSewh7cff4AXeIfW0fs3UH71DC74xx/hgn7/LnDgD79ujF9nxw+fH7B3/uEsDKcDf34997Rj+/jSI/ve0+/8OSn5m6zwvRc/Nn+w9/k1+Zs4fOvv2OIjdub3Hzhi9atvveH7wLfeVvx52/qHszCcJP269vhj8w8n/SqAefg7JPvsHJ/d4407w7LHHk76NQyxfn6fPj6NvN62cW9Jv9pxGSn75t3Hm49Hn77clX4tsmHD974Vy1eR8kWkfBYpb6pfh76uY/0I+15/Pnt4Z/o1GzZi9euxxbFlKR7Rilj9OhT/8ND34Vj9OhT/cNKvEIPxD2fDRqx+HYp/OOlXiKH4h5N+XX98X/3DSb9CDMY/nA0bd9U/nPQrxFD8w0m/QiT/cD+Q/MPDRPIPDxOS1xLlGy49+YeLyPzDTvno/MO5zJTMkg3zUVYk6yEkD7XK+/zYLuv6OJLnSuVY9tWnO3fICof1D7O85iLpt5PXUmTAL9hxfJQtvcVZ8QZWnaNv9elo5yVP53ZZ12HUeeDnQMbtps6qQ1Y4rH/Y8OrUr7U4oGIFCdgoc5bRvukdr3K96foa53Y5J3A96voaV6hd8Yr3ade+fVj/sOHVqV8bUZ2Bl+FgoyxYBYq+8pprHu2y0beSB11f5wS1y/tA69/cLmsc1j8csA+3gldeVIWNsuwnr7gO0mOrvFLXQddFwnUe5PrVdR1O7bLGYf3DYbyyoei6SBVp5j3kVfBQEFiPDst0YKCeJG2F9ekatA/XBNSTXJE1Duwf9utXMuaV9NpJM+WjrOblgvOa93Af5gUU+d/OrXJG4HNPsVB1By9Ru65vBe1fLGsc3D9crNevOck4r2TUTPkoa/aHTPxb9o9XWO8VyznijQ0V1otc2aeh/YtljYP7h4v1+zDllVeqZUVB+ShrulDVU1zZN/1aTRWPj61yTlqgP8uZ4vXK2p6Rn6H9i2WNg/uHZS2w3N0sa29XMz7KZsx4leu168JI4cD11c+tck4aYA+b+uonqF3VMfsR2r9Y1ji4f1iuOZd+XamvTgdG92TxK1V/eJV18ieIVyTnM1Sveap4xe2S1zms17wiaxzcP1yC+qUrKGaC1znjdYp5nWZ9geCVzrqceLucT2F9dTpAUAfftEv9OoP11VdkjYP7h+Wacx1X8qqDbNkWcz5KOrBW8Vr3h1fBg+HxsVXG/mHDa7/8w5lec8G8tqMlXjuu6xsBwYPh8dwqG97EPBteT63tZgpOHLLCweOHgV2wChuvjeK16Q+vct8dQ32JZbweqf6V+9kVase8XjhkhYPHD8uOuPQr1anMsqJqtljwUTJex4rXjus1R0DwSjsM9lUsmyEJHujkSPvjBLXjfTd3yAoHjx+Wa851HB02exKio8sXfJTLvLb94VXwYHh8bJUxb4ZX+3o2PJ46ZIWDxw/Ljm7Ga3+SFwgeDI/nVtnwJngwvF6gdszjmUNWOHj8sOyoS78OhVe87/p41c9Bkle8T2Neffbwwf3DkhuXfl3ldcx4FWEGPYqIidWvYp4Nr9gexjz67OGD+4clr8H7cCN45ZT2iNdY/aqfi0q7PYz1q88ePrh/WHITzeuYOxd7g1j96rOH8T7ss4cP7h8mjt+VWOV1Qs1g/pa9V7zG6lefPeyyf4/FP5xLXoP1azPLCeN1ql/x9QKx+tVnD2P96rOHD+0fzmP34XpRk3H97zycuEe8xupXnz187P5hxU04r4Tr1mbeq9fq0frVZw8fu39Y8RqsX0vBa9UzXmP1q88ePnb/sOImWL8u8dqj1+p3zj+seA3eh3PBK1vnfeL1rvmHVYhSMK9ZO28Ur/15rX7n/MNqzQXr10yMjT279ihc4s75h9WaC9av9N+Y15/z2p/X6nfOP6zWXPg+bHjtUbjE0vpcjmfCss0eni7J/fEPu+w3BcbrTPA6V6NsFa/9ea0eHd8k1ouJb+qbf9j1Ha7CSnxTZnjtUbjESlypj1cdN77Wb3G8/mHVT2d8k43XTPLan9fqgfHD2B7G8cP98Q+rNRccZ5qJV0CMV9IjXu9a/LBaczG8Mtcj5zXrD8K+z8H7rPk+p2/+YcVr8Pc58rVrcQy8FuEOL73+JDHnVhmvRzbi5e/p+uMfJo7rKjBep8WM8TqrxCj5qwL6792/Vo948SB5ncHvXbGM7WH6A3I9980/TDzHURLrKfusm30nKUZZMj7LnvEq1+dcGQWPrTLmjQ61Xbeej9Y/nHt5JZRL/rk+pVeMkt7kU/afok+8yn11gfIQLFbyEIB8EnT0ML+Ebtd5CAj4XgLLGgf2D2teT5wHjFrKKx1eM+Wj/PusmVHLqekZrzLvgM7/cm6V2cuq5eeeQueDuUTt6rtmQsDzLZY1Duwf1ty480vQO5TxSgfER8lSrYnud/9aPZpXk9fHLQP7V/N6itoNj+D9LJY1Duwf1ryuzfNTzk2en57yqtejPOWxSybAH6zzdl252gl4j4dljQP7h/XMrOM1E7yO+ChrmaBrfASv1aP1Kx2NPOXcKhve5HppCIgTsq1n8F04ljUO7B/WM7MmPyLntWK8NoLXkUjCdgS8xj6/+vItGf2p83RN7e1YvzpkjQP7h/XMOPMj1oR7nCp2Y7NR1uIv836FS5i8s+O1sobcN8vB5h8uxA2Ys/2FjbIQiYh7FNrEEZvfP9Wn6wdSfbphItWnGyZSfbphIla/xq7nVJ+uG6T6dMNEqk83TKT6dMNErH5N9en6gVSfbphI9emGiVj96ttHe+8fHgiSf3iYSP7hYSL5h4eJ5B8eJpJ/eJhI/uFhIvmHe4HTZ5H4cA/iyQOIG3T8c9T+CMm3b+H17nvkpy++B/jBI394CPtz/Q7152HYuF+i60bh8Lx+8zoOt79H8uenX5fx5RqfAdu/fkHH3/+ALrhevv3hGl7vq0d+9hle78ENbP/fn8MG/hD/TgQ+HZ7X/F4knqLleAXv4zdPXqIT0H3+O3T8LVrg331aKz9/ijaIX96slz9cwQV//QZ24POTsHG/RNeNwePD8xq7Xq9/B+VXz+H6+/jpJTzgFq3XG7Ren9+Hxz/5Zq18+/EHeIH3b76ulV89gwv+8Ue48J7+Lmjct7dvvm6MDtZrNHx+Bp+/6dj8w6HPOSc9yhWxCXz2re/967H5h0P5Gvpzjo+nU8/5x+YfztLzK8e3SPY9r/4tkvvqH75rfsRYfXt0/uHQ9Tpw/ep7v4rXs8+f1LV/OHR/Hfo+jOfZ51c8dv9wluwmDh+Pvvc5x+YfPknvczhi35OfR7YfOn44S/qVA+vP2Pc1xxY/HLoOh74P+/ZVH08pfvg44dOfvufbY4sfDuVr6PrVt6/G+gGTf/g4EOsf9j0XJf/wcSDWPxzLQ/IPd4NY/3Csfyn5h7tB8g8PE8k/PEwk//AwkfzDw0TyDw8TyT88TCT/8DDh0J+lylMr13OB8hNjWUPymqv8xD5ZzS+Zhcl79w+rnon0tBOWsneE+tAHqPWl6kDJ9VnDvNF0cDO77KhPVxJYn94py98vdP7xkUdG/Y/wD/P6NyqxtFO/yp7xH+SjbESif2L60AeofVfdlDp/uBy/XM8N4kHL6vwW1s+p1Ryce2R5X1SqTsSpR97CP8xrNvjqcKue8R/ko5R1G4jpQx8geSgQr7oug6mHI/5ygWS9r8I6Zo2q13ESJteq/k4eJhuE+4crNqTGx6vsGf9BNkpewoLzqvvQB0j9qZWIztcvedU8g3o6Rpb3RYl4bRVvFx7Z8CwucOaRt/APN2xITj2tIHvWyDIcrFSQ5LXpE696XwT6Nce86Xo550iWvOh6ALruA+TBKZv1LQ2x0Xp5C/9wu8hE2n5+Hdd+LXum6+cU7BZXvPanwLrUny3ch4uF2pjFes5JDngwsq7PAfUrGaH6HC5Zrd9xC+q4OOXN/cM524JK4tuHZc/YD/JRlvOSCF51H/oAXa8K8FouMrA+C6IMowurnBG4D+dk1CzXo3PLcn7JWNaTlTw55c39wyXjtfbxqnrGfpCPspqLmnbE9KEP0PXmgH6lTwOSKLGei3nWLtfPMbKucwZ5XWTNcl0zt6x4zerZ0vlueXP/cMV4bXz6VfWM/SAfZTXlJRjpv+s+9AFi3ywIfH6lTwPN8r5bzmEdfSOr9fkz0K/0kaJa5s0tq/PVg2XukTf3D1d/Zbz+t0e/yp7xH+SjpGu05byaPvQBQn8W8xbsw6YOt9yXUd1tI0s7awHrv8pq1pnetz0yL3vN/3YWJBuE+4ervzBe/+jZh1fqcNP7l6mcYm760AfI9TVb4RXU2WaFvQSPF0gW85PPYR1uOjtgvbllef6C/RPHaL28uX+4+jPj9V/9vJYz+YN8lHQeGsVr0R9epf4ct0C/0sFIXsV6piRWy/oRy/lkpa5+OQuS5b48V3Pmkzf3D1fMj/gPpUe/yp7xH+SjpANjYytnpg+dIQ//fbt/2PBq59HIdv+w4e3MI+v1rXgceWTU/137h4+a14iK0dq/C/Zhw6ustz6Fdo6RcV19vW/LCTz3yFrfyjk79chb+Ichr46DXLxW037xqt6vrvCKeQQ8GFmt95V9GKwvn0yFXPQ5D5KXEO4fDuWV9Yz/IB8lHRi7xTmveccvdCJ4VfESUL/SwYD1SEcG1puR1X0BeaUnS94uPLLmWc7ZmUfewj8MeHUdJ3vGf5CPkk4M47Wemj50hghe1XtxqF8Nr1rfOnhV9z3Ur4a33CPr9a3mbLRe3sI/HKRfh8KripeA+7DhVaxnw+MpktV9AfUr5s0t6+cmwJtb3iJ+OGgfdvI66Rev2B7GvOL1eWGV3fvwmUde4XG0Xt4ifngrXpuj4DXcbsP2MNavYj2792FsD2Nezz0y5vXUI28RP7yVfm3GR8BrBLA9jPWrfd/F+7Jbv554ZDtvbnmL+OGt9GvbM16xPYz3YWwPY56xPYz160WQHG4PbxE/vNU+3I76xSu2hzGv2B7G+hXbw3gf9tnDeB/22cNbxA9vxSvpGa/YHsb6FdvD51bZzatP9tm/WN4ifngr/UqyfvFq9w+77WG7fezWrz57GOtXnz28b/+wg9e8b7za/cNuexjrV7t/ONwexvrVZw/v2z/s4nWR9dsexrxiHrF+tfuHw+1h+z7rk5ewY/+wg9eib7wm/zCEi9d51m97OPmHh8Fr8g9DOHgtZz23h5N/eBi8Jv8whIPXapYl//AA/cO949XhH9bxTdIeRvFNRnb4h1H8kk8uUfySTzbYuX9Y9Iz/IB9ly+Ob6F/L7uObImD3D5u4NW0HgfhDI9v9w6XmLffIOI40G62X9+0fLu1xa/U0K3rFq90/HBs/7Ob1eOKHw/Srg9dm0jNeU/wwxFB4dcQPTxVRMn54Br+zMrIjfngO7wO3LOOHF4hnp7z3+GHRM/6DfJSUUTo3dHimD32A3T9cTdH3dJrHCyTb/cPFHOpfn5wvoP71yUvYsX+Y96yY8R/ko6w5r9R6yrvnNeI7Drt/mN6p8h/k93RzRdw5ku3+YXpvg/vALUteieL5zCPv2z/Me1bO+Q/yUdKti/DpMX3oDFvHD9MRyQ+dr9QF22VejWz3D9M5kN9Z5h5Z5yVQ34KP1sv79g/znvHh11M+ymrGvldns2H61BWi44dznQdE5SHIZd4Q+X0sUTyfItnkEVlevzkZtTAfhUtWeQzGOC+BQ97cP1yyBCA1IbO1x/GeMV7pD/JRVnM2m2S5D50hOn640LzovAQgr4/h/cIpw/WH8vQ4ZZUXROd7Ga2XN/cPVzKni92u1mA9o7yyH+Sj5LcDv8vbzvPBRH9PV2heVJ4Qlb/JrOdsqd3IOr8EWfZHufMCOfIE4bw/Tnmb/BL0Nxs1MKce5lxyXsd8lCW7E/gW3naevyn6ezrDq87XJC+B862dI1nnkyHATxGcb01ePzjf2hb5JQCvTv4bwSvMt8YntO4Tr0p/Kl51fjVpX+h8idLEPkWyyeMF/MUNyn/ok2uU/9Ana0Tkl4C8ug5jPRO8ilHmbGTcIVF3nh8xj7WHV3htVD5TncdS8nyBZPWcgvbhSvGee2Q5v6XOFTpaL2+RXyKMV9YzFh2hsz21ZCJ4LfuUz9SRf1jn1dP5E2GePCxrSF5LZWL4ZDm/BcpH7JT3nn9Y9oz/IB9lo1ap7kMf4MvrnurT9ROpPt0wkerTDROpPt0wkerTDROpPt0w4bODUn26fiLVpxsmUn26YSLVpxsmUn26YcKnP33Pt759ed9+i537hweC5B8eJpJ/eJhI/uFhIvmHh4nkHx4mkn94mEj+4V7g5EEkbp5BvP8e4vM9iMfo+Feo/RG6/mN0vfeo/Qm63jW63hVqf/kCXu8Nlj89CwK+ThQOz+vF10hcvwa4/fwUtr+H7a8ffIDyc9T+Al3/I5LfXkP58zfo/M9QfoWuf4P69+UGyj/98DoI1+++bo7D83oeeef9gNbb/ccf4Xp6ju7zL/CE+7eo/TXswQ9P0fq8/Ql24C3qwFN0wQ9o/X7zHbzeywsoX+MNxo77N9cPNsa3h+c1er0+grfx7cc3sP09Wp+P4Ak3L9E6eAbXz5eH6Pd+eADlz6gDz97C/rxD1391Bc+/Ruv15ZPXIbh51q/1Go3HHjnWH3wfyV57FsseO+nU519KfkQrfH4Jnz/4dEs52u//K0+7A0N/zvk7JPviJTBi37+eeNoxL7H+pxQvIeDz+2Oe/xbJsett233Y+741+f05YuOZfPtobPxS7L7rOz6U17Ns2PD5f33rd9v3btHvf2LjKRy4a/uwb/369KnPztpWv8a+h3ch6VeIbdfftvrVG3+Y9CvHrvUrXr+71q+x72NdSPp1ffu2cd6xPPvs4aRfBXatX3121Lb6NdquciDpV4ht35Nvq1+9fsOkXzl2rV/xfbFr/eqzh5N+Fdi1fu2LfzjpV4irSDn5h7vBrvVr8g8fB5J/eJhI/uFhIvmHh4nkHx4mkn94mEj+4WEi+YeHieQfHiYc67NE+YULlD8YyxryvshR/mAtn9rbMzKzyy7/cKvyUkfyqn7XqV9Vz1gH+Cgrloq5nS2d2wfgelc6r7Qcg+SpUvN8bpdRXSR6X8yj5ELl4j6xy7okkeQ51znZw/Ury6Jeorzlq5BH8A7wUTYsXzj7OX1uH6D2XQJ5bRVvcv02MJ//iqzKJJm88Th/P+QJt1eKpxzJal3VcJ2Vqu5DhH+4WCzl6HfyKnvGO8BHyTLcV+znus/vHwHJa6F41XUb5Lzb62+syLnatyVvzvobZ/Z2U29jBGU1/63aA0V7pevphD+/Vgveb/C7q5A9g/U4GibpPvcBel+VXdb1ciCvBPGIZayP29X6OKCuSrvK+9gq630X6uNa103CA3JPfbNYqoHj1K+yZ7wDbJSF5HVi+twH6H0T7MO47pG3zpGu4yD31eA6R1JuEE9YNnUc9HoG9es01ujXdsH7PVl/nOwZ7wAbJS8R1bKfI//Tdf2cCOj6OIDXYqE2ZrV+c1R/Dsp0GsbgemRElutHGvnE3t6OW1AvUstyXVXInm4mjawzF+wfztkWRH7r41X2jHWAj7Kcl4RalbQ7us99gK5DBvRruYB1BQuSgbqBWM50KahTeb1RA+uAjkDdQNyekbGqFzmCspz/BtVZaSeVNOyC9Ssvf7PIGntdSgXVM9YBPsqK1Qxtqd1GW+r+8KrrIgH9Ws4yAuqCzulM8r+dWuVc8yrXM5o/I59a2zOS1TOrrHhEz53tqAqrt25QMV6n6ndd+lX1jHWAj7JihP6GSrSl7s8DrKpPt1LXt1muL8kKey3XJcRyTn4G9jB9pKiWefTJdEmAOvpYztr/gvYw1XuS1+Dn1+qv3BSsp2uPkz3jHeCjpMezualmps99gKwnOUe8TlXdXb1+6+X6c1jOF7CuL6tmLXi5QPKJtT3nNeH435Cs1ue/QXuYqBp84f7h6i/8jMbDq+gZ7wAfJavDPea86j73AZLX2Up9dbg+Z3B9YTmfN8AeZgXeEI+g7j1up9Mo15/gxchqH66gPUx0Db5gP2L154UcmvndVcie8Q7wUdJ5YGMrZ6bPfYBcX+MW6Fc6GMArnQzAI5bzSQPsYToBgDcjn1rbi7nmFcmS199UwB6m05476n26ec2XeXXpV9kz3gE+SjowyeusT7za/cOGV71+q+X6rljG/mE3j3bZzavdP2x4jfQPZ876+xJuXsvuec3DHdTKP+ziVaxfw+OVVTa8av1bLutP9/rV+zZYn0ZW66oC9rDhNcI/3H9eo+twG16FTEnF6xOsLywbXjVvYL0Z+czaXszhvmpkNf8VsIdzWco+yj+ch+hX2TPeAT5KOjB2i1cz0+fOUMTW9TW8ivVJBwN4pSMDPGLZ8KrvA8CbkU+t7fRi+cIqY171fSB5jfAPB+lX2TPeAT5KOjGc12m/eLXrV8OrXr+Sx3OrbHgV+6qbR7vs5hXrV72eJa8R/uE85PnVxWvdM17t+tXwqu1jyeOVVTa8ajtLzgHm+cTajtenkbF+1XaWWq/h8cNb8dpM+s2rkDffh+37rJHPrO1L63MEZbwPa7tKrddY/Vqv168uXsnE2HKdoUP9qu3lPelX7ddQdhMekI9X8P5hFQ5eS+647JrXvDv96uNxW/2aIf2axz6/Nuvf09l5ZWE3R8BrBHatX7E9vGv96rOHvfq1hfE1GC5e52wTLPvL67b61cfjtvrVZw9792EYb7MCF68L9ma27g+vu9av2B7etX712cN+XkH83Aqc+/A4J3/uUaDprvVrmD7dXL/67GGffs0d8amZ+R07rzza6e7qV2wP71q/+uxhn35VjwqRz68li1vrM6/b6lfM2671q88ezgJ5jX1+bWYsRPHu6tdj9w8rkzbWP9zM+8XrXfMPV57vc1y80vuhIP95d/XrsfuHaxivugInrwvRrb7grvmHG/R9JoaLV66Xi77FN90d/7D67i9Wv/aN17vmH1bx67H7cN7zfVjyiuKbahTPVDvjm3RcOYhfqlB8E24vUXxT6Yxv0nHneWz8MD8jV5+wOnkVPeMd4KNsRXyT4LVvceGW+KaoOFNsD5fOOLUza7t5V6LtXcAztoeX4hHj/IiF4nVNfFNpi1vrG692/bo5r3uKH0b28CbxwyIPgXpSiY0fFg9Jffs+587ED6vH1+g406JnvDrih6eKKBk/PFM8X1nllfjhuZqDCySfWNvZu83l7+eM7IgfJng9K3j0q/4izsmr6BnvAB8lNTXY3HBe6759/4r1a6V51d/n1MvfRWIZ28MF4tHIZ9b2XPOo9SfgGdvDmeE17vlVPb6u+z6nmhYz3gE+ynqJ16ZrXreNb6J3arv8XTO9i5vl75ixjO1hOgv18nfLRj61ttP1B3nWst0/nJER0M9L8PCqmHHpV96zcs47wEdJVzjJpkIxtx3nIdg6vomOQr6nlN/bLdSYzq0ytofptDTwu+f1Mv01GCeIZWQPs+/I5bNknH+4nXiO4z3jw6+nfJTVjP7TXChm0h9edR4CkHegXKgHPbF+6eOBbL+yyuzd5BhcbyR5v0DyibWdzhiMJ9OyyQsE7O92AvMWaJysyUNAFuYdqptX2jPGK+0AH2U1p/RSsmf5pOg6H0w0rwXipdD5YEx+GDGmU6cM1x/K20NQfh3c3ur8LyMo6zwEBOhbzXO4f7hiY9K8OvM3sZ5RXlkH+CjV7TAzY+4Meax+LTQvan3C/E05ytdkk4H/iaD8TOg+WGlvV3kGcYOt4sOsX0e86Fpef0vUwJz5mziXnNcxH2XJfpkIlsOndT+I1q+GV52fSV5C5wEC6xfLhleTfwnw6JNrxGu9yrN88hSnOfOtrckvAXh1HtcIXmG+tbZ3vJp9F/EK8yO2KB8ikg2v8vwG5T9sUH7EZiV/IsxbWKP8iC3aPytXPrwT73pdr195zwSvYpQ5GxlLtZaTzvOZbsGrXJ86X5LObyp5PrXKhledx1LyfoLkM3t7qXkfQRnvw7K90Dkow/MQsB3Wr19Zz+hDLO8AH2VLZ4ZnwSSdp+WK+N7AkX8Y5dUzefJO7bKGvC9KNQcnSD61txco/2FBHHENOs+mylcc7h8GcOpX2TPeAT7KhjCJE5x1jAheU326HiHivX6qT9cjlJvzmurTHTEi3v/uun5ObN2V2H3Xd/yg6+dEvCdM9el6hCrcP53q0/UI9ea8pvp0R4w63D+9a/2a6tPtEU04r6k+XY/QhB+a6tMNE6k+3TCxa/2K74td61efPZzqvwok//AwkfzDw0TyDw8TyT88TCT/8DCR/MPDRPIP9wKnzyLx4QHEayRfo+NvPDI+/+mL7wHeo/Yn6PzrexBXb5H8EZ7/6Bxe/82re0H4BvUrCofn9Rev43D76forwNunUP71B3jCtUd+hq73e3x9JH/+Bp7/4jOUb7D8Bp1/A+Uvz8MG/ur+181xeF7P7sXh0TeP0XqC4g/X8P6//8Ijv0bXw/vB7U+w/S1aX09v4fp9dwXlF+j890/h9R/eBu5T1w82xreH5zV2vT58hdcPWq/fwPv/5ubDevklut5Pt1B+9w793iPYoZcvgXj7Hq9XdP7vX0D5y8ugcd++u/m6ObLjh++5Bss+e9j3HmBbP8aKHbWh3TR0ezjWL+jjweeXiH1uwTz5/BahfA3d33Tpace6xOeX8PmHs8h2332Rbfj8OnR/E+b175Ds8yf59lm8fv4GyZi3Arf7nmfTPmyFb/1hf5NP/+76PZzvPtk0vumu6ddYnnx+/7PI82P9/km/2oF59K3PWDsrdh8/i5STfrXD5w+OtYej388g2fu+FR+f9KsVPv0aaw/HxrHtfN9NvHL49GvsPoqP99lB3vWdnl83gk+/xtrDsf4nn3499bQn/WrHrt+3+niI3Ye9ctKvVvj05bb+YZ9fcdvvcZJ+tcOnX3ftH47Vr8k/vBl8+nXX/uFY/Zr8w5th23jDWP9w9HNOen7dCMk/PEwk//AwkfzDw0TyDw8TyT/cJzTBCRKTf7hHyMMzlif/cI9QhqfKTf7hHqEKT23t0JclAfXmskLdKFd2WUPnB4Z5qXOUXxjLmconnCN51/5h4qnXrHvGOsBHWbG9r+G1KLvOK13pNO5e4Po5ksdajf9KXVHlcbbLqC4SvS9wPnApn9rlAuWJ17LiCdVF0ilbc4dsAa87iH5nFbJnvAN8lA2jkym2inRd/jWCV7UPE1DvKmvVBaQ93Cgezu2yLgUl74N6JX//erlC+fy1rOa/BvXpeEUugRGU1+jXYrFaN2AVsme8A3yUbO8rWBWHpvO6DdW0CjWI9T4L876jOium/saFXc5RXnhdbyNH8oldrlFdFVOPQ/arRftno9bnr6C8Zh+uFrzfoF+rkD2D9ThKRq6uLdMZKj6GIOj8/YBXU1NErl89pku7XCJeW1RHpV2tl4N5BrxqGetrrH+xvIbXZrFal2cVsme8A2yUBeO1krx2XBdJlj8Mgd43gX7FdY/cdY1wHQezvkF9qxbxhGVd5+gEyXL+ixW7C/KKZRvaBe83+B3LUaJnvANslLxEVCXrXXVcny6CV133COjXYlGAuoM5URvtlVWm0wD1KxmhejxKvrDL7bhdriO6IlcE6tcSrc+SePVrzrYgkhFQ924VsmesA3yU5bwkVLvX85wU3fOah6oCvT7BPlwuVuoMgrqBWM4I3IdzMmpgHdD1ckbGNagLqmXJW4P2YV2/R+rX2r8Pc1N4kTWO+mcSqmesA3yUFasZ2kzLeT431Sg7QzCvuj4d5HWmamIKe7jQYzq3yjnmdaEq6F4g+cQq03VUg7qCWtb6GPLaoH238fNaMV6n6nedvMqesQ7wUVZTRvW4XOSTI+A1C+VVrUdUr3mG6jXPVR3eC6uck59xXV9Ql9fIp1aZ3oagTu+SLPrV/hfUr81/I17/26tfq79y3YTqymLInvEO8FHS49tRO86Pol5zOK+yjtkc1WueqjEImVWkni4dj+V8Aeurs2rWqC6+lC+scr4QBZF1/XQtKzvr36B+bf4I16eW19Sn+8syr856zaJnvAN8lKwO97gd8Q2w7R2vM1ivmfKK66mD9YXlfN6AfZgVeFuue2/kE6tMpxHUwcdy1lZoH/5XqF+1vGYf/vNCDm3pOiuQPeMd4KOk89BQXvmE1v3hVe6bY8grHUC9XIeQTka1XN8Vy/kE8kpnRPJ2juQTq1zMIY9GluvqN4jXf0B+Qy2v4TUP4VX2jHeAj5IOrBmTrG+82v3DhlfM44lVxv5hN4+nVtnwiHnesX84w/3GGAqvyj8M9avhVdjDhsdzq2x4FfeB4e0iSMbrE/NseFV6Ea/P0u8fBry69OtQedX7MOYR8IBlw6tej2BfNfKJVaZCvlxH2cgnaL2urM9fQTnz8Vp792HWM94BPko6sHpCxAQdAa+R/mHEKx2MnEi9fuXEXVplzCs9uZhb5ROrTC8GeDWyek/v5BXJfl7X+yVkz3gH+CjpxNTM4joOXvNI/zDSr4ZXMa+GR7uM9avh7QzJdt4Nj3aed6hfm/X+4bW8Nv3h1a5fDa94fV5ZZaxfDW+Y5wurbHg8s8o71K8teB+xgiPntdiUV7wPYx5PrLJ7Hz4Jkt37cLZj/Zp73tMdOa/B79V9+lXYw4bHc6vs5hWvz1hesT28rX6tCDwPYy2vbdfvcwoSyqtPv2IeL6yyW7/mSI7Vrye7fX5dia/BOG5ey+B4RJ9+jbWHsX71rV+ffsX28Jb6tXLFOWbmd9y8dh4vUW3MK96HY+1hzCO2h2P3YWwPb6lfK7WRbbIP50fAa+iO4dOvsfYw5hXvy7G8Ynt4S/1a+eLW1vOadYwquAc+/RprD/t4jNWv2c71K4jzWME6XovueQ02yH36NdYexvr1Ikh269dd+4crT3zTOl7L4K/Z9oUqVL169WusPYzXI7aHo59zdu0fbtf7h4+c1+D1euf8wy2Io1rBOl6rrr/jiOD1zvmHK2gXYKzjte4Rr3fOP1yBOIwVrOP1CNyIG/M6dP+wUpKb7MNtj3i9a/7hbXjt/vOc3enXgfmHMxxfg7GG17xPvDr0q45vkvbwFOlbJK/oVxSXVqF4JiyXKL7JyDv2D2coznEFsme8A3yU7Thr/sDjm4quP3/dXr+auDW9voB9jGVLfFO5HD9cbhxnumP/cIavi1G649bK7nkNh12/xsYPu3ndUfzw7vTr5rx2//gagTsXP1yu169reK37xKsjfniqiJLxwzPF87lVXokfnisiLoJkqrrAvm3knccPl+v1q+wZ7wAfJTU12hEZ5Ytj+OoqHHb9Wk3R93Qz9D0dkvE+XGjeciSfWOVc85gj+eTAz6+8Z8WMd4CPkn13NWoZr22feLXrV3qnyn+Q39PNFXGXVnmF1wW0u4x8YpVzAu8DI+/WP5xPlJZ08sp6Vs55B/go6dbFPm+mfHceBbP98ysdEcgfQUfbjtfIWL+yT7yX34cZ+dQq01+D36Vqebf+4XyGvpdePYj1jA+/nvJRVjP9T0fAa+R7ulznAZHrc5GDfC8FWclLAORM59RQ+SdG7fI+buQLq0znDNwHK3KjMshJudYZqkZQPlmTh4As2G66/vsc3jNOYjPho6zmBfuEveJ5Q7q2nOpIXgvNi85LIHlVPMG8PDYZrj8Ul+CTW5T/RcuSt1bNqckDJPXkr6C8Lg8BIayf69+/8p5RXlkH+CjZ7cBvm37xanicQFk+hAt72OT9OXfKQB9q3i+QfGKXcV6ldpV3YO80qoNYXs/rb4k3fxPnkvM65qMs2S9TXqdsjrp+sR7Oq9pXFa8671ZUvjXDq86z58i3dmqXa8QjzremeTX5ney8rskvwRgjvvgm3rNybsm31i9ezT687A/O9Jaj8yXOl4/HsuFV53OS98Upki/sMs5bWKO8YJpXo2/B+tTyydr1OiLe/IisZ4JXMcqcjYzyOi6OYB+uNuZVrzd5Bb2eZuvklX1Yx+meIfnELus8o7lddu/Dv4Ly+n14VKPr2g7jvi7eAT7Kls4My291DPo1/v0rklFePROQfGWXNXQe2gm4npZP7HKB8jMVKL+aRu6RPfmHS2/+Ydkz3gE+yoat8M534Fik+nTDRKpPN0yk+nTDRKpPN0yk+nTDRKpPN0yk+nTDRKpPN0yk+nTDRKpPN0yk+nTDhE9fxtrDvueeWF53XZ/Oed7AkPzDw0TyDw8TyT88TCT/8DCR/MPDRPIPDxPJP9wLnD6LxPvvIT4h+ff3IJ4g+TG63g06/8MDiCdYRue/fAjla/R7Vx/h+Y/Q9R5+Chv3yxffb47D8/qL13G4/fz0K8AHJL9BJzxC8tMPUL5G57+9hvJnLH+DLvgSXe8zlG/ewPM/oet9+SZs4Nf3v26Ow/N6di8O9x/D+//h/0byZ3Sf/4Tk37+CF3yAzv/6GNzpPzyE8vdv4fmX//II7Qe38Pde/IT2A3S9N78PG/iT6wcb49vD8xq9Xj/C+/8TWr+f3qMT7qP1efEcrQO4fj59/xEupyd4vaIN4MktlL97C+Wbd/D8j+h6P70JG/h3P33dHNnxw/f+5iGSff6k2Pc3Pn9SrF/iBNtRDgz9Ocf3/sbn7z2PPN7nd/D5g2PtZxdOOs/FtF/43t889hyPedl2Pce+39n0+fU0GzZ8fgeMWP8whvd9rIcnr38pcB8euh/R9/7G53+KjW+KfY+37XsBF4bubzqPlE8jj4/1T8W+/1nxRwWu1+yO6VeffeyLj9j1+9do/ZqF4a75/X36Ec9HrH71rcdsW/2a7GEOn/78OyTH7tN/42nf9r3ASbKHrfC9v8E8++wgH8++97Enkc+vK+sz2cMcsfH9vn3b917P9z7WZ0f59GuyhwVi37/6nmN2HT8cq1+TPSwQG9/vi4fwxblE+4eR7NWvWRjuun8Y8xrrH/btq9v6h1fWXbKHOXz6M5Y3n35N/uHDIDYuLdY/7Is7S/7h/cDnH/bFC8fq1+QfPgxiv7uK9Q/7eEr+4f3A5x+Ofe7x6dfkHz4MtvUzxOrX5B8+DGK/v4ndd7f9Xif5hzdD8g8PE8k/3CeUwbUjLtEJ50jekX84J6iehsKh/cOtSjjr2q9VT1mu4YLlrK1ZxuJmLv+pW9QkNLH0Y3QClu31InFdFVw/J1PlcUw+YjmfF6j9wP7hQuULdx4ne1qwvNIVY5IlhM/ZaTrXdXdog2+tc3TCKZJ1PSzJ2wmSzx1yA3ldydON2g326x8uUd2AVcieVozJhuUOZ5nU+WkV6bwALAm+tc7RCY66DTnap7V8imS1nlE+cFynQbcf2D9co3owq5A91XUbKpbhvmKnNaTrykh5OK+X6IQrq2z07YVHlvNVKN4kD63i9Qy1H9g/XHvr58iechKJ4HUmbodG1/TpCqa8jReP0Qm4Xg7O74/lcyTj/P6mnsZy3aWV/P4ae/YPNzOyXLfSAtlTTqKo9EA342ZOb4f2L8FWy55QkOBa4OfoBCxLHhvEW4N4xXKNeCVjWY3xxN6usWf/cDupZtbzNGRP20kzpXNAxvW0orxO61nG/p51ClYPMYpXc8JjJGv9C/UnQTzj9haux5yoKpsXqP3A/uF2VHnrDvKeklHD6g5SLkfVnJcfZJV9O+c1uKjlJTrhFMla3wJ72MgXSNY8A/2a6znJUfuB/cNkpOpCO45TPSX0BmAFByeVKJ7JS4eWHT/AVtNgXh+jEy6tck5aVAfUJStefwb7LJ1MyStuP7B/mKj63i57WPY0X2QVq+vLHsfYsmU72OIYeA0tGn2OTrhCsuK1QesT13tFfgryI+ZV7n9n1naDPfuHia9uvuwpI3HO6jULjulpi2PgdRLLqz7hWyRL3mYNsIeNfIpkqV/n0J9UzBSv56j9wP5hzavLHpY9zeeM1+mR8UonrQ7k9RKdcI5kqV+niMcpWr+oPZvVQL/SCYF18GcuP+Ke/cOaV5celj0tWJE6umtVite8Z7w+RidgeTf+YcNrx/5hzavrOCuvrIJ3z3jF6/MUyZjXEySfO2QXr7m1fQn79Q8bXmPWK6U0Owpex8GPWufohEsku3jD6xOvZ7geqaaij07Lx9fd+IfJSHLjsodlT6maLRbUyqg4x4xXQp9zqo6fX+kkh3bhEp1wZZUNbxceGfMmeKAXQ/ZK3Y1/mD6IzuznScie0qPyBe1jaXhlj7T94fUxOuFbJON9GMth+tXwivfpA/uH24kcl8setvBaKl7Hdcd+/whez9EJWMY84n03TL8aXk+s7QZ79g8302ZqPU/BwmsleW0nbX95xesX84b35TD9anjF9vCB/cPNvF1fN9/CK3sBwHmddf1efQv9eopkzCO2h2P1K7aHD+wfrnzxEqu8soAnzmtNesQrXp+XVtm/74bqV9x+YP9wpd4ru+zhFV75Kw3Ja9fxTVvsw9gexrzi9RmrX8+s7QZ79g/ruLVgezhnq5SM2NucPvOK7WHMm8+O8ulXzPuB/cO5iosMtocFr5OS0Hui6zjTLfSrff26eYzVr9gePnT8sF5zofo1ZxFR7awl5p7oDFvoV7u+3dY/7LaHDx8/PFp7nI3XGQt6YvtwaNDYvrDFPozt4d34h9328IH9wxvYwxldpjXjtVf2sN0P4davm/mH3fbw4eOHp6AfGBZe64Xgtfs40+QfdqGZtdH+4ZJvwSRrpyT5h4/VPzxu1scP2/z+zGSaMr9/2x9e75h/mIyr9fESFl5FyC2LqK47ftBJ/mEX6Ja6WHuck1f2Xr3q+EEn+YcdyFmgkvW6ChZeM8FrsdCxUV2B0RIV32ROuLTKu/APwziFbvzDPFApW+4Hhuwp45XFTJYiRpydyUNjsk6xRXzTFZJ34x828U3d+ofFi1T+N8cRlvimrFW85h07iLfg9Vsk78Y/bHjt1j/MFhyxX0fCyeucb81Zp9h5/PC2/uGV+OGO/MOG14j4Yc5r0TNe71b8sOE1In6Y69didgS8bvF9zimSd+MfNt/ndOsfXuJ15DwCf5/DeS2PhdfA7+nO0QmXSN6Nf5jNFvTLduMfLrz2MO9pMeNB4JRg3k12J1Szsnt7mHYo7vtXc8KVVd7WP0znU8aZd+sfNs85zu/pWE/5x66cyWbyD+yhl/Z3dgTPOdU8C32l9Bid8C2Sd+MfLgj8Pq8r/3DOPozjf3N+T8d6yj/Xp/SyD5ob9k90fJNiob5Z6AzlIjYPwQLmHTCyzvsj31ueIvncLrcwnw69Gswv0bry7ezXP5yTcbWwnmeOoD2l/JFxMy1YLHgzrkj2m4xMCkp117yG54M5Ryc8RrL6blnxcIXkU2s741noU523QPJ+gdoP6x/OiXpP584vQXvKeCWMSUJGDcsHw5LEFKTz93QReX4u0QmnSDY8Yp6WeTGyWc/Av6Tz/OSo/cDxw63+3ZH7CMarzvOjeTX3YmfISXCI1WN0wqVLJsvvd9wy5tXkbxJ/we0Hjh9uffESvKeC1xHPOtfwuDXWfdJ5vATtRyiv5+iEKyRjXvH6tPO8wmuteD2zt2vsOX5Y59HL1xzBeOXJEBvKayV4pVq5+zx6Jj2SF+fohG+RjPXrJZLD9CudLflK+hy1Hzh+uEL5/FbBelrO6IFzxuSUmRojOh3TpXuzO1Sx+YedefF2lH+4OJb8w774YdXTnMxktr+WsOmYZEcQPxyBVJ9umPDxkurT9RO+/P2xvKX6dMeBVJ9umEj16YYJ3z6b6tP1E5iHVJ9uGEj16YaJVJ9umPDts6k+XT+BeUj16YYB3z67I/+wRtf+YY07pl+Tf3gYSP7hYSL5h4eJ5B8eJpJ/eJhI/uFhIvmHe4HTZ5H48gDi0T2Ip+j4776H+IDPR/LTt+iC+Hqo/fIjut4L+Hs/IPnNO3j8w09h475GvxOFw/P6zes43Dx6+hXgLTrgJZIfw8O/fkLyW3S9d+j8W3y9D1C+Rud/QfKnayh/vIHy50dhA3+ArhuDnw7Pa34vDlc/fYL3/+eH8L6+QSfcoPXx5Bydj9bTp3+B13v+El0Pra9b1J8336Hfu4Hy0zfoB7+EDfwa/U4M3hye1+j1+uYhvBefoPsdX/DqHTz+DbqX38F18BmffwM3gNv3aL0+R/35iK7/Cf3g9x/RAn4eNvAnD79ujF9nxw9s737rke97zsd2k8+/tPJ+ZxR3/Kb+4aH7ER9HyrH2se85J/O0e9/Lb/i8ctfe0/lkn38JH/8LJHv9Tx4/g/f5NfmHOXzPr48958euV5+M4VuvG/v9s2HjMvL4i8h2X3yEb71mnnavv9h1nWzYwOvx7zztPv3q28e31a+x7wlcuGv61efXj9WvPp7+Bh+/pX5N718FfOtrW/3quw986zfp183ge/7EPPwtkn1+fd/zK5YLJG8dT+zAXdOvvvetu35P57sPvPHFSb9a4dOvPrvIF08cHS+BZd97uKRfrfCtN+xH9MWN+9azb/36nouSfg3DoeNIfef79GXSr2Hw6Vfc7ouP8O3Tsfo1Pb9uhm3jmXzxxNE8ITlL+nUjxMatbbtPx+pXXzxi0q92xMYP+/RprH/YG4+Ynl83gk+/YnvY951HrH841o+R9GsYdv0dR6x/OPr7OiQn/WpHrH942306Vr8m//BmiPUPb+sXjNWvyT+8GZJ/eJhI/uFhIvmHh4nA9VkQWJ8Kyxq99w/nMlMymS2NMmtY6uGKdL7I29AePEYnXCJZtlcq3/cpkl316nA9K1e9nMP6h1le8/V1kbJSZI8u2HFslCUrdZDzVOFt13UbsuCySJoHgnhVsuSxUbmyz5Gs5rnFdZIkjzmSu/UPG16d/NfigIoxyUZZMV5Lntq/83oc9G6L5FWfgGXJcwvrrhhZHp8TVO8K79Ouffuw/uElXl2HNKICQM2YZKPkvFasfEHRPa/hmuASnXBll8lqnRTxF7mPlgTWq9Oa6QzJ3fqHA3htBa+NrJgjeOVlPMruea1JpH6t0frUsrSHiapjcYpkR92HEtbzMHK3/uEA/SorOOm6SJzXZk4prciPXfPaxu7D7cq+C/blnIxA/Tkja/0Lea0RjzXZUL/u2D/s169kzCvptZNmykcpeJ3Ws6yeZ/8r6xQ5ieTVnIBlsZ6LRUaW64ZiOSNIv+r6OxdI7tw/XKzfh3OScV7JqJnyUVac5XE1U5VOO0RBIvWrOeEKyYIHOkJQz9nIYn5ygvSrLvmVI7lz/7CfV1mjuZrxUYoK67xkXddVzGjfI/WrOeHSKpczyKuR1fpGzznkZ8ijljv3D8vavLm7mfGaL1hdXzbKSlRspry2XVcxo7S0cfuwOeESyWL9lnoXOkeyqleH/BLkR6hPsaxxcP+wrM0bXF9d8losjoHXaSyv+gQsC3u4nCoer5As69XNUL3meQ3t4Xm9oX7duX+4XF//tZgJXueM1ynkNesaxaSN1K8TuD6NLHihSgbUvcdyPkX11mfIbzirN9SvO/cPV+t5LXnVwYwXU+ejlLzSBdx51cFs5/5hN6/98g9nmeq3i38rr6Lc/iLrHm2sf9jFK+YRr181zy5ecyR3Hj8s9YeLfxevWc95tfNMByf3ryskaz8/8g/jfbc+Cv+w6YhzH55yy4qq2WLBR6l4JXmveMXr88oq08kol+srG1nto0i/rqzP+ij8w1kGn7tXQdcoexKio8sXfJQ95dWnX4U97OZVHe/ah7HcefxwM7b+jsIaXo+hqu/O9KtoNzxiWc27i9cTJHcePyw76uJ/qLxiWaxnw+OVVXbrV7wvd+4flgML34fJgjkXGa9N98zuTL/ifRfL2B7GPGJ7uHP/cDyv7EUs5bX4KxlQfJOQ3bxiexjvw3j9du4fJvbfUbDxOhW8Ev1yozvsTL/ifRfrV2wPY17PHLLCwf3DxH5dBRuvs4yMcs5r5290dqZfsT2Mecb2MF6frvWrcGj/cE7sv6tg43WekUnJee38DezO9Kvd/nXbwy6/4bH4h6N5LafUcGpnLeV13s6yjrFj/7Cb1775h+Vr9XD9ymK3WNAT5XVU94fXMP+wW7/2zT+seA3Wryx4hMUjUl7Vu9sOsWP/sFu/9s0/XM7t11VYw+u8T7zeNf/wBrxSa7gUvBb94fWu+Ydlt2P0K3/KmXJeO3f9J/+wA/L1Yox+FXPBeM37y+vQ/cMyHCBqH+ZzsegXr3fNP1zfEV7D/cPL8U1G7pt/GN9vGIzXmeB1rkbJ5iJf9Hsftq9fd3xT3/zDKmg/OL4pU7yK4LWOsWP/MI4/NHLf/MOqn8Fxppnkdd4vXsP8w7744f74h9sNeS16xutdix9W4wqOH5bnFDNKatFfP6LdP+z+Pqdv/mE1ruDvczKRa6Oc5aTPvNp5ZiMUxFwhuW/+YeK4rgLjdcoXZzmr5CjZORXjdXD+YfP15ymS++Yf9vK6oGu0nFMSq5kcJX9lW7OgiXJo/uFSfyV4iuSe+YfVa3X396+Ecsl4HVF62Sj/QXiFKcHsU+esU+QkOHTuHJ1wiWT53STJQH4JI5s8Isvt7EU0iKvXcsf+Yc2ri39KaEt5pcNrpnyUzahaZL9heYraSdMxrxGhc+foBCw/1rKYiCurnOuYLsMz8FtouWP/sH4j485DQEfOeKUD4qNsWHxTK7M5dRy3FhE6d4lOuEIyzuuDZZ1fYoVHcW/nSO7YP+zllVPIFKvK82N4bfrE62N0wqVVzlR6HMOrlM0+DvzFmEctd+wf1pbPuvxNmeB1xEfZsJG1Iqte1/HDEbyeoxPs65eOCfBoZJVfwsXrmV3WOLB/WPO6Jj8i57VivLJR8lRrrciC2XW8/w71q8y31qjQ2SskGzvLrl/Pkdyxf1iFS7j34Zpwj1PFEns2PMsayUQm05Icw5eSgQjMP1yi/EvlYPMPF+IGzNn+wkcplir3T3QeZhqOVJ9umPDl9/fldT/xtKf6dN3Al98/1afrJ1J9umEi1acbJnz7ro+nWP2b6tMdBj7eUn26fiLVpxsmUn26YWLb55pUn+444VtvqT5dP7Frv0Pv/cMDQfIPDxPJPzxMJP/wMJH8w8NE8g8PE8k/PEwk/3AvcPosEl8eQLy+B3GBjn+Ojn/wPcQH1PxLdP5LJF+/gOf/gOTvP8LrPULtb96h9odh48a/G4XD8/rN6zjcPHr6dRlf7sH224/ohFfw+K8/QfHrJyS/R+c/RfKTa3Q+kr+i3/uC5I83UH73OWzgv8S/E4FPh+c1vxeHq58+wdv/Nbzfn1+/hSd841kvT85h+5eX8PzvkPz8Pjr/Bi34T+j3voPNT9/ADn16/zZo4Nf4dyLw+PC8Rq/XNw/hcnj5CLS/egiPv/2I1sund1B+g+7tNy/hBZ5A+fYVXq/oAl9g/75+RNf//iO8wLtnH0LGffv64uvG6GC9RsP3Xg7fm773N/j8XyD5LFL2+Zd9z7suDP05B/N2Hin7/MWx73d8foYV3je0h8+yYQPPs+89nM+vj3mKXX8+v4PvOSd4Hd6x59fY9zm++wLD937H54dYWWfJP2yFT7/Gxkdg+PwKvn3VN/8r+/avsiAM3d90aP0a+34n9j4I3YdPs2Hj0PrV937nUPr1rvv9d61ffe8FDqVfh24P71q/Yh7+xtMerV99718D9WuW9OtaOfY9Xez7HW888Yb78NDt4V3rVx9vO39vvimv6fkV4DTy/F2vzxU7dkP9OnR7eNf6ddv35j796vMzhurX5B9eL/ueX08izz/U82vyD68/Pja+f1v/cLYj/Zr8wxCx39P57Kpo+xfJyT9sx671ayxvsfr1ZEfPr8k/vF72xRPHfnfluw9Wjk/+YSv27R/2+YuTf3g/2Ld/ONbvmPzDu8G+/cM+OfmH94PkHx4mkn94mEj+4T6hIqFHOvRrSWDdlILAumRaduzLOYF1VrXctX+4ndvPMxeQPSUzOcpaZ5PuPv9wG5yJHtfPkTzVigcpV2pMWFb3vaqfI/fxksD69FpW90Fo/asd+4cLQuzX0ZA9LUQ66RlLdT5m6c7JEeQLz1XWdT/UPKvU9ZKXVvEm12+DeNGy2mdRncYa1XnQsuKtCeR1x/7hUifId+f35z2tRKWGObsTJoLX7vP7lyR4y9D7rOwyrr8h13Or7vNTJMvzc7RvN2oOLuxyRhz1r/bsH65RvaZVyJ7WsmIOY3MqeO2+HkdJSGglNcljBXnNUR0VNjDxlwsk6/z/sD5dC+vrGFnypvXzgf3DtdrJnPaw7Gkjt1/G60zz2nH9nIoEqwK5HmsC9GuOeUN1zVbqJFWKV3mftOrePkGyr+7Dnv3DzcxRn0lD9lTXRarZGuG8tn8J1m57QjWvQnmVPLVQvxYkR/XqRqAOi5H1PgvrhJJxO7HKcn3WZEP9uqV/uJ1Us/XHyZ62k2bKR1lPK17vitWqq7vmdVyGPujo9Qn2YV5Qkf9N1sNawDqDRtbrF9jDOb27l+uIGlnfRxvq1y39w62qCemyh1VPyaiZ8lHWo2ou/p1kXfNajopQXnV9K8SrMnAFD3SEoN6rkfV9AezhnMB6zljOyKb6dUv/MBmpmssO/lVPWVFQPspK1LTLCavr2/kDbDCvaj1C/VpNIa90QIBHI4v1m5MW2MN08gCPRlZ2188b6tct/cO6lrbLHpY9zResrq8YpeB1wUs4Zx0jj9uHiwWsz0x5bZbr1bnrq6t9FtZrllXKM71va1nVl/xxQ/26pX/Y8OpYr5b66jnjtegnr1NYr7maKF7Fei6nisdTJMt9eNYAe7iYKR4vkCx5nNcb6tct/cOaV5c9LHuazxmv0yVe50fBaxapXyeQVzrroC4+Xb/V8vo0suR1CuvmlzM1BydIlvp0Vm+oX7f0D2teXeta9pQeVczlKDmvZc94tfuH3bxi2e4fdvPasX9Y8+qyh528zvrFq5pnqF8Nr3JfdvKq/IINsIcNj/b1G87rjv3DmlfXfu3iteo5r3IfHiv9KdYz1bdAPxpZnd8Ae5hqJllB98IqG14P7B8mo9JeN1pB9pSq2WIhR8nvhGpKTZaq4+fXLFa/Yl4pS2B9UhbKZTvIyJhXrX/B84SRFW91N/7hdqx4dfAve0qPyhdylLzn9Danj7Sd85pvp1/dvGIZ61e9bzt4VcfX3fiH20llrxutYOGV7zT072Rcd+z3j37OwfrV8KrtYwevWL/KfRrxaGS1Putu/MPNtJmuPc7CayV5bSdt97xG+v2d+7BYz3h9uvdh7dcolvWpkbE9fGD/cDOXjjGXPWzhld8JdHztjHQe7FaE8rpr/Yr3Xbu8uX7d0j9c+eIlVnkVAU90fDU5Al5D36vvWr/q5yAHr9gePrB/uFLvlV328Aqv8pUGnZ+68/imTD1V+LFr/Yr3XaxfsT18YP+wjlsLtoflK0w6P+UR8FpFxjftTL9ie9jO8+b6dUv/cK4ChILtYckr/U/RfZxpOK+71q94feJ9GNvDh44fVmsu2B6WsZ2U1zw4aGx/CH6zv2v9iu1hzGv38cMj63UUbLzOxHNjSYKj7feGJjZ+eFf61e6HcNvDB/YPb2APZ2yZMl6PwR5uQiNdd61fsT18YZU78w+bOFPHARZe2Ycc7Lmx+zhTE37vxR3zDzezNto/zGIAGa/tlHTuHw7eMe6af3jcrI8ftvn9ifAHkFHbNa95MK93zD9MxtX6eAkLr2wyyzn7o+76QSfYjXjX/MMkKxf260i4eJ3xEMWuH3TKYF7vln+YmrXqjUi4fmVKrWLv2cO9s/tCsFtijX5djm9iI5xaZbd/eDkuwcjd+ocpqZLXdfbwTPA6V6NkvE5FaEzWLcIVwa7jm2TcizO+qVv/MCOV2K8jYYlv4j5/zmvetYO4CX7QcsQ3aV5lfBOKP8Q8Y3vY8GjnuSv/MDdr7deRcPE6kSq2W4S/2Lfr19j4YWwPe+OHO/IPG14j4ofZ3DTHwWu4w+tuxQ8bXiPih9ls0uEdAa/hj68O/VpFfp+D7WH39znd+ocNr1n49znHw2sR/uLBrl8Zr4Io+X3OTBFximS7f5jNzjLvWO7KP1x47WHe00IEgVdylES8Vu/eHo7g1a5f6Yjgd5Jz+P2rke3+YTp/8DtJLXfrH156znGtV9ZT9lk3+06SjfIf+LscOj1H8JxThv++Xb9W8wzkkygXiGct2/3D9MZqlvOuGLlb/zClSLrinN/TsZ7yz/UpvWyUDV8lLFxiETOve0FFglPSmDwhYoKk3bOA+SUKAvMOGNnkh1nmmZ7dTqyyXJ+teud1WP9wTsYy80buPIL2lPJHxs2Uj7IZV5JXSnXfeC30CdJO0vlgHut2MYGnSDb3heDpSsvLvBvZ5JOxvwfdr384J+o9nTu/BO1pyTPATPgoG5YPhm3FBen8PV1Ngl8B6/wSZNn+def5uUCy4RXw5Mzzo/NLEPv87jl+uNUZy0buIxivOs+P5tXci50hglezHlEeEJg3bzVPF8iTZ3jV+V5gnG67mtfL/h50z/HDrS9egvdU8Drio2zYGVwpk2PIyxXaBbMPL++jdHSSV50fEfKqZbPPgueYGuXd07LKLxHK647jh00evZH7CMYrT4bIRllpXrvPo7e1fjX5laS93Kgt6BTJWL/K82u13V0gWeXp2lS/bhk/XKE8catgPaWP5xW7sdkoS3aG+FTyCOIRg+HIP1yhPJYlyj9cevIPFyj/cHEs+Yd98cOqpzmZyVG2is1jiB8ORqpPN0zgeU716YYBzFOqTzcMpPp0w0SqTzdM7Fq/+nhL9ekOg13r11Sf7jiQ6tMNE6k+3TCxa/2a6tMdB3atX1N9uuPArvWrj7eu/cOu84aG5B8eJpJ/eJhI/uFhIvmHh4nkHx4mkn94mEj+4V7g9FkkvjyAuEHt10h+jY6//h7id6j9wdt7APeR/BTJ37yA13v3EV7ul6j9zTvY/ujVvSBcfnywOQ7P6zev43Dz6OnXZXy5QAc8QPLDrxC/RvIreL2vP32A599+WH/9l+j891i+hvLHGyi/DZyBa3TdGPx0eF7ze3G4+ukTvP1v0Pq5RvLLc7hePqBb+TNeT5/gev/u0/r94OY7tP7Q9b7cwPanb+ABn2/C9qnbT99vjDeH5zV6vb6BC/DjT+iAh+tv88/foVv5HTrgFerREyzj/sDTv+D94CE64PuPcAG/fxc28OcPv26MX2fHD5+9i+0m33s3bDd5/cFIzjzvb/D5Pn+xC6d37Pl118+zPvvZ58fw2svJ32RFrJ/hPpK3fb+DcepZr974ieRv4vA9v55HHu97n4Pvg7/xHO/za2zs9x84fLz4/Ayx/qVt/YKxsgt3zT/8LZJ97wUw76eRcuz6TPo1DLH7rI8Xn3712cc+/2/Sr2HwPdf4/L++9m15j/UPJ/0q4FuPsXZQLE++OLRt9a0LRTZs4PUZ+57dd19gOfZ51Renuql+vWvv6XzvX33r07fPbhuHtjP9mg0bmIdvPe2xz0Wx8RKxdlaW4hGt8O2zvueY2OcUX7xEbDzEpvr1rsUP+/Stzx6O9Q97v8NCctKvYdg2Dm3X8f/ZofzD2bDRtX9423096Vc77qp/+K7p17viH75r+vXO+IezYeOu+ofvmn69K/7hu6Zfk394GEj+4WEi+Yf7hCo4A7Jjny0JqEuWFQTWRdGyg7fck284R3mqM5V3et/+4XbmOU71jMyWRpk188z0sTu0wZnocf0cKddq3nWeaTmmKySr9QzrDtL7Yg5kXS/nHLXrvNMy3/Oe/cOFN6+07Bk/UIyS8HzoS+d2hjy8coTiRVW0kzy0ijed3x/yoGWlb1uYX7yGdR1M5dIT1C55rHSO9f36h3UeeKd+lT3jHeKjZLU4SpYmv+o8D3xJgrcMyUOheJU84vobLaq7omV5fI727QbPH8oj36A8+zWqw6KxY/+w/h2nfpU94wfyUZaEszwx53aGkgSnotf7rJwfXddosSxnZLVOiviL3nfhPtwq3uT8aU2Vo3ZdB0Lxul//sP4d53GyZ/xAPsqayDIeR1GPI1QVaH0q51PYw6Yukl6/oK5ZhuqemToPhldQv65Edheuk9S46prt2D/c/o/8nXW8jlWHiCi2wswmqtia7uvnzMpQXvW+OlqWCwLr01EJ15/DvED9SsagPh29b2D9SN2u6tVNGlhvUmO3+lX/jlO/yp6xA8UouaKd1jNzbmeoxpG85mr5qXqv8xzUKSsWqs7gFZJ1/SugX6mt0S7XkzQG+jlql7yTkZyzPfuHWZlI+3XU+bJnrEN8lAXjtR1XM9PHzlCO8lDTTdenA/ZwOVcGruYR1v1cwHqwOYH7MP15OH8EPu+ads1rZa8bt2P/sP4ddz1JVaO5mvFRloJXVopQ97E7BPMq69MtoD1cTRWvug43qONrZLVPt4DXYo55+xnYw6Zd8rzAdboVdusfNr/j4lX2jB/IR1n+lZUJZTuYPrdLhPKq9tnQ+uoXSFbrc7UON6g/R34E9rBpF+s51zVz9+sfXvodxxEr9dXLOee1WOTd1/XNonmdtsAeriZofU4Vj5dIlvp01gD9WszQ+pvD+symXd4XczVn+/UPG25c+lX2jHeIj7KcKF7nfeJV6tcJrMNNWaiX60vS9Vstr08jy310Cv2IJa/dxyDnbwbrqZt2vW/L2uX79Q9TXl2/IyF7xjvER1mOOa/54gjqq2fhvNr9w4ZXrW+r5fVpZLt/GPOG/cOmXdphes726x9ec/9IrPAqSO0dr4qXFtjDbl5PkKz8w1C/unk9Qe2Cx6U526t/mP5Ivl6/unjNjoPXPNIvoXkVPNZjpT9FO9W3Uh9iWb3ng/qVaiZkn9TAHjbtWt8WC3C8wm79w4zXhf06ErJnvENylIJXYvrYIYJ5VbxAe5iyBPZdyopcXxdI1u9rwD5MT0b7ag3sYdOu923Z4/36hw2vruNkz3iH5Cglr6aPHaKI9A9n0B42vMr1q3nEsoqPcPGK92HcrvdlOWf79Q/3ntdy031YyG5eT5Gs9k2oX928nqF2bR+75nvn+tW+3yscOa915PtXZA8bXvVzD1ifRsb2sLaXC7t+tfNu5my//uFi4dOvdl7JsfAa/F4d61cxz279eoJkbA/79OsJase87tc/nC822oezY+GVbBzfJHh278N4/WJ72KdfL1A71q979w/3nNfQN/t4H8b2MObVZw/79Cu2h7F+3bN/mLiepxQcvI7ynvOK7WH7+nTbwz79al/P4fbwlv5hMq420K8ZmZRHwuum+hXbw1i/+uxhn37F9jDmdc/xw2RKNtmH21l7JLyGerzs/mH3Puyzh336Fe/TWL/uOX6YkM14pecdhT3cbvr8iu1hzKvPHvbpV2wPY/265/jhRvEap1/rY+G12tTvj+1hrF999rBPv2J7eMWPiPq34/hhzWucfj0aXnWctw93yz9sInDj9uHyWHjNQ3m9W/5her//eRNec2pvHQWvWeiDzt3yD2fZRv5hhp7zOmz/cJap9+px+pVicRy8toG83i3/cKZ5jduHs97x6vYPL8fBsBHi9bu8T9t4tcfBXKB2o1/t8Sk7zy9R+HmdyQ7JUXJe84XpY5doNtyH9fp0xDddINnuH3bHN+WoHcc37T2/RLFBfBO77pHErW3Kq7CHDa9aHwI7CscnrsQ3zbBdBe3h0hlnuvf8EsXMfh0JJ6/zfvFq9w/Hxg+740zt/uGyo/hh8dPrjnPxWhwJr5vq12HHD2eZsguieZ31i1e7f9j9fc4Jku3+4ZXvc5A97P4+Z+/5h6v137+ufJ8jeS1nx/F9Thvob7L7hxmvy9+3shFOrLLdP8xmB85fjb+nA/s6m7Ow7+m21q+e7195zwpO4qwSo+S8VjPTx87w9ya/iw92/zAdEfj+ld6o4HtXI9v9w8UCzx+0h027/l5Wfae1X/8w+/R87XG8Z+yzbvadpBgl57WemT52hnq0pX+4mmcgD0G5QN/DLiDvK7wSzDv6no7A76Rz/R35nv3DWkE5eWU945/rU3rFKDmvzcT0sTPUk5JE7cO5zgMi99kFzC9BRwvySxhZ7puEgLwE9GyYZ6BVkXRnqF3nmzhMfolp7sgnpM9nPWMfp9MO8VEWLIXKb1ieIt3HzlCH54NReUIULzK/BIH5mgqU/6VA9wG7L5afi3JCVnhftp9N+6luBzxr7Dq/BMo/tALeM8Yr7RAfJZuKUSuz/nScDyaCV51fAuTZMXl+TP4mMR8nSNb5JQjYR1uU/4qoiKsT1G7yN8k523N+CdXvtXl+mGJVeX4Yr2Pe3eYYeA3V8DK/hOZV5YtQAVKO/Gta1sev8Joty5rXC9Ru8jeB+0Zjx/5h4s2PyHomeB3xoxWvS33sDNF59Aq0j9LRQV4bNR8XSDbrG/gpahevOWo3+RElr/v1DxOU53EVteC1Eim5NK+LpT52hiI2ftjoV5l/GOVboiOE+U21bPQpuC9qdWNh/XqK2qVc4fynCjv2DxOUH2wVrGf0OZV3iI1S6tfpUh+7QxN8ZznyD1cojyXOg1d68g8XnvzDBco/nB8o/3CtxuU8TvaMd0iPsmJ/ybvPPxyOVJ9umEj16YaJVJ9umEj16YaJVJ9umEj16YaJVJ9umEj16YaJVJ9umEj16YaJVJ9umPDts77nmNjnlDPP8XuPH448rq9I/uFhIvmHh4nkHx4mkn94mEj+4WEi+YeHieQf7gVOn0XiywOIR/cgnqLjv/se4gM+H8lP38Lr3UfyQyRffkTXewF/7wckv3mHjn8YNu6X6DpRODyv37yOw82jp18B3qIDXiL5MTz86yt8PpLfofNvP6wTX7++Rue/v4byJyR/vIHy//4cNvCH6Dox+HR4XvN7cbj66RO8FT+j+/0GnXCD1scbfD5aB5/+Ba33T0B8/stz2H6LrvcRbShPbtB+8Ab+4OcnYQN/ia4Tg8eH5zV6vb55CO/FJ4/gAfiCV+/A4T99ROe/g+vtMz7/CfyHV7dofT1H13v8A7zgpzew/fuPcOE9/V3QuG9v33zdGB2s12hge/dbj3wfyfh5FttNvvc3K/5ij78p1n524aTj0P1943Gk7HsuivUP+/zFsf7hUL7u2nOOT77wyPj4XyDZx9vJlv7hLD2/cvieX2NthNh4iYvI68e+xwu+zsBwGXn8RaTs04ex+6rXfxy6Xu+Yfv07T/v5lnKsvzh6387CkN7TQcTqV58f0BffFK1fk93E4Vtf2+rXi8jf88H7XiC9z+GIfe/2tx4Z8+iLJ8Ry4ZF9+jVL+pUjNn449vk01h722lVY3tAevuv61fdezidH28ORcnr/aoePF+xH9MXJxK7fvb93d+Cu69dYXnzfacTy5nu+Tf5hO3z6FbfH6tdYe3hb/Zr8wwKx8Uyx+nVb/RmrX5N/WGDb+ODYeMRYv2Osfk3+YYF98xarP7fVr8k/LODTr9ge3vb9qu/8rfVrFobkH95OjvYPR8rJP2xHrH84dp+OtYe3fn5N/mGOXX+Xsa1/eOvn16RfOZJ/eJhI/uFhItA/XKiMrVd2WcOxfvOVvLRQzlQO2H37h1tXPlz9A7JnrEN6lEt/6xZ1aKpce/0cXK8uq1byQENZ11lR+yqsb5WVKifzmV0uXPnZd+wf1r/j1K+yZ4XIEM5GyTKb12TOcm93nli6Du2B0q8qEfUlkmV7g/J5Y1nXTdP16kB9KzovsD4AliuVF37P/uHKVUdAQ/asEhn952wBZ/xvR8FrE9oDOa8F4lXLuA7DuV1WZWk0rwTUt1qpy4Dlmjjq2uzYP+z8HQ3ZM34gH2XJRkp6ymtFRnZZ1+NYqbsC5JKAeldGH5n7Yrkuy4rcoLosGjv2D+vfWVePY6QO5KOsScbrkxwFr21oDyRvNYH6Fcu67sypXdb1ACRPJaqP0KL5xLKuTbNn/3A7l7/j3K9lz3T9HPo3dpv+n+PglUTq1xatTy0LezgnOahjhGU6eLgP16ieBxmBuksrcjtu7XXMduwf1r/jPE72jB0oRsn34kX2D/3iVdcVA7waWdVhUYaRXc4I4rWF9TpyMpKG1JlVzsi4ts/3jv3DZOyp/6p6xjrER1lIXhk6r+ubR/JarPAI7WE6oHa5Pg6Wc4L0q65TI+ucLVR9znOrTJ8lanvd8x37h3WtT5d+VT1jHeKjLBmv8mbouv4r5SVOvxYEPr8aWfBUztUDqV3Oyc9Qv5I/4XqvYJ1gmT5LOOqe79Y/bH7Hxb/sGT+Qj7JcEF0MuEe8qvUI6zVj2dTdPrXK+QLW4c4Iqveq625fWGVT43q//mHzO659eKUOdzkj2stSdVwnNCv/b+Q+PEO8zuD6ZYW9lvdNLOdzxOuiBvYwnS2wHrFMp7Gwz/du/cPu31GQPeMH8lGW02Pi9b8jeR1Dv6GRZf3mqRrTlVXOJ7BeczatgT1czhSPp1aZzqac7/36h3P9O651LXvGO8RHWY6I9pLWXTuJq/8T+fzq8Q8bHk+tss8/bHg8s8qFc7536x82v+PSryu8cv/wsfBa/2esf7hF/uEW2MPhvCo/Yg3sYcPjuVWO4BXLUfbwEq+OIxy8iqs2oVU694VwXhUPLl41j4AHLLt5FbzQg8F8YpkK+WJJNtitf9j9OwqyZ/xAOUqiZ6NzXpt/35RXO8+UJcnjlVU2Q1brF9rDdIYkjxdWmV5Mzvd+/cOGV9dxsme8Q3KUhte2P7z69Cvm8dQqu/Wr4MXwmFtlw+t+/cNL69WxXx83r22xK/0q7OFwXvE+rPdt2aNTqxzBK5aj7GH/PuzgVTS2XQe7kWJX+lW0Gx7tsptXMX+GxzOrbHjdr3+Y/shmvFb8tWTX9dWzRbEr/SrW8+b6FevTc6u8O/16EshrnH4l4j0GybpFHs6rT7/a991w/Yr16YlV3p1+zXz+po30qyj7n3fO63xn+hXbw7H6NdYe3rN/mDDHvu06Ck5ehXOxWxTznelXvO/G6tdYe3jP8cNkXG3I6zxTt0R3KGc706/YHo7Vr7H28J7jh8mUbKRfF83iCF6rR/Aa5h/eXL/G2sN7jh9uCdlIv07ZWi275rWaFLv1D2+uX2Pt4T3HDxteHQc4eB0V5Aheq0fwGuYf3ly/xtrD+48f3oxX9t+qa17rcZH8w1ZoXiP1K/9f56/Vm3GR/MNW5OQvG+lXvmS753WU/MMueN6/ruO189fq1DoI/a7vbvmHMx4KY72OhJPX9kh4Ddwz7pZ/ONO8RutXOiHNMfAaaLvdLf9wlvnim5zv6XrGa6B/GMUz1cHxTVKf6nimC6tc7iy+yZtfophZr6Mge8Y7VOv4Jjob7H+dv1YP5zXMP2zi1M6tss8/bOLUcqvsjifbeX4JD6/2uLUj4nVH+jUsftjnHy6PJH44y+D9ZG128HoEr9UjXj3crfjhTPMaFz/cjuSjTtcodxw/PIPfWWHZGz88R9+BIJnehmXgd1dYjrWHPd9Jyp7xDslREh6wRroPl8giXimF+YdLzeO5Vfb5h4s5+p4Oybnmde/5h+v1vPKeFTPeoVLz2oxz0n24RLYFr3ae6V0sibuyyj7/ML395T9cWGU6ZZLnvecfbiZrj+M9K+e8Q3KUjNeJiaDpFDv2D9PRtst5B7Ds8w/TaQLziWWquurAPATb+Ycz9T22a7/mPaOEsg7JUfLv6ejfiz7xKvRnrvOAXCJZ2MMFyUCeECyzQBGQl6BVjkyV52AE7gMsZ2TcBOYNwXKcPTzNPXl+eM8Yr7RDfJQsrURWz6p59+ESWfQ+XGheLpGs809IHt0y0Lf6QetEyyCPD5b1fbDv/BLe/E3sCMor6xAfZcn+U7H4prKfvE6sslnP4vgrpwyee7Rj5ELLy/fBitzuKn/TiZdXx3WWjhgJXsd8lIzXccWG03m4RBatXw2PV0jG+dbssuHV8AieW4Lzre3ZP6x5dfLfCF51vjXOa8mGU/WJV5lfQvN4aZXpCOUFT62y4dWsR/BeoFH5EC/scr2r/Igee1j7V9fk0eM5KHiH2CgVr+PuX6tnW+zD9vVLhzlbPh7Lbl7lPlqp+yC3y6XOM4r6t2P/cKv8q05eWc+KuegQGyXnNTsWXoNx7pFl/mGdJ+/KLms48g+XKF8ilgs133v2DzfKF+hc17JnvEN6lOF5CY8FqT7dMJHq0w0TeF5TfbphwMdLqk/XT6T6dMNEqk83TPj23fMt5Vh7eO/xw67rDAw+XlJ9un4i1acbJlJ9umEi9rkmVr+m+nTdINA/rBGrX2Pt4b3HD7uuMzAk//AwkfzDw0TyDw8TyT88TCT/8DCR/MPDRPIP9wInDyJx/Qzi/fcQn+9BPH27Xn6Erv/kBbzee9T+GP3+9af18kt0vTdYRse7gK8ThcPzevE1Er/+8HoZt5+fwvb3ryFefFgvP72G53++D+W3qP0jOv/m0Xr5+h08/8sNlH/64XUQ8HWicHhezyPvvB+uX4Hldv/xR7ienqP7/Ol6+eXLx/AH3l7D693+BH//Cfz9exdv18r3b9D1Xl6g/QdvMHasXCcG3x6e1+j1+s1zcBvffnwD29+j9fRsvfzyPl6vj6H8wwMgfnn0Dbzeq0dr5ZtnaJ1do/X68snrEKxcJwrZ8cPnX8J2kO85KNaP+AtP+4pd5fMvJT8ih88fjHn32aexzzWx9u3K8eh5Nb2nE8C6whcvEft86lu/vvZt37u7MHR/U+zzq88PGPv8iuHbZ1d4xv6l5PfneOyRfbz7/JB4/nzrOfb9rHcfd+AsGzZ8fsDYOJhYOXafTX7/MPj23V3HI/r0a+z7nJMUj2gF5sXHc6w9HKtft7WHk34VwPZwrP3re7716de/8Rzvuy82jYMZun6Nfa/us4e31reefdX3vjXpVwHf+tw2vjj2+TT2/azvfawLQ+cVz5tPv8a+V995PCKS0/c5duzaPxyrX2Pjh33+4qRfBXbtH95Wv/rWn+97nKRfBbr2D8fKyT8chq79w7Hv4ZJ/OAxd+4dj5eQfDkPX/uHYONPkHw5D1/7hbZ+Dkn/Yjq79wyv7YfIP7wRd+4d97+2Sf3gzJP/wMJH8w8NE8g8PEw7/cElgnaNC5Qu+sssaUs5d+Zu79g+3M/t1NFTPWV5sPUrxN9J1YulCVYf3w16PLqvVGCTvFcqfjmVcF6lEeeNRnaRVWSfj3q9/uFATsyav9FwfKEbJMtTXPCN818mly3BelT1MIK+t4k2u30aN6dwu6xqakqca5e/XNXFPHHLtWN879g9Xql6Ek1fZ84rl9+ej5OXL2N90DYLOEMGr3mdB3bJMX8DUQRF/ubDLOdq3cb2NjID6V6tyq3jdr3+49tbPkT3X9TjoZGZsPuZmTJ0hgle5HivVZV0vB/Kq65Nc2uUS5ftvEa/FSj5/KGt9vGf/cOOq06Mhe96Iag2shhnh8zE3Y+oMEbzqfRPsw7mFx9Hy8VjWFQ5MfR1Qpyy4bsOe/cPtnKyvO6h63rCCJHyUDWHd+z/zjPwP6bhgc0lIZN3BFvJaLNTGrNav2mivrDIdPOSVjMhyvUh630B9iuVq03ockf7hdtza6xtqyJ6zA8Uo+V68yP7BjKkzRFTc0nXIgH6l4wB1xgqiDKMTq5wRqF9zMmpAvbkW6VMsNyTQHt7SP0zGnrq+qudkXE/5KAvJK2upu+Y1/EFL1YuE+pXeGKDuYDFX9TXtck6gfs0XWYPqDsJ9F8vOekU79g8TVY3MpV9Vz1kNST7KkvHKbgbaUnf8ABvBq1qPqJ76TD2Q6rq+oA4vlnPyM9iHiwWqv07+hHhFcvtfgfbwdv5h+sziqZsve84P5KMsF0Q8hZkxdYYIXmV9uvlKnfxmuZ4kq0gtrnlplfMF9EuwatawniSso78it/8WaA9v5x/OF6rap5NX0XN+IB9lOSPCi2LG1BkieJU8zGDdbcorrqcO1h+W8zmsr84KvIF66QtYv3lFbqtAe3g7/zClS1buc+lX2XN+IB9lOTW8lv3hVdYZHLdAv9JxAF7prMuJv7LK+aQB+rWcIV6nyG+I5d9Ugfbwdv7hXFdddulX2fOCHchHWY6I8JIWsz7xavcPG171+gV2JJaxf9jwelz+4ULz6jpuhVdRN3+8PKbOEG0Pu3kV69fweG6V3bziOvonDrk6iH94Y15HfeNV++2BfqWzjnkEPGHZ8Kr1MdJjSJ+uyNVB/MO0U/nCeh0F2XN+oBwlEbNjxtQZou1hw6uQmzHklbIgeby0yoZXrX8dvPr24f36hw2vLv0qe05Hly/kKHvJq5o3uA8bXjGPp1YZ78OG11j9ul//sOHVddxQeFXrzcWrto8lj1dW2c1rrH7dr394Y16z4+A1/A0wtocFz+59+MQqY/3q3od9+nW//mFKqke/OnityJLN1RlKEvzmAdvDPv1ql3enX/frHza8xulX0pLJcfAaapFje9inXy+s8u706579w4vN9mFCyPQ4eA3tAbaHffrVZw9vq1/37B8mzH1vu05m+mHndVZo33JnKKLjJYL1q88e3la/7jl+mIyrTfQr5XXO3r92zes02HDC9rBPv/rs4W31657jh8mUbKRfF80iJ3/uPNDUxBf6YPcPu/Wrzx7eVr/uOX64VTtZ5D48pbswIT3i1e4fdutXnz28rX7dc/zwpryOCnIUvGahvNr9w+592GcPb6tf9x8/vJF+HdH/NkfBa2BI5N3yDxteI/Vrdiy8NoG83i3/MH3Q+ctG+7DYiv+zP7zeLf9wlvnev67hNev8/WsWzuvd8g9nPBTGeh3TDzuvbIKK/vB6t/zDmeY1Wr/2jNe75R/ONtyHW/0Ktms0G9rDklcU31RPEc9IXuF14/imveeXKNbHhcuel8zJX+v4Jjo7nNeuP1jf3B7W69MRZ3pqlS3xTUj/Hol/WPO6Jr7JErfWP17t/uHY+GGsX928duwf1ntpcPyw5nWpkx1iU3t42PHDmeY1Ls60HfEsE0fAa7uhPSx5nSqiZPzwDK1fJK/wOldzcGT+Yf1DTl5Fz9nL1pkcJeGzybOHdPydZBbOq90/XGletb6swfd0SMb6tZjj9Xwk/uFMfS+25vucalrM2HdXs1Lz2oxF9pDueQ31+9v9w/RObZe/a6Z3Mf5uEshYv9LbvQbfNR+Lf1hz49KvvOflnNJYTeUoGa8THj7TdpyH4O/Zx9Vhh9r9w3RE8gLyu6yFGtOpVcb7MJ0WOX9H5h/O1PfYruN4z/nw66kcJf+ejofPdJ1foh6XcfESuc4DInld5PIC8vtYoni+ssrs3eQyz/S2krybvEAoLwGUGyI/WN+zf3iq8mK4eaU9Z7yOmwkfZcFSqNSzap5Piq7zwdQkOA5G8aR4udSyaDf5YcSYTpwysKMIypNEEG9YbnUE5X79w8Sbv4kdUfKkPhM+ypL9p+LxTeQIeA19o6TzS5Bl/1KB8jflFp6xDJ5nEe88oI//5dQut6rH+84vofp9tuaIkeB1zEfJeB1TXmd5eDDgvhDBq8ovsbLe5Bh0HqC1+dYMr5KnZjXfUyCv+/UPa16dxzWCV51vjfNaHg2voRa5Xp+YV5gfsVU3yqVVtvAK8yNqHk/ssuZ1z/5hPa41vPI4YZ4MseXZLgWvbPV27ZYoSLDldqpOIMv+JZNPSec3nS0fj2XDqzy+UrxjHs/ssuZ1z/5hZz4hDdZzlkqC3ZhslJzXTPy/88fX8B3DkX8Y5dUzefKu7LKGlEuUT00j9vl0x/7hRo3LqV9lz3liPz3KrJ2zeyLrD1J9umEi1acbJlJ9umEi1acbJvC8pfp0w0CqTzdMpPp0w0SqTzdMpPp0w0SqTzdM4HlL9emGAYd/WMOnP33ykfmHndcZGpJ/eJhI/uFhIvmHh4nkHx4mkn94mEj+4WEi+Yd7gfPvI/HxAcQtav98D+IJkh8/g3iNrvf0Bbzee3T99+j8a5+MOvwIjfjNq3tB+ObF95vj8LxefI3EGyS/Q/L71xCPkPz0A5SfXcPzf4/kt0+RjK730iPfoOt9voHyl+evg/Dq/tfNcXheTx7E4eFP6Fa8Rgc8R+vlJyT/Hq6P+68fw+t9wPsBWm+v0Tp66pF/ga7//ika0O2zIHy4frAxvj08r7Hr9RNenz8h+T1aj/eRfAHXx81LtJ5+uoXyD2i9fv8ZXu+ZR379HF7g9y/g9b68DFqut+9uvm6O7Pjh8xf5/MO+93S4/Syy/cxz/U39EnftOcdnH/vsX5897HuPHusf9j7fOnDX/E2x73cwT771vK1/+NT3HJT8TRy+fTbWP+zzH+07XiLtwwLnke3bvnffNo5mV/FNSb9C+OwqLPv89LHv4WL1rQtJv0L4/MG+fXxb/7DPzkr6VSBWv+J59e2jse/pski7KOlXOzBvvviJbeMlfHJsnE3Sr3b47CBf/LCPZ29cKJZj7WGP7MJdj5fw6V+ffo2N54+1h5N+tSPWj+jbZ308bBsvkSX9GoTY51OfXeW7L3z6NdYeTvrVjkP7h31ytD2crZdduGv6Nfb7uoP7h5Gc9Ksdsc8xyT/cD8TG9yf/cD/ge25J/uF+IvmHh4nkHx4mkn94mEj+4WEi+YeHieQf7hXauDzwBo59uVD5hK+QHHhf5Cqfs0u/qjzV+/YPt7584aqnrENF95mkIYrg0hG47qC9fnNWqXk/QTKuY6ZkVKesRPnDcXuhM2Hv1z+sf8epX2VP+YFilDydNBmznOpd11cvSWy9K3X8t0iW7Y0a0jmS1fpsUf5wVfJLrscaz2cDea1UPYU9+4crNTFO/Sp7yjvERykqCZHJMfBaB/Oq99nRWtlTjyNT5Yb0vKsdTK4fXJ9Dt+t6AaquzX79w/p31tbjUAfyUfISU/lx8NrE8lqh9VkhXnV9kksky/YS8Vog3lrVoQvUfqE7DOuiKezYP9x4eZU9bUSlBlbD7Ih4bRdtnH7VdRpOkWx4BOsN1T0zFQ40z7BeZIvqTOG6Do0qdrFn/3A7h/XTLEeInvIO8VE2jNfiOHgl4zJOv7aIxxau35yojfYKyZLnBtXnqJG9TEZwPmvEaztuw+rTbekfdv6OhuwpO1CMku9M5bHwGnqkrkMG7GEjq3pYyjA6QbKuewT34RbylpMRrC/Zon2ajGVd1j37h8nYU9dX9ZR1iI+yULxmvDhsp8jDC27pOmbAHi4wr3NVX9Mu55hXAvUn7VAD6jej9oyVbOR/2bN/mLDSttbz1PVkT1mH+ChLzmvF+ytreHeGIpxXVT+yResTPr+ywl6gXvMc1uHOyc9Qv5I/AXuYdgjWb9btaj3rOvt79Q8v/Y7jCNlTfiAfZbngFbiPg9fw/ULWp5vDes1YZhWpxXq7RLJYP/kC1mvOCKzby6pbw/p00C+R85pw5niD3fqHze846zWLnvID+SjLmeG167r5EbzK9TlrgT1sZNFOR1gt82hkuc/OYb3mbAHrp7OCb6B+5ALyTqexCKtPt51/2P07CrKn/EA+ynLKK6v/6Rh4jdgvJK9juO8aWbTTAVXL9V2NLPfhCeJ1WgN7mHZI9ukCtQu5mKv53q9/OJ/7eJU95R3ioyxHnNefWX/rjt3FEbyG+YcNjydIDvMPG17t/mHD6379w+Z3XPp1hVfhH25/PApew/cL5R9ukX8Y6lfMo5GV/kP6NYPrMZzX/fqH3fuCgoNXYQ80HdfNj9ADan3BfRfL9IJgH8WyGbKa9xrYw/RgOZ+4XdtV8tlsv/5h8ztr9mHWU36gHOUgeMXrV7TTUUkeL5GM92E7b7RDktcL1K7Xs5zv/fqH/bzKnvIOyVGSTPzdvLTqChG8Yv16imTM4ymSffr1THUI7bMr+tcx37v1Dy/tC44jjpvXcP2O1yfmWbQbHq+Q7NOveh8P5HW//mHDq0u/2nktZoLXQKf7vlD9OTiAA+/D2B7G+/AJkn36VdvPa/Wr4XW//mH6Ixvtw6XglXTMa/1fJDa+yWUPY17tsptXbWcF6tf9+oc35lU8b3ddYL0mwYXz8b6Lecb69QLJPv0q5i98H96zf3ixmX6tOK/5EfAa2gWsX+2y2x726VdsD/t43bN/mKh3InH6tZpwXsNfp+wHNYmNg3Haw3jfxfawT79ie9inX/ccP0zG1Sb7cM15Lbrn9Y+hb9bt+66bV2wP+/Qrtod9+nXP8cNkSjbhtRlzXjsPR1wEP2qF+Yfd9nCYfzh8H95z/HCrLI84/Sp4LTvndarCGbwI8w+77eEw/3CE3YT6t+P4Yc1rnH5teX+7fq3OeA199RDmH3bbw2H+4XD9uv/44U32YcFr1Tmvk415HbZ/eFNeF4LXjl+rc14D+3C3/MP0QecvG+jXvH+83i3/cJb53r/aeRVhel2/VmcdCL237pZ/OOOhMPwPR7OVVxYSTvrN67D9w9kWvI70N4CdoQrn9W75h7PMF9/k5nV8BLxOg3kN9A/rC14iOdA/7IlvKud4n1bYeX6JYma/joTsKe9QreKbJK9dv1aP4TXMP4zj1Iwc5h82cWvO+KaDxA9nmtfgONNj43XD51f7vuyLH/b5h0scP4z066HihzPtNIrnddT5a3XWm1Db7W7FD2cZ7oel2RZnyp8bu+d1FsxrYPzwDH5nZeTA+OE5+u4K87pwzffO8w9X679/lT3lHZKj5Lw2k+7DJdgcNTv1D5cz9D0dkn3+4WKO7awaf59Tbvg9Xax+rdd//8p7Wsx4h8olXulf8u55nQeHMIf5h80FL5Ec5h8uFvg+gOuZThniXWHn+YflDe/klfW0nPMOyVFqXrt+rc4/O97w/avdP1zoF7qnSA7zD9NpkvPpyN9ERo51tPP8w/IFpku/8p5SQlmH5CgVr0X3vJI8Ln9TrgNnLpEsv4clymi4QrLJI7Kcf4K951zWx7Q7II+BaVe8jiXve/YPT1VeDJd+5T1lvNIO8VEWIlaM8dr1a/UlWrzQeQgAL0Y+Rxc8QfKFloEdRWVgJxGUx0e3mzxAcgHv1z9MvHl+2BGUV9YhPspSDJX5no6C18BDDa9iXr9F8jm6oFsGPFEZPK+i+2ClHecB0th1fgnV73W8jgSvYz7KUtwKxnPaJcJ5VfklII9G1nl/HPnWMK8mjxd4/m/gejftOu/PpvnWPDICceXr02gErzrfmuG1OgZeQ/ug9Kfi0S7TEcpN6BLJ8jlF86ryS6ge6PxOMD+ihdfl6xns2D9MXHlTNVhPBa9ilEu8dv1anU1TKK94fZ4i+Rxd8BTJRr/a92E5fxXKk4l5LxXve/YPtypfrnNds56yJBOsQ2yUR8VrFezyCsw/XKF8ajhvnoYj/3CJ8jVp6HyJctL27B9u1MQ4eZU95R2qSNee/o2R6tMNE6k+3TBxHimn+nT9AOYt1acbBlJ9umEi1acbJvC8p/p0wwDmLdWnGwZSfbphItWnGyYC/YDO9lSf7jgR+3zqs6t894VPv+49fth13sCQ/MPDRPIPDxPJPzxMJP/wMJH8w8NE8g8PE8k/3Aucfx+JLw8gfo3aP9+DeOKRH6HrPXkBr/cBy88grrGMrn+Fro9/7+GnZ0F4+eL7zXF4Xi++RuJ3T6H8HMnvX0M8QvIDJD++hud/vg/lT6j90wd4/kt0vevPUH51vf56X755HYTr+183x+F5PXkQiVt4J/5w8xG2P0f3+U9I/oLkz4/hBd9ew+t9g37//iu4Hp+i9fn4Fl7//U9ovaPfe/P7e0F4cv1gY3x7eF6j1+vvb6D88A2U36P1dB/LaB1cfITnf34M5Y9ofX19A89/htbnd2+BePvuzfrr/fQmbL1+99PXzZEdP3z2rs+u8r23O4k8fsX+RXbQqcduOsF2lANDf87x+R1i/cOx/ifvc4vn/E39Eidd54rYM3z+pVj/sO89PD7+F0j28bir96+n2bAR61fw7aO+51ev/ymSp5X1GrgP3zU/YmxczJVH3nbf9t4XHr+iC0P3N/net/r8w7H+pVh9GfsePQ9cr9nA9asv/jDWP7ztez3f+xqvfs3CcNfs4Vj/sI/HfdtByR62w/c+x/ceLjZuxre+fe97Ctye7GErfM8psc8tse/Fvfaw5/iV9ZnsYQ7f+tw2ftj3XBTrx4h9z+7CXbOHt40jjY1D89rD28Y7uXDH7OHY+OFdv4ePjZs5SfawFdv6h2Pj/7d9bomNN3Yh+YfXt2/rH/at71j9muxhgb75h71+w2QPc/TNP+y7D5I9LNA3/7BPvyZ7WKBv/mGvfs3CkPzDEF37h737brKHOfrmH972PbyrH0ND8g8PE8k/PExIHkqUh7b05KEtCKhTZmS5nnKVd9ax3nKcB1jlM963f7hVSfpd+7XqGeuQHpVs6bz+q04L7cW36gw5z5dIxnVUdP7hmV3W+Ybl/CleYb0c067vE5lXWq2jav19YeRwe5jVv8m9eeBlz3iHxKj4GfQ+17mxO0MEr5KHVvFyaZd1PR45Hw3iRcsXqgcL0K7rb+WoXecTVwUJJE91IK8R/mFW/6bUdQZcx8me8Q7xUYkyV3Q+dS77zhDBq9SfRPX5HMmyPUf7covy8WtZ3gcNqr+REVD/yrTrPPOoHkfryNe+hX+44isQ1oNZheyZrttAb4VM7MHhxTD2hQhedd0FyeMVkvW+Knk1dVJAO1nlGdTf0JrqzN7eoHocRj/vzj/c8Iz9ZH0dM9Uz3iFRVX2J144feiN4NfWt7DLO7y/Xox7jlV3G9XBKZGfpdnmfNGgdFWRD/brGHm4Fr+vrSaqe8Q6JquqE94dXSeo43X8Vzquqb5WDOmZYpoMDdQVpK6hfZWQ572TcAp5qZC/rdslDO2lAfbqKbKhf3fZwzragZlrPrOdpyJ6xDolR8Tu8ZLxmR1DGoYmyh1kBxWV9Z2Stf4E9TE0QguoQorpnqr6frqOE60dC3smoAeuoIZvq18wFXjmlHdfr6/qqnrEO8VEVmtdZn3hVPCqD9wrJup4VsIfpiBtQH0vLmrca1acD9rBplzySUQXWUbuxfnWqwErwKqvMuewr1TPWIT6qkvNa0f5Pgyd1jwit/yrrMU8Vj5dIVry2wB42hYOvkCz38Tnm9WdcJ79erntGHy0rsI7aP236/Orm9f8u2LOo5NVlD8ue8Q7xUZV/5eUk+X15BLyG1n8V46umkBcs56QB9jCrZLxc3wrLrOoxqGdFfgT2sGkXPOWLDK6j9j82fX516tfqfzivsorrunrNM9khPqpybnitj4DXQJNc8jiB+6qRZX3YWQPs4XKKeNWy1L8zxZvUr/Ma2MO4PZ+jdfRP1Yb61W0PV3+gjC4Ury57WPaMd4iPqpwwXps/HQmvoY9aggfa4XpileU+OYV1tumsV8v7qJHFeqJ3OqyDP4P1mU27rr8uq+ZKXv6x2lC/uu3h6rcLtgxVNW3H/Mie8Q7xUZXj4+I18DhhDxseL5Fs9w8bHrGs9S/kFfmHTbvetyWv+/UPG15dx63wKqayrY+D1zyurq+bV+UfboA9bHjE69fOm5mSHLVrfauqXEueqt37hyGvoetV8EqOhddQF7XQn/UY2qdGVu9fYV38agLtIiNr/Sv1pfIP18AeNu1a3xZwHVW79w8zUufqjnfZw7JnvENyVOyEBe9/0/nza3DtfjE+2mGwrxoZ78OCJ1OV+hzJev3K9Yf34TNrOz0ZraNq9/5h+gvsR4n9vCxb7hnvkBwVYdvfsfAa+qpQrC/DI5Yxr3qfljxeWWU3r+eoXe/bkle1jqrd+4cBry572MGrsOfb/vCK16edZ8OrmHe8Po2s9W8Bn/+hPWzatb7N4XNltXP/MOTVpYftvBaC1+79iMG1+4U9jNenkbF+xesT82pfj9gexrwbXrE9vMP4YcCr6zg7ryV/Tiu6fv8awSvm0adfxXy49SvmDe/DOWo/U91Fz5XVzv3DiNeo9Sp4rbvnNbjGu1iP4foV84jXr/ZDOnjFdpV+3s3t9vAO44cBry572M5rNWVPfp3HN0Xwiu1hn37F9rBd37r1a7Q9jPq7RfzwFvaw5DV0E9wf6lBe7evTrV+xPYx5xfYw1q+x9vAO44e3sIfrcd94xfrUp1/tdpLbHsb7cLQ9vLv44S3s4Ubw2r1+DX5TiO1hn361P6+67WG7fzjcHt6tf3hTe7gZCV47/1grmFe87/r0K7aH8fq187aFPYz6u51/eFN7uGW8muC97hDsGcH2sE+/2v2GbnvY7h8Ot4d36x/e1B5uef+7/5AjnNfkH4aw80pE/9tQq2VvCA2XSP5hBCuv9Ezh9++c12ANn/zDEGt5rTt/0Am2yJN/GMLKa0HE9w+d8xocLpH8wwhuXukJVee8Bn/RZ+zh5bgXI7v9w8v3gZGNPWyPbzpF7cYehvfB/vzDUI9jyJ7xDslRSV7HR8BrcLiE2UcD45v0eqzs8U16X3XEN52hdvn9gI5v2q9/2MQ3uewra3yT4rXsnNfgNw/2+EMj2/3Dbl51/D/Yl7E9jNsNr/v1DxteXfbwcfNaBvMaFj+M7eEqNn4Y2cOlL354T/7hDeKHj4vX4A6k+GGI0h5nKhyzVX941ett7fc52B4und/n6H21Whc/bNoFj+b7nP36h833OS77auX7HMkrH17nvAa/Vjff0zXL388Z2e4fZiNe/n7VyPp7umqZZ2wPm3b9PR1a3/vxDzNevd/TVdNixjtUiVER3f+qa39TeAekvpzB71+NbPcP08UFvtMysv7OGX4niexh3E6ft9X3dXv1D2dkVM7t50nwnrHPutl3kmJUktdiHP5We18I74Dcd+cZyDtgZLt/uFyg76CRXBDFs90/bNrVd9AjsK/vyz+ckTHY/1fBe8Y/16f0ilEpXqfd+4fDeVW8wHwSWM50zgy5HknmkNX6G8E8A636YB23Sx7IGOaXaFR+j935h0uW46adePJL8J7Rhco6xEdVSBfihO7QpGtewz+slvklUP4XI8vvX3UiErUeVezAKZJ13gKY74Uoni5Q+6luF9c3eYCWn4MMNvcPs2Qq7LrTtcfxnjFeaYf4qEoxtJpLXb9XD+fV8CDkKySbdjAfiEcj6zwhKD8M4km36zwh6p21yi9B7HkgtskvQfuo8/w47atW8Krz/JSCzuPgNfxDEr0e5WPGJZIxrzgf2xWSdR4+mIdQ84rzs8nrNShPl+EV9XeL/BKSV7BPrIL1TPA64qMCvGYdI5xXPc+AVyznaB81uQJP7XKN8q9pXs9Qu+SpQnkLg3mNyC8hV5+YGqd9VQteK5GSa4nX7Bh4DQ6c0zwCe9XIWL/qPF3ShDhFsly/OtYW69dze3uF8mhurF/X5JdgvJQ4b+oKWM/oszTvEBuV1q8mF2gfoPPMju2yI/8wzotXonxqvjx4Bcq7lR8q/zDx5R+WPeMdKkGgWtm5ORyBVJ9umEj16YaJVJ9umPDVXUj16fqJVJ9umEj16YaJVJ9umEj16YaJVJ9umPA9p6T6dP1Eqk83TMT6BXe9j3rt4R37hzXumD2c/MPDQPIPDxPJPzxMJP/wMJH8w8NE8g8PE8k/3AucPovENZK/etq/+x7i/dt7AE9R+zvUfg9fH7VffnwA8OgFvN4HJL95B49/+Clw3Oh3onB4Xr95HYkbKN7+gNofIPnxV4ibD/D871H7iw/oB/D1UPv1U3j+FyS/RfLHGyh/fvQ6CA/QdWLw0+F5ze9F4gKtlyeoHa+nG7Q+3t+AZfD8KWp/h9bP85fwes/h+c9uP6H1+B1av0h++gYt4C9h475GvxODN4fnNXa93n5C8md0wEMkX72D9+7z++h6sP2nL6hHNy/h8a/g+a+fP0TrEa2Vd2idff/xGnXodRCePPy6MX6dHT98z6vYbrrvOR7L2A7y2Umno/XH78o/PHQ/IraHff4ln794189BvvtiU3/g0P0S5572WL9g7HPMiv/Jtx6RvPL8mvzDHHh9/h2SfbzH+ntj/bK++2Bjv382bPj89rHvybfVr951FLueHRg6r7H+4K71667im4auX31++2PTrye+fTfpV47YeAmMQ+vXlfOTfrUi9j3c33rOj9Wvf4PkAsmx+jTpVwHf82ps/GGsfvW9t/Pq26RfrfDx5NuXt9WvXt5j9WnSrxyx8RKx719j49xieU/61Q7f+ozlMVa/bhtPnPSrHb54ia71a6x/OOlXgdjvqA6tX7PY7+eSfuWI/Z7u0PrVZw8n/WpHrH/40PrVZw8n/WpHrH/40Po19jko6VeBWP/wofVr8g9vhm2/p9u3fk3+4c0Q6x8+tH5N/uHNkPzDw0TyDw8TyT/cJ5TBmegd67NE+YgLAuoaGdmhX3OVq9fBU+7KT7xv/3A7s/+uuYDsGcs/XID8w0dQNr8JToGs7GGVYVzn85YXkDxXKu/zKZLVfQHrEtL7Aub/RnUHTbuaX1d9qx37hwuVL9zJv+wZP1CMkvB058SMuTvo9PxeqPWmCrJfqQvIMei876COg5HVPLegHha9L2C+f10h5MzRXjvW7479w7iOwCpkzyqWzJ+PMle86hoGnSEnwV2Q9nCheNV1kOQFdL5/UIfFyHpfhXnjcX2NDO3jDarLkrWOfXvH/uEa1X9ZhewZP5CPslS8dl+3IQ/vgt5XAa/5ah2Vlfoa4i86vz/ktVW8SR6wfm4R7zlx7MM79g83Xl5lz/iBfJT1Eq8dG9EF+bfQLsj1WROgX82NYeqYiQNOkYzrPBjeQJ0aXNcB100qXLzu2D/c/g+ZWH/HHCF6pusi0b8JXvPu6yKViyyUV72vAv1aEFifjkpkub6kkfW+CvUrGcP6dDWB+hW3V6H28Zb+4XbSeOpdyZ6xA8Uo2R3ecl5/2zmvs2BehT2cE7gP84KK/G+y/uNC1RW8QrJev2AfprZGC+pJtnAfNu26zpJDv+7YP6zrVrr2YdUzMmqmfJSF2Llyks+yrh90qpl+7vBB1e3EvKK6n4uV+q6g/mu+yqucP7U+V3iF89u69uEd+4fJqIL1gzFUz9iBfJSl4jWbqnuxM5hyy14Ie7hYQP1KLyB5lTzPIK9GVnUKW6Bfizms052Rn4F+Ne2K1z+57CYkb+cfzheqfrCzrq/oGT+Qj7L8K5FnZn3iVa2/FuhXXF/d1E8/R7Jaf7Ce80p9dfIjrNeM29v/cNXH2ql/2NRxD66vXs45r7wse9MfXmU99GkL9uFqgupsTxWPV0iWvM5g/fVilsH9bo7qq+t2qV//qVrvd9TYzj+8xKvjCNmzfM54ZaMsJ4JXdlqPeJX6cwJ5pSzUy/ssvWC1zKORpT6drtTVL0H9yBnk1bTL+f3H0Dr52/mHKa/Fel5lz+hRxZyPshxzXvntUPeHV7t/2PB6qS7o4NXuHza82f3DK7weyD/M6bL+jsIKr7K+Ou9uj3hV/mGoX928niNZ+3+BfnXzeuZorw7iH6Z05ev1q4vX6ih4nQVXgFXxEmgfHkM7iepbqQ+vkIx51foY6TG0D+t25R+uDuIfZrwurNdVkD2jarZYyFES3b+ueWWPn4G86vcxgFfKEthn6YDA+jKyWu+QV3qy3O8UD5BX0+7bh3frH/bzKntGR5cv5Cg5r/VR8LrIQv3+Kj4C6lfDq7ajHLza9avhza5fw3ndrX/Y8Ori38kr63/X9nBBilBeFS9Qv7p5PUeyXb+6eT1ztFcH8Q8vrVfHcUfO6x9D36tjexjvw5hH+77s3oft+tW0+/Trbv3DxWLTfZiPr+nY75+R6HiJY9Wvu/UP59vx2nbPa2h8E7aHj02/7tw/vKF+5fPTdh2cGh63hu3hY9OvO/YPE+HojdevfH66jpfI6uA3wNgePjb9umP/MBlXm+3DjNK86/imrAp+A4zt4WPTrzuOHyZT0mdem+BQV7t/+Hj0647jh4kKyIvUr5zSous40y3s4WPTrzuOH24Ur5H6lfNaHkH8cOiWYfcPH49+3XH8sOHVcYCDV75Uy67j/QvyryT5h22otuG16prXcl5Exg/fEf8wveP/vJF+5b2tQx8e94VqnpGoeIm74h/Osg39w/ytYtM5r+EhkXfLP5xl+r26o9nFKxtt525EumGEviq8W/7hbFNeuWolnfM6CebV7R9ejoNhI1yOezGyW7+ui28y7Yf1D2eZL75J9ozxOpejJLJ73bslaIeqQF1g9w8fT3zTzvNLFBvFNzGTqeje3TQO5tXuHza8Yh7tcacr8U0r8YauONPD+oezDO8TGC5eJ5mKyOoQEbza/cOx8cNuXu36NTzOdOf5h8uNeGWRElWfeL1b8cNZpuyCyPhhNrzOH19jeLX7h6vI73Owfl35/gbp19X2A/mH9Q8Ff59jeG2653Vze1ivz2b5O2Y2wuV92ch2/cpmB35nir7P0e0H9g9nmef7V96zYsZ4nVVilIxXNj1t52l+Ip5z7P5hFli+/P0rNRngd5Jz+F3WCq8L9P0r5nWB5/dA/mG96py8Lvg3dPSZpprJUR4Rr9PgkEi7f5g5IkdL7eVC8XyKZLt+pY8EDVzPUL+a9gP7h7XTyPn9K+sZ/1yf0itGyXhls9F5FExWz4M/mVffJcM8IOUC5pegowX5JYxs8ogI+UJebwTzR7Tqg/Uze3ujIu327B+eqoRELv55z0rmX2+mfJQFf+dJZ4PNUccvdOrw93TCHi40L3J9ojw+BeK9QPlh2JhRXgKY74Uo3k5Ru9SvrZqzfeeXwHmlMHjPGK90QHyUbCpGzNV0BLyW4amGDG/L9q95MW/yNy3zaGTDI3ie1Xl8dH4JOSenqN3k/XH493brH/byynvGFKvK88Pmcsx4ZXPU8RNsGRsvUayuNzkEnH/tFMlmHwfPPe1qHi/wvKrbfbzu2D9MvPkRWc8EryN+NOeVvVY/Al4j8ugpO0fxqvM5QV4blFevgTwbXnV+RAevZ/Z2zeue/cOamjX5ETmvlUjJtcRr3j2vWbgmUHYR1K8m35LmUdqrV0i261c6OzAfLF7Put2nX3fsHyYo79sqWM/o43nFOGSj5DqtmB+Fft0gflhB56WF+YdLlN+w9OQfLjz5h4uO8g/rgHknr7JnOeOw7D7j8KZI9emGiVSfbphI9emGCTzPqT7dMJDq0w0TqT7dMJHq0w0TqT7dMJHq0w0TPp5Sfbp+ItWnGyZ867Nr/brz+GHH7w4NyT88TCT/8DCR/MPDRPIPDxPJPzxMJP/wMJH8w73A6bNIXCP5HZK/Ivn5A4jbt/cAnqD2p6j9Ebred6j93ovvIT7C6/0Stb95B9sfPQwcN/6dGBye129eR+Jmrfj69gf0D6+efl3Gl/sf4PG/g+1f36HzH2P5A/rBa3j+V3S9D6j94w36vc+vg/BL/DsR+HR4XvN7kbiA6+XqX34J25+i47+B9/mb2xu4nJ+gdfDpX9A6Qevz5hPaD27Qgv8Er/cTan/6Bv7gp/dvg8Z9jX8nAo8Pz2vser39BOXnN2j9vUXHf0Tr9fl90P7qFrZ/Rh26+T263nu0Xh+/gWvjy0MoP7qA8vcf4cJ79+zD6wDcvr74ujE6WK/RuIqUsZ3js499fkHvezfP8V572YGhP+d8Gyn77OPY51mMbd8DhNrDZ9mwcb6l7Hv+/AWSvesVy5716/Ufu3DH/MM+2bf+zrdsj42XSP5hO04jZZ9+3daP71uf3vimX2VBuOvxErH+J9/xF9l67Po9uwun2bARaw/79tFYf+/feI7fl35N9jCEj0ffc1G0nx/Ju9KvyR6G8OnXnce1eK63qX5N9jCET7/G2sP4PjmUfk32METs+1fv86lP3pN+TfYwhI/3WHu4K/2a7GGIWP9wdJzLgfRrsochYv3DPnu4K/2a7OH1cuz6jNa3yT+8Ebr2D3elX5M9DLFr/3BX+jXZwxC79g93pV+TPQyxa/9wV/o12cMQyT/cDyT/8DCR/MPDRPIPDxPJP9wnlME1QXR+4fFaWUPyUqD8wwXKT5x78gvnMC+1wb71azuzn2cuIHvG8g/zUdUsM3qzkP/ULZrghMjS3q3VPDtkVPcoq9QYr+xyqVKmq/VZ47zUqL3aU55phELlr3faw7Jn/EA+KiJqrIzMud0hPGO5rp8xWyvrGtQ6L7zk5RTJkpca10doQH060654rAPrv26pXytdqMSd338hDxSjKljqeP6finRdADYPrzAg7V1d6MEhq3JCisd2te6C+IvmHdZlyVbqBaB6J+2G9Zoj9WuN6rusQvaMH8hGVbHKBPw/+tzOUITzKuY9Jyv1NWBdFa1v5b6J6iYZ2dRhEBN8pnoE6yW0iHejj/erXxviqXelesYPJILXmfhP0zmvJfkxVBXgOkh22dRxMDyKicF1k3Q9D1D3zFRAuEDt2g47jH5t/4fAunmrR4ie6bpINVsj9byVpZI6RbkIrgWu6pLlqE4ZlOmYAK+0FdSnw3JGxi2oK1irKcnt7RU5jH5tJ836ur6qZ+xAPqp6VlNKp+XcnNsZqllw7X5h7/ICimvkjED9Wixg3UEjq/pXqqqmXp/AHjbtkiddj2fP+pWVibRfR0L1jIyaKR9VPaoW9GmAlawbdc9rFlefjt2N4zVyTqB+pSMG9V+NfCKPVwauWp8E2MOmXdtdh9GvZCTrRLv4Vz1jB/JRVaIoar5YOrcr0IfFUF6FvUufHiWPdjknLa6L36D6zZDnOeKN/AzsYdOu1vOfDqJfKTvV+rr5smf8QDkqxusoX5hzOwPltQ003cS8m3rqdjknDeYV8GZkXF9d1ZP8Edb1naP5bf/jIPqVl023XlfBUl+90LyWHdeni+BV1t2ewDr5WM5nsB5zOUW8alnWu5sp3qQ9PK+BPWzaJU//VB1EvxpuXPaw7Fk+Z7xOAa/zY+C1CeT1Sp0A6uJjOZ82QL9SFqrleq9G1uu3BLzNamAPm3Y5v/9YHUS/Ul4LR51ZCdkzelQxl6PKBa/8n7JOQUkI5VXYu4ZHu4z9w4bHK6tseLP7h1fbD+MfNty47OFj57UO5FXwZHi0y25eT5EseDG8qXmugT28sp6dvO5Wv1Ji8rn1PIWj5zXQNSLsXXoXSP1olw2vkseJ0o9YlnbVFOuxGtjDph3zul/9ynhdWK+rIHtG1WyxkKNivI6LOf+nrFNE8HqqTgDrD8uGV7Fv0quXyzwaWetftN/VwB427er6h9GvS7w6+Jc9o6PJF3JUOXuMLeb8n7JOEcHrpTqhmq6R8T5seLxCsrSnNW9qH4f2sGk/uH6V3LjsYQuvzD0xLWf94vVKnQDsHiy7eT21yoY3/X4V2MOr7YfTr4u1x9l5rWf1UfA6CeZV2LuGR7uM9aubV20fo/UI7WE3r3vWrwvFjcsetvE6z+pFMzkCXutwXsX6Mzza5XD9ivWn3R7uSr/mmtcsXL9SO6okpGe8CnvX8GiXw/Wrfg4q1tnDXelXw6vLHrbxOmO8jo6BV+3e9SLWHvbp11h7+LD6NSfqWSXCHqbPOvmR8DrPyJ7sYZ9+jbWHD6tfczKuou1h9iRPFtkR8FqRiuzJHvbp11h7+LD6NSNTEm0PM15bchy8BofixNrDPv0aaw8fOH6YqIC8CHuYqjQWV3AEvBbhvMbawz79GmsPH1a/stizaHu4nRyLPRzBa6w97NOvsfbwYfWr4TXCHm5HPM70CHjNwnm9W/5hRlC0PUxG1BBtjsE/nDWL5B+2oiB/jrWHWWhnM6mPgtcs+YddiPYPs1DsdlIujoTXqHiJu+IfzjL1Xj3cHmavY9tRQfrF693yD2eZL15ilddqzlXskfAaGt9k7N/JGtm2Dy/v00Y29i6IS7PYw13EN2UZ3icwZM8YiXMxKu5uygSvHcfBZOG86n20nqyRw+ObBE8mfsluD3cV35QZXoPjmxrBa/vP3cc3UTSB8f7CfjU82uWV+CYnr+J4w5vdHnbzunf9ivYRjFVe2zHff9t/PQpe20Bew+KHsX6tYuOHM0/88OH0K4qTtDQjXonk9TjWaxt43N2KH84yZQcExw+zx9cj4vX/z97f7MitZOfCMFms3awuNEBJqA14dLgtSIBUV3AGjY8HGxIg1ahVKN1LD16YadgbR9LER4I0NrYgAVLdxM4XHnjoS+g0PDhDp3EGbxrOw/jinxmrGLki8o9BZjzora6VZDJJPoxYiw8X13J9T1LzZLw3BW3Ia259Pwe+f9MdD995P+dw/lX9kOv7OZni9W/7fz+HP0B2g35/rpqusaF/ZUc867T1+3JAhyzh+3TF6nVwQP9azju3q8D3LFswXhcFO6q8EWeT8I+SnuH8vrqMexbqRa1uG/pXeuEa47m19fux4P1hMx5ulx/cv8p3k63v07E9Y691s/ck2VHlvHIT45X0/p5k4j5jSD13mRj1IaB9Zx5uFO8XwJbv0xE4j5vxcLv84P4VXK8QfM/46/qUXnZUnEsySUmq33XvDQXLhHGD4sWsJwFt9oBo9f11evRmHQJg02+bdQZq9YAp7V5eEdI9P+7Yv85VwSLbenzPWNGBaTXnR1Wy4iFklhP+UdIrCve6XLKehK7/0m2n+sGf4tGs05OB+jApAfVeiOLtFCxvee++/9h1fQlQf+gO+J4xXukBZ7IeDOV1WS09Hn7uC4VvvbUU1GPqslf1pPb8wLo/LU/GuCBqj34Ay9u6Xt060K7zm9B6a7XgVdf5qRjRFdu9KgReXfdA1Y9QhbysNjGeA+h0kgtg6zp8Zj02zStc3tZz6tZtd57fBOr33QHbM8HrhK+teF20NeJ6Q+FeGUyPl+U6+w6vFajHpm3JU6l4U/UlFK8nYHk7vrt53bF/1dfrib0+IueVF1JkR8Xm4akqptc7r84PlHR9tNk6G/rXtt4StOX3S1A3E87jevnB/atZV/Uu2J6xp3PsAqhEVUQyydlAKUjfskTqvge6zux0ra0heclBHcscnC+sLl7WU/3hUh2XdVzLPUvZdaaPiuUPi4+GgtifbpyI/enGidifbpw49bRjf7phIPanGydif7pxIvanGydif7pxIvanGyd84+HYn24YiP3pxgnfeBjzr75xUV/+NcbDJqI+PAxEfXiciPrwOBH14XEi6sPjRNSHx4moDw8Cp888ceVpv35o4ub9fQMP3ph4C7cH1r98Ya7/CdgfPpu/99dg+bsP5vLHr+474R7YrhcOz+uPrz1x7Wk/ujXw/cEnc/kLc/ntF/D9J+b6N2+vzPXfX5r2R2iD9T9fg+87noErsF0ffDs8r+l9T5y/97NfnpnD5ebaHI/XYPw8fWl+/7m5/vPLp2C8gaHxGIzP79fm8st35gpfr93mqZsvbzbGu8Pz6jteb7742fAy//78gbnCxQdzhXcvze29Mte/+fzW3OJHsP0/gbFyBcbrm8/mBx8/uB3480e3G+NPSfjwjYdhHAPjY+w+B3v+it3HYPc1zvc5I79/DU0fxnQMiJOoN3XCVw9+AGzf+9dtecN4jHqTwLb5Er73rxCQ1wzZ/s50/5Fj1/owBjS/Cdi+umHMlxC4t6UNx+cfgP07YGPXCfZcDyL61274xsPbPqdDn78iPMF5OvrXbvjGw748o3GRp31nno3+tRO+8TB2/4rdt2Dzsu/znE39a5aMG4fOH4a8YP4Vncc39K9jH9fbxsO+/tV3fKLjcVP/mowb28bDvrxh+RGYjrEr/zr2fMRt4+Gd5zcBO9mTf435Eia2zZPx9a+oDhn9aye2jYf37V/RvLToXzuxa3141/4Ve44X/Ws3gssfBnbquTz6V4Fd68O79q8/IHb0r904tD7s61+T6F83wqH1YV//ui99OL5PZ2JbfdjXv57E+9eNEPXhcSLqw+NE1IfHCTmP5rZ6w9LO7tQXNusPawxeH05lZWRdbLhgVcKr/ju/ctSudeBlvFuqOs8q/lV9C6VdqMO86LY1QteHVf8YK6+5qMmdkYYVfqenpWKXMC8B79xsan+oXfs26D4KZt121Rapreev6uIDe2j6cGr2d7mLUtTQp5xKXtl/GW+YkJHek6I8+3G0fSqkrQ9B2rXZd+VOvw2N0PXhTPJq9a+y60YpujWQOW9NkvP2BPmAeBXnLSWgv0ahDkHaBPRFAf11WoSuD2dIvyt2xbJDrxSvGeO1CIZX145bbb+NVZterhPD1v2EoD00fTh34JWtwZogKV4b2Wiq6J3X1JlXwUtGQD+6Wh2C6ks2gf3nSHf/vtD14QLzr2TKY5N6Vs1ZN7d53tBwqVwUy5WLvTekvv3plopX3Y/OiIezRvUVvAD20PThAvGvKRExJ5nwJoPlvFjwFpNh8Jp59qfLl+rOSPWLNONhymO12v+xtYemD5doP0nRmZZMeINQxivjeEaPmM7Nw+FV92euV/szZ40ZD+cL0MdX20PThyuE12zJeU0b0cS3nJUzyms9YbzW/fP6X64Nr8R5a/upCztraiMebvunnwN7aPpwhfjX1f7qbHXGaz2tJ6wVd/+85sSzX/NM8Sr7Lc9rIx7O54pHaA9NH65/W+9fs4XgdSl5nZZTxqtosV73zut/+vVrphdluTqvZrPaiIfpeDb64Lf20PRhxattvZx3HWTDNmOnsJ5WU0ouES3W++f1P1x1ahHvtrx268MtjxeddovQ9eGm8uN10vKaLnvntXDmVfDQ8qp4qY14uOXxBNgD04dTxavNvwJeyQqvWQC8/qsrryLepU5E+kuVH1Eb8TD1v8Vqv+XWHpg+nC6r9f6VRg7MsVI3yyJgymY1oaFHwxjOFv3zOnN9pCTOGz1YMP7MeJgO5lzweA7sgenDGTYP09PABio9OhoSc5VikpRslNSTvP/xWjrzKuLblleVD2HGwy2P0B6YPpwt/HhtVnmdB8Cr6y4IXlpeFU9mPNzyeNpptwhcH84XiH9dw2vRP6/V1HUXfpLrK16742E4Pu28Bq4PF3PEv5q80j9bXt0Hy97gzuuZXB/ej5rxcMvjCbAHpg9rXt3m4eB4nbgmOIl4t+W1Ox6GPB7Ov+5YHy5nXrzS/2t5dR8sewO/nXbCtvHwwPRhzaubfw2O18SV123j4YHpw9XEy78Wq7zWSQC8lo4JTtvGwwPTh/VE5jYPG7yS/nklzrxuGw8PTB/WE5kbr+V8hdcmCF4dE5y2jYcHpg+TxMu/rvL6t/3zSnfJlddt4+GB6cNN4uVfq9kKr8sQeC0ceT0ufTht/ObhVV7/LgBel+pxC4rj0ocpZX68Tlte/+eid17pnuWOvB6XPtzy6uZf68B4JcQ1IfG49GGW6S2eTLv5V3oWNK//QIhz1tiekLnvwnHpw4xXsnY9k1cCeO35Ldjcndc2Hp6t2F3x8CrvrT0sfZjzOun6HQXG60LwuuTJaozX/5fxWuhrojd48Kr9ZbmaPwzj4Taf6RzYw9KHW16d8ptYcqnOb/qHMHh1nDJ0fFuu5g/DeLjlEdrD0odbXq35TQavzQqvAYzXQngHF3TnD8N4eCz5w/g8bPCahcbr3LkWwrHlD6v3kNx4Xa7wmrTFGfpCOeeuwQU6P7halz/cvo9zAuyh1Zcw3wu8C+P9HMbryvs57tVY9gS6L6686vfpqtX36WA8zHgE79OBOEsh9PoSmD7MeJ1nC8arGLmM1wmZcL/Wty7BzrnjnCH95UJdi93xML125XV+DuzB1R9GdMSMPTJhr3mzc8J5nbP3JKdZCLyyfXfkVca3y8SsHwHi4bxRvEN7cPWHMV7Zy+n89X1KKJuRywV/hT0Xb+skvYLtu+M+CF7yxqwvkYK6IPRojboD0G4RfP1hRB+m54GTSKaV4LVYMqrnRTC8uvl4WV9Ch/CyngQhkrfWNnlW9tDqS2D+lV3RU8YrITMeGxZMCqiE3t43r4xTx8Q1Mb5SUI8p44fV2m1dnxNgD67+cOVQ54eFD4rXlTo//fM6ceZVxLup1h1lfQnNK6zHdgbswdUfduA1EbxOeGyYMUoLcTqC4NUtcU2et9qsd9jyKpdXisdzYA+tvgTmX1kBPcZroXhNGK9ZILwmzrzK+LdWhfdkfQntX+XyShX6gvbQ6ktg/pXyyu9vCrKU67IzkQk31Xs+ojt03dn19YdzUH84H2394UxcsW1lM16Nqw6k/rAzYn+6cSL2pxsnYn+6ceLU04796YaB2J9unIj96caJ2J9unIj96caJ2J9unNg2Hh6cPmz53bEh9qcbJ7aNh0enD48EUR8eJ6I+PE5EfXiciPrwOBH14XEi6sPjRNSHB4HTZ5648rR/fmPi4/v7Bi7B8k/w+3D9F+b6H4D98fNDA48fgf37sH65DS/B73jh8Lz++NoT1572k1sT15+MxTdvwPJn8Ptg/bdX5vrAvH1+adofv5rbe3htLv9fX1874RH8IQ98OTyv6X1PnL/3s6/B+Ph4bQyD55dg+aeX4PtfwPpPzfX/19+D7YNx9fmtub2rd+YKX5+6HffL64cb48nhefUdrzdf/OzXFx/AeHoA1gfLr1+ayz+C8fr5rTEgv92a4+/bVzBen4Dx+OSzOfAuf3ntgpubd7cbo4fx6g3fePgBsDF9CnvOdifOQvRgX/3JhpPhpHhvBN94GHv+iur4ANhzP0yXwHRHG8Z+n+OrD2M8YHoTpj/d4REZv3fGZ7x/5fDVhyF2rUv48r7p/WvMlzCB6cPb+tdkS//qrDeN3L/66sH79q++uj86T1sw9nnYNx7e1r/+Dti+cRDqX2PcxOEbD0P4+lff562+/vUkPs/h8I2H/+C5vq//9p137/AT/SuHbzwMefD1r+eIjeUfevNswdjnYd/xhI1H33wJNP/Q07/G568C2+ZH7Nq/bvv81ZWvmC9hAuNxW/8a9eHdwDce3rd/jfrwbnC2pb1r/xr14d3ANx7et3+N+vBucLqlvWv/GvXh3WDb9+d27V+jPrwb+MbD+/avUR/eDXadPxz14TCwbfwb9eEwEfXhcSLqw+OEYzycqbq0F8C28J7a6hP3rQ/nBKkXrva8rVPLStRWDVviVtJ5f8iI8y5096O7YxfqME+BrcavKjsv7dysP96ib324kjtu9a9yzzNeEJ03rCETVid/IkpN94rMuV2zjndVux2LXQGetK2vg6mxvFR14kPTh2uy6NyOhtzzgsjGZXyM8H+qvtv6ih4SbjhT35istWuzX0drSx5SVW9c1/+XGwhMH04Jxqvc85KVf2dHRQmei396byfJy/M7rirj3ULxaLH1Bi+ALXlVbmuF98nqco2e9WE9k63rx8E2WTFec8HrQvyje8v0hsx9F/S8OVlrwz5IsH9OcZfX7n5YPevDOfnfiH+Ve87757CjKlkLmrKplqnuZdEbMvdd0P04JuvslKQGT60tx29FTP9KJqS7H2fP+nCxTP68fj255/W0nvOjKucVa7JYLNMm7Z3XZeK6C7of3WSdnREVGJ0BW49fw7+mZCL7vASmDxdL23Yk1J6TKWskyXid5g3lNVumy977v2aLpHa80dH95yZr7aXa4AWw1fg15+GUnoruvr8968PlzLYd9bncc8IbSdKj+m+8eeYka9KZ80ndFyivjm2R9Pgz+zNDO1+afXxbW/W3+83gNWtc++ofWB/Wp8XGv9zzlCT5Qh5VxnjlfX2r4fAq+9Etzf7M0IZ9t1tbzttNZfhX2c06CU4f1l37bPPwah9ueVR5SLyWjrsgeViY/ZmhzRp7CR7PgC3n4WVl+Fd6dnLBa2D6sAuvueCVeVS+eqp5LYfDq+xHNzX7M0Obklisjs/WlrzOTB1R9iZPgtOHdYc527iWe56xpvnyqAbJq5s+DHls7W592M5rz/qw5tXmX1d5lUc1SF6VHlxP1tl2XtV1YPrXltfA9OHath0FK6/sBmlAvKrxZsa/0KYkSp6grXgw/StdmIk7xcD0YWLdjoTcc/ofG6Ga1yk/nAHFTSofwox/oU23Jnm8ADbkVfMueQ1MHybYenLP6dEZvM4Er/3rEpVXPNzy2G1DHlu727/aee1ZHya27Sh08JoxqSJnhxOA3lT56cOJGf9C285rt39teQ1MH26w9Sy8Lvjteu/Pcxae+jAWD8PxaZ+HBU8tr4Hpw01pedwt/igAAOjkSURBVN6v0M1r0TBxMeuf19z1+atbPHw4/7pffThtCJLf1MGr6KI/lZlOfcLjubpbPHw4/7pffZg9Q511bkehm9eMP9kJIQ/GNcXKNx7et3/drz7MeJ13bkehg9diwU4oyzWYJ/3CY7z6xsP79q/71YcZr+vzmzp4LRcsz4Dx6poMuC/450s4x8P79q/71YdTsqyX3duR6OJ1rngNIW9tp/rw4fzrfvXhlMzyZed2FDp4paFwKvxrCPGwoy/wjYf37V/3qw+zx+VN53YUOnitWWIiGydlAPlNlSOvvvHwvv3rfvVhymu6Ca+FcMskAH3Y0ccflz5MuZK8evhXOvuWC+6W+w6IM/2YDMVx6cOMV9K5HYW7vKaU12rOExnLAHh1vIE9Ln14hVfLGnd5zRo2FRf8uXrPNzqZfvyJ4rj0YcaVL68555VfDsVweD02fVjx6u5fGZkkGRqvx6UPJ+14dfavJeeVfy0fDq+O8TDIbyqR/KZi4/ymPecPE3QeFnuet/lNLEOhEc9eB8SrWzwM8w9hHltHflOY+cMor3fz1uoZH7r1sHh1i4ex/GH3PNOe84eJSplwyR+WdQgmQ+T1yPKHW73JNX84XeE1gLgp32k8XCzM965a25I/vFS8B5Y/TCaIjij3nN60MnrpUbHb1wHy6hYP5wvz/bkc8Az9a6Z5DSx/mL3w2L0dCb7n2SLVvOa8wo+ImwLgtdipPkyvkmr1/fTW7vav9OQB3hV6zh+WCd729fie50vKJLswGa9LyWs2DUFHrHaqD7NXQKeddrd/pSei6ua15/zhaoo8f+V7Ttchk1LwyoVhOn2TbO78kGxfyHQaDwpVP0I9M+62M5IYdUNau60PY9afmEjeA8sfrubl+jwYvueM1ym9MNlRlexUkFnesOIOfT+nc+f1Qn9husZOQf2XFNSHafP8JE/6+4HlD5do/Sa255TXmh4QPyrOa72sGo8klH3BI79J15OQ+9xtp6B+UwrqN7V5fnJeJpvWb9p3fQm1n1Y/zPZc8DrlR1Wxc0mtZRZG/SZHXs/0F2Zr7Dv11UD9tTu8VjZee9aHC51naqOoEryWBq+siFMaBK+uKcxP1Bckj9025dGsj1ib9RFbXuXyatP6iHvWhwvFjXUeZnsueE00r5NSzMoB5IW73mmpOEjx2G23ubNnwIbzsORJ1/4MTB9OUV7ZnrMiE6QRR8X9q6x72Xc9Uw841h/WdfIugA3nUV2n1lKfuGd9WJcVto5rueeZGXiyoVr0Xn/YA7E/3TgR+9ONE7E/3TgR+9ONE6db2rE/XZiI/enGidifbpyI/enGidifbpyI/enGiW3j313719ifbjfwjYf37V/3rQ9btzMyRH14nIj68DgR9eFxIurD40TUh8eJqA+PE1EfHgTO3nji80MTfwLLf71v4vK9aT8C9hPw/Y9g+5cvzOUfwPcvnpm4AvZL8P130P7yzAlwO144PK/nt554B+znl2D5axMvPoEPHpvmQ7C991em/SuwP4Lvv0J+7+ra/P53YH97+9oJVx9uN8fheT156IdH38wr8e21OYAffQXX+aVp/nzvo/nBLfiBG/ADn8Dya/D9T3B+eGWYD67fmd9/eW7aV1/vu+DB9dXDjfHT4Xn1Ha9f4GX7yBzAXz6C6/yZOX5uvoIBdh+Mxw/gB77dmPYv5vdvPqz/vetn38zvw/H78qnTcL1+Nqzx6g0YB8E46RGyHLO31pc873uijiiA3ddA3n2fiyfI+tvGy1Bfis/pBKCedOa53Pe+5xz5Pvb81Xd823Bs+RIXyPq+PPnqDL7L7+hLUffngDzAefgJshx7Pov5U7gc8vYDYqM6hQU/JOOGr3/11nsBfPNc0OerUffvhK9/9X3u/jtk+3D9bfObon8V8PWvWLzq+5xuWx6T6F87gfnXv0LWx64L7HkO/D7mX7F4OPpXAd/ndL46g/d4RNbH4uHoXwV87099n89itm/+MKpjRP/Kgc2jWFzkmweD8YaNZ/R5a/SvHL7j0Vcf9o2rth6f0b9y+PpXX30Y48U3T21X+nD0r362rz+N+vB+4OtfffVh3zzvqA/vBr7+1df/YvN01If3g23zTDEb4yXqw/uBr3/t+z4o6sNu8OUt6sPDgK9/jfrwMBD14XEi6sPjRNSHB4XKtQSy43jMVO3dCzdbY3D6cCoLD7NCxTkvQs3+ysKoPZw6l6J36zuYFKoe8wliB64PV6oO+pq60nxIZKySdMVWzlkrg5KIVg5Jv8idW4Io/6qug7NuW9dAx+zA9eEa5bUUVfwLxiYvp8//YsdH+ue1cC7wL89rpni86LZ1/41zxA5cH9a8Wv2r7CTC+nFkhF2tlWA4CF5LX14LAudd09b9cjA7cH1Y8/rDmjXYJirBayMu2TQQXitC/Pr6loDH8i6vRj8czNYITB/G52HpRZkjzvnVSpaETl//Jwhe63nh11+9Bv4U2ClJQV8zmx24PqxjH3u/qwlnvp7W83xZsKE6KViz0D8m/fdFSsgs9er/2sbPF512RhKjj6DdDlwfVmG+1b9SGnknTDIt5/k8ZY0k6VdYE1jZmL1PsH3x4jUj5rx7x16y9vEr61vtwPXh2rZdvb1GdAMlSbnIGam8XyxvUtx3tyvB6x/dVlU81pN1Nmvstdov0m4Hrg/X2HpZw0lMiWgQz3vVJaKhb/+8sl7TjrzKfnRLs+82tFnfbSHD3EPswPVhnNclb3WdNrJR84TTyy/aMHh1hORxUZv+FNj04IpV3ux24Ppwbd2uBGtNJ3jlE3AdFK+5e4M8yesUzMPApqRJ3i6c7BaB6cOof6U0MiazpeKVHxfvMj4oXt304Za3E8QOXB9G5+GgeS0WzqsqfbgG+rBpt7xhduj6sO17Cnd5ZVNwxbY6KF4hjxedNiUtF9s8R+zQ9WHbdhXoYTBC6X8p47GecNdaB8Lr3HlVyGv3PEwPTvKG2aHrw7btKNBTx3ilRzNsXt38a8vbqZPdIjR9GFsP8EqC4rV059XNv8LxaLdD14dt21W4y+tUfW1QvLr515a3E8QOXR9W7bVt/vUur/9Epkld8GewfefClO474OtfzxA7dH2YNN3bVTB5TUlS/YUsElJTTknvffM9ePX1r+eIHbo+rB5ouM3DjFf5SH3e5g70Bg9eff0rFg+Hrg9jz19NXrOG8dowShcBPH/dYh7G/CsWDweuD1dYfpPJa855JYzSEPIR9+hfL5zsFoHpw1UhAyc3/5ovKa//QCakqZrkb8q+A6c9+lcsHg6+vkS1WLueyWuxZBn2lNc5f0RWu99n7AV79K+YHXx9CS9e6Q1jRQPhKZlkLGYaEK++/hWLh4OvL1EsOrerF3fwWlFeeXZTOVxeR64P86m1azt6scErJ5XxKrLWSvfnKXvBHv3rwPXhRDx+c52Ha8HrjIgXW/K+eY36sBVevFIyB8rrkenDmlcn/5oKXkvGaz1sXkeuD2tenfwru7kJidc9Pn8duD7sNw+zNP+S8VoHwuuu85tKnb90D7GDry+B8Srym/KlyiSmlywdr5Oh8eqc32TwZreDry+B+Fcjb61UvNaD5xXLMx14/jDqXw1e2RtYjFeWTV0n/fMa84ftQOZhg9da8FoxXkkSAK/U3//BbVXH/OGF0jowO3h9OEd4XfIrlEbClER2z8qkxGk95bwWPfPK4vP/n9uqbv41X4D356x28Ppwvt6/smhpni1YMLzgr75SlutpNU2D4JXu0N+4rermX9lzyKmTHb4+vOjcjgIdEuUsX1Iai7nisp5UM57F1rfun5Jp6pgV6eZf6dHWq3UGMLtFWPpwOlPavW09ltFEeWWJiPNM+lSWRJw12VS88dwjUjLPHXl9Ir+gcnfOOm16hNK+QOyw9eF0qZ6h2nmd1FPG67TidUNmeZOxd9eLZUYJ7jvRtCbEkVddh8CoAwLtlucTxA5bH055YmHXdjXYkec8mUnwyk4Fq4e1ZH8EwKtvfQm5z/c67ZSYdbfsdtj6cKqvV2v9JnaFCl6nBbsKeBEnVucsC6AeTOlZvwnj1b3eWtj6cMurdb1K8FoqXlPGax4Or171EVsezzptypu8Tu4hdtj6cKr90xpeeWmJUsy+ZJaymTvXVfX6Reac6gp5vOi06WGa9UqtdvD5w0vLdhUKwqWmXIxSehYq5pHZ+axJz7evCSv+5riiY/3hQl0nF262RmD6cKHmMat/zcUamXpBi16y9J96yf7ou4yeB2J/unEi9qcbJ3zr+8f+dMOAb7+N2J9uGIj96caJ2J9unPDlDYuHg88ftmx3bPD1r77jObj8Yct2x4bYn26ciP3pxonQ4qK95w/btjsy+I7HC087uPxhy3bHhqgPjxNRHx4noj48TkR9eJyI+vA4EfXhcSLqw4PA2RtPfH9o4hrYr+6beIrYl+9N+/EL8/c+ge3D7//46JmBK7C9C/D9x+CI38EdtuDHF282x+F5Pb/1xC+Xpv0MLH/+2sRjxH7xybSfPjC39/7KtD+D7//pq2lfg+WvwPe/Xpv2d7jDFrx6cLs5Ds/ryUNP3JhX4ttrYN+Yw+fZN8S+Ms2Xz6+Mn3t0+8Tc/tNn68fn78Hyj9/MHfx4aR7PI7jDFny6ergxfjo8r97j9VdwvT8Cyx+C8fcAsa9N++WFuf0vbz4b9vfHP5rfv7kEA8tcfvPhHdj/F6b9/eVrF9x8uL7dHEn4gPHwhedyaMO4CXv+it2vwjjoFN7XbBg3HVs8jD1Hx+Jh7LmbdzyM3J9itg1j15t2rQ9DYPrSts8Jkg3vX8euN8Hzum2+xB+Q7UNsy1Och7sBeXuC2L46IzZPJ8j6ENi8HXkVwOIe3+dw2HM3yNvv4HJkvEb/6gZ4L7atPozpxXC8Ys97on/dDL7P6XzzJTD/uu1z8uhfu/HE0/adp7F5F7svgtvLgB39azcw/wht33wJjCfsubh3/kTihrH7V998ft98CYxHzPaNf6N/FYA87DpfAtMd7vCO5EOcRB3RCTAexvyrb/zrm9/kO76jf+2Gr07omy/h61+xeDj6VzfsWh/e1r9u+/5c9K8Cu9aHt/WvaDwc/asTDq0P++pPvu95RF4FDq0Po/MyFg+DxdG/duPQ+rCvDuk7PqN/FTi0PuwbF53E+9eNcGh92Pd99W3Hrw1RHzYR9eFhIOrD40TUh8cJiz6cq1q70s5U3d4LxB68PpzKwsOsiHSuC7/X/ZeUTni5b9dOL919y5JSbUDahaqVfYLYgevDlaqDbvWvuSjJnbGC8bxUOOtgxq2a9F1YOnNus6LjXWLyWgOedP10zA5cH64Vr1b/WopTV7BGFISdBdb1qmAtG0gIvLq2jjhV3zD7XekLY9t+HIHpw5rXtf04Et75QnZqyAn/cBoIr479OHT9fnk+dP+rZtVOdH+ce4gduD6M81oLXivBayPq+/PpOwxeHR2s7rdhzMOw71GiJ4BTxA5cH65R/yq9aCX7XbG/+IfzQHh1DOBkPFybvGZNBvrVpaCv2Xq7RWD6cI33u5pw5utpPc8XOXeyzBK89twXibWQ9upjlhLTv+aNCqRU/yvVL/IEsQPXh1XYbx3XKZmw7tsJmZbznHUKzTivrA0lSfpGtkhKr36SGTH9K2uOOV1dLnpSJ3o8W+3A9eHa+j31eSO6gbIekvmEspwzXv/MeHW9xdgfKK+549UlzltG7vTdln16hc0aexn9ma124Ppwbf1diazhfbjpQOXN1CmvDT+TRSC8Zo68ynl2CXidJ9UqT6zP9nxlfbsduD5c27arwPpwL/iw5Q27Ka8LfiZDGa+Jo4+X/egWZn9mymu52k+S8lYI3k6d7BaB6cPoPMxa0wleM8ZrPcnnnNd8YLyKeDib1oZ/paRKXoVNSStWx6PdDlwfRnml/DFes6XmdRIWr7XbvVa3PtzyquflYrXPsd0OXB9G/esdXpNkkLwqfdiVV8wOXR+2/Y5C8LxWbryq82b6V0pqsRoXUSMXQsc5YoeuD9u2q0APgxFK/0sZjyQ8Xt0EYvXc3PSv9KKQvGp/K3m7h9ih68PW70nQw2a80qMRvCah8Vq68armTXMebnnV87LBm90OXR+2bUfB5DXVvBYD41XlS7jyeuFktwhNH1Z/2PyryWumxuzgeIXxsJhXW17hPHuC2KHrw+o5l9s8XKzy6vzsc2/w4BXGw5h/PUPs0PVh9VzZjVee1iT0JvY8x7Vp/b7gwSuMh7F5+ByxQ9eH1QMOJ/8qsoFaXvt+ouPBK4yHMV6xeDh0fRh7/gp4ZStzNqtZCM9fN4+HMf966mS3CEwfrrA8GMArfxTLPq9nIeQjbh4PY/4Vi4cD14erQgZOjrzyZzrs83qa/E3Zd+C0RTyMzcNYPBx8fYlq0bkdBcCrjof5UK1ds7L3hC3iYYxXzA6+voTk1e3+tVa6RCoG7XB47daH7f4Vi4eDry9RLDq3qxebuoTSh1MVFPeKLeLhkevDlLhl9/fUYsDrVPDKhSeWNNEroj5sR7bs3I4C0P1ryWvOec2Hw+uR6cOaVzf/yrMsGa9i9h4Qr0emD2teHZ/TVZLXMhheq6gPd2IzXsXZHBCvR6YP+/rXUvJaB8OrY36TRR8G+U3lHMzLVjv4+hKYfxX5TbnMb1K8CmV4QLx268Nt3prObzLySDG7RXD1JZB5GOStSV7TcHj1yh+G/nW0+cMb8ipuX4fE65HlD6P+FfAq46Y8GF5Tx2fAlvzhufneFfU6Js9WO3h9OF/vX+lidoXSAcpJlLxK8bHon1e/9+mgfy00r+17Vcb7c1Y7eH04Xz8Ps/eu5tkiNXktg+G1cMye69aH6QHID+T7sEvAs9UOXx9er/vTgVrO8iWd7op5oXVEKfgHoPvXjrx268OUJ6MOAT1a4310ux22PpzO1NCz+VdKaDXjh1/Oi2kidX/2qnM2FW889wjv+hIpqPuRN6lRNyQjiucLJ7tFWPpwulTPUG3+ld7R1FPG67Sa0QmZTNi5ZCkwDR0svedLuPN6pr+wOq9moI5Py/sJYoetD6e6UI51XLMzQXllhWMKdlSsKMyE80pICLw6pljp+hJkZtpG/SZY98duh60Pp/rErON1InidFuwsMF6n9D+SBZCP6M7rqf6CUR9C86rr6jnWWwtbH255tdZvqgSvrN5aHiCvrqnp7bwLeJXzuOZ1ubq+3Q5bH27ryFnrN1WEl5agvDJKF5rXJgsg39+9nqmKexSvkqdKbUDapeL51M3WCC5/WHJjHdcF4VJTzi4Adho5r8y/trVAhwBL/eHSrOdEj1bO6xeIHbg+XKjQx8prLtbI2IVdGRNv2XdauA9if7pxIvanGyfgeYv96caB2J9unIj96caJ2J9unIj96caJ2J9unMD8Y+xPN0zE/nTjROxPN05Y9GGrvW3823v+sO17I0PUh8eJqA+PE1EfHieiPjxORH14nIj68DgR9eFB4OyNJ74+NPEa2vdNPEXsR+9N+/EL8/c+gt//9MzEFfj+BVwO9u8xsB99eeaEly/ebI7D83p+64mPV6b9/tK0P7w28Rix4QdPH6zf/pdP5vovvpr2K7D5F2D/v4D9//7jaydcPbjdHIfn9eShJ54/MS/FG3BpvgTX+bf19s/3PprD4jkYYDefTfvBK2N4PngNBugnMB9cwvEO9v/dr/ed8PTq4cb46fC8+o/Xz6b9Foyn26fmdf7g01r75qs5wF5eXCPbf2esf/3M/P4NnC+ege19BuP127vXTvj52+3mSMIHjJvg/Sq8Nn3jYex+FLsvSrHlIG46gXGUBcf2nA67H932OZu3Pows31SXOOn5VZt9A9OTHgHbVy/GePw9sH9A7F3dv54m4wamO/jmS/jqxdh86Dt+E8d5+Nie02HPY+952pAH7Drw9a8nyHMCG8auN2F5MLvOj/D1l746Yuo4XpMj86/Y+Ny1PoxdB97+NXHD2ONhbHxi9y271oshth2/Now9HsZ0f9/nPdh9EZaXmgHb17/GeFgAm2e3jYcx/+pro+MzxsMcmL60bTyM+Vd4HaD6ErCTGA93Ytv8iG1tNH8JLke+H+NhAUwf3jYexsanr66I+tfEDceuD28bD/+w5XJv/xrjYQ5sfG4bD2PjEa6/rX+N8bBAaPrwtv41xsMCoenD2/rXGA8LhKYPb+tfYzwsEJo+vLV/TdwQ9WET+9aHt/avMR7mCE0f3vr+NcbDHFEfHieiPjxOHJs+rAsz2+brVK7Big3zNtwl7xfad0lpDo+S5bCPGex/pcZfZdYb1hiYPpyreuEn9jU4hRlbsWQcs1OZsjL3Nem7ALEHr4o3tf4psHV/HXlIA9eHS9WHwBpflYL5QjC5ZOdyxoqGTxMyJF6fqG+Y41Pb0t+m6pAGrg/Xtn4wGpVYoxRMNozgOftnNixe5XktwPjUtlyeq0MauD5co31WJPOU3mkqeV0wlofJawnGp7W+/8D1Yd2fwhoPS+Ypr7OM/AthlC5p2EQHLRmgf63B+KyBv61sfRkGpg+TST3r/F67xpSvUc+qeUZSMikXJeV1Xi5C4NW9IYjuZzXptiXvhGwYDwemDy9lB3zreikRa5BJNRftBycFa6pYLBLHTo57ROZ+t6X70xnjs7UFT6nmdeD68J9Vr09bfEV55WuQSbFg7cymBWvWLFoRJn3DY7yqPqDm+Gxt1W+y3jAeDk4fLrv7wCvQIcHWSGnAtCjm/PaO8kpYC6wAxqs7r4rH2hifra36ClYbxsPB6cPF+n6SrF/zgvOaL1nX6hlvbkvYP4PiVfaPnNfG+Gxt6W8X1YbxcHD6cLG+/ytrdc14XQ6cVzkPz8zx2dqCl3RebRgPB5c/LHm1+eF8wRurZ6xJHV2VdY1PGa/pIHk9Gn1Y82pbb5VXSqrglZI6NF5h3/xTYCueqnHowy2vDuOVklooXpNB+te749P0ty2vg88fLsX9qy0ezucs9GVnMGsYr3PFKxn2PHwBbLW8Goc+rHm1xVeUSHb3T8dsOipefwK2Gs/VOPThhEe4iT0e7uA1GyKvcN6FPKvxVY1DH04SRB8eC6/Qv+46Hg4tfziVQpptPYPXueB1mRLGq3oU1B8y4twK3DY+dxUPh5Y/rB4snziM10LwKqRhxmsAffNddwHyuut4ODB9uFD5TbZ4uIvXheK1b+Xfg1fI467j4cD04UKdGJd4uFjwZwD0/8gk5bz2/JKAB6/Qn+46Hg5MH9a8usTD7MHrnD8BIrOchJEvsek8vOt4ODB9uNBjzsG/5uR/EsFrvahJUhd9B05b8DpyfbhQY84lHs4Jy0Vkd7y18K06qbwneORLHJs+nMsx5xIPp4JXesdbCl6rvnmN+rAVZH2+RBevkwHyenT6cLXo/p7EKq9s+p3zVx9ywWvhfl73gqgP21EuOrejYPBaEmoysSkl84HxenT6cLHs/J5evMqrMIUawf7Nh8PrsenDileXeJiZM/44Nkm46p8Pdx4euz6saDpxHK8zdSEMnNeR68Oa13Xx8ELwylZkKU48CE4HxuuR6cP63t4WX63mNyWc12qQvB6ZPqx5tcXDkNepfKObj94Bz8Mj14dbLc4hHzHhhy2Ex2zgvI4+fzhfHw9DXtkDOgZ+SgfsX0efP4zEw6vv5yTsNMjbV05pMVz/Onp9WI65Ne/TFfNswXhlK5JJLhIsOKVF1IcVwtKH05kac9b36Rp6Y5OzTDU+bDWvXH4sh8vruPXhdIHpw3TarWaM10nJU0zVdVDNsqnKPe4NmXuKleAh1bk7Z8CW40vngAxbH2bPaBad39NrsAoULANxWs1zVoKAPaKb/DkhMzpYAsiX8KvflGneoN3yLo5p2Ppwexwna9bgRQcIy2kiS8ErKxKTDbDOT6aP9xTYur4E6X6/cFj68AqvtvVqwWuleK0YncPn9R6wVX0Jxeuw9eE7/uUuKIWJ4HWSs4NWvPo4t33Bu34THJ+t3fpbwevA9WFdR88aX5WC10LwKlKbKK9Nwquv9Yst/OtPwNb1nIzx3GJg+nCF5Q9THrnixBKNczZApX/lhU17vs3xwZHVH870i0sT6xri+Q1bUQ9Qnjnce/qwD2J/unEi9qcbJ2J/unEi9qcbJ2J/unEi9qcbJ2J/unEi9qcbJ2J/unEi9qcbJ2J/unHi2PrTaRyZf4368DgQ9eFxIurD40TUh8eJqA+PE1EfHieiPjwInD7zxBWwn983cQmW//zGxC8PAcDyj+/B9l6Yyz/B/flsbu6v4fqPwPofzPUffXE87s8PN8fhef3xtSceAvuVad58Bsuf3Jp4dWna38Dynz+Z23t7ZS5/BvcHbO8jXP8rWP/aXP71seNxg9/xwbfD85re98QVGE8/muPh+Y8vzeXXYHx8BePpHVj+0Rw/zy+fmss/ge1ffTG39/0arH9h7vDVO7AD3x2PG/yOD94dnlfv8foI2C/N6/3Vs5fm8osP5qX7AVz3X8DyW3OPbj6/Nb9wDbb/9JG5vSswXl89MyeAJ5/BCs/djhv+jg/+lIQP3zjpAbIce+627f3srvThY3uujj2P9b0P2vZ+FQK7f3XF2HUJ3/sY7Lk49twN1YcRXRC9f436MAc2PjFg87Dv/evBdP9k3IC8YOMX038hrz8g6+/cvyZuOLbndLv2r9g8vWv/6jq/Rv9qwte/ej+fBbxkYHl8/uqGfftXjGfffInoX92A+de/AvYfgI3Nuymyvm/cFP2rGzD/uevndts+b43+1Q2Yf/Xl3Td/2Pc5efSvbsD8K9QZsbjKN/8/+tf9wHd8+t7XbK0PI3b0r93Yt3/ddT5T9K9u2Ld/3VYfjv51M+zbv26rD0f/uhn27V+31ocRO/rXbuzbv26rD0f/uhn27V+31Yejf90M+/avUR/uB/v2r1Ef7gdRHx4noj48TkR9eJyQvOTE7KOi7Q39a6pqMIemD6sDs/Kq9pws7i7pu/6wd5+VpFQ8nHXbd/oOInau6nKHpg9XZH1fJLXnGa8pTY+qEqXT6X8F6bmN2Qa81mqfL4Ct+5qB8WuzJW+lKrUdmj6sDszKv9zzgp/BuuV1Rv8Kob6/46qSF92T4B6wpX9NidlP0mrL7VW2vhc9+9eUKF5ta8g9Lxmb7KgEr2wODqMfh+Oquj+OwWtrS560vz1FbLm+7nsRmD6cobzKPa8YmznktecgeqM+ZsI+67TptGTyiNm16ucRmD6ck39B/Kvcc9YXiR+V4DUjszSMvkiOq6r+Oam8Fi+ALefl6s48a7Elb2Rad/cL69m/Fk3y3zt/R0PueT2r5vyoeP8cej1QXv+2d159+0nyBor8r3vAlv6VAH9qtdV4TySvgenDujOvbR5We04mlFd5VLXgNYC+g0vnVQUv+VIFtPeAredlY56125pX2Ss1MH1Yd3Bdwytfh0yKRdryynrnzNW12hu8+3AXc5NHaKekBjyut+mFJc9gYPqw7uBq41/uecoav6qjqid0NhaTc9IrNuG1Wu1P19oqrqrAeLTZgjfZpTwJTh/WvLr0V1dHRRSv1XB4leNzZvLY2rI/3aIy/KndPlM7IHkNTB+uJpbfUZB7ni4Zr/KoaAxa/WVgvApeyhn7H8M9YMvxODd1Qrst47CF6k8fmD5cY7zKPafDNlvKo0o1r+XQ5mHII7R99eGW18D04dr2OwqrvMqjonNyUpcD57V7/La8nSG24K3lNTB9uLb9jkIHrxnllQyNVzk+pyp+vQds9fzV9Kd2W87Dc3arxBCYPkxsv6Mg95yeQUan4JXazdB4FbzQ/S9WeW1t33lY3yfJe+jA9GGUV7nndMymilfKc0qGOQ9DHjfnVdgtr4Hpw43tdxS6eKV/L8uBxcOQ1+7x6+tfW14D04cb2+8odPOaDY5XOD4hz5v515bXwPThpmy6f0ehg1f6Ub4QvA5H99+3fw1LH04bguQ3reW17v85navyv2//GpY+zJ6hzjp/R6GDV0ppMRe89v9c3TUVZ9/+NSx9mPE67/wdhbW8kuHwum//GpY+zHhdnwfTwSuNlsop4zUNIL/Jldd9+9ew9OGUNFX3fil081oNjtd9+9ew9OGUTIvueE6hg1eWbDphvGYB5JmG4l/D0odTMpHkePhXymvNec175zWc+9ew9GHKleLVskYHrzRaqrmEmPee7++b33Qs+jDlKt2EV8J5LXrnNerD3WC8ks7fUejilf3JeNVJb30h6sMWMK5I5+8o3OU11bxWA+L1uPThFV4ta3Tw2vA8e9K/jBj1YRs24TWTvE4SMiBeWx5X85mgvYl/XRjLFXr3rwnuXxfymavkdSl4nfYuS4SU3xRY/jDB/Ovd/KZc8ZoNiVeYfwh53jC/SfMaWP4wwebhDl4Xktfc/e5xT9h5/rCvfw02f3gDXgvFazEkXo8sf5goXcI9f1gEkOyhTt+3Obt/P8fXv7bv5wSWP0wm6Xp9ePX9nFVeKanVkHjV9yWSmHvA3sy/srPT/T5d3/51gujDfM+zBeN1IY5KTFz0377fptvAv9JL1Hj/tbU386/05MlZK7D84XqK8cr2nL1Kx4ftcHmVPC5VjsdZp+3rX+ktQWX6Z4W+389RUa31/Ve25/x1fXZhsqOqFK+k99J73rzmjVlforV13R+zDojVFrzRb4dZX6Kal8vO39HbZ3tOuSdTXoeAFQ6RvLY5NL3Bv76ELjRyD9jy/Vedx3eB2G09mVWeW/T9/qvOW7OskMo7VXZA4qiEQxoary0vwrbX/VmNg+x2W79J8BpafQmMV77nlNdK8jrXvLKb2J7vYL3n4VTv8pnNduS1rd+UrNoaPfvXEssf5nsueJ2IoxIOaZi80qORu3wB7Hb8ro5Hu63rI0peA9OHc53vb6+PyHkt7vCaDopXPW/KIP4esDfzr/TsLIzta/TsXzN1vVnnYbbn9Na1IEt5VOILQfhXD8jxWYD6w8WW9YezUOsP18vu7WjIPU8HxGEXYn+6cSL2pxsnIC+xP904EPvTjROxP904EfvTjRP79q+xP10/iP3pxonYn26ciP3pxol9+9fA9GHr74wN+/avoenDtu2MDVEfHieiPjxORH14nIj68DgR9eFxIurD40TUhweB02eeuAX2p/smzsHy5w9NPAb21RsTb8H3r16Yyz++N3/v4jPY/qP133/3Yf36NsDteOHwvP742g83b4H9K7A/gy+8urw18B7YfzLN2y/g+0+vzOU/fzKXPwfb+/jVXP4YfP/ztWl/+Op24H8NtuODL4fnNb3viUtog+F5BcbTj+A6/wrsT2D8Pn1pfv/5A3P5xy/mD96A7X1+a37/5VPz+5fvzC98gROABVfXDzfGk8Pz6j1e35v21S+mfX0N1v8MxtMH0/76M7i23700v//KHCffbsEePwbbfwLG36O35gpvPpsb/PDsk9Nxvz6/3Rg9jFdvXHja557LsftZ9H51sv77KbK+DWO/z/kJ2PeQ9bH7WSwexvRjTHdEeXTk9Ydk3IA8bPsczve+BuMJG88Jcr9rxcjvX2EMgI1fTF+C68f7136AzaOY/8TmWQhUF4Q2ohPe4f1/JE4Yu96E6UsQ2DwMr4PfAds3z803rnKdh0+TcQPyAI/3r4C9bZ4L+vzmQP712OPhXefBQNv3+c6u/Ouxx8NYHITZmD9F5909+ddjj4fhcmwe9o2f0fsezN5wHj72eNjX9uURfU6erLc39a/HHg/78gbncYwXzB/vy78eezzs61+xfIht9eFd+ddjj4d9/avv+PbVh3flX489HvblEdOfoj58GGDxsO/4g+Md4yXqw/sBFg/7+lcs3o368GGA+VNf/4rFYVEfPgwwHnz9a9SHw0DUh8eJqA+PE1EfHieiPjxORH14UChce5VKHnIC+qYoWPxrpupOD00fzi19B9oNyMrJYdYfrl1Llkt/Wqo60IrHWp4/2O9Kjq8C1gOHfc1ke7vg9OGKdPcv1cjFmcsI659Ejypn1d9Zu4cA6vuv9NPAoOvAS57UPKqaACmeapO3yuzr0C5XPFWOvB5aH9YHaq/vzxtiFfwE0qMqGJtVILzmun8NBjkeiTgaPX4zwGsK5mnYbyMFdeQTNU8Hpg+nqka/NR5mjTgS3r5hyo8qKF4LZ151nxTJq55n5fmRPGn/K8ejng/OwXLJk/a/genDmebVxn8teK3YCcxD47XS/TEwwD5IcvyWxPSvsI8DIWb/Or1cx2GO8/CB9eGc/Et333cN2dGJ9UXiRxUUr3Xj2v1Q8JAR1Y9Oz7PmPFyZvNK1zf50erk876UrrwfWh4sm+e/r1yNTfubqWTXnR6V5DaB/TkKj29KNV+FPeQNF/pcevyavxJxnsyaRH5yC5bAfT2D6cKHuXmzxcErEiCAT3neQ8sqsSmy19w7r9KxmbrwKHugOy4BWjV/Tv6bE9K+UVxnwnncuT4irfz2wPtz20rbwT3nl65BJseBHxfsTy7u4vnllgy/1iYcL1V5Pjt+sMf1rSmrYF78y+0fWZjxMfnOchw+sD6vbL2s8nC05r2mTMF5rMF777ifp3oJWnNe2n7rgKWtqYx5OSQV5Leedy9W8/I+OvB5YH255tZyh1f7q/KhWeS365rVxXlX2a56pIxbjM5sDXhcmb/lc8XoKlst4eFk6+tcD68OVWmyLh7OF4HXJeF1AXnvunJ+78yp4oCxIImRcNKtN/zqvDP9JD7BY7R/ZLpe8LEpH/3pgfVgdlnVc57zrIBu22ZIf1SqvZd+8us8Xwp+2vLrpwy2vA9OHa/WHLR5e5ZUflcFrz53zC98+oS2vSh+ugT7syqviqQxTH65t31NYy2vVN6/u84UYj+VUzTEqX8LGq4yzZuraOQXL1Xgvw9SHie13FGjkwO5mqJtlQQrk1fHh577gwas4r9UUjj/Tv8LxSFmTc/05WK54KsPUh4ltOwr0NLCBSo8uvctr3TOvHv5d8Nbyqvzpev/a8grHs5rHyzD14ca2Hwrree05ecaDV8FDy6s63vX+1c6rOu9lmPpwg60XNq/u/l3405ZXGA93+9eWV+hfYTwcmD7clJJZWzx8l1f2BFNmWTjmKuwNHrwKHlpeYTzs619hPByWPpw2Wsh29q/sG5V4jDkgXoX/bHmF8bCvf4XxcFj6cKqfS9vi4S5e5+IpO/+kV5Sz1C9fwh4P+/pXGA+HpQ8zXuedv6PQxetCPGUfFK9YPOzrX2E8HJY+zHhdny/Rxat4ru4lu+8HnFeffAl7POzrX2E8HJY+nJKmWnZ+T+EOr/mcBk7lP7HLYUi8YvGwr38NWx9OybQQvDrHwyx3i/7DLofe0yU8eMXiYV//GrY+nJKJGnSu/pU9zWafD4xXLB729a9h68OUK8mrczy8wmvfj9X5SXW81zkufZhyJYPaE/fxyt99YJdDELxWPvnDx6IPM15J534orOW158fqPuP1uPRhxhVZu14Xr+xcMKvsndd54pc/fCz6cMurRzzc8trzY3UfXo9NH9Yir4d/VbxWA+K1jYfF+u76cHceTOD6sOZ1XTy8ELwu7/Da82N1Hrh5xcNtfpObPmzPbwpbH2akks7fUbiT35S0vNYD4lWMr5ZXN3245XVY+nDLqy0eXstrz4/VuTDiFQ/D/GHMv8L84aHowy2vLvnDkFfSO6+NZzx8NPnDROkSzvnDyQqvSc/IGs94uH0/x00fhu/nDCZ/mEzS9frw6vs5UJfon1fiGQ8zXlffp8P8K+PVnLeHkj88QfRhxus8WzBeF5pX8Xnvj9V5vQuveJheorXx/jniX+m1bLz/Opj84XqardeH6eJyzl6l48OWHxVXHvMweJ356cPFUgUFbvowdeDgOhhI/nA9lQ/brO/TEXrm+Ov7zNHQo/ojo3rOWO79sTrd/WXilS+RN2Z9iRTWBdH1ZeT7sSQx60vo5fK81+o5YWD5w9W8XJ8vQc9DTXmlh8frEND/mxRN0iRVGLwSv3yJXNeDEeM3Azy2eXynejm8Dgxdo80PA7/Xc/5wpfbLXl+CHjnjlR4QP6qK5Tfxw+n9sTqvKuWVL9HW+dH1JcjqfU+bx9fWb5qs2F3Lu+vV9V1fQu2nlf9a8FpJXufB8epTXyLVJWxkfQnNq15OjPsaUMerXa7qS9jy/nquL1Fi+cO8kpzgdaJ4FRNy/4/VV+dJDLpek1HvMAPz6h1eKxuvuu6PI68H1odzHQfYTk8peC0Ur/xK4EXYAuBVlwFEIceXrrck60sg/pXyKqcz6F9lPOzsXw+sD2egruNdlIQrTgW90PlR8QKYvMxn7+kSyUq9MwySh8Kz/nA+1PrD9bL7exqZuCBTPTDYzJSFWY14DWJ/unEC8hD7040DsT/dOIHperE/3TAR+9ONE7E/3TgR+9ONE9g8GvvTDROxP904sa0/9Z2ne9aHrb8zNsT+dOMEFg/7+tfQ9WHb98aGqA+PE1EfHieiPjxORH14nIj68DgR9eFxIurDg8DpM09cAfvrfRNPH5p4jdjXb0x8gr/3HvwAXP4CfB+x330wf//xq/tOuPf54eY4PK8/vvbENTCfmvbN18tbA89u19rfL+Dy9b/3+gbYr8DvvUfsz9dgueMZuALb8cG3w/Oa3vfEuTl+Lj6bw+f5BRgfH+F4PDOHzytwaX96af7exd+DHwDLz8E4egy29/hn0758Z+7g12u3eermy5uN8e7wvPqO15svpv0cjNdXz8F1DYbH7QswfD6C5dcvwQ+AHQDLbz6D34Pb+wCWv/l8Za7/we3Anz+63Rh/SsIH9rwVi5dh3IPFWWgchsS36P1r4obTkd+/YvoSxjP2vNU3/sWeG9zZftSbOuGbLwGBjV9MT8Kev0Jg9zlRbxKAehJ2//oHYGPPCTDesfvhDNh37js31f1HDky3x3jDnpOfev4+piMmO/Kvx6YP++YrYTz6+tdt89qifxW4QOxd5yNiPCbI8xuMx+hfBXz14TPP9X39q+/z2uhfu+F7X7Pt/WmKLMee56Setg1ZMm5gz1cx/4rpFidbLoc8ofdFjvPr2Mc1xhPmX7G4yDdfAtOXkl3512TcuIfYu84Tx5b75qEmMR+xE776MJZ/6Hvfg8VBvnkvMV9CwFcfPvVcvq0+7BtnRf8qsO37dL76sG8chOalRf/aCV992DeP/HRL21fHiP5V4ND6MPbc7VD68Njn4UPrw9h1cSh9eOy8Hq0+nIwbx6oPH9v7dMeiD499Ho768DgR9eFxIurD44Qcnzkx+xpp21EfzlQ94sHrw6ksiM0qDue86HpbibjvIsSsg2nl5mhkPFyq+t9nwIZ9kU6BLZcX6pgD14crVdfcymsuKuJnrJw0r4qeE8LKnxPxUa9gvDo2tZQ81oqXC2DrPoSg/1xt8lyp/gCB68M12rehFOzx8u+8mn6heC1I3w3qPHiV8bDur3EP2JL3lEy7bX0dEGO5RmD6sObV6l8r0fGiJGSa8S4lleK1dO1xsjd48Kr7Lhi8tjb0v2fAlueduPLasz5co/NwLXitBK+NuGQ5r9WQeG37Hgkb9knS/tOcdwvAM+h/1SIwfdiJV3ZozBGLLmDkP1tee26c78Gr6m+l+tNBW/JaEdO/ApuuLT8IXB/G/SuZ1myNelbN82VGmMfJeV84/lHSKzx4lf3pliaPra3HIxyfRjycNaAPoUZg+nCt/rD3p0s4r2RCeZ1xXtXn7KOkV3jHw/lSBbj3gC3Gbwp4bW1xnimvldF3UCMwfVifFXs/SdGJmkyKRTZt+wBzXvvueOUdDxdzs59rayv/a97XtLbsM7pQvAauD9e27SpkS85r2oi2ZWQiuw2mjfqoR3jHw7C/emsrXivgTysjHm77rQeuD2tebf7V7K9Oz6LkNWvURz3COx4uZiaPrS3n3YXZrxna+Rz20VcITB9G/Ss9dZzXpeZVHFe2VB/1CO94uJypxtn3gC396xzwOjfHLx3fhRuvPevD6Dyc866DbNhmgld5XDQ2lh/1CO94uOXxDNhu+nDLa+D68Aa8zuTnw+IV8tg9flsez4Gt/XPh5l/71of1di0r2HgtBsariIfLqfKP94Ct5lVzHm5tGWfNVKwYuj5s3Y5ELvptZ7JNPlHXdzHP+u+c7x0PU5aKVV5bWz1/tfEqzjs9+NyN1771YWw9ethsVNKjSQ1ey7n6qEd4x8Mtj2fAxvyrnsfz7r7boenDtu0qmLwylUIcaDkbFq9iPMLxaef1vNNueQ1dH7bth4LJazZYXkU8bJ+HMf+q74sc5+G+9WGVB2LzryavxTIp/0k835mGwCvRz80wdM+77v5VnGd3XvvWh9VzZbd5uF4m1V946sjQeBXx8Ob+Vd8XOfrXvvVhdV6ceGWju+JJE0x4GhSvMB729a8wHg5dH1YPopz8a01mjFfG5tB4hfOur3+F8XDo+jCW39TFK3sCSwbGa/f4dPevMB4OXB+u/qcMnBznYepfyT+zUzk0XmE87OtfYTwcfH2JetG5XQXAa5NUC5Y6Qm9kQ+B16akPb+5fYTwcfH2JUuyn2/1rRZKKpxgEwuuCTRxOq8J42Ne/wng4+PoSkle3+9ecTOiBUl6zJhmWLnFk+nCino276ohTeqDVAHk9Mn3Yk9dE8Dpjn0V9eBXB1ZeQz1Dd/CvLGZ7yoxsar0emD2te3fxry+tiYLwemT6seXWchyvJazE0Xtt4eDW/qbXd9WG3/Kbe60s48LoQvLIVNa9z/VGP8I6HN89vEry45zf1Xl8C8a8gv6mciVNRzpNh5TfBvFJou+nD7nmmvdeXQPyrjdfZwHh1yx/G9OHB5A+j87CF12povB5Z/rAvrxXjVUoTA8wfxt7PwfRh9/dzeteH8/X+FbyfQ3mdS16H9X6Ofp+uWn1/rrXd9GHGq9t7kr3rw/l6fZjxOs8WaSNWrKYl1/3p2VQf9Qj/9+kW5nuRre2mD9ML2fH919714WL9c7qsYanCy5TQFQtW9kacipo/qhvQe5KSx2VivJ/e2m76cN6o6yBsfTidKX9h5ZXQK5S/rl/Oi2lCGK/0VPBHsJNyOO+ry3m0MetLtLau+2PWjwA2PRuDqC+RLpN63rkfeg0yqSmvTPCf0wmZTPMmE7zyj5Je4V9fAtR/yTvqw8w6bVlfQudnhK0Pt/v9w5o1poxXumLBzkLO8tZ4kQkypHow3XV9WlvXlyBzsL5xX+PMa7/6cMvr2jo/LFxQvGaa10HV+RHxcEpUHbwzYLc8r/LY2jKu0nW8wtaHU4LlD/MyXILXScHOAi+6xl+kq1xzxvYG73iYZ95xXAAb8noObMlLpXgNXB/W89Ca+oicV8rpRNTRY0USOa/FkHiVcVGtphhoY/5VzrsVqIeqEVz+8KL7dzRKwhWnglKa8oNkp4ILTQXpWZbwgRyfBYF1Z/3qD+cDqT+cq+vPul4m1kjZBVCys1CoUZr2Xn/YA7E/3TgBeYz96caB2J9unMDm1difbpiI/enGidifbpyI/enGCYyn2J9umIj96cYJjKfYn26YiP3pxglsfDrqw9blweUPe643VER9eJyI+vA4EfXhcSLqw+NE1IfHiagPjxNRHx4ETp954grYn+6buATLr9+Y+OWhiSuw/ON7sEGwvZdwfz6b23sE7L9+YW7/3Qdz+eNHbsf9EmzHC4fn9cfXnrg2zZtfwfKXwL64NfH60rT/BJb//An8ANjeJbAfgu19gvaVaX++Nu3/9dXtuB+B7fjgy+F5Te974vw9Mj7B+q/A+PwVXPefwPKPX8ztPX9pbu9nYF99Mbf36yPT/nZtbv/ynbkDX5+6HfdLsB0fPDk8r77j9eaLaV/9AlYAG7z5aF663z6a4+nrz2D5LdjANZgAnkL7kbmBj19M+/G5ab/5bA68y1/cjvvm3e3G6GG8egOLhzGdEa6P6YTeOv9k/fqY/mTDSc+p+/sGFg/DOQfTh7DnAtj9LKYHY8/xXPka+32Ory547rkc1YOhjdy3YPpTEu9fOeB4/AlZ7vucABvf2HjGnsNvev96bPkSZ8j6vrr+ofVgZ71p5P4V86e+/tX3OYEvz6h/Tdww9nkYyzvz9a+YDojNq1gchPrXGDdx+MbD28ZZ2HXje1+UbBgPH3u+hO9zOSwe9tX5vfOFo3/lwOJh3/h223wn7L4I86+u43Ds8zA2HjE9yTc/Ytt8YTRejvevHJg/9dURt8138o27kg3j4WPLl8DGr2/ey671YdS/Rn2YI+rD44RvPBz14WHANx6O+vAw4BsPR314GPCNh6M+PAxEfXiciPrwOBH14XEi6sPjRNSHxwk5vnJVl/bo9eFUVrLlRWmrRtaprRr1UZ/I3HdA8lCqurzqPKuy1FhfpKHpw6rPiNW/5qJ6dEZ4e3V6uVdkxv6YiI96hQevcjzqOtrKP6piymr81oDH2sJr6PpwKiemNXXgOXsFKxifMV5ZxfuMVQ4vVA353uDBqzyvuu+CHL+Z4lWeV3U6FE/aHpo+nGG8yu4MJaOUMjnlLSwKRm6pegb1Bg9edT8Oyascv7r4OfS/Z8Aemj6seF3Xj4NtsmIkMiYzyetCfNQrPHgV5zkFfZDoEcnzBev/nwF7aPqwuiCt83Ut2OPNcipSTXn/nLKploH0z3GE7FfVqIlX+tNa8SrHbwV4rGy8hq4PF9g8TCacvXpaz5N6lk3zZc5a1hVL8VGv8I6H80YFSnr8mvEwAf6V2Pxr6PowxiuNl3lnTMIbhM5YC8aU8ZotxUe9wjsezheqb6DuN2fEwyngsbWHpg+XiH9Nm4R3FyRJSc9JwlrhslaEk6wRH/UK73i4WKgbUsFTRmojHk7Jb4DX3yzzcOj6cIX4V8of6yhOx2i+4F3p2LClvKYN/yjpFd7xcNt3W4zfbFkb8XDamDoEtFuErg9XyDy82oc7ZfcI5Yw5VsZrGH24HSHOO+XV6KOdLWojHk6XZn/11h6aPlz/hvKaC14zzWuleM2Gw6sYX3TnJa9i/GbT2oiH05nJY2sPTR+u6/X+Nefd6RiD2ZLTyJvmM175R0mv8I6HW17Hrg+Tar1/HQuvYjy2vCr/WAN92NZffWD6sA4MbOPa4JU/0pG8LofFqzivlNTC6NObmPFwy+M5sAemD7vwytij/6VNLnktZ/WUj9605wc63vEw3XnJq3reasbD9nl4YPpwpgI+23r0NDBeKaWSV3oiKK+zbMk/SnqFdzzc8qp4M+Nhd/8auD6sebXN1928VvN8YLyK8dXyqp+3mvqws38NXB/O58g8bPDKTongdVHOh8Wr4KHlFYuHMf8auD5c+PFK5oLXoqkGxqsYjy2vWDyM+dfA9eFi5uFfi/+PNJJXQqbD4lWc15ZXLB7G/Gvg+nA58/CvBXsqzXnNBserbzyM+dfA9eFy6jEPM14nitdk3PEw5l8D14crX16nnNekHhqvvvEw5l8D14friY9/Jf9GZgPl1TceHrg+rHl1869JJXhNB+dffePhgevDTeIzDy+Sas55zQmZjTseHrg+7MtrMVf3OYtxx8PD1ofTZeLjX+eK13JRR33YQFj6cKZ5dfKvlNeF1IeLqA8bCEsfzhZe87DmtZ4WTdSH19n96sM0/pEvrDjymiteUxL14VWEpQ8zXsULK47+VfJKkqHxelz6MOeVH5nT89cVXhMyyHhY5zeNWx9e4dWyRiHym3KWzMT/rll+E+WT/M9B5TeJ897mrY1bH8Z5Xc1b43+zvLX/l/Ja/91y+PnDY9WHcf8KeZ0PlNdjyx9W76u45A/nC5FfMUReZf7wXBE1cn1YF8awzsNLHkFmDaWX/02vg/pvOa/NkN67ku/Tzc336UarDyeYLsHeu5pnC/aS1YL+Xc7ZQ7q/ZfHw3zYDfJ9uoYgcef5wgunDdKCWs5y9y0zpZX/TqYywFyYJ/yjpFd7xMJ1x5IvMI88fTjB9mL+czk9HOefvOBfsNVgy4f8M6H11Mb7yJpV1Q/T76cQYv0S9oH7abWsEX3+4QusQ1FPG67Sa0b/JtFiyV9VnrFLDtBpO3RD1frqqB3OqbXH8uu6ArIVyDuzB1R+usLohLDViycrCzMTfTFGul1UjPuoV3vFwpus36foSZPV+lvG4+hyvtQdXfxjxr4zLieB1Kv5m9Ztq+c806RVb11treW3rO3XzOrT6Eph/5fXWKK+8uBqr0cXrrZXyn+HwKu9PiaqPqMcvWX0fFvJo5zX4+sPYPFwRXkeiZI6ppmymsoTeTHzUK7zjYXo0MtST9SU0r7K+hObxHNiDqz+M8VoQrivlpBF/U3Jnou5l3ns9Uw/I8VXC+qUKR1d/OBcXdMauW150r2KjlFGakZ5vc3wQ+9ONE7E/3TgR+9ONE7E/3TiBzaOxP90wEfvTjROxP904EfvTjROxP904EfvTjRO+8XDsTzcM+MbDo9eHR4KoD48TUR8eJ6I+PE5EfXiciPrwOBH14XEi6sODwNkbT3x+aOJPYPnX+yaeAvvyPVgOtvf0hbm9j2D5k2cmrqANfu9HsL130P7yzAkvX7zZHIfn9fzWE++A/frStD++NvEQ2C8+mfZj8P2vD0z7/ZVpf/60fnsvvpr2K7C979em/e3taydcfbjdHIfn9eShHx59M6/Etz+DAfwcXOffgX0JbLC9N++vzO3dmCu8ffoKjH9o35jb/wS29/LctK/gBNONB9dXDzfGT4fn1Xe8foGX7QUYwB/B+HkArvtncDnY3tcnpv3B/MHvj39cv71n7w3z5gMYn1fAfvnUabhePxvWePXGts9TMX0Ye37ze7g+Ejf5Piew4djuczAbi38hTpHlJ1vaUF+Kz+kEsHwITB+G6/8B2OeeNqY7eD/ns+DY8yWw5znb3s8m2PqY3gT1paj7c0Aedq0HY/4V2thzAe/nABb8kIwbvv7VV8f39a8Yb776sQ1jn4e39a++8fPvkOW+/vUk5iN2Ylv/euK53Ds+xsZj9K+d2Na/bpsXA8evr3/dNA8m+lcTmD/F/Ou2z2Pv8Lzh/Wv0ryawfGHffH/f8eibR2ND9K/r7V2/l+HtX+P7OZ3Y1r9iz+V3nXe6K304+lcTvrrDvv1rEv1rJ3atDx/av0Z9uBuH1od3nu8f7187cWh9eOf+FdjRvwocWh/euX+N+nAnDq0P7/z+NerDnehbH976/jX61070rQ9v61+jPtyNqA+PE1EfHieiPjxOWPxrTsy+KplqWXDRbWtI3lJVq/cEsQ+tD9eL7t9pf0DuGSugro8yqZZsSc9tG5KkdC5ED/uW6TrTc8MuVJ34U2Cr8w76YeVkaayv7R+6l+uWQ3vWhzNV83tNXemlXlEcJeH10WX18H7hzqvyn8TsM1gr3uTyCvCgbd1HyRzfpTp/58A+BbbiqbTwumN9uFB9gay8yj0rGJP8KFlnoZy1bKj6rwPvzqueZ83+Vro/h+aZdNuStxTM25U6fyfAPgW24qk252mNHevDuqeG1b/KPVP9OBinnGXeTSfpGd68FsSYh1PIqz6mC2BDfyx5qwGvVhv64z3rw5Xi1epf5Z5Vsn8OYzgR/Th0D7D+4O1fyzu8mrwRwAO0C2L61xr0OavB+YTLdU+EPevD9VIGP9b15J5VmknWt6Fq6nlKeu+f4+9fa9O/Zo2amFW/q9TgobXl+K3APEwmRt+z1j4FtuSpIBv6V099uJ7KCd/e70rsGVtRHCV3tLNqkTbpgHjV/asM/8q67E1WlmdEBUbQlrwQk9eUTKpV3lr7FNiSp4ps6F899WEylYG3zb+qPSPTcs6PMuMNkmb5Il3q4LA3+PKaEXMezheJ0Xcwo8e02ieptfV1YfhX3mGT/3WC2Hqe3tC/eurDhLW67fodvT25ZyQpF/woc87rJF+mM3XM/cHXv2bEvH+lB2/05WaNvVbHW2ur/le/Gf41a9QN6Smwf+hcntT/vqF/9dOH6T2L7LlsW0/uGV+RH2XesKa+E95avRoOr8J/ZkuzTz7ry73aT5KejHKVh9aWcVZj9v1l3azF+TsH9imwVXz8D5v6V2ivHa8p7z3XtV0FuWd8RX6U+YLxyvgeFK+Sh4XZn5nyWq7Os/QIi3mnLefd5R1e81XeWvsU2Co+Ljb1r146IqUrW3b+joLcM74iP8p8znlNGa/l4HidmvMwPQCDV3rWi9V+r9BOZ2ZfbnpGDF7ttpyH/1xsev/qx+tS8Wrzr3LPMrYiP8p8QnltBsdrtz7c8ir97dwcn63drQ9D3lr7h87lh9KHM82rbb07vMrBOjRelT5s+teWV7HczqvSh815uOUN41nxVBxEHz4eXrVub/hXegAGb9SQPEBbPTe/w6vhx1r7FNiKp+Ig+jD90bTp/B0FuWd8RXmUwrky/a0aLq9i3qUsGbxSniWPF8BW87jpX+mXDV7tNpyH96sPt7za/KvcM3p0aSOPcoXX4egS3f615VX7W2MehTb0r5C31v6hc/kW/tVLH255ta23ltd6cPow8K8tr2K5nVeVL2HOwy1vGM/b+lc/fXhLXgf0PKfbv9rnYWjDeBjy2j3vwvG7uX/104dVAGT3r528yv9lA+bV17/CePjQ/tVPH2559fKv8n/lgPIltvWvMB4+tH/11IebjeZh8b9ySHkw2/pXGA8f3L9Ce/14lUKvN6+TlLS5fP3hcP4VxsMH969+eaZkWmziX9njOsrrIukZh/OvMB4++P2rJ69zsol/rRc143VAeWvb+tduffiA969++cO1Ssjzm4crlu9VDilvbVv/2q0PH86/euYPb8MrJXZoeTCb+9duffhw/tU/f3gT/1qI/EwS9eEw9eGWVz//qnjtOyCO+rAFKfmPTebhhLBsGP2ySW+I+rAVyPNXC6/y+WvfNzpRH7YiXZ/fZOM1YbwWw+V13Ppwonn186/J4Hg9Ln042W4ezofDq8W/gvymEuQ3tbZFHwb5TQXIbyp2lt/kXV8iW58XLvcsZ/lNpcpvSuQwz4fuX+15ptDu1oexvFKYn3gwfVjzuia/6W7eWjJ8XjfLH4b+NffNHz6UPpzA66ljcSev2cB4Pa784URz45Vnmkhei6H7V+pZJFEyf3hhvnfV2pb84aUi6hzYp8A+sD6sf8jKq9izrKH0yqPkvPLLoXdeqy39a6F51f4Svq9jvE8Hec0AbxngtbUPrA9rzWjN+znFPFuw964W+QqvxcB51e9J1qvvNdOruFp9P721u/VhermXq+812+0D68M6t9vmX/me5cuU0D2SR8l5LefZtHcdcVpt6V/pEclnjfL92Eblzp522tC/0tMC3k83zydcfjB9OFHvJtvW43vGD58yKY6S81rNs7l6F7s3zGtP/5rqOiByfDYpWV2ekcSoE9LabX2Y1Xk7JRO5C+fAPgV2Wweo2+/tWB+eqxoRdl7pnjFep9WMH2XGHuX8OSEzOkP3/ZzOo3CJrkNg1AHJiFmvCfLe2ifaNuIoAuokEVD/hdytD9N9X7nr+hJo/Sa2BuWV7tCMH2XO/mFWpo+xN3gkbLS8rt7XZKB+UwrqN6UdvBs6BeDdbrd1gLp1213Xl1D7/cOaNSaC1yk/SsbrlBV1yvqv3+SxA5pHg9e23pq0dX21U2CreVbxKuNjrL5aZeN1z/qw5tW6XiV41fXWNK9pALy6JzAr/3lnHl2sLqdHaNZH1HZbx8t4H7YC9RErUB+xAvURrbzuWB/Wx7WGV16DgicfsqOUvC5XatD1Bo8dgPOwrrM1X13e5s5CW8VBgFdd+/ME2KfAbv1r93PRHevDta1OlAbbM1Zkgp1DdpSc14odbtV7PdPaPR631B8uQX1TXSfvotvW0HVpZYhxgtgHrj9cqeOy+le5Z7ywnz5KnolY9F9/2B2xP904EfvTjRPb1veP/enChMW/WpfH/nTDQOxPN07E/nTjxLb+9cRz+a79a+xP141t/Stcfmj/6p0/bPmdsSH2pxsnYn+6cWJb/4rpFHv3r755ppbfGRu29a8WfVhj7/evG/Ia/auJqA8PA1EfHieiPjxORH14nIj68DgR9eFxIurDg8DZG098f2jiT2D51/smLt+b9lPw/Svw/Q9g/ccvzOUfn5m4+gJs8PsXn83fewyO+N2r+0748cWbzXF4Xs9vPfHLpWk/B/bH1yZefDLtx2D9a/j9x+b6Tx+Yy9+D7V+D9V98Bcvfmd//em3a35+/dsKrB7eb4/C8njz0xI15Jb69BuPhORhPl8D+BobnO/D9a3NAvnx+ZS5/DcbRORjflzfm770AP/jx0tzeI7C+DZ+uHm6Mnw7Pq/d4/RVc71dXpv0RjM9nwAaX/YcnYDz98spY/eUF+L03YDy+AuP15UswXj+A/X9h2t9fOg3Xmw/Xt5sjCR9PEHtbfdhXd/R+/rph3HRs8TAEvH/F4kiMJ4y3BLlv8X7ObsHY9aYnnja8Dv6ALN82nwLijk604f3r2PWmbXV83/tbdJ4GvGRgeZyH3QDnWWx8bqsr+j7XSz3tyKvABbJ82/wm3zwW7/wmxLZh7P4V3ov9FbDh+N02Twbzrz942tG/dsP3OR2mB0Mbe34Dbez5TPSvbsD86bbjEbsuMP8b/etmwJ67wfF77mlj8yz2/Cb6182APUd/gizfdX4T9hwv+lc3YOPTN18Y2iny/W3va6J/7QaMhzGefPXgbfXh6F83g29eGsbLzvVhZP3oX7uB+c9t4+Vt9eHoXzfDtu9R7Vsfjv51M/jGt1EfHgaw5+RRHx4mYDyM+deoDw8DUR8eJ6I+PE5EfXiciPrwOBH14XFCxsM5Mfoa3bE15HWQgfrB0E5V/ebQ9OF6afme3qDcc1ZJWh+V+Iv03RYpWzi3yNP1vyUPF8CGfY90/W+5/fNuOwf1wFUbpDv2gfXhTNX3t/pXuecZqxdeiHrhS3Y+luKjXkF5dW25pev3y/XvAVv3rzPHr66JbrFLs5+HbjPV9lGy8LpnfTgH/V3uQu55wS4AdlQF51X+lfQLD151XxSz/wbos5KodkJqPNZmn5U7dgX6qiSw7rutDvye9eFS9TFY07eB77nuxyF4Zf+UHm2J9gPKq2srNd1PA/bLMXnV/lbzbvZdIXf7sIgTLK+DDNT31/aB9eHS1ldLQ+55xUgkiteU/VOFwKtrKzXY5wjakkfdwQD2PTrvtmti9gvTfRp+APaB9eFqWa/v16z2vGIDmx0V5zUj/2cpPuoVlFfXDnUiHs6aDPQZVLb0r5XZfyMlKehHZ9oJmRCjr2AJ5t3Sxuue9eF6Wq7v16z2vJ7Wc35UBWu5kzfJH/lHSa+gvLpOGYIHut8Gr62teCJGPJwRdeGcddopmZj9OGvAa23zr3vWh+sp0q9Z7TmZlnN+VLzRZd7Ij5JekS1S19BNjMdcXwhnnXZKCOzbW6+OR2injXIE+rowxyex+dc968OE9bLq/J7antxzkpQLflQF29FCfZT0Cg9eBQ80ejb69ra2iqt+M/unL81+zdDOGtBnm/zF9K/aPrA+TESjdLt/lXtOz1++4EfFeS3VR0mvyBaZ6y207otfzTpt2R+2qYx4ONcB91mnzbpZi3Og4qrSnHeJTZfYsz6sebX2axZ7zvpwL/lRCV5n8qOkV2SL3JVX3U+9BLwa/dTTpdlnmx5xAXgtAK+mH2sAr9DW2LM+rHm1jWu555TEbMmPapXXrHdenTu8i3iY7rfBI7TTWWXEw5REow8+tHMtZEre5mB8avvA+jDKq9zzjDUf5EfFeWVHzz9KekW2cPbwkMcLYHfrwy2P5512y2tg+jDqX0Pn1fUOWvhPyGNrK324MuLhlsduu+VV6cNw3i370YcJuwfs3I6EhddJILxWrryK80zPsuTlHrC1bm/Ew3ShwRu0qQHGhY3XA+vDZILcv8o9p/+lDT8qzms9kR8lvSJbuMpNkkfKmsEjtFteNe+G/4Q2/bLkVflPOD7LfvRhgukScs/pWmnDj0rzyj9KekW2cFaohT9teYQ29K+Qx/NOu+VVnT9X/7pnfbieFev14bB5/U/nJ4UiHoY8tjb0rzquMuZdaLe82ubdsid9eG7qm3dg4TUJg9f/68wrnHe752UYD7vzCscn5l/3rA+Xy3r989e7vLInlnVBguD1v5wDNzEe3f0r5BHzrzAexvzrnvXhUj1P9OCVPYitySwEXt079wse3P1rtz+1+1fII+Zf96wP5zCPA6KL1zl7EDsPglfnB0pw3sX8K4yHsXkYxsOYf92zPpyrPBB3/8qev1JeF0Hw6vzgoXt82udhOO9ivMJ4GPOv+84fVrw6z8M8H5HyuhwWrzAexvwrjIcx/2obnz3pwxvw+q/0K6SpmmH5V8gj5l9hPIz51/Dyhz39K5u7EzLPwuDVeQdgPIz51+551z4PB6YPF1j+sIXXSUaGpUvAeBjzr3B8YrwGpg+jeaYdvKaM12RgvB6ZPlzNiac+zFPZ6OkkYejDjq+VHZ8+XHrqw+xLnNf/OSjd/8j0YTIp1+c3Bc6r8/PXI9OHaQDUdG5HwcprHQavroLTcenDLPds0Lw6Z6Yflz5MiZHc+PnXOhheXQUnOe+C/KbKmt8k42GQzwTtYmHyHIo+nLJX47q3IyH3PGfJTOqoKK8TymsI+U3OGczd+YclyDOF8bB73lpY+jAjhnRuR+FO3lqieP27IHh1nTHc8odhPOydPxyIPrwNr0HkIzq/x3Fc+cMtr875w4nklYTBq9/7dNSTGO9ZtbYlf3hhjmdoUzcA4ukw9OGWV2v+sNhzOi7yhToqMqmnlNdGXau9gb3/6ig46XnU4LW1u/XhHPII7EzzGpY+TLlJ18/DfM+zBXvJapFrXqtpStIweHUUnCSPC55KmayMP8OG8TC9quUHp502PX/l6nuToejDmb7PSe1rlLN8Sdkv5vKo6N/VLG34R0mv8KhDIPwpPQI5wKHdrQ/To5c/cN5p81Mh/pLfD0MfpvuVrb9/5XvOD7+c86P6I3sZv5xlhH+U9ArGq6OQKOLhvEmNOiGtLf0rUc8tBe/8KPlfZ512yl0SQ1sfRuwQtA+rD7N6Eev1Yb7njNdpJbisJgUdwotCfJT0Co86P4oXs/5La+s6BAYPqa7/ctZpt9fBD9pevQ+6Y7fYsz68qNe/J8n3nPLKLjx+VBUrecSLwtQh1IMpveqtZaBeU3a3nhOZA1ssP+20kw6ejedj2j50fQmCPH/ley54nfKjqtg3eFJiHUL9pk3rrV0AW9ftIqv3p219NYsN663p8/kDsA+cP1zZfnd1DcarrrfGv5Gzf4Kot1Y43kLr+mmLblvWl9C86vqJZj3E+k69RHldtHW7DP3Jyuue84crtD4i23PBqzgq/g1eVrEMoT6iqzQix2cF6pdqG87Duq7WYnX5HbsgZj1YK68Hzh/OQR24u2B7zopMsAuzFEN1IupX5b3XM/WArD9cKh3jrNvWkNcBrKsH7dxa1xLYB84fTglWf1juOX9lgh2V+AaLtjzeougfFt40Yn+6YSL2pxsn4HmO/enGgdifbpyI/enGidifbpzA5lnMX2K8xv50/SD2pxsnIA+xP904EPvTjROxP904AeNhjCd4HZx62j3rw/bvjQxRHx4noj48TkR9eJyI+vA4EfXhcSLqw+NE1IcHgbM3nrh9ZuIjWP71vomnD01cvTeXPwbLn4LvP35hbv8T+P0rsP4F2P7FZ3P78PcefXnmhJcv3myOw/N6fuuJN59er+Lm66W5/ONrE4/B8uvH5vKnV+byz+D7Tx+Yy7+Yv//66qtpX0P7Hfg++L3vP752wtWD281xeF5PHvrh0e0rYzg8eALGw3NwnX8zr9wP7z6aw+DqibH87VMwTJ5fmdt/YP7+/Sc35hc+XJj2C7ADn8zfe/Pu1/tOeHr1cGP8dHhefcfrlw9gvH4G4+EjGE/gMv/wxBxPLx98NpZ/f2yOn5cX12AP3pnb//m9uT8f4Xj9YH79Mxiv3969dsLP3243RxI+YJyD6UuYPozp/ljcBeNZVC8GcdMJjKMsOLbndFh8DLFrfdhXL95Ul3C9HxoqsPEJl/8BWd9Xj/o9sLHxvav719Nk3PC9f/XVIbD7VzRfwvN+NnGch4/tOR02frHxd4H8nm9+E6YXY7zbMHa9yde/+uYz/Q7YWBzkqxff0accx2sS/eva5bt+Toc9J0D9a+KGscfDu/av2HM3zP/eiXt8/WuMhzl27V+xeRu9f0VszL/GeFhg1/7V9zkcxiOWT3xnfMZ4mGPX/hXGw5h/xZ7DY/N2EuPhTuzav24bJ3nnN0E7xsMcu/avWByF8Y7N26h/TdwQ9WETu34/Z9t84gSJn22I+vD65dh1gI1P3+c/UR92w771Yd+8tagP7wb71od984ejPrwb7Fsf9o6DPJdHfbgbUR8eJ6I+PE5EfXiciPrwOBH14XEi6sPjhOQlV/WDHf1rBuoLa3vw+nAqqwyzutc5q8JcsmrSVcOW9Ny2gdULd4Ucn6VZHzxRbZEs/V+TQtUHt9gagenDle4rYlsvF5WnM1YcnFdN5xXGWdFwXQO9N3jwKsdnDeq46z5oavzWRn86esTLbjtwfRj28bmLUlR7L1gxf1asPmPfyBi5Ve914D14lecV9N+gB2LWgU+JyWtt9tdp7cD1Yc2rNb6SnURY842Mdc0pWGeDnP1DQujb4ArBS6p5leOzALzmoH5/R78c8Ufg+rDm9Yc1a7BNVoLXRrTOKSSvPQdb3v41Bf2t2r4Ncvzqvgxt35RJpx24Ptz2rJrY12CHyhxxzs5KKQftIiUh9M9xhex31WRmf6oa+NfKnIdToibmbrtFYPqw7lllXY9MOPP1tJ7ni5y1HCyXSTkvl6yj5HB4FTzkjdk/MiVgHiYmrxlRgRS0A9eHVZhvja9SMuHdBcm0nOfzlPLKutVV83yZLp2bdO4L/rzqhrG6X53Ba0pM/5otVcNKaAeuD9fqD1s8nDaUxIR1dS4X+YSy/N/YRV9N8yadOTfp3Be8/WuxMPszZ8S8f03Jb2a/5qXZt7e1A9eHNa+2+CprePdeOlB5c2Z2efM2sLwdcDUcXsX4ZH23zT7ateFf08bsr57rRqTQDlwfrq3bkWB9uBd82ObsjlzxOuH9cAfEq+CF8lquzqPZojbn4eUdXot5px24Pqx5tflh1ppO8Mo7/LHTkDJeebv9cmi80h2W+yz96xTwOjP7cFMSi3mnHbg+XGPrUVIZr9nS4JVpT8mgeBXjs+XVTR9ueey2WwSmD7e8WtYbC69ifNp5VfqwOQ/D8dnaoevDtv1QGAuveh4GvJjzcAev+aLTDl0ftn5PIhetc+l/PAKWcRMRJ2RwcRNlTfKqn99YeBW80OvA4LG1Q9eH1R+2eJieBsYrPRrBa8I4Zn9yXoejS4jx2fLq5l9bHqEduj5s+56CySu/u8k1r/XQ9GE7r93+teWx224Rmj6MrWfymrExWywUrwN6ngPnYTf/auc1dH1Y5YWcOI3XgqtMitdswLxu619D14fVc2ZbPGzyWi94WpPktRxQvsSu/Wvo+rB6oGGLrwxeWXZQShSv5ZDyYHbtX0PXh9WDKad4uKYrU14Txes86Rc9+tfA9eEKy5cAvM74o2jFq/tp3Q969K+B68NVQeZr1wO8Lhmvc8XrgPLWdu1fg68vUcl5xW28NozXheZ1OPHwrv1r8PUlqu74TgHEw4TFw0qXKAeX37Q7/xp8fYli0f09tdjUJdgILRqtS0R9WCG4+hKFeDHBTR/O2AgtiOa154A46sN2ZMvO7ykA3Z8pwqnmtRwOr0emD2te3fRhnoGYkr9VvPZ8oxP1YTsUr27jVeQSK16L4fI6cn1Y8+oWDw+X1yPThzWvbvGwyHypFa/5cHiV/tUzv6kE+U2tHXx9iQyJh0V+Uy7zmySvMr8pH9o83OatOec3WfLWgq8vgcTDIG9N8DoZPq9u/nWw+cNoPDwWXo8sfxiNhwGvIm5SvBZD86/UP1bm+6tI/vDCvA5aO3h9OF8fD9PF7ArNGjE4Fa/8Ud3w7nMKzaubf80Br60dvD6cr4+H2XtX84w9wVnltR4qrwtFpJt/Za/6Tjvt8PVhcW6s79M19ArNlymh9BZMR/wjSzatp9kymw5JRxTjk/Ji1iFA/Ct/JbTTDlsfTmdaC7TM15TEasZPRzkvpgmZVuxlfPZRNhdvPPeIjDinWInxmTepUTck1XVA5PjVNTN03QHjOoB2i7D0YVZLYH2+REonXVZ5gBI6oxMymVTTgr3CXizoDN37czp3XhUvKsfjnrbNuiAqLwjyDu2w9WG2n/Pu31FgR055ZYVjCnZUFTuXJSGLTJ+D3pC5l5DSvBr1m7IOHlfvV1NQvykF10WLsPThtlaPtd4a41LwOi3YWalY/SbK6zwLoH6TO6+SB81rO35X71taXiVPur4atMPWh1te19ZbY+Uy2LBVQ5XXW0sHxav2n0Z9xJZXWV9C8yrHVw3qI2o7bH24rStnrbfGqiAKXhmbfKjO2F/TlPSfF+47D4vKnQytf+2eh+X6JaiTqe3g84dVTVLb0GNVS1mRCUYiO2he8pLXs6p6r2fqAc0L0JfAcg3JSwHqJRagLqZGYPpwoUIf63q5WCNj13HFzgofpYzSovf6wx6I/enGidifbpzAeDnztIPXh23fGxl8xyfGU+xPFwZif7pxIvanGyd27V9jf7owsGv/GvvThYHYn26ciP3pxold+9fg84cVon81gPEUfP6w53pDRdSHx4moD48TUR8eJ6I+PE5EfXiciPrwOBH14UHg7I0nvj80cQOWf71v4jFY/+qZiWuw/PL9+u8/Ad+H27sCv3/x2fz+4xfm/r57dd8JF2+2wOF5Pb/1xC+Xpv0BLP/42sTllbn8+pO5/Bn4/ufH5vKn4PufwfdfAPvqq2lfvzO//x3s//fnr53w6vJ2cxye15OHnoDj8wosf24On5cvnxirv70wx8eDa3Nzby8/mht4B77/FIyvS2A/uTG//+Kb+QN/D8bvI7C+DR8/P9wYPx2eV+/x+uu1aX8Dyz+a4+flAzDeXpnj4/rKHAffH4Hx9uSzufzxj+byZ2C8/vwejFc4ocDx+9JpuN58eHe7OZLwAeNdX70Xe36D3a/+Hq7vqUvc0SFc46Ej0/0hT1h8jD13Q/WlLW14v+qqSxybPnwPWb7r5znY81fsfhbTn2wY+/0rpgNue/+K6RIJsj6qD284D499vN5DlmPz9AXyfWx8Qht7bofOsyPnyxUYT5B3bB7+A7LcOy8NW39D/5ol4wa8F9vWv2JxVCj+9die023rX311/wRZf2/+NRk34HiE49fXv2L3s3B8/g7Yvv4VzYuxYOzPX7H7FF//6psfgT43R+xN80zHPg9j/nTf/hUbj5h/3TTff+y8wnkTG7+79q9o/v+edMSx+1csHt63f/XleVfP1Y8t33/b+9dD+9dN71+P7f2cn5DlwflXaEf/yrFrf3pw/7ppvn8ybmDxcOj+9WRDXsfuX7F4OPj71+hfO9G3Prytf436cDf61oe39a9RH+5G3/rw1v4V2NG/CkR9eJyI+vA4IefNHNSdzW11Z6WdqZqtluWpqmccmj6sDszqX9Wes4LKOW+vToJJreHt3hOn7v3Sn5ZmXenWVrypPivyOihUHemL7uW5qsEcmj5ckfX9c9SeZ6zscMWuXv4PPZms1nbPhaV5u/fUiVddx93kSdu6/5U5nnXt7NPu5aWqmR6aPqwOzLqe3POCVVzn1fFFpXQyC4XXzKm8ta7vL3n4CdhyeQrmadinAS6vbH1XetaHU4LxKvec9W3IGJEpZzMNhNeZK6+6T4rRjwPad/ytbiBgWV4rXgPThzPFq9W/yj2vBK9NkoXGa+7Ea9tHRdhPgC150vX75Tyte45cdC+viSU+6Vkfzsm/IP5V7jnldZazsyBaC2WB8Dp35fVCfiGVPJ0CW/rXypxn6VKzvxBYTsOMuru/ZM/6cNEk/339enLP61k1z5ucJHmTEX4y00HxKvwpa6C4ymNra/9r8JY1ickrgbwnktfA9GHd6dPGq9pzMqG80jE6KRaS10T3GO0NnFe3tiBinmWNu1b7fLa29reG/6S8VrM1y+nZKd36rR9YH9adPm3+Ve05J3Sasv9jLRWLQHhduPIqxmMxVzz+BGzFU234z3yheL3oXJ4tbbz2rA9XM8vvKMg9Txs+tCmv5YzxWgpe++7ry3gtPeJh1q/Z6KutbRVXgb6+C8Xbaedy1vV4sWK36Fkf1rza1pN7njZicHJe6TUrTmbv/ZqZgy894uFipo74SaedLgCvc8ArWJ4t1DkITB+uJpbtKsg9T5ea1ynjtfoL57Xvvr7/RfdJ7AoGMW/Si9Loj97ach6eg775c3WM3cvpeM677xN71odVG2qrf5V7nvEmdWx9emCV4rUMgtff3OPhlsd7wO7Wh1teu/VhO68968O17XcULLzW/HSUfff1/U8mWv+jezzc8gjHL+yvrv1xsToP3+mrr3kNTB+usfUsvBJ+OqoQeK3/0T0eLnWv/5+ArZ6/Al5nMC6643/lPUFg+jCxbVdB7jl1sxlTUimvE0ZnI3h1eZKyR2QL4sqr4IHusOEvod0ekh7fcjx2L6dfzgSvgenDxPY7CnLP6dGlglfqkctZKsZr3Tev/8keMpXu8XDL4xNgd/vXltdu/2rntWd9uLH9jgLglUhel4LXnp+wZ4valVfBQ8sjHL/d/rXltXsebnkNTB9usPW6ec2C4XWSNqV7PAx5hON3c14D04ebsun+ngLkNeG85gt+Ml2bm+8LHrxCfwrHb+j+1U8fThuC5DeZvKbB8TqVLgED9Kdw/AbvX4GN8EqIVOHc/Cv9j/NazNnJTJukX2SLapq58YrFw8H7Vy99mPE6X7ueyWsWIK+LncTDoftXP32Y8bo+v8nklT2vZLyWU3Yys/551S4BAxYPB3//6udfSVN175dCN69VQLzOdxIPh+5f/fThlEyLZefvKJi8FgvJK3tc1/tjdcprMS/mO4mHQ/evfvpwSiZy0LnNw6XktR4cr1g8HLx/hTZyn5P48TqTvPLHIH0/Vqe85gtHXo9LH6ZcyaDWzb9WklcSDq80iIv6MATjlXT+joLJaz3lvP5rI3jt+bG6D6/HpQ8zrsja9UxeicFrGQCvSxGaozgufdiTVza2Ga//Rvj7D32nS1BeM1dej00fVrw6+ddslddJ7+kSjNdG3HKhaP2pWPsnYNv967r8JnZ2DpPf5KkPa17X+deF4FWkJDJe/4nxOu09XYLuWdrUE494GOapDSe/yTN/mGDzsJHfxDQMlt/0b4LXOgheE494uOXxSae9Oa+B5Q/78coCJcarHK99P1ZnMwkhSbm7/OEO/7nW/wabP0ww/2rwWpm8khB4bZIy5g/fAVG6hFP+MJt4RZ4pj5n6fqzuwyt8H+cC2N3+Fb6fA5cf7v0cz/xhMknX64jG+zkst0K8n8MPd0i86vfpKvA+nbS7/Svj1Xxv+S6vgvfQ8ocx3Z/vOYtP6DHyd4CFRMz+r/fH6ozX2pFXGQctzPcioX3Hfy7N9+/gcnryDvT+q2f+cD3N1uvDfM/Za930HAhe5wkJidelTzxMA3rj/fTW7vaveWO+Bw2X0xt6yXtg+cP1NF///JXvOX9dv5zzS6BccEWZnswsBF6rpU88nDdmfYnWlv6VEKPuAD16WIfAsOm3w6wvUc3L5dr1+J5z11rNWd2QWbHMguJ14RMP57r+yz1gt/VhVnnKdD2Y087lqeY5sPzhCstb43vOeJX1YGaFKHnEFLa+H6szXsuFTzzc1vW5AHa73Lhf1bxallvr/PRdX0Lt57r6TYzXSlBK5llgvM594uFUl7D5CdiQN12/SU5KF93LdT22wOpLlFj+MN9zwetE8cru2MpZ/4/V+cv0c594mB6NwWNrt3W7jPvVyqx/eGd5CersafSsD+dqHllTH5HzSjmd5PyoAuN1xl5ixSHjoloVo3jSaUP/SXmVz5i7/Ss9O/IkBKYPZ+p6W8MrV5wKemFz/ypLUzFe+36s7gNYB+8U2Jb6wjlSfzgLtf5wbamfqyH3PFUXJiU6mPrDHoj96caJ2J9unIj96cYJyEPsTzcOxP5040TsTzdOxP5040TsTzdOxP504wQWD8f+dMNE7E83TmDxcPD3r9G/diLqw+NE1IfHiagPjxNRHx4noj48TkR9eJyI+vAgcPrME1fA/nrfxDlYfvPeXP70oQm4/AGwL1+8MfAJ7g9cDuy3wH73ytz+vS+Oxw2244XD8/rja09cA/Opad98Bus/+GQu/3p5u4rvYPnrF2D9t1fG+rfPwPYfg+Xvze3ffgHLP4Pfu3r82glPwXZ88OXwvKb3PXFujqeLz+Zl/fwKjLeba3P5xRdz+IDlz67N8fP8EgzwTy/N7b8Eyx//bNpPr0378hGYT767HfdzONF44MnhefUdrzdfTPs5GK/XYDzfPH9g2K+uHxmX8new/PVLc49uPr81B+D1S3P9R2D5Bzhe35n2BzBeH7uN15sb8DuBj1dvYPoSdn+K3f9i9zXofc5k/XL0eawFxxYPQ17gnLPr+1csHsbug5INk7aPXR+G8L0fxdbf9jn6HX3YcbwmQ0zi9wAcj3Ae/itgY/MuxqOvLoHOu4htw9h1RExfwvztObL8B+T37lwHiC7one9kwcnIx6tvnITFWZgu6as/+ebBuOI0GTd846Bd68O+z3NQ/xqf03Fg+jCm+2O8b+tfseUxX6IbWP4hNk+fIMu39a+p53LncXhk8bCvf8WWb+tfsXk62TAf8djiYV//6qsnbc0bWLxxvv+RxcO+/hVbvq1/3Vc+4rHFw77+FdMptvWvJ773r4kbjl0f3ja/aVv/io3/Tf3rsevDvvcxfevDznHukevDmP8MTR+OeaYCo9OHEzdEfdhE6PrwSYyHOcamDydRH+aI+vA4EfXhcSLqw+NE1IfHiagPjxOW+5Zc1R+WdmarNzw6fTiVlZN1/eEinPrDrDNI4daEVsXDqlei5KVUdaGlXajD7O6X0yJ0fVj1j7HGw7mogJ+RRnavqHnNcPZX//3V3ZtGq/GlLkrdd8HksVL1/tV5Vr1Qh6YPp2oisq1Xis4FBSUy42yy+v6yD3f/vE5ceX3SfoND90FqDLsGfRhSW5340PXhzNL/RaMSHWRKQqac14y1JhG81v3zOnXlVZ7XwuQ1hbyCfjqt/x2aPqx5tfFfC16rFV4bwavyvP3Bg1fJm25OAPskwT5IsM/D0PTh3Oy/dheyoxPri8R5zUlJBK9ZALzOXHnV/tTwrxlJDR6pZZ6PCvTv0AhdHy6w/jlkyjvr1bNqznktWG/Jmv81JF51fytjHuYNFVfsrLnTZ9ASD4euDytebfEwI5GdOTKhvLLYsZjzfpL0nyoAXud+8XB2h1cV8GpejX6vqeZ1aPpwicTDlD8e9pJJscjYPQC12D0gH7T987rwi4ezxvSv9E7N6OubL8w+3SmpLfFw6PpwhcTDlEvGa9oklFfZwIzz2iT1XwbEqzjvWVMb/hX2W4f91FNSWeLh0PXhComHV/urr/JKZ6z6X/rndekXD2fz2piHi5nZNz+fA14XlSUeDl0frn9bHw+z1n6M1yXkdZn8TTEgXmX8OzN5LXXcJXmeKxFN+td5ZYmHQ9eHFa+29XLedZDRmBm80ojj/+mf1/9q/OJhqA+3vGp/Wxj9XQerDzfV+njYyusiBH34/za++rDpX1tetb8tjP6umteB6cOp4tW2no3XIghe/5N46sMJmIenyp9qfyu72kJeB6YPp8tqfTxMIwnWb5tSmjWC13nC7l8Zp/3zuiCe+jDglR58scor6y4ueFU8VsPUhzM1Xm3zNT1sdttKjzYVvNLrmfFaBsLrxE8fBv615VX7W8kr9K8D04czFcjb4uG7vC5T2Tc/AF6X9dRPHwb+teVV+9u8ex4emD6cK15t4/oOr3mTh8PrwplXGA9j8zDkdWD6cDFH4mGDV6au5uQf2JGzrwXAazXbMB729a8D04c1r4mLfyVkzqTwIfIK42Ff/zowfbicIfEw4HXJeOXP7SZB8FrON4yHff3rwPThlle38dqIvLXh8QrjYV//OjB9uJr4xMM8a6Tij7pIGLwWiw3jYV//OjB9uJ54xMPpknEqntiGwutyK33Y3b8OTB+uE494WCSK8cfpqdKcekW2yJZb6cPu/nVg+jBJPOJhtv5UxMPB8NpspQ+7+9eB6cNN4hEPJ4xXETxlTRIEr2kT9eEOpC2vbuO1muWkIAHxSqI+3AFKmUc8nDBei0VO+BeD4DUhUR/uQMurSzycsAMvFyzlNg+G13+M+vBd5ES9oOIWDzNeZyx1OhepxEm/oLzWf4n68F3kRL+g4uZfy1k142djaLza9eHV/CbGa3d+07D0Yc7rpHM7EozXheCVZ4Uz3VFd5SHwWpFt9GH3/KZh6cMrvDrkNyWSV3Y2hsZrtz5szzMdtj7c8mqLh+/wWk/02QiB15Jsow9j+cND1YdbXl3yh5OW12povB5b/rB678glfzhZ4ZV9KwReC7KNPoy9nzNYfThRx5U4vJ/D1x4or936MON19T3JXL/HNXB9OMH0YcbrnOmw4saumtY8HuanJwRec7KNPkwvWeP9V3rtGu+/DjZ/OMH04ayhMxN7rVvcstbTapi8duvDxVIV/pHvvzaK54HnDyeYPpwRpvWz1/XLecFfW5+xQyeh8Jp6xcMpqAuSN2Z9CXq0sA6Bpf5G6PUlMH2YHndNeaWHW82LWUZ5XbCaRuxsVKTvF9Y9eBXxcKZ5kvOultvu6eXihKn3mglZjatahF5fAsuXYEc2zXnFplnBzkLFntPxx+o10bX1egJTwohnfQmyer+aAl7bOj9tHSBx7Q6tvgSWL8Hr/LBwQvFaiNJNYsky6RUevMr6EppXzZs8BF2/SdbpaudtU6dQCL7+MBIP88pygtdJwc5CwQ6dP1YPg9faq74EnFdrdQi6PmKzun7L6+DqDyPxMCugx3ildE5yNvHy5PCQeJ06rdr6z1X/KpOhW1vXLoL+dXD1h5F4mPLKFaeCsclOSsquYK499e9fPWCpPwzr5OVHU39YVstLGYc8JVxXfBoUYn+6cSL2pxsnYn+6cQKe19ifbhyI/enGidifbpyI/enGidifbpyI/enGCWxejf3phonYn26cwO5bMP86On14JIj68DgR9eFxIurD40TUh8eJqA+PE1EfHieiPjwInD7zxBWwP9038RjYTx8CvDHx8b25/iW0X6xf/0ew/C2wPwH73Svz+w8+PHTCX4PteOHwvP742hPXpnnzK7C/A/vr5a2Bb6Z5e/3J/MJD8P23V+b6P4P1X4Lt34L134Pln8H3r65vnfDx6nZjfDk8r+l9T5zD8WQO3+e/f2TaF1/AeAHj4+M1mA/+3vz+JRjwH7+Y61//DMbVtWk/Bssvzf179uqZ25D7fv1wYzw5PK++4/XmC7jcfwHLvz427FfXj8C1+8G0nz8wN/AIbO/zW2PAfbs19/j6HRxX4IMPYLx+AOP1wnG8Pnp3uzF6GK/e2DYexu6LsPtX3/sW9P4VxscWjF1HxOJhuBzjGXs+e47YvrpkgvBsw9jvc3yfm8Pzjj1/xe5z7tzXeOpJcHw6603JuAFjgJ+Q5di866sv+eoWmF4c85sEfHV8TA+GNqYz3NGbEH042ZF/Hfs8DP3pts93fPXhbZ8HRf/aDd84yDe/CdV/gY3lH96Jh6N/7cS28bBvXgwWd/k+14v+tRvbxsNnnuv78oLGw9CO/pVj23gYm7ex+9Vt4+HoX7uxbTyM8YTlJ20dD0f/2olt42HsOsDG47bxcPSv3dg2Ht61PuwdD8PvR//KEZo+7BsPR//ajdD04STqwztB1IfHiagPjxNRHx4noj48TkR9eJyI+vA4EfXhcSLqw+NE1IcHhYo4Hp8l3s3J+r69ma0e8eD14VRW0G5rSOu/+m7HwXbOsby/pV9zUqpjUMtBP7pCHezQ9GHVP8a6Xi6KvWekkd0rct7CgvVs7rsMPN8Xx5Ll6ryr8a3r+y/M5bXZj65Sxzg0fTglSN+GUnQyKCibGee1ELzOeOX/nlHo/hkYpD/NFK9yfOrvy+XqdCiea3WMQ9OHM7K+fw5vxJHw9g1TwWvF/mHtiCpC+i5eUBHXa0ue10Ltsu6zYvTfaP2t5InYeA1dH1a8Wsd1LdirNK+14rXun9eauO6D9qdydTE+7/RFgn0cQP+rFqHrw7kDr2wN1hdJ8Er+k4g4kfyf3js4kEXmuA/an8rzI85rRsz+dPQwjf7MdKn8YGj6cIH5VzLlnYfqWTXPRKuraS76kcglfYJM/frTpXp4q76gilftb414OGtUH8Kh6cMFwfrTiY5SZEJ5XYgPEs5rSnRP4L7Aopzasz+dEQ/nSxUAa39rxMOUV9AP1txei9D04ZJg/SRFZ2oyKRa8G1Imw+OZWtIjMubu3fZB9qdrzHi4mCtelb+tjXg4Xyheh6YPVwivlEvGXtoklFc2Xnk7btauXi7pE4xXx32Q/rQBfX3nJm8pMfszt/3Wh6YPVwTvw636q9/htei5jxnbl9JtH2R/unltxMPFTPEq+4YuzP7M+VzxOjR9uP5tvX9lrekZr0vNKz/O6i+h8Oq4DzIOmtVGPFzOVJ982Rd0XhnxMB3PRTevoevDilfbuM5510E2bDPBa7HCa943rwtnXrv14ZbXbn245XVo+nBT+fLKz0NdzuSSPsE4zd1Eaq3/GvFwy6taXhnxcMvrwPThtEH6+lp4JZzXrG9e5868quettREPl1PlP9XyyoiH6cHK+WBg+nC6RPqrU3fKzhxlMGs4jeL6bgSvPT/QYbw67oM6r2Y8TA8ezLNmPEwPNu/mNXB9OMPm4UI08aVHl67wmpKh8aryH8x4uOVVLTfj4ZbXgenD2cKbV7Z+ugyC19KdV8WDGQ+3vKrlZjzc8jowfThfIP61m9csEF5nSv9C0R0Pt7x2x8P2eThwfbiYI/7V4JWpq+U/sVSJBeV1OSReu+PhltfueNjdvwamD2teneZh1jK/+gtvpF/OskHx2h0Pt7x2x8Pu/jUwfbic+fG6ZA9il/TTYHhN3XjdNh4emD6seXXyryxrpGL/cF4b13vHvcGD123j4YHpw9XEz78SkVJUTimvZFIOh9dt4+GB6cP1xGMeTpcVmVTkn+k/lNeU/CsZDq/bxsMD04frxINXnuVWLVLK64TxSgbE67bx8MD0YZJ4+Fe2/rRiKQY15ZVltA2H123j4YHpw03i4V8TzuuU8ZoEw2t2mHh4WPpw2vjNw0nF4udqSvgTrjB4jfrwXdCTsgmv/9rwIyb/NBxej0sfbnl19K/8frcUvCZD0v2PSx/OiXpBxdG/Cl7/jYj3H0J4rp5tky8xVn04J+oFFcd5eIXXSTL8fAnG68xYfjcedstvCksfzol6sWgdrwvBKzuBK7xOk/7zm9x57Y6H2/ym7njYPb8pLH245dUlvylhJ4KdimB4XTjvQ3c83PLaHQ/b80zD1odbXq35TWt57Tnf3yPPtDsehvnDMB4eav4wPg+v5bXom9el8z4cW/6weu/Ih1d27Pz1h6Ln9+n4exxuvHbHw+37Od3xsPv7OcHVH5bH5fJ+Dl+bHic7dn64Zd+8Nonru5rd8XAxV0R2x8OM1+73JEOvL4Hpw4zXebZgvC742qV4tZAfbt/vv/L3JN32oTseppesnK+642F6LTu+/xpc/WFER8waOjTZa90iQKmn8lSU4iX2pFdk7H11tzoE3fFwsVSFf7rjYTohAN4Vgq8/jPHK3krnr+uX80K83sxPRSleYk/6BZnnXvUlUlAHJG9AfQmiXlhX9SeSgdaXwPRhetw1SyllD14LlvuSN5ngNZ1l/fPqXOdH+NNM8ybHo/6+rj9BVu97Mn0dDK7+cIXVl6BngvFKD7hgZyEXirLIl0h6hnv9Jl1fwuAtBfWZmC3iX8mLldfg6w9XDnV+cp5eKnjNAuPV8ZGSrC+hedXjc7m6vOVV8gbrdmkEX3/YgddE8Dop2FnIxKngvPZeH7Fw3gflLxWvuk7ecnV5y6vkpVK8Dq7+cIXWR+S80jM4EVUmRalJzmvP8jD3j46lwWR9Ce1f5f1qrco/yfoSmncZH1eq3ung6g8j/pXyyhWnQgzVqToVnNe+y62t1E/DYLkvKZD6w/lo6w9n4opN2eDkVZx16ciq93DYA7E/3TgR+9ONE7E/3TiB6Qi+OmDsTxcGYn+6cSL2pxsnYn+6cSL2pxsnYn+6cWLbeDj2pwsTsT/dOLFtPDw6fXgkiPrwOBH14XEi6sPjRNSHx4moD48TUR8eJ6I+PAicPvPEFbC/3jdxDpb//MbEB2B/fG9+/wGwL1+Y67+FO/T5oYG/husD+90r8Htf3I77JdiOFw7P64+vPXENzKemfXML1n9ya+IG2NefwAZM++btlbn+F7g/l+byT2D9W2B/Xv97VjyC2/XAl8Pzmt73xLk5ni4+m5f185/BeLv+YI6nvwf2x2swvs3x8/zyqbn+05fm9i++mEPj2zUYv8C+fAR2+K/djvsl2I4PnhyeV9/xegPGy3MwXl89AV+4+GBeu9fAfv7AXP+puUc3n9+aA/LdS7ADj8ztPT437Y/vTPsDGJ+vXjvh5ubd7cboYbx6A8ZB2H3PA2Bj9y1YHITFXdj9Lfa8yIaTAeUCbwIY75552vA62LU+jOkaCXIfZMPY73MwfRjyht2v+uoK6P0rsvyOvhR55cD0JSxG8NUtfO9fffVh1/F6bPkS2HNzjCdffRiD7/MeV4zdv2I8+tq+4/d3wM6AjcZF0b924gKxMf+6rT7s7Y8RfTj6VwFMH8b8K/Z8B9OHsbgIu0+K/rUb2H0LXP4HYPvyuO39KWYnjs9fx+5ft82HwObxbfOHsfG7aRw19nkY4wkbv775/Nv6VzR/2HW8JuMGlg8Bx7Pv89dt89h+8Fzfla9jy5fwzfveVh/21n+xedc1Ho76sAFMx/DVh339a9SH3eCrD+963t12nr7jT6N/5fDVh7H411cf9vWvmD4c8xEFfPVh3/eots0f9n4fIN6/cvjqw5gOsW1eqne8O0GWWxD1YRO+cVDUh/uBrz6M8R714TDgqw9j8W/Uh8NA1IfHiagPjxOSN93mwdG/ZrY6tZKnVNUnDk0fVgdqHddqzzuKSBd9F6rN3EsgS55KxQPsuwL7Xen6xPKwz8FyuX6u6o2Hpg9Xcset/lXuecYLorMm3LzkNm9qVpOe+9Nl7iXLZTxcqy8oHgngtTZ5rRRv98ByfZ005vcV+taH1YGuqQPP97zgTRpqxStvakYC4LVxXBX2YdDzrNGHMNFtlnT9f9mb4hQs17zLDQSmD+si/VZe5Z6XjE12VILXcsnPav+8urYE0f02JK+SR+1KpH/NQV14/QMXYLnkqVa8BqYP65lsXT8OtucVH6Wa13rJmyYEwKujixc8tL1hJK8lmIcLwBsB47G4O56745Oe9eGc/G/Ev8o9Z/1z+FEJXpnbKci/BMCrXz+OJjP7HNWA18rkNSVq4oXL1XieELOPt0LP+nCxTP68fj255/W0nvOj4rxmjNdykfTN6zJx5VXwkDeJ0Y8uJcC/EnM8ZkQFSudgueJ9IvtNBqYPF0vLdvX25J4T1iBUHlU1LSSvPSNbJMSxpaWIh/NFYvSny4jpX9veMbI/3VL1zLwHlktem6Tq7tPdsz6sO/Pa/Kvac0JpVEdVT0rGa9V7+xzKq2sLWt3vtTJ5Ne9fU/KbwRsN+8vVebZdLsdzo/p0B6YP69Ni41/ueUrota6OivL6X8v2Vq4/MF4dXYHs9wr6bmdLwGtj6hJtH+4LsFyPZ9m3PzB9WI852zy82odbHRUdu/+2bKWa/pAtXNury/NKeS2NPqALs49+urzTh9sYj+1ysT16dvLu+4me9WEXXnPBa7ZUR0V5/aeh8Sp4o6SWq/4ym5r9m9OZOR4pqcWq/2yX6/EseQ1MH9bc2Ma13HNKL+VVHBXl+L8xHbH3LqGM18KRV8ET5BXTh1teu/XhltfA9GHNq82/rvIqj4rymgyOVxEPt7xqPdiRV9h/Xd43aV4D04dr2+8odPDK/mD/uUqz+4MHr+K8U1KL1Tio5RXyJuPnOZxn78zDmbhTDEwfJrbtKsg9p/+xYbrKazooXoX/pPsPxp/pX+F4pNeB5PUCLNfjWfIamD5MsPXkntOj07zmQ+RV8GDntXsebnk9Acv1eJa8BqYPE9vvKIyFV8Fjy6ubf215hct1vCx5DUwfbrD1ungV/jbtvbu6z32O4KHl1c2/trzCeBjOw4Hpw03ZdG9XoYPXQvFa9c0s49VLH97cv0LeIa9h6cNpQ5D8pi5e5yI+/r+k9/wmX314c/8K42HoX8PSh9lz5lnn7yh08FpKXknvjfMpr64iNYyHff0rjIehfw1LH2a8dj+PUOjidaZ5dRws+0K2SF0vLRgP+/pXGA/DeTgsfZjxuj6/qYPXquV1OHkwMB729a9WPcoSD/erD6dkWXdfbwpdvE4lrwvS85N1D15hPOzrX7v1YXs83K8+nJJZvuzcjkIHr7XidVr0z6vrTTSMh339a7c+bI+H+9WH2ePypvN3FLp4nQhemzaLpid45w9v7l+79WF7PNyvPkx5Tb15JZrXrH9eXT38cenDlCvJq4d/ZdqjeL4TAK+ud1rHpQ8zXknn7yis57VniThz9+/HpQ+v8GpZ4y6vfIAHwqv7fHFc+jDjaAte0+GM12PThxWv7v41GySvx6UPJ+14dfavitd0ULzKeNgzv6mcw3kb+NcFnKcVes4fJug8LPY8b/ObuJAhBuuAeNXjz8gfdshvAvn8tjzTwPKHUV7v5q0Nk9fu/GHMv8L8YTuvgeUPE5Uy4ZI/LI6Ki4eS177vX915PbL84VZvcs4fXuE1Gw6vMn94rohxzB9ewOsA5A8v4XhW6Dl/mEwQHVHuOQ2WGL2cV3YgjFcyJF61v5TEuPnXfGG+Twd5z5a29+l6zh+uJ9l6XvmeZ4u05bWUvNKxng+HV/k+3UIR6eZf6QGC6wDw2ijeA8sfrqfZ+uevfM/zJR2c7MLkvLID4bxO8r6f0/nGw5Qn0s1r9zxMj14m2nTrw/S0yASrwPKHqyny/JXvOT8dpeS1UrzWk2I4vAoe80bKppoXYtab0DlbkleSWJarOgaTenX9Fj3nD1fzcn0eDN9zxuuU8smPivtYQtgb+lXfeTC+8XAG6va0uXe6zgBZ1S1a3s/B8rZejPh+YPnDJVq/ie055bWmBySOil2gJXugXfWf3+QbD2egflObe6frSxDj/XRQF6hdDusAhVZfQu2n1Q+zPRe8TsVRMY9UsuOtAshHdF4V1luDvLbj0+AN1Ftrl+u6P5Z6az3rw4XOM7XxXwleS80rUbyWQ+JVxrvErI/owKsM+S/AchkfV+o6CUwfLmzXmwbbc8GrPCp2AStek37hHQ/To5Guo/WvoI6POR5LdR2cgOW63qnkPTB9OEV5ZXvOikyQBvKakf7fWHcGrJvnWH8Y1s3TkDzlasoKTB/WZYWt41rueXY3Rkr7Dpt8EPvTjROxP904EfvTjROxP904gc2rsT/dMBH7040TsT/dOBH7040TsT/dOBH7040TGE+xP90wcQ+xMf+6a51i3/qw7XtjQ9SHx4moD48TUR8eJ6I+PE5EfXiciPrwOBH14UHg7I0nPj80cQ3s1/dNXD4z8Qosfwy+/wT83of3YP0XYPkXc/tXYP0LsP3H4Ijfge/b8PLFm81xeF7Pbz3xDtjPgP3htYmXwH4O7Bfg+5+B/QWs//SBufzjW3P5NVj/1RXY3rVpfwPft+Hqw+3mODyvJw/98OibeSW+vQaX5ktwnT82h8+DG7D8tTl+3l6CH7z8e3PYPL8y9+fzV/MHfg+2/xHs8CfwA1fg+xY8uL56uDF+OjyvvuP1C7xsH8E1nprX+Q0YTnD8PjPHz3e4vc/m9l5emOt/eQd+7/WP5s9/ABPMly+m/fKp03C9fjas8eoNLJ6F1yYW9zxA1v89shy7rznF9KWoI3Jguj8W/26rP2H3ryeez+HiczoB7PnrI2T5vp+/bnsd2BDzJUxsy0vq+32Mp03n4WTcgLw9QWyIbfNgUP8KgI1XV15/SMaNXT9v9dWf+vKvY5+HMf+K8Y7pjr5xlq9/TaN/7QTGIxYH7f35K8LTxvkSybiB+VcsvxjLe4PnD3sei8VVGbCT6F87sevndL75id75TXB7/2P9+jYcu3/1zZfwjaN8dQssPyL6VwHMv2Ln3Tfv5QfP7Se+8XH0rxzY+PS9D4LrY3kyvvkRGO/Rvwr43sf0rQ9H/+oGzL9i8fC+9WEs7or+tRu7fp9u1/rw3vL9k3HDVx/G8g13rQ9jeW/Rv3Zj1/nCu9aHk+hfN8LQ9OHoX90wNH04+lc3DE0fjv7VDVEfHieiPjxORH14UKhcSyBbxmeu6gtLnjNVT/gM2BZ9WNfqPQH2Wfdya13gXevDtax3bfWvas/YDvGjLFRp5qT/+sOpcyl6S7+c0qwfTg9OnvdzYHf316HXxbLbPgG2PL+ZqhuvxmMxN22FLfwr62CWqprfa+pKL/UO8aOsCG+4Qtp97g+5rtePQflPYvJaq+/LeLhSx3QP2LrvmdEPi14XZn1/q63rxsvzrXgr58ZyjS38K+tglqs68FZe5Z7xHeJHyWvBh1Hfn+2VY6tSPa+adeD19zXPRv+NO3aq5m3JC+zHUYHzqW35/VL121G81pLXHerDBR+BciKz+le5Z3yHatG8YSl41fvcHyriem1J3rQT0f1ymlU7AX2TWlvPs2a9/xrwWgMe67u8iw1InrT/3aE+XDVJ2yvF6l/lnvEdkt0aJK91/7zWxHUfYN+Gtq+KsCUPBPAA+x7pPg7negeMPmY16H8Fbd1zSI7Htm3C7vxr3bj0RZJ7xneIHSVvGcV5Jf+pDrI3kHnuuA9yPNYmr1mTGX0IU6Im2jNg6345ZvxMJsToJ6ntM2Ar3qe10Ve0gPGywub+NWVTUDWruvuDa8g9YzvEjzJf5kTyOum7L1LCrjW3fdDj0/CveaMCKdVPRwVG58DW49mIh1MyqVb9mN1W35+WBq+6n8/u9GHWESepZwXad5DvGdshfpTFUrRkpBxPyp55pbvgx2tGTP+aLxJJlOxfx7op8r/uAVvxSIx4mN5SVKs8tfZ55/KERpvGOKqJJR7e3L8WnNdJIQJ5m39Ve8Z2iB9lMWdnk35Ol5R99x2ke+LY01L1ozPvX+lFbfTlZo29VnlsbTXefzPiYXpLUaz2v2rtFNg/yO+rfuxyPNb/bouHge3uX4v/27BZFu/ry/aM7xA/ylJ0Hkybdp97A7tTc+RVjM9sCXidq768evyWq/3noJ02Zl9f1s1a8HQO7NNOO21Uj2sVP/+DJR7e3L8W/8F4TWQfbiuvYs/4DvGjLEWn0GzZ7nNvyJvEdR8kDwuznzrl1RyfC7NfemtLXpaVEQ+zBm+rfqy1fwC25jUzeS1s8fDG/rX4V85rivZXzxdyh/hR0vNQKV777sPNft+P16nZT50eTLnqT+lZLlb7Dra25GVWGfEw3QGD19Y+61yeLRNzfvxzYYmHt/CvlCvxPwabf5V7xneIH2UlOjbni2wRBK+O+9CtD7e8inm25fEc2N36cMsbtCHPevxmZt/z/ejDLa+29ey85v3zysZq7iZSK33YxquIh1se4fhV+nBlxMPtOThHbO1vzXlY87pDfXgrXot5ILxmbryq8Wb6V0oqnHcNHqDd8qrHo8FTa6fA1rwCv1fsXh+WpBLjdyDknvEd4kdJD4xd4pzXrOcHOuykbMirGL/0YOSJ1f5W8ngBbMirvg4MXlv7tHM53RgYR8Xu9WEZnJHO7Sbt77KV+A7xo6QnhvFaDozXbv/a8ip4aHk8ATb0r9r/Wnj8odNueYX+Ndmpf215ta0XNK+lO6/d/rXlVc/LBo9w/La8av8rfx/yDMezjqss8/AO84e343UWCq9uD2C7/WvLK5x3z4EN5+HueRabl9fwurv8JoNXm3+18VrN2tiuN7Ad2ZBX6F9/UhuUPMLxC3nV90UWHs87l9v96w7zh7fyr9U0EF5TN14x/wrnXehvoX/F4qQU2Jh/3WH+8FbzcD0wXjH/isXD0L9C/4nFUdg8vMP84e14nWSNqyawN3jwivlXLB6G83D3PGuPhzFek0D8K5mw56/D5RX6VywehrzCeBjy2n1/a/evO8wf3sq/sgS2fyXj8a9YPNytD2M6hLt/PQnj/pXlTBBCxuNfsXi4Wx+2+9duf2ufh3erD2/OazMwXjH/isXD3fqwfXzCeBjjdbf68Mb+lWcqBMHrju5foz4seF0OjNeoD5tYw2tG/i0EXqM+DFfdgldxtH0/fy3nWz5/jfpwJ6/ZcHmN+nAnr0UQvLKTku/m+WvUh1d4zUPg1W0fLP5V5zfJeBjkM5XW/CadV27M2wXIZ4J2bs1v2rE+jOY3yT3jO8SPsub5TSJbOu85L7xwz0e05jcZ+cOF5vEE2N36MJZ/6J63tlt9uM1bW5Pf1JW3Fg6vxWa8bpY/DOPhfNv84T3pwxvnD4u3H4qeeWW+tYj5w3DVLfJMw+G19Hk/5w6vc0WUzB9egPG7MHm/kz+8NK8Du63fy8rN9xf3ow+nBM4LEHLP+A7xo6SM0nMjDq/v9yQ93rvq9q/FHLxPt7jzvo5hw3g4W5r+uLVTYLfvXXXzult9OCHQj0PwPcsWfIf4UZacV/G2b9U3ryRR76di6Pav9EqVH8j36ZaKuAtgd+vD9MIqV99jbu3TzuV0HBVmfYD96MMJmRjz/13wPcuXfIf4UdKpi6jTU/dchyAl09TxveZu/0qPyKjzQY+2Xq3X0trd+jA9LZX53rOyf+i06a+p99X3qg+z98/X1yHge8YPv5zzoywW/Nkr3w3SO6/z3LFuiK7/YtQByZtU1g1R7z0nxvLWbuvDTFfWT8nEqFvQ2mfA1nUIjDoF7NmJ8T57e2iIfbKmDgGhPM3Keef39PbYnjFe6Q7xoyyWmXj5I51lQdSDcbu2dB0Cg5cM1PVpeT8Htq5DYNYBIaAek9Vu68UYvNaqsNju9OFC1mDqvl402J5RXtkO8aPklwO7ylMSRp0fz/oSZFVfynT9JhEPt3V/7gG75dXQn6x1gc67l9egflOtnnXusr4E/c0Krd/EueS8TlNRPY8sVQk+x1pn+0NJXAvptePTrMPjWm+trfdkjANYT81ab+0HvcNyPE/U9rvvR7aoL8EY0/XWrOtVglez3loWEK8+z187eF2sLqdHKDd30Wm3vMrvV6AeYgXqIUK7BPURNa87rC8heZ10fk+D7ZngVRxlyo6M3RylpP96ppSnf3crpAfnYV3X0tQFSsXzCbDhPKzrnS6N9QtQv7S4U++0MdbXvCY79a+seprxO12rce2L7xA/ypqIdImE9F6Wi+5DU7jthaX+cAnqYBag/mFh1uFqIdfP1a+fAPuse7mum7fn+sOpuh6t/lXuGd8hfpS6lHPdezlThsxt1oj96QaG1I3X2J9uaKidAmLfPki+4xHTFU4914/9c6qNeI396UKHW8JE7E83NGQ78a+xP90wgfEY+9MNE5h/jf3phonYn26ciP3pxgnMv/rqBrE/XRjAxqfvfRBcH7svQnUIxI7+tRtRHx4noj48TkR9eJyI+vA4EfXhcSLqw+NE1IcHgbM3nvj+0MQNWP7rfRNPnpm4BvZrsL2nwL58b27v8Qvz9z6A5Rdg+1fAfgm+/+7VfSf8+OLN5jg8r+e3nvjl0rQ/gOXvXpt4+Mm0r4D97Mr8/ldgf35srv/0gbn841dz+Svw+y/g71+b3//+/LUTXj243RyH5/XkoSfg+LwyFz/6CsbHd3M8PHgB7NdPjM29fQTsy4/mcHtu/uCjz+byZ5/AOLsE4/HhO7DDN8+c8Onq4cb46fC8eo/XX8H1/s00v3wE1/kDczxcX5vj5/qlOT6/PwX2I3M8vrwwf//LO3M833wAv/8Mjtcn5g5/f/naBTcfrm83RxI+YDwM45hHwIZxE3Y/iz0H2DbePdnw/vXY4mHsuRumO8DlmL6E6sPI7yVYfGzB2PUm7PkNNp6x6wIbv9s+f8We49kwdr0Jy2OB8NXxMR3QWx9Glsd5WOAestxXj/LVi339q6/uaMPYefXNa9l1vpOvf8XGZ/SvAtjzVcy/7vv5a/SvmwGLeyCw+xbsOXj0r4cBli/8V8D2nZd3/bwm+lc3YP4Re06HPYfD8g+jf90PMH/qm3+4bT5x9K+7AaYj9P38NfrXzYDFw775EvvWh6N/dYNvXkvf+nD0r27A4mFfHSLqw2HAl6eoDw8DWDyMzcNRHw4T2Lzpm18c9eEwgMXDGI9RHw4TmD/FeIr6cJjwrScR9eFhIOrD40TUh8eJqA+PExZ/mhOj31yL0evDqg6sWUe/4gXD+64rnbmXtoZ9kSRPpapyq3g1+x7B/lZ3t6cQmj6cmv0i7iIXhcoz3oWDVxcXvThWapz3hsy1a0PrT1V9cDl+a7UBzTuoD14DnhVC14dTORFZ/WspKtIXlEnRbYb1WMlZF4eq974NmXvriFP1DXk+YD8OyZM6HYoXaMPtaYSmD2dmP5e7kJ1CWD8OwWvOhyqdAHVvmd6Que+Crt8vz4fuf9UYy3NQ39/qf0PXh1Fea8FrpXkt+X+C1577ImXuu6D9qVy/7a8hbN++DaHrw7nZd+suZIcm1kBJ8Mr6NlRNPU+de4jtDZn7Lmh/avTfyJrM6EdHD87kUdtD04cLzL+SCY8562k9F+6MczurFmmT9s7r0rn1oe5XZcTDeXOnr6DpT7U9NH24QOZhGi/zDohkWs551xzecaee5Yt02Xuf0Gzh2v617XdlxMP5IgH9Ic15GNotQteHS4zXRnREJkm5yNg9Qc55neTLdOZ8UvcFukOurYXFec+I2f+1WKgbVMXrb4DX3yzxcOj6cIX416zhrWfpzU0ueW14+1c+dqsAeHXspSb96RL0a56rY5A8NmZf/NYemj5cIf6V9eFe8GGbLwWvC8Lbd7P7gwB4dWybL3nIFrURD1Nejb746RL0Y15Wlng4dH24/m39PMxa0wleM8nrnPPKOoX23zffnVfhT7Op2TefHkC52ocwnZk6YmsPTR+u6/W8UlIZr9lS8zqhvDbB8Fo48tqtD0Nex6MPk2q9f73DqxysQ+NV6cO1EQ+3vEIeT4E9MH1YBwY2/zoWXrWOb8TD9AAKo692UoH4txqmPqx5XTMPs9A3Y723V3llT3WGFDepedaMh+nBS16xeXhg+nC2RHgtRHNmSm8Xr/3rEn7xcMur4MWd14Hpw5pXm39dy2sAepPrlKHyJcx4uOUV868D04fzOeJf1/La+/Mcdx2xOx5uecX868D04WLuMw8LdZWo/2UB8Oqq+3fHw+7z8MD04WLmx6uQiuX/yt7zJRa5K6/d8bA7rwPTh8uZj38lPKNJ8VqGkAfjmS9hjYcx/zowfbic+vhXkTXCdf+UtLl8vcGDVywexvzrwPThauoxD7f5iPUsZ7y6JgPuCx75iFg8jM3DA9OH64kPrwueRsJ4pX+xJKekX3jwisXDI9OHNa8u/lWmXfIcJ8J57T9vzTd/2BYPj0wfbhIP/wp41bkWvUEGci7A4uGR6cOaV5d5OBEKk8gf5p62d324cA3Jj0sfTpe+vM4MXnsOiLNl5srrcenDmebVzb/yJ3OcUZYN4yy67wvZInMN3Y5LH84Wfv5V8yqtnm90mI7ouOpx6cM5US+oOM7DmteEWUUAvDqG5MelDzNeSed2FULntXbk9bj0Yc7rpGu7Cmvn4TwAXh1vtSzxsHN+07D04ZZXq38V+U35ktO7wiuzAuDVNWWjOx5u89bGpQ+3vLrkmSYh8rpVvoR7numw9GHcv9p4zQLhtdwqX2K8+cPqgnfJH04gr8VweLXkD88VcSPTh3XumTV/eMkjxqwRg7NSvHIrAF63yx8uNK8j04cTTEdk713Ns0UKeS0Gxmt3PFzoG6WR5Q/jvDZ0qsuXKRFnUOr+bAbLpgHoiM6XVnc8TGcj4sbr4OoPI/owJbSa8cMv50WSEMVrNc/mzi+f7gsevAp/mupCI4LHvEmlEKnr/shnj6fAHlz9YUQfTsmknjJep9WsmGVkwnOK/pyQGSvu0P97HLnjA1jBWwZ4ahOk5PuvRFVwOwf24OoPI/Mwv2LpyavpAbKncxN2azSpZXWY4fCq60vIff5J2Ub9Jsbj6vMdaLcIvv6wA68Tweu0YGeB8TplRZ2yAOo3iZfCXKDqSyheYb01jNfB1R9G/Cuvt0Z5Le/wmobBq+ODdVlfQvMq72eJWR+x5fEU2IOrP4z4V14FUfDKsiTmitflSg263pDJpxEOaP2p4FXX3ZqvLofjE/LcIvj6w9g8zKqWsiITop7pTPBascu86r2eqQcs9YdLs/5ai9HXH87FBZ6x67ZW2Qk8E7Hovf6wB2J/unEi9qcbJ3x5iv3phoHYn26ciP3pxonYn26ciP3pxonYn26cwPxj7E83TMT+dONE7E83TmD+9Oj04ZEg6sPjRNSHx4moD48TUR8eJ6I+PE5EfXiciPrwIHDy0BM3b0x8Bstf3TfxFNhPnpm4Btv7COwP783vP36xfvmPj8ztX4EdfHxt2o++PHPCS/C7Xjg8r+e3nnh+adrv4PLXJh4C+/KTaV+B7X0A2/v42Fz/6QOw/Ku5/E/Avr4y1/8Ovv/9x9dOuHpwuzkOz+uZ55X34Zt5/T/6Zi5/ewOu8+/A/hUM6IdgPN2A8X/90Rw2z6/M3//8EYxPMH5//wTsIBh3736974SnVw83xk+H59V3vH54aA7QL3B8PQTj8QG47s/BgL4C4+ktsH95Zaz+8uLa/P13YDzfXIIfhBOM+f3bb+/cxuvP3243RxI+sOc3cLlvfOsb/2L3q2hc9j8SJ4z9Psf3eauvjfGE3b9iOkUKeXSMh096ftVm33iC2L75EJjOgW0Pu389Rfg48axHdizYNl9i1/owpielkEfHefjY8psw/4rlQ2DjE9M1MB3ijk60oY54bHrTtnowpg/76viYro/6WxuifzXg61+3zZtB82qQ5wQ2jD0ehti1f/W9b0HnZey5XIyHOf4K2Lv2r77P8Xyvg02f54w9HvbNU/P1r1g87PucHLufjfGwADY+t/Wv2+YP+14HMR4WwHjY1r9i86xvXIT50xgPC2C8betf9817EuPhTuzbv+5aH0bn3RgPc+zbv+5cH4brx3i4E/v2r/vWh5OoD3di3/416sP9YN/+NerD/WDf/jXqw/1g3/416sP9YN/+NerD/SDqw+NE1IfHiagPDwmFa1tfV/+aqdq7o9eHU1kwm/TcA6kTtXMJZNgXCdqSt0IdpjrPtj5moevDqSyYbY2vclEVPBP1wnlvdWbzwtI9t89h5fldd0HxoOqDPwG2XK5roCtea0tfpND14dTsA3QXpajiX1BKRbcZ0UmIDZS+212xC811FpE8ZIDHDNSBr4nZJ0mdnsHpwxlB6vtXousG68cheM3ZkaeM17pvXukOubYYkLwVBM675vgFfZLowTr2Vw9NH1a8WuPhWvBaaV5LxWtK+uY19+YV9mkoAc+6d4zkrSCO/jU0fVhfkLb5uhadvyrZ4Yr9lYi4Meud12Lp2u5K8VCD8VmbvKYE+KWKOPrX0PRhdUFa1yMTHnPW03ouun7xmYp16SgC4DVx5VX3xwE8muM3IypQ0uPX0b+Gpg9rXi3r0XiZd3Qm03LOe4Zlmteqf17nyf/juKrud2Xw2tqyf90yqVf76KfE1b+Gpg+XSDycNqIbKEnKRcaCz5zzynrn1L3z6hGQK17rSbcteGCNvVb7YaXkN0f/Gpo+XBG0ry+7TaU3N7nktWG8lozXf++dV/fGTHJ8LmswPgGvC3WtSF6bytG/hqYPV0g8zPpwL/iwzZeC14Xm9R8GxKvsT7cweWxt2edXN/aW/nfp2l89NH24/m19PMxa0wleM8nrnPFa/YXyWgyIVznvTgGvU9Bvfa54lf51Vjn619D04bpeHw9TUhmv2VLzOuG8/jZL/jw8XjF9uOV16PowqdbHw3d4Ffpw/Y+zAPRhb//a8vgE2BivA9OHdWBgi4ctvJIyCF7dd0DxAJ7fgPFLjyhfGMurYerDmldbfJWLVtf0v7QJj1f3Z4eW53Jg/NKjkryq66Aapj6cLZF+zZQ7xmu+MHhNmyB4LdwbC7v515ZXX/8amD6sebX54bB5dU6XcPSvdl4Hpg/nc6Rvfjev2SIIXnP3xv1u/rXl1de/BqYPF3MkHjZ4FWoqewYbCq/Oe7Bv/xqYPlzMkHgY8CqkYjrMg+A1de/cv2//Gpg+XM6QeBjwys4jYZ8Gwquzg923fw1MHy6nPvEwf/7KeZ0FwWtSq8doKPbtXwPTh6upRzzc5iOWgfBabZxnumv/Gpg+XE884uF0wdNGWC7MNAxe3QOnffvXwPThlleH8SrTLgPiNXPOM923fw1MH24Sj3i45bVOwuA1qf3ym/bnXwPThzWvLvFwItLfQ+K1ahxXPC59OF0mHvEwNVlWF2GXQyC85pvyOm59ONO8Jk7+ldNJ2J+h8Op6A3tc+nC2SDzi4UTzugyF19SV1+PSh3MipAbXeFjyyhL/ybB4PS59OCfqRSO3eHiV10kIvCab8jpufTgn6kUjx3h4hdfpoHh19K8b5zeFpQ+3vFrjYZHflC85vcPl1Tm/ycgfHqo+3PKaOOQjJgPm1c2/wvzhoerDrX91yR9ORu9fx5M/nFSzzu0odPKaiBTP8flX6nWM964Gqw/rwhjW/OElpy9rRKBYKV6rUd6/5prXgevDCaYPs/eu5tkihbwGoUv8UQTpLnDzr7nW3waeP5xg+nDGJMN8SccFZ1Hq/oHwWrHdc4Obf6WbA/PXQPOHE0wfpoRWlNeETMp5Ico2BcTrrPCrL5Hq8P8JsNX764lZN4QQy3vfwdcfRvThlEzqKeN1Sk/iLCMTUTyE8VqRvl9Yr9zrwcj3XzVPZ8AW4xfyzGzhbwdXfxjJl+BXLOW1pgdYsKPOxaGXrA5B37X1Kvc90PUlyGpc1Nrt+BXr6/oSxNQpFEKvL4HlS/CKRoLXacEeEuTiEhe8ur8fsxdswWs3z229NVVfwsZr6PUlsHiY11tj5TQC5dU1H7F7fHbwatRHbHkdWn0JLB6m565JBK+sRuI8KF5z4pk/bJ+Hdf01OQG0/lXwOrj6w0g8TMnkUlMu6pnOguI18X+PQwGOL6k/6bp5o68/nIsLmhfNq93fSwwNsT/dOGEZn9blWLwb+9OFgdifbpyI/enGidifbpzYt3+N/en6QexPN07E/nTjROxPN07s278Gpw9btjM2xP5048S+/evg9OGRIOrD40TUh8eJqA+PE1EfHieiPjxORH14nIj68CBw8tATf3pj4jtY/vq+icv3pv3kmYlrsL2PYHtPwfYevzDX//DF3N4V+L0LsP134PvvXt13AtyOFw7P6/mtJ55fmvYvwP7w2sSLT6b9ENhX4Pufrkz7M9je0wfm8o9vwe99Ne1XYPvfr4H9/LUT4Ha8cHhezzyvvLfXn83xdANWeAnG4yWwv4Px8RBs70/fzN97an795fMrY/VHn78am3vw+sL8wkew/Zfnpv3o5pkT4HZ88NPhefUer1dgPP0Krv/bp+Z1/gyMz8ePwXgF2/vloWF+f/yjsfrLC/P3vrwzf+/62SvDvvnwDuw/HK8vnYbrne14IQkfTxAbXpsXiI3pEtj9KRZnJZ73QVaM/D4Hwvd+FPs+xvO2+jDUl1x1ibHrw9h4fQRsyBs2frH7UV992Ps+yIKx379uqwNiPGHjE9WH4XLseWt8nsMBx+c9z+WYf8Wem3j7V+T7x+Y3XbEtT9j4/x2wff1rBn9wQ90/S8aNvwI2jH+x8fkHZDmWr+TrXzF/6jq/HvtzOown3/jXN25KsOWb+tdk3MCe5/yErH/qafs+f4XzJTZ+XXk9tnxE33j4HFnf+z4Gee6GPW91nV+PbR72jYd9521f/4rlgaN5qRYcG6++8fC+/Sv63HzT56/JuAF58Y2H9+1ft33vw4Zjz/fH5tW+/WsS/WsnMH+KxcN9+9dN9eFj49U3Hu7bv6bx/rUTWJ4aFg/37l+BHf2rgO9zcoyng/vXDfXhY5uHfePh3u9foz7cidD1YfT+NfrXToSuD/s+34n+VSDqw+NE1IfHCclTbqtDK897pgpVj14fTmVhZV5wWbczrxfqoz5BiHPrCMlLqdZX/hT0XSnUMcH+OUPTh1PZf8LqX3NRuzlj/X9TQqYVqyudsTL4GXFtXrMvMF4dry3JU23WA09UWxW1vFKVqtV5ri39rkLXh1OC1PcvBXuFYFLyWvC2g6TvMtMevN5T35DXovSnmeJVjl/dt0Hypk7P4PThjDj0bUgS3reBMSl4rZhVulfX3xO8eU01r/I8F4rXM71F8Yccnzlx7GMWmj6seLX611rwqplUvM7ER73Cg9e2D4OwdZ8GeX6e6C1OVpfrev9D04fVBWn1r7VgTzDZ1ILXmsUrHl1O9oTa179mRMUT2t/K8yN4oUvNvmUVCcW/eurDBTYPUxIZe/Wsmif1PJ2WnNcps9hH/SL37MfBGiiKEyT8aaqGp+qT1CTE6CdJQvGvvvowxmtKEs4rmTAmxbr19G8SavGP+oVzO0nNqzoG3T/HiIfp9lSfY/5vSkLxr776cEmwvoO8NTMlsViom4J6+seEW0XfN7CZ83gVvBT62pT9rhozHs4Xilflj+tA/KuvPlwh/pWeOcZr2lAmVXNkdi9fLPhHSb9w51WMR8prtdpnO2vM/q+sX/Nqf6uUVIH4V199uCJ4v+YF55U39+Vg13jOWzj33e8q8/SvxUzxKv3pHPRrnite5X3RogrFv0IbGa/1bwivC8HrkvEqzyKjl/K6HB6v5Uz1T5f+dFYb8TAdz8Vqn8F0XoXiXz11RMWrzb/SmYk1Vs9Ykzp5FlPBK/8o6Re+/rXltVsfbnkduj7cIP0kDV6FO+W96ofGq+Cp5VWNv9qIh1te1XmuhqkPpw3S/7WD12yIvMp5eKr8p3reWhvxMPW/MhZUvFXD1IfTJcbrnHtRSmnW5JJXdjKLOf8o6Re+vNKDLcw+vWY8TAezPEg1Pqth6sNZg/TNp6eBnTx6tKniNRe88o+SfuHrX1teVT6EGQ+3vKrl1TD14WyB+FeDV3FK+JGXA+NVzJstr2oeNePhllfFUzVMfThfIPOwjddqYLzCebg7Hm55hfHwwPThYu7FK88i4WeGTIfNa3c83PIK4+GB6cOaVxf/Wvx//Kk0OzP50HiF/rU7Hm55hfHwwPThcubhXwvxVLrkzfOTYftX33h4YPqw5tVlHi5ENgHntUmGPQ/7xsMD04eriSevdO1qDLz6xsMD04friY9/Jf/BMl84r0P3r77x8MD04Trx8a8Nz52op4zX2bD9q288PDB9mCQ+87B4xs5SCDIy8PtX33h4YPpw48WreOrMU0fqxbB5Hbc+nGpenfyreIol8sSXUR9eZ/erD9Pz4uNf5/wpFs+GKZZRH15FWPpwy6vjPMz+n/OaN1EfXkVY+jCNa+ULKx688i8Mnddx68OMV9K9HYm7vIqH6VkzVP8q8mDs8bDJ+zD1Yc7rpGs7CozXheB1KXkV78NyXoeb39QdD7f5TcPWh1teHfKbGvG3SC5Nm0HmN2leu+Phltdh68NevC4lr9wBDZ3X7ngY5g8PVR9ueXXJHxZ/F4Pk9djyh9V7SC75w4xUdeBZM8T84fb9nO54uH0/Z+D6cKKO0+X9HOpZV3gd5Ps5c0VUdzzMeDV5H6g+nGC6BON1nvGXrBY51/3FgWdL/lHSL7x5Xaj5qTsepkcor/OB5w8nmD5M71bLOX+Vrljwvzmv80R+lPQL7/dfl4lZPwLEw3mjeB94/nCC6cMZoVcwf32/nIu3udkFTQex+CjpF77+NW/M+hKprhMi34cliVlfgqgX1gdXf7jC6hBMasorPdxqzqpqCF4p2eKjpF/4zsO5rgcj/Gmmebunbci76W8Vgq8/jPLKUl6W7MKdiaubTVS8fh3pvR6MN69tnR9dX4IY97OaV11fgpi6okLo9SUw/8rr/LBwgp0Ak9dqSLzq+k3yG7K+hOZV3s/qul1tvSdTp1AIvb4E5l95ZTnB60RUI2MXNJ++Kl1MpTf4+ld6NPIbyp+CebZSvKr6EorXwdUfrtD6iJxXXhGRHzUjs5JV9YbDq4xvazXFtP7UuJ+tVL3Tdt4OxL9Ce0v/SnkV6iG70NnfPF2CF8MsSN+yhAdgXTxL/eH8aOoPZ+IKThmluupyyihNe68/7IHYn26ciP3pxonYn26ciP3pxonYn26ciP3pxonYn26ciP3pxonYn26ciP3pxonYn26c2FYnHJ0+PBJEfXiciPrwOBH14XEi6sPjRNSHx4moD48TUR8eBE6feeLTfRPnYPlXsPzBGxMfgP3LQxOX783vX74w1/8Ill98Nr//GKz/6RHYwVfm9+99cTvuK7BdLxye1x9f++HmV2Dfmvb1U/CFF7cmboD96tK0P4Dtv70yl//8yVzhOfj+d2A/+wp2CBzx1ePXTngK9sMHXw7Pa3rfE5fmZfz85/dg+IDr/PqDOZ7+HthfwTj48vfm9i+fmut/BOPrBnz/3c/m+p8uwAC/Bt//7nbcz8F++ODJ4Xn1Ha9Xv5j2qyem/RyO14sP5rV7bdrfn5rj6yvYoZvPb40Vvt2CFR6D8fkZjJVXz8wBfgMmhMdu4/Xm5u3l7aboYbx6A8Y52H0NtLHnOzA+Qe9XPdfHnu/YcOzP1bF49x6yfey+CLsOfkDsZMNXK47t/nVbnR/y9HtgozoEcj+KPn91HK9J36/a7BnwfhWbhzEdw1eX8NUtfPViG45NR8R0RQjs+Q6mD6O6ILJ8U/96MvLxCscnxvMfkOUJshzTHQ/lX0+TcQMen69uCHmCvJ/42tv61/icjmPb5zfYcuz5Dbbc17/G5zkC2HjE7lex57XY/Sv2XC7xzU9MHHFk8fCZp+37nA+7LnyfvyYbPs859ufq2HjG7luweBd9/or5203zJY4sHvb1r2eey088l2PjeVP/emzxsK9/xe5bfHUI37yYTf1r1IfX29i8fe5pb3v/ehLjYQ5ffdj3vSvf8Yblee/Kv0Z92ATkzfe5wK7n5U39a9SHTWA6Avz+tvrwyZ7uX6M+7Gf76o6+Osau/GvUh01gPPnOq7vWh5OoD3NEfXiciPrwOBH14XEi6sPjRNSHxwldX9jsh6Nti3/VlXmhHbo+rA7Mul4qK2izYsO5LhBeB1F6mHUwLadOq0reSlUP/Kzbhn2QClVj+R6w1bxdmrxr9K0PV3JHrfFwLqqCZ6xCeMWvVsLrp4uODkmvYP22SrfeEbq+v8lTDXmqTV4rsx/AHVu1xwpOH9YHZluvFJ0MCt6yga3M+qsXsovDcHiF/TaeAFvynBKzv1Wt+rJcAFvxaqsb37M+nBKy6Nyuhuy6UVISM96lJCeyb8OgeNV9U5puW/Kq/a2cN3W/nRNgy/Gs/W1g+nCmebXxXwteK8FrwxhOdDed4fAqxifsiwTttq+DtHWfJGjL8Zvb4qie9eGc/Muic7sa0osyJkUXsEq41vmweFX9clKj72BrS54qk1fWuW21P11ry/NVKl4D04eLJvnvndvRINOa7Xo9q+Z5k3Mny6KLamC8yv50S8XjE2DLeZiY/jVrErN/XQP6EtbEEg/3rA/rTp+2eJhGSZxXMqG8zjIy4aHw3ySU1ybpG97xcL5UAe8ZsHUfJMO/ig6aDKfA1vOyJR7uWR9uO31a+Ke88nXIpFhkU3p154zXP7ILgiR9wzseLuYmr9BOiXmfQ3+gWu1LCO2E/GaJh3vWh9XtlzUezniPZtaHm7fjprz+X84ntQY1XjWP8ojvAVv1Ba0gr0a/9daWPJF/tMTDPevDLa+W9Vb7qyds2OZLzms+MF6FPy1m6oihLefhhdmfOZ8rHs+ALXldlo664oH14Wpi2a5CthC8LjWvs0HyKo6Prmz0xW9tyeu8MvwrHc/FvNOWPC1KSzzcsz6s2otb18t510E2bHnvxnqSTwfJq+DNzmu3PtzyeA/YgevDtXU7End4FQ0lB8er4AGOz9ZWPNl4Pe20258PTB+usfXGwquIh8up8o9PgK2e05n+lfpfeSd4AWzIa2D6MLFtV4FGCsyxUjebMR41r8V8iPEwZc3wj60NeRXzJt14vqqft7aat8sw9WFi264CPWw2UOnRpIPmVYxPO6/d/hXy2NrQvwamDze27SoAXonitZwPMR6G47O1u/1ryyMcv3AeDkwfbmzbUbDxOjQdEfIIx2+3f215vAdsyGtg+nBTNt3bVYC8yv8S/vzV7ZTuD97x8Ob+FfIM/WtY+nDaaKHbyb+mitec89p333zveHhz/3rRadvj4X71YfZceda5XQXAqxyzuciK6Vv53yIe9vWvMB6G83BY+jDjdd65XQWT10zz2qzkDvSGLeJhX/8KeYa8hqUPM17X50uYvAqNuOV1aPkSm/tXaEP/GpY+nJKmWq5dz8YrpbQu+g6ctoiHff0rjIfD1odTMi2W3duRMHnlIprglSdRzJNesUU87OtfTzvtUPXhlEyyZu16Jq+l5DXJOKXVcHiF8bCvf4XxcNj6MOVK8uoWD5cy31++yDEgXo9LH6ZcpU3ndhVMXivNa8mm76Lnt3SiPmwB45V0blfB5JVndQndf2C8Hpc+zLgindtRMHklmtecDfN8OLwelz7c8uoUD4uxPUhej00f1o9gXfxr1vKaDYzXNh5ezWeCdtc8vDpPQztYfVjzui4eXgheZUpiQLyyK84rHt48v+kE2GHrw4wj0rldBSO/qWh5TUPhtXLTMmU+k+YR2pb8JpBXauc1sPxhzastHjZ4FTleg+TVLX8Y+lc0fzhQfbjl1Sl/uAqN18aZ1yPLHyZKl3DKHxYvJYXjX/UtNQ6ZJ4q8nwN5he/j3Hk/J9T8YTJJ1+vDxvs5BPDaty7B7rtqt2fA+n06SdwTYHf7V8YjeJ+uXH1vMtz84QmiDzNe59mC8bqQ7wAT+Xmi5qTewHbI8dm+nFcX4D3Jhfn+K/Sv9FquVvNJWjvw/OF6mq3Xh+nics5e66bnoOVVJIuvvD3bD1JW88JtVTk+l4lRLwLad+bhBrwHre3A84frqbgntb9PR+gVyl/XL+fyEqBnkt3yZNP2Lcu+UM8LR17lvNqYdQdaW72nrHJABA/06I36Eq3d1gHqzg/rOX+4mpfr8yXocdcz7lqrOasbMstYuhole5ktkt4TTWtdpweD5FHn2j0Btq5DQIy6AzqH6x6w1XvNKj8ssPzhSu2Xvb4EvYIZr7IeDP9nwg4n6z+/ie2+I6/qfXRbnZ+WV4OnDh5h3R8RO4ZWX0IdR7KmfhPjldX5KdhRM16nAfHqGJKLeDjVOc9nNpsYuoO+bi5stiXvr+f6EiWWP8wrxwleJwav06z//GE2jzqGbpKnWvF4D9jteDZ4rRSPJ8Bux293fcme9eFcjTkr/6XglVVEzDWvrPpa6jwH7g+5cwqzrIeo6y1Bu9u/Uh7Neqfahv41MH04g3Uc76AkXHEq6IXd+tdS5A/3fJuTMF4cV5THB+vkFUj94RzU3cqHUn+4XiLricxDeiWvOrKUTV+9pw/7IPanGydif7pxIvanGyd859nYn24YiP3pxgl4fLE/3TgQ+9ONE7E/3TgR+9ONE746g6+eFPvT9YPYn26cwHjA/Ct23xKaPuy73lAR9eFxIurD40TUh8eJqA+PE1EfHieiPjxORH14EDh95omv902cg+WfwPLLNyZ+eWji5j34Atje1Qvz+2+R5W8+m9t//Mhc/+Ur8+cefHjohL+Gv+ODw/P642s/XD817ZvPwP4V2G9uTby+NMzvDz6BL4AffHplfv8LWP7qEvwAsD9+Nde/Akd8dX3rhI9Xtxvjy+F5Te/74eKzefk/vwLj7RIsvwTj4Vfzun93cw2+8NLc3tVT8/tPwfJzMD4ffjGHytcLcwcffDF/79UztyH3/frhxnhyeF59x+tzMF6vr8Hl/4tp33z5YFy63z6C8fr8AdjgS9N++Nb8wjtz+c1nMD6/PzLt98+MCeHmGzigC8fx+ujd7cboYbx6A4t/sXh4Wz3qzvrI/eqd+9f/sd62Yew64hmyHIt3Mf0Ji3+xeBjTi6Pu340LTxvTFbz1JGhv+fzVWW9Kxo17iI3lU2yrD/vqGr55MzaMfR721Zd8n6NjPENgvGE8uvrXsc/DmH+FMf2u/evvgI35TyxvJvpXAcjDXwEb0wW39a93xq+nf02if+0Eli+BLd/Wv/raMX/YDVjc5Ht/6utf0XzEZL296f3rsflX6E9hPLxr/+qbR4PN69G/CvjGv/v2r1i+EzbvRv8qgPlPLJ9i1/7VdzxieW42HLt/3TYP3Ne/Jp7+NYn+tRPY+Ny3PuyrL0V92A2+z2v27V+jPrwbYP513/qwbz5x1IfdgPnXfevD2Lwa9eHNgPnXfevDvjxHfdgNvnpS1IeHgagPjxNRHx4noj48TkR9eJyI+vA4IXnNQb1hbR+dPpzK6tGs/nCmKw5XrGxx73Wl68S5P53koVT7/ATY3f2u7Dbsn3MC7H71YVb3vFm/Xi4q4GdsvYKSWxFRA14v6RGsh1nl058uqVV57DNgK55qo99Va58BW/MM+l1Vrv0l96oPt7xa/WspVigYkxVZCl55W4Cy974NHrzK8ah7EsB+GzIeTkGdeG1fAFvxRGbddr/6cMur1b9WojVCyZhkvTk4rwVrb1A5N03YF9jgqX14bXtNQFvymANeof+FyzPAK7Q1DqsPO8zDtWCPdeBg3ScEr7w9Sx0Grz59B1PQ7wrabR+HU8SW4zcH4xP2edA4rD7sxis7FNYXiXd74rxWSxpvkP/Td1+kyp1XwUNGUqNfVWvL814R079WYHxWgOeSmP61JI7+dc/6MO5fybRmu1rPqjk9B3yosl515UIt6REsSHH08bI/3dLktbW1/zV5JGB8EsBrDebd2tW/7l0fztb715QknD06UFk/SX5Y9bSesq6hvfeTLP15Nfu9trbud2XwmgIe07u8m7wSV/+6d304Wz8PU/Z4l1cyKRZ0Vc4k45W3hO27/yvj1bHnluChmCsenwBb9a+rAY82W43f38zxqe3e9eFsfZ9QupixlzZJscgXktcJa20ml/QJ+vupVz/Jtp/6WaedErNfc2vD5Wp8/qPpX7Xduz4s+/ra/Otqf3XVNZ66WTrM5ZI+4cGr7JM/A7xqW8bHC8DjwtSXWlvytAT91Zelo3/duz6cd/dDVMgWgtcl43UueU0C4bXw5ZWedXnioS3n2TngdW7yCJcnC8DronT0r3vXh4vuvrQKOe86yIZttqSnkXXKTxmvKeM175vXhXIjKAQPLY9PgD0ufTjh1/y69bp4beggSRu5pE/k7rwKHloeIc+Kpwrow2B83uG5BPpwGYQ+nCQq9rH51w5eM8ZrwnjNAuDVcRfkvDtVx3sGbJUvYeMR8g55hXbv+cNyR2z+lfpUFlnR05c1NMooOMeMV+IxWPYFD1cgeKWsyPkJ2pBH2/iEy2289p4/LONB27imh83Yo6cvbeg+s9OYD5FXwUPL45NO+3D+de/5w3JHfXhdDJBXwQMcn60Nedu3f917/rDcUZt/DZvXRtGConvehfPy4fzr3vVh+TzE5l87eC3m9E6H8rrsndd0c16hDXnbt3/duz4sefWYh+lHjNcsDF4dHz1g/hXGw/v2r3vXh8n69Tp4pf8XCK90P0pHXjH/Csfnvv3r3vVh0r0fChZeJynJGqUt9wfC7kCdgPlXGA/v27/uWx9OSffvKHTwSu+MyCwnGZmUw+UV2jb/uS//um99OPWfhymv9aImKfnX3hNNycQxHRH1r2PTh+VjdR9ea56YSFhuVP8JxK68Yv51bPqw4tXDv9Y8dZgwcgPg1TElEvOvY9OHVejj4V/JJBheq2m9Ia9j14cVrx7zMOU1Z7yWQfDquOax6cNKX/Xhlb+MRSi5/9Q3r+XMlddj04dVKou7f5URNPs3659X11eEjk0fVvqqu3+VGUXs376fq2/B69j1YZUq6j4PZyHxOndMW1sZn6v5Ta09Nn1Y7cc6XheCV5ZDmc/l5MtHbd/5TUnxH668YvlNY9OHbe/hKtzNb8qD4tXVw8O80u78xPHow2o/rflNd3nlZKbshOZ9FyLI/3NTXrvzh8ejD6v3TdzzTEUEzWfjonde/8t1xji2/GGl13jwysnkIVPR8/t09BbalVfs/Zyx6cOKV/f3cwSvfDYuh8OrfD9nrog5A/bY9GF1/2d9P4fyOs9Yplq+oATriYvPxn2//5pkvrwuzPdfW3ts+jCx/I4CvVst5/xl12JBI+FK8VqyE1r3z6urh5fjc5nI99OfdNqj0YdTlFf2Vjp/XZ/S27CrWwzSSrzEnvSL1JlXwUPegDoEDagvQdQL6efAPgO2rjtAjPcltN2zPqx5PbGuMKkprwmrKUE5JoLXPydkls6yAHh1nTFk3QFd/+UM2LruDzHfc1b2BbDb62DeafesD6vH6mvqS7AyXEu2w5RHVtmHF9cRNdf6rsvVlsFC0fLWbbe8rT4XSAFvcDk7LYuV5XdsjQPrw5rXtXV+8mVb52egvGqepJDxBNiqvoSNR2jr+jCSxxNg96wP60zRdbwmgteJqDrHJl/2Ydr/Y3UPXnV9RLnPZ512y9s5sLvHb8vjD8DuWR/WvK6pj8h5LRivVctrw46xb3k4SZwrg0k9SddXOgN2W3/tMP51z/qwVu6t9RFLwhWngl3YFdtpNvnW9I+2ltEQIHktQP3h4mjrD8tbxJQNTl39r2B/VL2Hwx7A6oPH/nTDROxPN07E/nTjROxPN05g/jX2pxsmYn+6cSL2pxsnYn+6cQLzr7E/3TAR+9ONE7E/3TiB+dej04dHgqgPjxNRHx4noj48TkR9eJyI+vA4EfXhcSLqw4PA6TNPfLpv4ulDE6+R5Y+BffPeXP8x+L2rF28MfILLP5vbewTsx4/A+q/M33vwxe24X4L98MLhef3xtR9ufgX218vbVXy/D5b/Yi6/fQ/Wf/DJ/MIT8INPr8zvPwPLH4LtfwL2x69gffB7N59eO+ER2A8ffDk8r+l9T1yal/HzC/M6fvfaHB/Pn4Lr/CtY/+YajCcwfq/AgP/0Eiz/Ym7/10fg9y7MDV6B8fv8r92O++X1w43x5PC8+o7Xq19M+9VzMP5ePjaX34Dx8wGs//yBsf41mA9eP3xrfuH6pbn86SMwPr+Y9vtnxoC8uQbj89VrJ9zcvLvdGD2MV29cIDamI2Lx9A/I99G4CtGLUZ3CgpMB5QJvAl9dAot/seXwPgnjyfs5gSNfY7/PwcYnpjNse//qqzNg+nASeeXA9F9s/GLzKlzfVw/2fX7jOl6PTUfExu85YvvyiPGaePpXV4zdv2LPW7fVn7DrwDcOiv7VDXC8YP7V9/mNL0/bPn+N/lXAd3z66sHYPOu7PPpXN/jev2LP3XZ9/5p6Lk8cn7+O3b/CeNj3uTrmX7E8Vd98Jsy/xud0Ar7zru/zV++8UiRvFM1vch2vybiB5Qf75qH66ku+1wHqXxM3jN2/YjogxiM2fjFdcNf6sHM8HPVhA755qVEf7gej04ejf+UYmz4c8xEFxqYPp/H+lWN0+nDihqgPr18/6sNhIurD40TUh8eJqA+PE1EfHics+nAO6tZmqmIrtIemD6sDs45r1fJCF5EuWen4erH6UV+oJryAskvvfHVeVR8oOT5L1dBD1yNeGOtr29b/ytaPs299uFJ1y23r5aJSesZKhfOjYuWkM1baX3zUJ+jusILnLr3z1byraibr+uGSN8lTperCXwBb8VjD/leW8dy3Plxb6tFrlIK9gjdpqDmlM1EVvui9b4MHr5KHDPBK1LWp6//LYzoBtuQ1hfXFCehPp9CzPpwSjFfesIGX+Z/yoypYBfuKWWXvheBZu2VHXmU8XChedf1+yavm2eRR25LHHPCagX4BGj3rw5nidV0/DnYqOJO54HUhuq5U/fM6c+ZVnveSGP4V9tMRnWQYzrtt3Q9Ax12O/SMPrA/n5H8j/rUW7FVi+uWjdMk+nIuPegXjtWl77K2DjIdrcx7Omszoa5YSNdHeA7b2v6Z/LYmlH13P+jC93P+8fj0y4bteT+s5P6pyVlJeJ9TiH/WK0p1XMV5SYvKaNyqQEjxlRAVGp8DW87I5D+s+LYHpwwXWPyclE9FicFrO+VGVrPtVzRrB8o96Beta6sirHJ/E9K/0LskYn9lS9ci8ALa+Lkxeie3+tmd9WHfmtfnXtEkqxh5JygU/qv/GLvI/sz6hRDQL7RHFnPGauvCqxqN5/1os1A2pHL9LdUZOgK36X/1m+lfyF0s83LM+rDvz2vjPGt6gmZ67fCGPive0Kxb8o6RXMF4Ju/RwiHg4W9bGPAz7couO1HY7bUD/V1Ja4uGe9WG1m9Z5eLUPtzwqxWvTdkHrCR68ivOeLe7wWq7Ou6yx12p/utaWvC5Bn9/Gte/2gfVhF15zwWu2lEfFz2O+4B8lvYINN8qry16IeDib1oZ/1W3FW54lj9CW/nUGeJ3b+jP3rA/rWz/buM55dzrGIOV1tsor/yjpFTm7k5447UW3Pmzn9RTYA9OHNa82/7rKqzyqQfKq9GFzHm55FTy1PF4AW/Fo668emD5c235XYSy8Kh7u8Ap5zFd11daGvCoeyjD1YWLbDwV6WOy80f8Ynatxk/yoT7A76XqSuUTlKl/C9K9MYF71p5Qlg8fWVjzaeA1MHybYevSwGa/06Fpel/xz+VGfYLJBNXW629LP2Qz/auf1vNO2+9fA9OF2vFrm6w5e+d1NOTBeVb6EOQ+3vMLx2T1+7f41MH24wdbr4JXdz9Lb+UB4Ld14hfEw5FXHx8a8a+cVzsOB6cNN2XTvh0IHrxXPgQmC1yZp6AXmolLDeBjzr90823kNSx9OG4LkN93lNWVSd04mAfBKf5+Us8KFVxgPY/71BNiYfw1LH277+zv715R9Iyeh8NpQXl2eAsN4GPOv3bbdv4alDzNe552/q9DFq0hmC4DXpEmbwo1XGA9j/hXGw5h/DUsfZryuz2/q4nVCeW2C4JWky0JLtGsB42HMv0Ib869h6cMpWdbLzu8pdPE6Z/PwdFi8duvDdl5hPDwsfZjGQPJZm49/XTBeZ+Hw6pI9160P2/0rnJeHpQ+zZ+NN5+8qdMXDzCYh6BJJ/XfLfOHEa7c+bPevMB4elj6c6qfSProEz/xfhMEr3Y3Khdfj0ocpMZIbD324YOJjtRwWr8elD6c668tDH+bfyAPi1eXV3ePSh1d4tazRyeuEZd6GwGv1z4ts6cTrcenDqc6+9eCVp1JngfA6z5a1y5rHpg8rXj38a0C8lv88T914PS59OGnHq7t/5ecmHRivFn0Y5DeVIJ+pdM5vCix/mKDzsMhvylfymxSv/ec3JeW/z9PG6S3cbn24zVuDeWrnwB6WPozz2pG3JnnNQuCVzFK3t+a79WHf/OGh6MOM1PX3r2HzWvz7LGmceD2y/OFWb3LPH5ZxUxC8klniNl4t+cNzRZTMH16AeXlh+t/B5A+TCaIjUi/KrtisEZVXVnlten/vyoPXbn240Lzq93PM9+msvAaeP1xPsvW8sveu5hl/yQrwmgbB6zQhTpNGtz5Mx6P8QL8naYzf1h5Y/nA9zdY/f6W0l7N8mRI+bOlR/ZEpVPNEf9QrWMGL2onXbn2Y8kZWeaVHK99PP++0B5M/XE2R56+UvWrGD78UvFbs5fwle9FdfNQr3HkV8XCq64CoOgSpUf+FHprJs7bb+jCr8zYrtLH63nOLnvOHq3m5Pg8mJZOacU+m9B6eHVU1LRoablUL8VG/cOdV1YsgZt0BXQ+mrQ8zWVm/tXVdILJalyDR+WGB5Q+XaP0mdiZyXgFmxo+qYiWPeFpU3Xs9GJbuKkr6oWh5XI2DMlC/Ke3gWdgtz8b9rM4PC62+hO1602BXrOB1yo+qYkfCT0/de/0mXj6tcuJV1ZdQvKo6AqAul7Xemqovoc5XOy+Lnw9MHy50nqmN/0rwWipeSz1UyxB4TURZExSyvoTmVdfhMusj1qAeIrBbXvV1QczneAo968OF8h/WebgivI4EJTFRvM5EEbay9/qI/OGxW/Cm512T10rVM9V1tsz6paXJu30eDkwfTlFeC8J1JZYxzI8qI6KYXsI/Ggws9YdLUAezAPWIC1jnUiH0+sPqerSOa1kBMFMXNtd3Mva19qMBAJ7X2J9uHIj96caJ2J9unIj96caJ2J9unIj96cYJOF5if7pxIPanGydif7pxIvanGydif7pxwqIPa2B61ND0Ydv3xoaoD48TUR8eJ6I+PE5EfXiciPrwOBH14XEi6sODwMlDT1w/M/EJWf4aLL8Cy6/fmPgI7A8vwHLwfbi9q/smLj6bv//4zNzeuy/PnPAS7IcXDs/r+a0nrl4buPlyZS5/9slc4RlYfg2WX12ayz/AHwQfvDe//voF2N6Lr6Z9/c78/pdr0/729rUTrj7cbo7D83rmeeW9fWUOh8c/PjGXX5srPHhtLv/wDmzgIRhPN6b512dX5gevwXi8BNu7vDHH2Ytv5gF8ugTzx9f7LnhwffVwY/x0eF69x+tj8zJ+9AqMx8fPzeHy0lz+4Qkcr+D7b+H4/mbab8B4vDM/gAF9DcbZly+m/fKp03C9fjas8eoNTB+Gy32ft5572r5xE/acwIax3+dAYDoh9twN04ex+NjXTpDt2zD2+5y/Ava+9WHf5+jY89iTDfXhsetN9zxt3/tX7Lm47/Mc9PlN1P05sHl2W//qO49jzwl25V9/SMYNLL9pW//q6y99/W+CfH/b9YaKfT9/3VYfxvxrGv1rJ/btXzGetvWvG+dLJOPGvv2r7/2tr39Non/txL79KxYPb+tf7+QjJm6I/tXExZbLsbjK27/C7UX/yrFv/4qNt+hf94N9+1dffTj6191g3/7VVx+O/nU3OHT+8K714ehfuzF0fTj6124MXR+O/rUbQ9eHo3/txuD1Ybi96F85oj48TkR9eJyI+vA4EfXhcSLqw+OEZTzlqr6w9K8ZMftXQVtD2qmq1euqD6u6wPv2r7Xld9ofkHsuKg6rRg38r97rD1fTJHNszdTd/zUp1TFIngtQF74A9cNh/5xc1YlXPMB+daC/TqZqce/Zv1p/R0PuOV9RHCWr/l6SZXtMvYGeZNeWW2qeBfXBa8BjpY7pAti6r5LZn65U50/3wwLjuzJ5LVTt/D37V13f38qr3HO+Q/woeSch9lf/9f3pSSv8eM0Ar9Z+HKfAlrymoC58pc6f4oGAfnVgHte9LvbsX62/oyH3nK9Yi7L+CTsfy/aYekM1d26lpudVoz9dqnmV/hX0y7lj54DX2uyb1HoqaMt5vFLne8/+1fo7GnLP+Yr8KEvCz8eyPabeUM4T11Zqet40/Gvb96jthzPptCUvuo+D7sNijoucmPMutCvVD2TP/rVeWn6nXUPsOd8hfpQVYZfh/1km5D/77p9T6jaeKPQ8a8zDWZOBPmWp0X+utbX/Nf0rmZj96UowPkvAaz2tu/tQ7di/Wn9HQ+45W1EcJZ+Lm+SP7TH1Bho0VV686rYyuu/gnT6D9Wpf0NbW49eYh1MyqYxxURMzHq6BfyVTOcHs2b+SadH9O3p7cs/ZDvGjzCSvbEnZN69LHZ9i0H2RDP+as+6J/C/hXzO6wdW+gtBOIa+Narel/THgEYxfkpTdfc927F+JCiht/lXtOdshfpQ545VdDHRJ331C2/asKFR/OvP+lR487ONr9GdubdWf7jfDv9IdkONCnj/yFzMe1vaJ/L66Mduvf7X/joLcc74iP8q8kb3D2mPqDVmTuN5qyXl2ebcPt8HjQl2rF8CW/rcx+6uzbtZGfzoC+jcTU5dIeU84/hfYv936V/vvKMg95yvyo8wXRKgo7TH1Bnq1efK6uMNrudqvjh5hsTqvtrbkdWn24WYN3oz+dA3Qlxqzrz49jbI/9n79q/13FOSe8xX5Uebzlte8d15T1xZ5ct6cmv3V6XHIEy/8azE3eYV2OjN5pSdAngPpP+el6U+BnS3V+d6vf02tv6Mg95zvED/KfEKESpot+u+bT/7OlddufbjlVfDc8gjtbn245dVNH2553a9/tf+Owh1euT7Mji4Pgdd/cpWolT5szsN2Xi+ArfRh07+250DpwSXQh1153a1/3ZjXSRi81v+8Na+SN+1vDZ5aG/Kq52Ew35VAHzZ5pitLz7Ff/2r/HQW553xFeZREnJ32mPpD/b9dryz9PMbwr5Qlyavwr5QFg1doQ17pl+U5UNsH8XBi+le6MXm+9+tfW15t/lXuOd8heZQB8arbKaPo9q8trzqOMsZna3f715ZXxQuIh4Hd8rp3/2r5HYXQeXW9g+6eh+28XgC727+2vCreQTzszOvO/etmvCZh8FrsjFftby3zcLd/bXnF4mHtjw/iX+mPIP7VwmtBVmKu/lA4P3nYt3/F4uHD+teWVz//SmoyC4HX3JnXfftXLB4+rH9tefWbhwkh8zB4dX2yv2//isXDh/WvKWHaedf3FKy8LjKtLfeHbGe8butfsXj4sP6VPX/dxL9SXpfs+etweN23f8Xi4cP614TMyUb+tamalPwrGQ6v+/avbvrwofwry17aaB6es0efhPTvX10zrPbtX9304UP51415nWRkXLxu61/d9OGD+ddS8erpXyf036p/XsO5fw1LH2559fSvSRi8uuuIx6UP0xud/9hoHhZT8b9FfThMfThJsOeva3hN+n/+Wv276x4clz6c8FSYrt9RsPLKTlDWO6//Esrz17D04UTz6u1fg+C1ds6DOS59ONlwHq71I9h+4Z63ZpmHQX5TCfKbSiS/qVjAeRrRhw+U35ToMWflVew536FS5zfRs8N57fuFdfK32/Ha5q3p/CZLnqk1vyk38ocRfbh9VrJ3/5otOn9HoTtvLRBe0yZ1zQvv9q+++cN2Xt304UPlDyd6LnXOH9a8Jknv73Gk7u9xHFf+cJLA/epY3M0rO6G9v5+zTFyFf8s8PDffuyr0C7UXwLbkDy/heEbyhxvb+d65fy3Wv/8q95zvkDxKwqtn8Oohw3lPspvXQvOq388pV9+LzK28an9pvk+H6MNpA/2xws79a7n+/Ve+59mC71Cuea2monpI/+81+73/Cv0rvVLlB8K/0gulWn2vGdp3eG0g7+v1YXrWwHWgsHP/Krmx+Ve+5/mS75A8SsbrjN+G1T3XISjc31fv9q+5nsj1+6zG++mt3e1f6WmRO+CmD9NfK7vnx53713p9fQm+5/zwy7k8Sv4+HU+f6bu+RPv6Kgpdh8CoO5DrgFq9z654vgB2W0fErD8xMXmviVlvQtuK12nVfb537F/nqi6GnVe654xXukP8KDNWQqVcFMt0lg2oHoyqH6F4ae3V5S3vp8DWdYHIqv9teU61bYxHbbd1gczxrbDr/Ca0fhNbI+dFfWb8KHP2T8Hzm/qv3zRT5RpQ6PoSZGbaRv2mFNRr6rJBPQnjOuAJfZ12O34PUr9J7/cPa9aYCF6n/CgZr1PK66KtadUbPOqtqXlV8arq9KhjaOsxddsq7lG86ro/Zr01zSO0JW8lscyPO/avxFavT6MSvOp6a5zXPAxeqW8rHIX/dt5d1Q0TAuoj1qA+Ym3WR2x51fUTzetC8wjtllfxx579qz6uNbzyPGG+QzWvdil4ZaO3b3mY8pptx2uljkHa+gW9U2BDXuXyQvGu4iLAI5yXc3Ud7Nm/1uq4rP6V7TkrJcF2iB0l5zUR//V8++oDS/1hXVdP1kcsQP1DaGtonoAerGCxM3W+914fcdL9Oxpyz/kO6aNM6iW7JpLhIPanGydif7pxIvanGyeweTb2pxsmYn+6cSL2pxsnYn+6cWLf/jX2p+sHsT/dOBH7040TsT/dOLFv/3ruaUf/uhtEfXiciPrwOBH14XEi6sPjRNSHx4moD48TUR8eBE4eeuLqmYlPYPnr+yYeI9+/fmPiI2J/At+/+gJs8Ps/PjKXv3xhbu/dq/tO+BF8zwuH5/X81hM3n16v4ubLlbn8w2sTT8Dya/P7r68uwfdv19tfwPevH5v2i6+m/SdgX12b2/v+/LUTXj243RyH5/XM88r78MG8vh//+MRc4SUYT1/N5R/g+Hj42RzPNw/X2w/A98/fm/blDRi/YPnDd+b2HoH1bfh09XBj/HR4Xn3H64dH5nh59AqMx9un5nV+/tn8/hM4XsH33yL27TswjsB4ffnStG8uwe89MTf3/eVrF9x8uL7dHEn4wOLbn5Dl2+rD2HO9E2z5hvevxxYPYzz78uSrD0NesHg4wZZbcGx6E+T5EbJ8W33498DGzvcdnQi5Dpy3MzL46hK71oex+9UMLE88x68NY5+Hof6L6cO+49FXh8R0Dew6iLwK+M6j8Lxuqw/7+l+Mx+hfBTD/is3L2+rD2z7Xi/61GxiPGE/b6sNYHJR6bi/OwwKYf4X3r9hzgG2fz2LzdLx/dYPvczhMd9g2fxjyhN3fRv/aDcy/YvHwtvnDvv7WV8ew4dj9KxYPb5s/7Os/T+L9qxMw/+qrU/jqw9j4RJ/DR//aCWwe9b1v8dWHUV0Q+X70r93AxicWD2+rD2PxMBZ3Rf/ajdD1Ye/xGedhjqgPjxNRHx4noj48TkR9eJyI+vA4EfXhcSLqw+NE1IfHCTkedaP9M2Bb4uGMmP2roJ2qesLn3bZGcPqw2lNVODspWcXrqln9qC/U7q3UdB1puf5Ft63740heCnWM0NbXhawXnnbbGofVh1ld8+6+0BpyTzO+Hm+LxEpRs3/y/uv7T3x5rRUv94Ct4uHaHL+VWd+/tfV1Ic/BabcNf19jv/pwy6vVv8o9LXjDAVZQn5V/z1gd+KL3Pit0d/z657T9N6Atz3sK6r5b+3PI5bAfB7Q1DqsPt7xax7XcU96PIxVszlmR/zlb0nO/K8arY48B3R/H4DEF/XNaf6v7sJg8Qrs2+ybdsTUOqw878Cr3lJOYC14Xgtyq98YN1C249jHTPEpeLoAN+zS0/TTECTwHdsuj0VeqtvWZOqw+7OBf5Z5yEtlR04G7FOTWi74brVBSK69+klmTGf3poE0PE/QVVBMztNV4npj96KCtcVh92MG/yj2tp/WcH3U5r5b0n5K1Iqx65pVOwn79X/MmAX0HzT6DiXYtsm82Af0lta36mk2MPoLQbnFwfThdPw+rPSVTGqGwoy6n9GRUc95isu9+zXSXasfQTfZ3XSTG+GttEQ+nxLyfzZaq3+Zpp52yU7HGbnFwfdjS71v/ntxT1kOSH/V/Yxd5RcmlS4qeb2DpdeUakovzyhrGrs6jra3m2d/MvvhLFZidA1vN62afXmi3OLg+LHm19msWe5oSem3Lo+ZtYNOm7SndGygtrr2ZJK+6Yew9YMt4uQH90xfqRuoM2LKP4VJd22eddouD68P5onO7CnJPGYlLedR0vNYTGkH0zyu71BxX1TyWs05bzqPLyoiH6QEWgFejTz5r8Lbajw7aLQ6uD1v68yvIPaUkZkt51CnjNQmC12XqKnmJ8UhJNObR1pZ9fWdmn21KosEjtOkJyFf7u0K7xcH14aK737eC3NOMNR+UR03PJR0lIfCaLTNXXiGPF5021IdbHqGtx68xLqDd4uD5w3I/bf51lVd51AHx2ri2CbWMz9ZW+nBlxMOQx9bW/jdf7QMKbfj7LfaePyyPy+Zf1/Pa831O2uSuvGoeJS/QVue9MuJhujBfjYNaW/Mor6wfOu0WB88fLrvvoxXkntL/mCtb4bX+W5L0ff+aEucZQ/hXuv8Gj62t8iXMeJieHINHaNMvSx7POu0WB88frtbzKveUHs0Kr+xPymvvukRCnO+gIY8XwFbn2YyHWx7PgQ15POm0Wxw8f1jyavOvHbxmgtcJl6D6BfkH1z2AvN7rtFtetT82eGxtqWtoHs877RYHzx+WB2Lzr+t4ndU9P6dLamdeu3mE4xfGw3Ze4TycdtotDq4PS2485mHFa7UgvfP6F9cnhZh/7Y6H3f1rt93i4PqwFM49eBVqAOWV9N5gvXJ+Aoz51+542N2//tBptzi4PiyFcw//qngtQuDVdcbA/CsWD2P+ddt4eOf6MOnerkIHr8VC8ep687g3lM68Yv4Vi4cx/7ptPLxrfVgJ5x7zcCl5TUPg1TVzDvOvWDyM+ddt4+Fd68NKOPfhdR4Mr4Uzr5h/xeJhzL9uGw/vWh9WwrmHf60kr3n//rVw3gPMv2LxMOZft42Hd60PK+Hcw7+yh+qM17L3/OEkd+YV869YPIz5123j4V3rw7nlvQOFNbz2n2fKHvE74tj0YSWce/BKJoLX+l/7zjNNnB+/Hp0+rHh196+p4pVMq955dY7cjk0fVo9k3P0rHSPyeU5S9f1CnTuvx6YPK17d5+G85TXv+0bHnddj04dLb14L8Wf9d8sh8Xps+rDi1d2/li2v2eB4BflNrW2Jh0F+Uwnym4oF4BnYLQ6tD6v30az+Vexp3uY30W8w8ZFkC49wdE/w9a/2vLXueNietwbz1E467RaH1ocVry55puKo2QsqjFc5hHuFr3/F8odhPFwMNn9YpTy488rLEAyO12PLH66n3dtVuMNrOmhe54q4e8C25A8vzPHd2jJ/eAnG7xLqHObvt9i3PqzeM7TmD4s9zUQSOD1q7lOZNDEsXtv3rKaddnc8nANeW1u/n1MY79MBu8Wh9WEl3a95P6eYZ4tU88ol2XrCU7KzoflXOt7q1ToCrd0dD9NjrFbfY4Y2PQHwvUnDbnFofZhYtqvA9zRfpiIJnPHKTmU9zZb5AO9z+NvY/K8LYHfHw/yVUP7XObDV+7Jmni60WxxYH9bvGZ7YV6hm/PBLwWvBTiX7iE3Ng+O1UQd8r9NmdUFA3QGjTkhrq7ojE4N3aLc4sD6sPaTNv/I9ZbxO6YXIjrpkJVGqebHIKNVD04czXf8F2m19mNX301NQ/6W127o/Rp4utDUOrA9rD2kd12xPKa81PWB+1JxX+s8iJXMyHF6F/8xA/abW1vUlyOpzAVgHKO2o5zRZZ2scWB/WJ2YdrxPB65QfdSUH7bw9B/3Bdx5u66tdALsdj8Z9iq6vdg5sXVdvR/XWdqwPaw9prd9UCV5Lg1deb60eJK9mfURt63psxHhuV4P6iDWoj1iBOnzQ1jiwPqzfM7TWb2J7KnhNNK8sZW3a1ozrD6mnf6VHM++223nWeM+7BPVLta3rs8k9OOm22z31tLfUhzWv1nHN9pQVmaD08qPm/jVllPZf99ID8v5UJxyfAdtSf7gAdTChnasUr/NuWyO4+sNyTzNzzmWXZdZ72OQBOC/G/nTjAOQh9qcbB/7/7Z3RjtvGFYYpabfaGgW4NlygV1VhOIDSl1AQ5CLZq9aw36V31E0B2zdFDOcBatiA45fIAn2QbtAHyPZOQNRlOeRwuHM0FGdEcrmivw9BgGOS2hF/Dc/w53AO9enGCfXpxknodZT6dMdBU36lPt1xQn26cUJ9unHSdB1t6o/Up7ufNOVX6tMdJ9SnGydN+TXUp2i6Tt97f3gk4A+PE/zhcYI/PE7wh8cJ/vA4wR8eJ/jDR8HZy0A+fWPzVmx/L7Y/e2JzIbeL4+XnvRXHL8XxFw9tHn8v4nf28V+IBj2VDa7hu29fHs7d6/rgUyAvf3hxm+cf/mxvf/XC5htx/DP7+BcX4vg3Yv8fLuz4nTz+gx0/k/Fr+/gfH4n49y+8uHj06XDuXtfpkzCefvqr1R0eLe3+8PSD3V0eif745rV9/MMnoj89F3/wLx+t4199KY5fPrf71ZvHdvytffzLV6Lfvf7nQy++vHhyMH+6e11D++v7N6K/vrP7w/u3oruI/vhmKfub6I+vRPz3J1b44xeif339vd2et7K/ygvAMzv8+Nqvv3798dPhRPefpvvVpvucUH9YjpN+Kz9/vX//xvuiryIvxn6fE+oLtvWHQ5/3NPrFX+3fv47p8UzdP4i2z3O69jWafImm+05fvU6icdOkY9v710bfXjBt8Bl2rsNSR8/r8OfmIy4Djw/1h5vyb1P+7uo53efmN0kd/iDi34k41B9uO5+i0V/27K/RZ55fQ5/TNV23Q/Nr43O+pnluNeD7798/1B8OHveEPm9lPJzTlF/bPn9tin8j4tDr8qHPc8Y+Hm7bH0PnDzfpHDqfeEdnxsM5fefXts/ZG+cTMx520nd+DZ2HNg18/rqTfxkP5/SdXx8E7t/0O2jMr5Efn7s/3Da/Nl1Xm3RtO5+4jin3rxah+bVrH6Lx/pXxcE7f+fU0MA71hyP8YSd959fQ93nwh7uh7/wa+hwef7gbhvaHQ99Pxx/2Y2h/OHRdAfxhP4b2h9uOl/GH3eAPjxP84XGCPzxOtC7zcv3gpTs2HOgPT+x1qndiQ9/+cLJt2K9smVpseGYXyh98/eFV6r20te6Pi/I8n7ljUe9K1quTdQmjsgxSqcO8XC/8xB2bOspTEXfoD6saK5OyDkHt+Eq3bKYWro9zJdUReU3YdOhyVwG66v6YiHXdZWzq9Z2IWG43dQqvrP0X5TmZuuOdOsp19Xdb+MOqxsq8ri6IQbcsVj+AldI4rySk6j0Mvw58gK5aF1N/49wdT1Jbx9q4PF+pXT+3sT5HUuq4dsclLfzhOO+BumG14yvdsoWu1KB+Circ5lsuo0EJ1nVidFw64yrfPhbxiTs2mcn0f7ufyNjk26mIO/SHVze5XEXDasfDumW5iHlVoIXSNSl0vYoGJTi/VnWNzpxxfZ2GByI24zB9CrROSflbP3HHM6GriTv0h5NCV/3BdedHtywXMT+NK3Um1AU52QxdPyc4v85uZna9ORFnn2jruhI6rkR/Xoj6G+la/8PUHcdCRxN35w9P1CVodbXa7N9Ptyy5TK4n6STvtOpntlVbVkPXRarqnDZR6DK/KQ84d8ZRKnSsjU1/tMbDk+yc3L7+ybiq16N1MnF3/nA+nE2u4s3tv7ND2bL0cnE9S1WBUKVrXOgaD66rqYfZhNZ1E2lhls54ktr9cSJ0lHFkUpHefhPp37o7zn4H9nVYxobD/eE413Udb2//3R3KlqXRYpPd3CRX8yLHbtWWePACOt66mrraVn1mGU/Sn4SOP1n5tYrL/vtvazyc3WJYdbhlHCW/CF1/qRkPH+4Px/+7UX1Ol3irG1/plmXnb75R5cyu5jdK119zXeeD6+pdMVrXa74ubzjPnPHkxvYlqlhuL+sWLqzxsKpufTuvyThK/mHnVxN35w/H/1W6lmembjysW6ZE3Krq4tfzjdL1P8emq9FRC3HujCdboWNtrHW4WVjjYVXwrTgnp844SmK7f5q4O384/jnXtazsW3O91i3L9popXePr+bXS9V/3RFfvFhS6ZCpoIZbOeHJl98cqPnHG0fXCGg9nzdEtOnHG0d+Ej2ji7vzhOBOm+G/ffrplM1V8MGtDpus60/WPs3uiq3eGL/pjpeOZM27rDzfqekf+8C1da/bb0dX4w/dDV98RueyfobrK7aU/vLDGw5WOU2dcNXgi4g79YUvXuvHwfl0Hv89Z+LbA6BjfrrMt43od63RfWOPh7FTpcag7vqXj2h2XtPCHtaip+3M0umW5jlkblMalrmk0/P3rytfJLHTJVNFtXjrj3f5Y13+lrmZcpnU8ccb11+EO/eF8LFTqWjce1i3L9JyosZ+l6/qIdC36Y6XjmTM+PL8WOh2ua4f+sKVrXR6u1zW3oKKBSXyfKMn+GaprU34tdK90nDrj+vza4fxhS9e6/fbpepUM/JwuiryfFEodz53x4fm10KnS8dQZ1+fXDucP27qG99fVJh1eV98d+86v7uuu/3W4w/nDlq514+F9uqbeZ7UvvO3h3vOr7J/BunY3f9jStW58tUfXeHhdvW3E3vOrHA+H5tcO5w+3HA8XD+uGxV/XvvOr1DE0v3Y4f7jteHgyvK5z7xb0nV/leDj0Otzh/OG24+F7oGvs3YK+86scD4fq2q0/3Go8PB8+v/obI33nV6ljaH7t1h9uNR5eDD5/2N8e7j2/uvOpf37t1h9uNR4efp6pOavN4A/b7NE1+Xnoeab+9jD+sGCvPzz4PFN/IxN/2Gbf85xoNfRzdX9d8Ydt9uo6H/pGx39Ajj9sU6+rmtE2sK7+9jD+sGCvrrOhdfV/AVf3TzGfadXZ/CYzz9yazxR7z2/q2B8285tqx8NFy+ZKxIU1v2m2CbBn+yHg78t5aufOuK0/XM1TO3XGd+UPV/PWouD5iHkXjgYlIA/4zR9u6w8fPs+0W3/4gPnDR6or84dt7rWuAe996f55bb9nJeO2/nD2Q9NCTZ3xnc0fTuV4TaJbNlOTwLPTqL7G/dF14a9r9Z5VIcy5M27rD8+Mju74rvzhyOha+z6datlsk0/un9u6bgcfN/nbw9V4NSlO0NIZt/WHsxOi/+HEGd+VPxylazFek+Qtm2/zSeCZkupr3dJ14Pscf3u4fD99G1nrDsi4rT+sPLjbOsr4rvzhKLksc1Tt++pZy/Kvv7jONE4qXdWleWhdQ9eXmN9MrHVCZKxW0CiEOxGx3K77c1I+0yrfe15ra3PqjFWLCyEnIu7OH56rNW6Sq8X13v3ylildL1dXs1S9B62WUInTdDvLpB7YH05S76WG9HXSrP9y7ozV+jDWe861caW7pZNp0Kk7zlpsrftg4u784Vh9J/N7qR1fqZZluqofpvpW67n63yL7TUzS6/QIdbXWa5rtruekz8djEZ84Y3V2NiK21mtKd9dzsp7vyNjQZn2J7G+uxO9vl1zLXNfLfLUjpetlpmtafcfBCNBVrq925ozrdXwg4uq6bI1PVkLHlbeu3a0voRTzW29NLSxRrrdmdFXR8eiqx7upWA9RxPW6yu3l+hLlB5j1nez1EGVsdJyIuMP1JbSua+fnGFTLCl1VK7a2rvdgfcSg63C1XtK5M67X0a17patZd0sPJU/dseyfUmdDi/UllK4zM6dwXbtb8UguzVdn29zSdfh1LwPQui7KJi/dseHA9Yfn9npOO7Gh5/WHJ+V1qHY/3bJ8Ib/Y6h2zwdcfDoD6dOOE+nTjROpCfbpxIHWhPt04oD7dOKE+3TjpO79Sn24Y+s6voXFof6Y+nRvq040T6tONk77za5OvQH26fug7vz4I3L9nfzh4v2MFf3ic4A+PE/zhcYI/PE7wh8cJ/vA4wR8+BtQkK+ibG3QdJeg6TtB1nKDrOEHXcYKu4wRdxwm6jhN0HSfoOk7QdZwMvIoTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMlCj6PzwR3alqrA9fAAAAAElFTkSuQmCC","type":"image/png","tags":"image lab01","revision":"0","bag":"default"}, @@ -906,8 +904,6 @@ {"title":"C:\\Users\\burga12p\\COMP101\\Labs\\labs_git\\tiddlers\\content\\labs\\lab01\\Entropy.svg","text":"\u003C?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?>\n\u003Csvg\n xmlns:dc=\"http://purl.org/dc/elements/1.1/\"\n xmlns:cc=\"http://creativecommons.org/ns#\"\n xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\"\n xmlns:svg=\"http://www.w3.org/2000/svg\"\n xmlns=\"http://www.w3.org/2000/svg\"\n xmlns:xlink=\"http://www.w3.org/1999/xlink\"\n xmlns:sodipodi=\"http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd\"\n xmlns:inkscape=\"http://www.inkscape.org/namespaces/inkscape\"\n width=\"78.316666mm\"\n height=\"31.220833mm\"\n viewBox=\"0 0 78.316666 31.220833\"\n version=\"1.1\"\n id=\"svg973\"\n inkscape:version=\"1.0.1 (3bc2e813f5, 2020-09-07)\"\n sodipodi:docname=\"Entropy.svg\">\n \u003Cdefs\n id=\"defs967\" />\n \u003Csodipodi:namedview\n id=\"base\"\n pagecolor=\"#ffffff\"\n bordercolor=\"#666666\"\n borderopacity=\"1.0\"\n inkscape:pageopacity=\"0.0\"\n inkscape:pageshadow=\"2\"\n inkscape:zoom=\"0.35\"\n inkscape:cx=\"108.00004\"\n inkscape:cy=\"413.28572\"\n inkscape:document-units=\"mm\"\n inkscape:current-layer=\"layer1\"\n inkscape:document-rotation=\"0\"\n showgrid=\"false\"\n inkscape:window-width=\"1920\"\n inkscape:window-height=\"1017\"\n inkscape:window-x=\"-8\"\n inkscape:window-y=\"-8\"\n inkscape:window-maximized=\"1\" />\n \u003Cmetadata\n id=\"metadata970\">\n \u003Crdf:RDF>\n \u003Ccc:Work\n rdf:about=\"\">\n \u003Cdc:format>image/svg+xml\u003C/dc:format>\n \u003Cdc:type\n rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\" />\n \u003Cdc:title>\u003C/dc:title>\n \u003C/cc:Work>\n \u003C/rdf:RDF>\n \u003C/metadata>\n \u003Cg\n inkscape:label=\"Layer 1\"\n inkscape:groupmode=\"layer\"\n id=\"layer1\"\n transform=\"translate(-77.258324,-38.818153)\">\n \u003Cimage\n width=\"78.316666\"\n height=\"31.220833\"\n preserveAspectRatio=\"none\"\n xlink:href=\"\neJzt3c1vG0UDBvDHr94rRBtfEYdsekBVlYpsWkStSu2htqiUSyrZpRw4IIIN4oBEIpz2gKARtpA4\nkQ8ULqjFiVouVWLFOVCpa1ApAcUHxKGshThwsmWp/QPmPUSz79hef3s/7Dw/yVLq9XbHH/vs7OzM\nbEgIIUBEFED/8bsAREStMKCIKLAYUEQUWAwoIgosBhQRBRYDiogCiwFFRIHFgCKiwGJAEVFgMaCI\nKLAYUEQUWAwoIgosBhQRBRYDaoxMT08jFAohFAphcnKyaXkikbCXh0IhlEolH0pJ1D0G1Bj55Zdf\n7L9rtRry+Xzd8u3tbRiGAQAwTRMzMzOelo+oVwyoMRIOhwEAyWQSAPDdd985vsYwDEQiEU/LRtQP\nBtQYkadsi4uL0DQNOzs7KJfLda/566+/cOXKFT+KR9QzBtQYefz4MQBgZmYGiUQCAHD//n17eblc\nhmVZuHDhgi/lI+oVA2qMlEolRKNRAMCbb74JAPjmm2/s5U+ePAEAnD9/3vvCEfWBATVGDg4OcPny\nZQBAJBKBruuwLMtuLH/06BEMw7DbqoiCjgE1JuTp2+uvv24/9+677wIAdnd3ARwH2NzcnC/lI+oH\nA2pMyNM39erctWvXAADr6+t2gF28eNGX8hH1gwE1Jh49emS3P0lTU1OIx+MAgC+//BIAcO7cOc/L\nRtQvBtSYODg4wOzsbNPzH3zwAYDjWpSu65iamvK6aER9Y0CNgXw+D8uyUKvVmpbJxnIA7P9EI4cB\nNeKKxSKuXr0K4LiWlM1mm17z8ccfAwCHttDICfHW50QUVKxBEVFgMaCIKLAYUEQUWAwoIgosBhQR\nBRYDiogCiwFFRIHFgAoo9eYGfj6KxaLfHwWdYAyogNI0ze8iEPmOARVQDx48aHpO0zRUKhUIIVx5\n5HI5BiMFCgMqoCKRCDKZTN1ztVoNN27ccG2biUTCMRiJ/MKACrClpaWmOZ4KhYLjgOBhiUQiTdsk\n8gsDKuDu3r3bdNq1vLzsauP122+/7dr/TdQLBlTAhcNhx9Ou+fl5VKtVV7bJWTcpKBhQI6BVe9T7\n77/vyvampqbYWE6BwIAaEU7tUTs7O9jc3HRle6xFURBwwroRUq1WcerUqaapfY+OjjhbJo0l1qBG\nSDgcxsOHD5ueX1hYcK09ishPDKgRMzMzg42NjbrnLMtyrT2KyE8MqBG0uLho3+9OcrM9isgvbIMa\nUdVqFefPn4dlWXXPsz2KxglrUCMqHA7jhx9+aHqe7VE0ThhQI4ztUTTuGFAjju1R3tre3q6bLysW\ni/ldpLHmSUBVq1Vks1nEYrG6L3dychKxWAwrKysol8teFGUsff311/btzaX33nsPpVLJpxKNr0Qi\ngUql4ncxTgzXA6pYLOLUqVP44osvMDs7C9M0YZomNjY2MDk5iUKhgNXVVfz7779uF2VsyfaoxuEp\nbI9yRzgc5owPXhEusixLaJomAAjTNJuWVyoVoet6y+XUm1wuJwDUPeLxuN/FGkvRaFQAENFo1O+i\njDVXa1DffvstarUadF1HJBJpWh4Oh/H555+7WYQTJZFIIJlM1j13ktqjUqkUtre3XV+HPORm+smj\njGEYbm6GFJVKRRiG0VSTOjo68rtorjJN036vuVyuq3WSyWTfv0/WoLzhSSP54eEh20I8Eg6HsbW1\n5Ut71ObmJiYnJxEKhepqJdVqFSsrK/ayRCIx9LJEIhHkcjkAwPXr1zvWilKpFNbX16FpGra2toZa\nFtXm5mbdxaHJyUkkEomOEw7Kz2x6errjnXfcUi6X7bLPzc3VfWfFYhFzc3MIhUKYnp52rxbqZvpt\nbGzYR7VoNCoqlYqbmyOF1+1RmUymaXtCtK7RuVXzUN93q5qUrDlpmtZ3zbJTDUp939FoVOzt7QnT\nNEU6nbbLl0wmHdc9Ojqy227j8bgwTVPs7e2JeDxe9/llMhmRyWT6Kn8nlUrFLoN8yG05/bbgUjuy\nqwGlNoIDELquD+1NOH1AvT7c+nKDQu6I6qPb059e5HI5oWmaME1THB0d2duSO2k8HheWZYlKpVK3\nk7l12tkupIYRTkJ0DigZTk4HBfXA7fR9tFtXblfX9b7L3on83pLJZN13lslk7O9alls9tXbjAOhq\nQAlxfDRoPIJGo9GBg4oB1ZlT7cWN95xOp8Xe3p69TbmtdDrdVEvop62oH04hNaxwEqJ9QKnbbrUd\neeBuDBo14OVn2ur/duvKt2VZde9L1vqSyaTQdb3pPbkZmq4HlBDHP9pMJtNUZYxGo8KyLC+KcGKp\npwutfvTDJANI0zTHxmc1wNw+QKg7s9yJhhFOQrQPKFnjaLfDqqd6annUAHcKoE7L3aB+dk6/H/W9\nDJsnjeThcBhLS0t4+vQpMpmM3YBbKBRgGMZI9Xhu7A3fz8PL4RHPnz+3Z+BMJpN44403XN3eH3/8\nAeB4zvSvvvqq7WsnJiZcLUsikbAbzguFAgDgzp07rs/2cHBwAACYnp5u+ZozZ87Yfz9//tzxNc+e\nPWv73AsvvNBvEXvy5MkTAMfTQLf7/bgxj72nY/FkUB0eHtrjx2q1GhYWFrwsxolRrVYxPz8PANB1\nHZ999pnr25QzfkajUce+b3/++af99+nTp5uWr6ysIBQKDe3ef//880/dv512+mFrnJLZyUsvvWT/\n/fPPP9t/RyIRe0ff3d1tWk8+p+u6J9PqlEol+/3cvHnT8TW//fYbAOd57KvV6mBXG4deJ+uB2mDq\n9qnHSSSr5nCxQbqRPJ1s1b6knnY5XdWVbWbDOH1Rt6VeMBhG21e7Uzwop5WtqKdqGxsbLcu9sbFh\nf05q43qr/aVSqYhcLifi8XjdBSrDMPp633Kb7U5X5XbS6XTTsr29vY6fRTu+BpT6JfXaHiHXG+Qx\nzo3k6o+5cQdwi2VZHQNRBoXbQ3DaNZIPIwAHDSi547Yqi1O3DRk07cou1zMMw27fNU3TPnD0+pvv\n9H11850PwteAEkL0HRYMqNbUK0FejsVTQ8GJ2rfGzRqz390M1EblVtQAarxQtLe3Z5fPsixhmqYw\nTbOrfoTyYlTja+UBq9eajKwdtdpX1EB0g6sBJavWrfhxRWLcqX3PdF33tHNsp6Ej8sfstJOopyNO\npwrdCkJHTbX22up3rXbiVMkQH3ZHVrmv9fL/qrUjpwOKesBpfJ+NnTn7/R26HlDtqn7dXI6l3njR\nEbIVudM5fZ+yVqdpWsuuJXL9fmtX3YSTNGhItQsodcft1E+qcceWQaLr+lC74MiuAL2cNainoU6f\np/yttTqgyPUHqV15ElCapol0Om1XVdVu+8Pql0L1R26vT1/V/k1qu5dstNU0zbGTn0ru9P3smIMM\nFnY6JWpHfa+taqlq/zN1qIt6audUTnWKolYPTdNEPB7ver+RZen1dF/t36S2aR0dHXUMJyH+/520\nO4vqxPWxeMlksu5qktqAqF6hoMGo7U5+jLBvvOCh9mA3DENkMpmO3/WgtelkMtnzlape15Fh2xgY\nTmFhWZbd+1oNtGQy2TaE1ZpLp6DqFObylN8wjJ73NbnfxuNxEY/H7fctw65Ts4wM40GumvreSE6D\nU9udeq0NDEu79qVuyIA76RPsydpOu0DptqYshzr1O1B/0PZhGXCDnCHxpglj4NatW/b98R48eIBw\nOOx5GX788UcAwOzsbF/ry86Kly5dGlqZRtHCwgJqtRo+/fTTlt/j4uKiPeXw77//7viaarWKWCyG\nubk57O/v9/ybUKeDeeWVV3paVyoUCtA0baAOpQyoEbe9vY319XUAQCaTcey97QU5lOTChQt9rS8D\n7rXXXhtamUaRPNC8+OKLXb3+1VdfbXpODae1tbW+yiEPGIZh9HXAkwF35cqVvrYvMaBGWKlUQiqV\nAnA8tGRpacm3ckjd7liNZMDJo+1JneBQDnNRh780KpVKdu3k2rVrTctv3boFAE3hlM/nux5yImtm\n/dbGZfllgPb7ff63r7XId9VqFe+88w5qtRo0TcPdu3d9K8vjx4/tv4cx1m1zcxMPHz48kXOFr62t\n4fr161heXsbff/+Nixcv2uP2nj17ht3dXXsm0Dt37mBqaqpu/Xw+b9eoB5ltUw54HsaBolwuI5VK\n4ebNm73X8PtuvSJfqcM2/B7HqPa90jStry4OspFd1/Wx7eHfLcuyRDqd7uvqt9M66qObPknqFWG5\nTq9dPyzLsi/c9NIlolFICCEGjkjyVD6fx9WrVwEA6XQat2/f9rlERO5gQI2YcrkMwzBQq9VgGAZ+\n/fVXv4tE5Bo2ko+YeDxutzvt7Oz4XRwiVzGgRsjKygoODw8BwLGBdJiKxaJ9SyEivzCgRkQ+n8fq\n6iqA43Ynt6fulZeJGVDkJwbUCCiXy3jrrbcAHHec++ijj1zfZqseykReYkCNgFQqZbc7bW1teTKU\nRfaDIfITAyrgstms3ct6bW3Nk4nyNzc37YnyL1++7Pr2iFphT/IAKxaLWF5eBnB8y6hEIuHq9qrV\nKu7fv49PPvnE1e0QdYsBFVDqLaMAYH193R7CQHRS8BQvoG7cuNHV/dXc9vLLL/tdBDrBGFABpLY7\n+U29wSSR1xhQASTnRiI66TgWj4gCizUoIgosBhQRBRYDiogCiwE1IuR80rFYzO+iEHmGATUifvrp\nJwDuDj0pFouIxWLIZrOubYOoF7yKRyiXy0in0/YEeJlMxrc7xBCpWIM64VZWVmAYBnRdt28GSRQU\nDKiAS6VSCIVCCIVCmJuba1oei8Xs5d08Gk1MTODp06e4ffs2Zy6gwOFg4YBbW1uDpmlYXV0d+C6t\nTngqR0HGgBoBExMTAIAzZ840Ldvf3/e6OESe4SneCJBj886dO+dzSYi8xYAaAYVCAZqmuXoXF6Ig\nYkAFXLFYBICW7U+DNpITBRkDKuDk7Z8uXbrkc0mIvMeACjjZ/nT69GkAx1MBq/b39yGE6PpBNEoY\nUCNEDkVpDKlhKJVKuHfvHgDg3r17KJVKQ98GUa8YUAH34YcfQtM0zM/P4/vvv8f+/v5Q74uXzWYR\nCoVw9uxZ+7bqh4eHOHv2LEKhEMflka84Fo+IAos1KCIKLAYUEQUWA4qIAosBRUSBxYAiosBiQBFR\nYDGgiCiwGFBEFFgMKCIKrP8Br9WWvA6JFXAAAAAASUVORK5CYII=\n\"\n id=\"image1546\"\n x=\"77.258324\"\n y=\"38.818153\" />\n \u003C/g>\n\u003C/svg>\n","type":"image/svg+xml","revision":"0","bag":"default"}, -{"title":"C:\\Users\\burga12p\\COMP101\\Labs\\labs_git\\tiddlers\\content\\labs\\lab01\\Images\\_Labs_01_Images_HuffmanTreeCode.png","text":"iVBORw0KGgoAAAANSUhEUgAADrEAABMiCAMAAAAjRWVPAAAACXBIWXMAAA7DAAAOwwHHb6hkAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAADtUExURQAAAL+/vw0LCw0LCgsLDQ0KCwsLCwoLDQ0KCgsLCg0KCAsKDQoLCgsKCwoKDQsKCgoKCwsKCAgKDQgKCw0ICAgKCgsICg0IBAoICwsICAoICgoICAgIDQsIBAgICwgICgoIBAoGCAQIDQsGBAsGAwQICwgGCgQICgoGBAoGAwgGBAQGCwQGCgoEAwMGCwQGCAMGCgoEAAMGCAgEBAQGBAgEAwgEAAgDAwQECAMECgMECAgDAAQEBAQEAwMEBAMDCAAECgQDAwAECAMDBAMDAwQDAAADCAMDAAADBAADAwQAAAMAAAAABAAAAwAAAJr12toAAAABdFJOUwBA5thmAAKRD0lEQVR42uzXgQUAMAwEwEfm67CZsAsUJSDcbXEVtjsBAABeOuxWgR8AAADGCgAAAMYKAACAsQIAAICxAgAAYKwAAABgrAAAABgrAAAAGCsAAAAYKwAAAMYKAAAAxkoHAADAWAEAAMBYAQAAMFYAAAAwVgAAAJiOFQAAAIwVAAAAjBUAAABjBQAAAGMFAADAWAEAAMBYAQAAMFYAAAAwVgAAADBWAAAAjBUAAACMFQAAAGMFAAAAYwUAAABjBQDgsncn3mmbax7Hf0jYYGxi147j2omT2M5Wp3t7bpruyezzF981zSxdTtPVaV236ZCW7DeUwWsBy2iOj+BVEcaDEJQQvp+z3KW8jaJzfo+eR0gv1rlTCUm7hRsOfwMATKwAAAB4gkyf076h6ZMZ/gZdk7ycluTu3NgQ2jh7KVvS9pd5gYkVqGddnEtQXwE8Ic0KX6AAJLxPWa+lJSk2enqFViy8E2ntG339mqM6YGIFFhfk1dc3qBAAeue5dPULlOUV9R8AJHx6Svvk3qUVa8P987b2JZ/Ab9HBxAoAgJVSHwNAwq0z8pQ2FB6KherEfybraBCBiRVDxxaSCVvSbjn3c0EAQDUBQMI7Jzkhz48Op7YNlR+rE2viSF4DB0ysGFpass1/Hxo9pe1bWQEA1QQACT/M0gVbv+X+Wl5/lHN0gPPVT1bucWrbknPi2hd78boGDJhYkXxhVgGjLy+vZgUAVBMAJLypmYuqF0ulJk6pfMBZsWfl2Spxatuy92Be+zSWKGlwMbGCu4PG8MvHPxYAUE0AkPBm5mTUn5WX1m6p3kJcnmybpxb3qxOrdX5FAwRMrLAuT+lg0y+uqP+kLvH7FwDVBAAJ777DNoyKPbdQv6+vNSNP5R6tWHvMY8F6dtXRwAATK+yrI2pmUv3HeiUtyfyAOACqCQAS3gvJf/ygJMPfd2mrRCvWJvNY8CDtvQQmVtj/EldTw3FHAEA1CQ8g4Rh+75ojY86WJ9vuqYV5LDh2Iq8BASZWWG/E1XEAqCYASDiSb1+XJ/BQcJunFgP4WDCYWLE4JflymZwjWenjC7ZaBABUE4CEo+h9nzp09EJaRnoyryrzUHB5r+1TC3d90H6SFUysSJ2X73H1/fjK+vrq+B9GBABUEwBhEo7dBw+SV+Oq8n841H8o+KHT9qlF5dGU9g3MY8FgYoX1iq0ad+2WfOt/mX1+RGVHAEA1aR1AwlH8k/9mqvnhUGtGVVsRTi025RmUx4LBxIrpKRnfZlTnwaOLC1kBANUkDICEY+/zS6qyjlfPV2xcnsq9CKcW5kXWYdvRAAATK+Zk/JRRQOXmTR0ouTiXkrTz+PaGDjJ07NlnErYk7biP7hZ0COv4+ZS0feu+E3598vTscELSTvnne45CsGZOjKek/ZUPM06Iw+scgGoyfnxmOFHNeXZDTcyemExI7o5JYYhcAyDhPR+rpDF5jsblKe9FOLW0YuZFVnMvAEyseKql5lRTXFWLzGsVqVOnyp/mFZB84ZitmpQWF93cyrZ8si7OJSRt39iQku+MSNLoyxMrra03rHNLtjyp1MRL5dWsJL2wIJ+ef756BVipO/5X0/JXXvBWtnJ40QFUExP02TA5j42+/NLtNUdBh+caAAnvFfOzodKkPGlVlZ0IrRitWGVnSp4xDQAwsWLOVs2PjlpiXVyQb/jt+hKk/TcuAmLTV9duyTe9oH2jr15X6ootz2Rr6435F2391vDLF645sufVyLzoELiKmpXLH220dHjRAVQTU0eCOf+H2n4jvtRbIzJiiyc+2lLQ4bkGQMJ7ZVNBaVXlI7RitGID9iIrmFhhzaimmFVLRoP71p3Wioz6G2tG7LmRFTUyZSj0+sbPeb94logpqPkfaQy/92G+2WejAagmrWdr+h8DLejM63YgqmvRcw2AhPdmYrVnVbUVqRWjFduUZyBeZAUTK2LjqnnoqBX227YCTm9lVDOzIKPphwz7fVtGqPWvzCvIbMYXZCpa8Proi71l6mTw8IBOo5qYHAYNv/uXknwp8zG/Y1JA6FwDIOE9YkY5txCpFaMV29yzq4tGS3ragYkVZg8AuXfVkiE1OpN1VJVWM8v3Sgp6MS4j1Poz8wqlvBe4PgbF3vxL88MDOopq4ncrQdZ715zw94wOzzUAEt4TaQWkbXnc7UitGK1Yya2tmcjraQcmVqQlv3q2LXkyo/+XdX5FAUeOyAi1fmZZTZRc+cJ8a2pdvt7+4QEhUE3s12wdzHuirGYhLiNCrgGQ8B6fs3zg/yjvRWrFaMXcdbZeGiBMrEgrWD3b0lgmc3f/d1PS0JLZRO7wt+NDrbfOqMbbu25o6VRC+7R3Z0EH+NEJ3qpzb9/elsbPzaoqPZlXVwFUk2AOVV6978hKv5pWYxLtc2oNuQZI+BPISqlmKzixOpFaMVoxf7PgST3NwMSKQDUtO2pd7psNDV1YUI3/1sKmJG1/XpBnd+2Hy1PyHP52vPKtr/d/arvynxvex9Zq+9rdvClZZs039fXb30C+6D2YtH7DvNEfe/H64YcXEUA1CeZQ392SpMr6B2bDSZPEui9g3LXbjulqjAi5BkDCuy05oSq3QCvWrVZsOO5oYICJFXm1zP06K2n35t8vqcp/8f3xL5O5G458lS+v2OZDTWvu+Lnxuy2v9+/ruf62gw8eXVzIlnS4OduvkvLsfHYpWOubH150ANXkvO23s6q6U74U7LqsGdWUPyhpv6uZfdVuJ9cASHgP+GeitBGYTfMRWzFasU0NDDCxIjausMzNNOnRnXl5/BffKx8qoFiY8j/UyF27JWn9Roj1/l3Ln/MyKjdv6nD+I0juZ45qzN/COp455PAARK4mgfvrG7fUGESTRD/olQ9K1W7ob1fjHcg1ABLeffPzqnnomJNIK9bhVoyft2FixUDZCl0lpe/NjbIxNVXZOfTt+G8zMlpcb/7UyvcK5Wjcv9vpuz8fPL7A4XUQQDUxAXZX5AmUk5OZ+s/Jv2Vf/NO/xCPnGgAJ774zy1LTbmUrYitGK7ap5sDECpinP8w9t0h+yigs/0mirZJCSQfudnrMj3pNRjo8ACFyaNqVYDkxbyWlD2r29q5fsSPlGgAJ77708VMJKTiTJ2LqDFoxI/icM5hYgeAlKPpWbRsrCs1/fibbdn2VTyXXv4qGOrzwANizqio7B9/C957xslKBfsg0ZxFy3VUASHjy39WguKpOoBUDmFgxph6ofKzwzD1Kt9BmfXUL3Ts8AGMtBTjY52zW3zE3eVU+eq4BkPBeqfyHQyvWyVbMfCnbEjCxAptqwjo6OZ2wE2rXYevTtoz26mvsbTXi7f3fFeAWmvWzE/m6vneLXAP9hoQb5Y9KMqKP37RiQFwdAFjnTiV+j/XutgD0mbQthbpj7hYEgIT3qdynDq0YwMSKKNz1KVVNdq5ILtldXZ8WgP6vJu52+L4XAAnvJ+XVLK0YwMSKaMz7+p3bvCD5zkgP10e6Ppb3BKDL1SQtX/f7XnINkPCe2b6V1YFiE/lWTy2tGMDEik3VJI7k1QH21XhP10dRdgSgx9UkIOJPF5BrgIT3gPtrOX+3EO3U0orxJb0HTKzYDN7wi8h6I97l9REcvrGccp8KQLerSWDDUHLdeQAJ75niNYdWjJINJlZ0rXKczCi66SnVlDMPfnUk6ZX56Os7ezl0P8zryQJQTcwdc7fg/+tMC0euARLe70qugmjFomHrJyZWDIC63+pOT+YVlXVGVe7X2a6vD3svsuQKQG+rSfM+Nd2s/xgj1wAJf7qM0YpFlBaYWDEo6t73j714XVHFxv1bZ11aby6HEe5FmvoKoHfVZKxJ/1Heq29rJsm1AZDwPmZ2BTZoxSJjqyYmVgyC+/OqObKYUURH4/KUNrq33r/MjSVK7V0qxgSgN9XED/Czq458VkpVZcfktTHo01PkGiDh/T71T0q0YnzH2iowseLxL1OqWc5tKGDpwvZ1taHsyOj0er/aWccz8iXfiV1zDrvFW3k05V9HBaAX1WTvwbw8ZlfMQKOaNa1dY9BTr8sg1wAJ70vBn7GhFYt+lGBixVOt8uOUaqz3Ag+AJN8ZMVW1bVaqw+v9aqfleyXVpK7YFdtRvUn91qaqkiczAtCDamJyGHj8zX9zqnLPz6sfdBNzGeQaIOH9ZVNBtGJRDygvMLFiwG6axt66veaoJvnCrKRh21F4/kMi1uWpTq+/f96Wx7ry0Ub1v50/a3asM7dug3sY5Jy4PBcLeQHoQTUxAa7P56JZulVqCPp71Xv28y/aMsg1QML7c2I1vRWtWLvMy7baEphYMWA3TRVbXPgls7ktWaPHTyUUmnkT3zq/Yu4Ndnh93a56w+/lvtmUhpaW7AOvCbE/rGZlzVz4ZUWS9n5YNheE+g3wki8csz7MC0DXq8nO/XmTQ5O6M8uqclcag578x9WsNP5qWkHkGiDhfcN0OWasa7MVoxVLxORxCwITKwbBozvz8sWOHlX7/DfxT4+tFqTxc7MdXh+s7LHpK4fdxdTwyy9L0tCqU39LMPbyxTs/b0pSemRyNi1JE3kB6H41+X7O5PDt3OqWI2vm+RE/vflA0E2QmyHXAAnvD6bLiU3ko7RitGL+z/tuC0ysGAhfp6bUIf6OCzr6brfWm8dnWrhBGLDz/bJqhhYXVWdMALpbTcxXME2DXvm49aCTa4CE95XgRrnttWK0YsEfSwITKwZA5eNm7zeErwXm1mpQR9dXvrxiqznzsIphXgHJzEwJQG+rycpsXE24H5WCt/CD8pPykWuAhPcPf7+iSVqxSNKqeugITKzgEhSmFgRurRr3Z+wOr9/57JIOUNoIXgeDKp9cHVETWwLwe1STvWtX4zqQ+21ehnlOrs53G5fItQGQ8L6yqaqxRKn9VoxWzEoNYo0HEyuXoPNndbDiqkJpfK7FXbs30/H1j7580VaQ+5nT7Dpobk/u/e3ylAD0tJoUrx28D4gb2HTja803NLyZGfnINUDC+4nZKDc2WqIVa19yQp7KPYGJFQOj8t3tF2bVqLyaDX0xu7ig3yp/tJHqwvo7jxuuh8VPNpqW27KjqsqHSxdsHaCYFYDfp5oU/+YH3ff4hqM6lS+dhnqgIHINkPB+YV5kjU3k22/FaMXStj8Fg4kVA6R4Y+jCSVt1cqsF1WSemUxIcne+dOS7/cwxW5K784VqKjdz/qaAcm+vOSr+fVaStn9S1eMfvP3ad34uyWhtvVH8y/xyQr7yJ4X6cntuyVZNeUW+/7lt/pHh/mL+roHD6ySAamKCvhb4jJtb2VaD+nqwdkvS4wezkrT+vRQi1wBIeNdUPr88bJqkw/gvsp7M0Iq134rNycNrrEysGDi7N28OHVtMJGxJ7q/lhw835FPlhg6wd0ONHjxILs6kbGl3/W72wLWVtTUZYdcbd+4MLc0OJyTtbv9032n4M36YOZNKSNrZup8N/vHW7ELSTkjS7m45n8s5wcMD0K1qYj6TPD1rpyRpx310t9C8HsyltF8PVguBYhQi1wBIeBcVP1BrzE+7DMcdWrF2WzHzGqt7V2BixcDZvXdPnVBcXf1d1u8eWm4rDx6omYr5mwLoVTUprq1FqAfkGiDhfcdsoJs4kpdoxdpjXmMtbQhMrAAAAAA6wzwWHDuRF9o0Z8vzf+zcA65cYQCG4W9Q2zbipEbcDXSxdwFt1KC2bdu9g9wMgvr0r59nAWOcN/nyGwUrVgAAoJzhLHjh6dFQzbT0GAUrVgAAoKDhLHh8YzRU0liUHqNgxQoAABQ0nAXXl1wOlcxtpscoWLECAAAlXVnfv9xefjlUsjg97XNBsQIAAOW07ixLxkyb/ThUMBwFv3wXFCsAAFDQucWNJE4LrmxVv1c6x4NiBQAASnp9e1nGOC24mvqC9Lx7HhQrAABQ1KBYJ0x/HL7bxJnpuTgaFCsAAFDUg0dzkpgFV9QfVeft9aBYAQCAstqHdk5uJJ3XV8P3u7ms9+odGA2KFQCA/8qDK4snJPnw9Lpn8PO83Ru8eihWAAC+U/vECc8AUKwAAACgWAEAAFCsAAAAoFgBAABQrAAAAKBYKWJ3AACATxnJj0CxAgAAgGIFAABAsQIAAIBiZSTh96sl6bj/f/8BuH8vgDfA/XsB/IUDihUAAAAUKwAAAIoVAAAAFCsAAACKFQAAABQrAAAAihUAAAAUKwAAAChWAAAAFCsAAAAoVgAAABQrAAAAKFYAAAAUKwAAAChWAAAAUKwAAAAoVgAAAFCsAAAAKFYAAABQrAAAAKBYmbyrkYGrx/PXWbYxA519jwMAwL8CFCv1jY0Mzc7fZ26Galv2jOYfAQAAKFZqM/LvGN8YDQAAoFiB8uoLls7osncnXk2cbRvAr8wkZMGgkiANEjXgB4gW7fIudF/e9R/+NrvYt+uR2gWVgvIFG/aKKSYkJmEy+c6cZwwzeSZD0rdxzoTrd/ZOet+34ZzJc888SwwAyuWNLc2f+T0ogIiI6PT50YEwgMPa3loB/sEf1HPps2EVwGFpJ6vBGRE7VjosAoC2BP/5SYkCwGAY/hd5OQVTLJa8sXev4IP8nhdARER0+tU4TKHQ4MXG2rKG34wjCvG/P/1Sg0TsfyKx7iWizCfQXu2rQptKQ2fOzJQWxNVuY/U/YsdKz76AX1XuwPBKGn6nXM3AJvlu9r4P8ntbABERUepaFDaBifHbeXjPpyOK9JwKAHFVQyux/4ksMHcLz40k4GLg0qIl3PR/wGbwvdw9Deg6Vu8RO1YicniKGJgc+ULzbX4PCiAiIvZnwsCb97P4LTiiiLwdxQuifiCnunCO+2gSO1YiX/y8CENv3fJPfg8KICIimsjAQeDqfh5d4IhC6v97Tv17ELKIS6VEQRCRV64nYMDh+kYdyvDlKAwYmlv0S34PCiAiIlJGYUDjyWYeiCYzKgy/6cw7jijMCcHdy6GpWHeNcQCT8ucgDKgtPSkB8fOTqlRpZ7F6j9ixEtHlNAyN5YcwPF17Pifn4kbeV/k9KICIiKh0Zx+G4i9Lz5uuyIUsusIRhfjo8Sr30ELfQVP542E4SWQAoLEP00RCVPpjDobi8gPz/e6FlWq3sYgdKxH1mDoFwLbTXuXj+QQgtjLwT34PCiAiIrLtMLv+xNzOtruOlSMKZcp8yYlyDK5qW3BTcb48CkO1ACE2DYP+rwJM+t1nswCgzN/qMhaxYyWiXssEYbifR5P+jVjdcSpc9Ud+DwogIiLSy/GlHKzKK7Po+geEI4rmNki1pT3R8/++YmMwrGoQpkWOpQKOZEcTcqXusYgdK9ELxFeshSws6g/Eg8bpRZ/k96AAIiKi79FqbSoIAIHBKjrGEUUmCsPh6kPE0AOiQ63kIKgph0r11YRc6fGxiB0rEfVaMggAjUXHH9yXljTP8/unACIiovp2Gt3iiCIOAI21ZQ09YXaoO5prpY+fJORKj41F7FiJqNfGYCjmAYdHouGhvOf5fVQAERFREYbAmTy6wRFFY29BQ4+I6cr6iq1Bllai6rsJABhQtW5iETtWOrFCk6mBMNB4dvBoB+2cnho2PlPeXSs5X0+NhGMAUK7tbJaOS1XeWyvASWr8dAzSB/xNelSYc/nB9Ti/7wogIiLqaidZjiiK2LtXQK+oUzAcVO0da02D3da0CkA5n+0mFrFjpROqucF5IBY7h8eWZ26x91Xg8dcAkJ4NwxAYnJhwuM2lrkXxXCx2Zqa2lINMRBFhBi86TEeJvJzC0QeM9RV9JikeFW6ixZ4mdkro9/xeF0BERMQRxeoqeijTMglYicGQR4tqA6LSLmIRO1Y6mZSrGViN/PNol/S4CiAe1FpO7Uq+u/wQVpMzKuwGbpyXZ5vYoyAwMX47jybrXutC6ErmmwL6ivmYsY4WjacJABj2b34PCiAiIorD0Cih//nkB1UZBWCdrhw4DcMBbJprkIe7iUXsWOlkup6GXWA8DxvxrtUqcCW6iCOvpCEb+eATDTajr0t97Vv3smhS5hNoEXlXtM99Q54YI+hlsZgjqPk0vwcFEBERqSkAHswa5YiirZEEDDkcqwi50u5j9T92rESX0zDgsKQjFFMdH3al51S0uHSQtf9ayCKzi1LDKpndrEoNa6NcfV4KAm/2UcsqT4yR7tqq5tP8HhRARESUCXrQ0nBE4UK5DEMl50Gs/sSOlSg2DcPzlamhmQsq8rAbn4Ohlt2GkroYllpNU+Pxo2IJwOmpcyoMFzeskdTXVIg4P+WBaDKjArYD1K4nxOVv9gE0l7QGXv9EQ99wmhgjFGF+Hb7N70EBRETEYYwHLQ1HFC4iZ2BY1dDiVPe9tRyL2LHSSSTOZS58BeHw7v2pyQPYROYAwNxK6eny5VkA8onPouc1PF0Qb0vt04uVPwdhqH1VAIDiL0vGZk3yy95HixAqC+lX5Fe1AhEREVHkPZUtjffkkaVtR6juV9bKsYgdK51gYkKv/jWa9OVlOCh8oUFYLf4JhgsrVQj19UtHh3qJePPSodDmSoTK0RvT7V3rnk/qlKVhFdbDs/ZE/hcOAM578BfrKsRm9P7L70EBREREzQ0bH2XRIxxRDP09DAPKjb2f93Gs2BgMuSpM0spaqdLBauexiB0r4aTe747fr0CccCPsrqdbXrLevQs7fTUB2I6vVi6LC59paNLv7s8dFiCIhSiVJVhkRxPS21wiIiKi0NmL51TYnnb3AoUhxDB4Ucyo6+S16AosirCNCo8nxSJ2rER5HKPwNSwWU0H7G1TZnha0P98zVyIsVWG1vqnbXrE2vtWkxlck6hNx1f/5vSuAiIhI/SAKm9rtPF4QjiiS7+3d1uDCce/mIgyBuVvokBSL2LESDcNd5QtYiPOzpJXy0kdsxpxXIugwiXOwqwW58RWJ+l614bP8HhRARESUjMKi8WRpHy8QRxRJcWx/O2LKXGPRYTiHoTn7f468qQKdxSJ2rESnwlW4EFN5LbbEtODz2WMDQxAnQLutRBiDYVWTG1+RqK80Sv7P70UBREREcVgFErMbOfQARxRi+aks8Ob9LNpRp+DwBqL+YBaGS8o9DULzTAh0FIvYsRKfwynzt+BCTMeQn5WdQntF2ETOiEhoQ0z8aOw7hRGJiIiIiIqwCSST19eWNfz+6MddoFwvAoAyODSWghC4up9HG8mg4xuItSnx3y+k134uAgidTb+kQuYei06aIIgsLzExNL+goXPdb1MeP2Z78nDA+UlhESJRfwkMVr3P78MCiIiI9p5FYReYGP+qgN8dRxT6Fp7Ti8VNiGMJ3Y7KF/tsysfj1u/86fnfagKSLmLRiexYiVbEAtORfy4/RIfEPJHuxGGo1V06Wvk6ERERkU39JoT4qfHnmwUPvPtlHr1G27vzCRgiF7JwNCKu72hosfv9K2inUeoiFp3EjpWovDILQ+DKzN5iCV2RD9YKnQ2mojBE4aCmuXe04T+jRQgSIiIiomJx++it3xs3q+gxap63D+eOtXmU4Qok60/eV9GilsuokEixiB0rUTaeBgyBkQ9rSzl0pAhZaPJiGO3E0YnAME6scMD7/D4rgIiI+NbvagYG5d1PNPQaRxT696LvbLNlp7lrSa4KWfm/piZVWJTu7McyAFCru8cidqxE+o9aBqaBG1dXH6JTtlNnIm9HQccq1lW4aex7n98vBRAREel3n80CEBNVe44jirLrcRHTKgA0NuBEX14+fflsWAXQeHbwaAeytrGIHSvxZr93LQpT6Mrk7Ty6pohHnL9dHG7y6C+BM3nv8/dBAURERNnRBAyXcxp6jiMK0bHiFBzExmAoti3p6R3YmLuYaMfGInasRNvbqaOedeCtnx6iM7U6BGU+gR7aW0J/kE71lu7ajZL3+f1TABERkb6agCE8lEePcUTh/mp3TCRe7PJ9Rb6zWMSOldizhmYyMF2pZ9Gd6wnA0MjtFkuA4fIsulGEoXJSFqGcgkTaTdnz/D4ogIiI6PGTRI/fNnJEITXKw5CpU+IThe461sZGZ7GIHSvR4d3752fDgGF2swp3cViNpmFoHHNADkkn2cq/L5r3+X1UABERkThyT+7dOKJ4wTJBGFY1dEhNSS+DXWMRO1YifX09PacCgDJ/C66UmOVm2Nx//F8F93eo0nE40vUT87MqfxHmV5r3Pr+vCiAiIiriReOIIt/2tai+iU4lgwBwUO0iFrFjJVp//EEQkDYtlwROW29X5v7jSwUc27GqGlyI631M+iKkr/TA+/y+KICIiMgDHFGEA+79ZzfH0YzBkO8qFrFjJarcel8FEBisdnK7OoDBXBxfycFFse4ed08LStf7+PdF3hVe3Jv1Te/z+6oAIiKiOF7YM0+OKOKq85fdnHG3gk6Zk4I30FUsYsdKVNlPQNq9QJpxYm7gtg+LmgYXYqF+YDwPJ2I1hrje50RrDunUuDEYanXv8/upACIiIiUGaVTSKxxRjKFNPzySgOGgik6JtarFPLqIRexYicSqCEnkrVuwUkZhEBu4SXuTu3SkeGlJc8krrve3+nYakOddqykYdjTv8/uoACIiIrE4qYfHo3FEIUev1Z1b2W6Oo4lNw5ADuo9F7FiJpOeUQ3OLrY++pJvhsNzUWui7CQCISE8Cg2aQrbR0vT+Jf6gyvejwnFFf8T6/rwogIiKaVl1fyHFEEZmPA6WFAn4Hc8E2/XBsDPIbUzfqe/Kisk5iETtWIjUFJ5ewiCb1NRgaGxCc9gG+noDd1rQKSAfnRN4O36wCEKepSdf7UHMSz0pVfs54UPVBfm8KICIiUv++f68Am+YRe8jBEUcU6gdBAIPv3Kzi35ZOw9YPS88NcuiQ8ucgADS+1eAai9ixEinXR5dy8pM5+cDmS4Nfw6TMBe2PvoowhIfylrBptCibTwLf/URD0+SMCnPHAH01IV3vS/UHs9I/NCKeMzYWfZDfowKIiIjCgeR7jxdLsIq9Dji/qxM4okgGAYgtmrp7PKB/VYDd5VnAkKvKr0W7+ytE3o7C8HMecI1F7FiJAqngjVlLz5qeBuC4+GHkb98UYFDmE7DfDM19fl9v3jAjryUgWRHbNUX+0rz/pa5FIVheskb++WMOFqHJSeXLPPrI2lSw5YsQx+CK27YP8ntWABER0ciHpTv7eE65moGwqsELPhhRxOFAGYTpFGCIDgAGvXTU6L53uLqmyV0mKktoNabKA0iL9CulhzlIfzYpknMsYsdKNHDj+pOlAw0IJc0WUl+BLPJe6eGviF48p8J2MxRL/y03TGVqUoWsvDIr0r1Xy/5SRzSZUWGlf/++CgCBG1fXN4xyEIoNjw+pAM7k0Ufqd/5k+yKGJ1Xptu2D/J4UQERENPgOSuuFEqAMX4rD9CiLznFEof49CBvlHZgKt9AUunLl8Nftp3VAOTV2ToWgf6ZJ8aakAaRNEoM3bhz+mivXgehwOipHco9F7FiJAsl3YLVUhc3Br2kAGLwBg3wzXEwFxQ2z8VTHYBgAGg+SCdhl42mzRZ6Zgcm6yVP529dVGEITE+hnu+tOXwRqn2k+yO9VAURERNUGhMEZ2D1eRBc4okgG4Uw60jB07hzsal9V0Soj4uWkK66hap9WAddYxI6VSBw6I5GeU+rfaxnYVT7RrM/4zF4zcAZC48v9JFroP8akZLZ5K7ufvq/iJJC/TnHb9kF+zwogIiIyF27KHi2iHY4oirZXBEIcbQ2oGgzFugqZGAG2UkZFig10Y++2FEmORexYifTv34zCrrH8EJK75RkVFo8XNFjsitejTZVvCgok+tdXM7Cr2fZ9Kn/8WgKy2ib6i/R1im/UB/k9LICIiGi1dC0KSe2rArzigxGFuaVwoyR3sbKjo1bLi3MqJI6jRHHsodtxNFtptDpclSI5xiJ2rETlm+nZMI409pwbh//bfDvq2GcKux+/nLLdzcQBrLUNWOl3H87HgfZxKl+e/mMUdmKpfh8RX6fl+4I4Jc1X+T0ogIiIaHs78nJKfvjtHR+MKOq3/hQ3/nsVR/aeRdHGjgZhfT01E++syywa4bB3G+3sLlyLyn+1DmMRO1ai9XUlNRGOAWg8O1jeRxuVm5GXh8NAo7y7VoKksqBcHI8Z159s5GBYXYWs8qn5MZRrP29qkDy9qYyOnQ2rAFBulB4VS+hLlQXj3xkDjG/i0Zbmv/weFEBERFRZQOjcRDisAjg8PHi0p8FTPhhRlD9Fq/rNzp4P4PTweDisikHilhzcVL55fCglmT6rhuVI3ccidqx0Eumbmx3+RrjR19Yg/D/7daARQRTFcfi/Eo2AAqQHSK8Q9NCBoDcICES01rASU2zUNrdVFrHArDUz+30AhjPOwfXr9llb19kHbV3v3fzuPwAAX7NZ2M2D2jRP2Y52Pg8oVgAAABQrAAAAKFYAAAAUKwAAAChWAAAAUKz8V11lZfnwlsE5uqyychwAAECxMkaHJ3/1d5fBuTgLAACgWAEAAECxsiulOc1ofH4HAABQrIxFe399kLXXDM/LedbK4zKjAQAAKFYWNxm06TS/AAAAxQrvH1VSntMvAACAYoXFbTYCAABQrAAAAChWAAAAUKwAAACgWAEAAFCsAAAAoFiZBKcw3wIcwAEcYBMLwPoo6QLFCgAAAIoVAAAAxQoAAACKlZIeYJKkmG8B/ZxvAQ5gvgVgfaBYAQAAQLECAACgWAEAAECxAgAAgGIFAABAsQIAAIBiBQAAQLECAACAYgUAAECxAgAAgGIFAAAAxQoAAIBiBQAAAMUKAACAYgUAAADFCgAAAIoVAAAAxQoAAACKFQAAAMUKAAAAihUAAADFCgAAAIoV+GHvvp/ixpIAjn8ZyRjPOZ3HLha8+JZwsDnnnMO/fDltzjjbFHid46wNNsdgMXPhDQUeWJeQV4Cl7+dnpKZeV71Wq0dSpffBXVX+a3b27PmkSPHvAybABZAkC9qvuBHv6uvr3grcnr80deteI/Y8FE7G7PzFyQTZsaocnhgEWmd+YKXo+V5g/qs6Wkc9T/TRVq3uffrqoekyxe/4N258mmACXABJujsqr9T4ZfOfTRN4RZHxwAz1uvNMW7YMDc0fOZ09IpXR4Wjpr3Y/HM5WErJjNeNdB6YnWWGwF2AL60iVxwa5w963Jg+XKP6igScjgB1Rwt2ZABdAkthX4y66Hxon8Ioi64GZ6nXf49s6MvH0o59NZ404/HCU6myyY1XhnB8AYOR0QodoFIDGNBvJm8Rdw/v+lZQlflvPG9vInwlwASTJK4psB6ao15Xn+lih+61P65kiVp4aSHc22bGqeK5cqwFs3Vmnw2AMwETCRrG8BDtf/1tJ4i/das2NCXABJMkriuwHpq/XT/Wxiq7XPq1nifjUQLqzyY5VBdT8/p0I6Hryb6uPWOdOs270VA0Abp85u0Blz8i29q795Hgp4gfhB0apmQAXQJJmFiLu4iYdvKLIemD6eh31Edz++cJt+vZuJeh6/i/J2iOODCz+0U8zwI79w9HS2WTHqqKbDb8L3rGnvtqItfVNQt7UsR23jp0E4MbU4q9tfne2Xvz4QTtkeibABZCk2T/vYTW1QYDWdZZ4RZH5wCz1+vbEVAJwfumAngOTa44Yjd7xR8wcOzby6NLZZMeqojvev9qQtb01zNTJnTq240/rtM39+ZUaITsliM/y1wDOVknJBLgAkjR3ntX0AileyeEVReoD09fr1o0ay9/mO/fHZwYAwstT1hgxzFE4PAmLJmZeAsCOtYxi5JB12Yh1nNypczuuw6LmFx/FANu3NoofH6J3twHA/JGr70TcCxPgAkhStR9I8UoOryhSH5i+Xjdn9yxORNt+rNaA8PKUtUWs9AIwPckyl84MlLVAKEYOWTduxOqItXM7XjjxKEBlbLzY8YPBUABvT5ykyr0xAS6AJI1FkOaVHF5RpD8wfb3+/nvu1H53Cl2762uM2LN7tTlKGLl0/aaByiZGDlk3ZMSqvauu+dRoDPDAkaTQ8YMdAK2pY/ceywS4AJIU9QFwMSEFryjSHpi9Xs9drwGwfa0Rd0QArVvc4WoSo3KKkUPWDRmxqn+1NQ/3GcMvaAoeP2hd/Trh3pkAF0CSwu335nFS8Ioi9YHZ63XzUg2APZkiMr8Akh2rQ9aVd7y0zneCT9NhBgi/oCl2/BDr6qFpsjMBLoAkdd5+v9kgDa8o0h8Y6vW6/6vdUQKAFIMcslZG1n3EqnCXoHmODu3fvGwvdvxgYoJfgwlwASQpxRNOXlFkOzB7vZ7JHBFWPrG6tQugdQuVTgxyyLqvtu57vHYAK3/xEt4OD+wpTvz8mQAXQJIqvWu8/W5By30jDgGorzViaGC7HqyzXH9Uzhm6IEYOWR2xbmB9SejQnK0BdMdJUeLnzwS4AJIUbr9zmrQsaPlvxBkjthvYA8cbLIlGy5pgESOHrI5YN0ClCkCdFWaA8PBGMeLnzwS4AJJUGQFSfNrGgpb1wOwz1ptrjdicqAFU3vpLwiKejEuZYNmxOmR9sO6IdYN07Qqb+Oqbdnh4oxjx82cCXABJCp/wZCIhBQtahgMz99Kt62uOeOVaDaDn3aWW9YkBgNY3CbJjLRGHrOHnFo5Y73eSJGksAmieY7PxLkJjmrVqfv9OBNDz/ld1ACqPDQLwUx3ZsZaMQ9bK2Dj0O2LdAO0X3l1nhZmFiPCG90LEz58JcAEkqdoPwOkGKVjQMh+Y4S4CF5O1R5w9/igA3a9f+TqBnje2AXBqHNmxlo5D1geOJNV+R6ySJBWAI9bjaNOI+gBonSWDCULLyr5Ppk6MDWLDaseqMhrvi4GeA5P9kSPWDbAjKlX8/JkAF0CSzdHNhgVt82zEgzHhEjNTxInGk+Gvu4aGAGD+qzqyY1WpLJx4FGDkwqgj1s2l0Spj/OxMgAsgSYNx9qsZC1o+G3F1jJCUjBHPXHmij2WufJ0gO1aVzNRoDPQ8H4MPsm+U1q0SxM+XCXABJCkaBaAxbUHbNBtx5ZmIcImZNeLc132Pb2PRqSMJsmMtKYesv4X797kPSZKkvTGwqT5to6FaaDuP8Ot4aP/ESWTHWkoOWYPTDTaAwofHShA/PybABZCkykhojk5b0DbNRrz4m+BvkqwRwwuCl2x5ZPizaWTHWkYOWR2x3s8kSVL4sjwXE7RJRG8v/SY4m8rY7wGg9fOucC6635o8jMooRg5ZHbHeryRJUmXE+++bzZMxANPjZBS9uw2A1tSxpLJ/8bXBwzu/TlD5xMghq1v8prK1q3TxszMBLoAk9ezOfv/dgpbLRjwyAMDcv7JG7Hk3BuDqoWlonjk3OhwBsO/1fyWodGLkkNUtfgPMLETcTet6AeLnzwS4AJI0FgG0zpKeBS3XjXikPRL5e5IxYhQa1taxk4QzHTvVfqh15+t/Q3asKpPWjRobSV276yWInx8T4AJIUrUfgJm6BW2TbMQDoWFtfdbIGLHycmhYP62zaO7Pjw2GlnVokvzJjlXSXT7OvSMCaN0qQPzcmQAXQJL6w64xTnoWtDw34t5nAOBwPWvEodrKEzQP/js0wiOnE9aN7FglbWeFHQDMLxQgft5MgAsgSdEoAI1p0rOg5bgR9z4PAIcms0Zsp/RUxwkmdgwA9ByYJH+yY5XU/kX2nl/ctJMCxM+bCXABJGkwBmAiIT0LWn4bcfX5qN1vZo4YUto8TofjYZy+Lh2r7FglNWdrAN1xwp0qVQDqRYmfPxPgAkhyxNo8RwoWtNw34uo77YZ1PHvE0L7ebNBh9vzA4uGyY5WUvxkAuqOEO3XtCvt00eLnwAS4AJK0NwbSfffAgpb/Rtzz9mLDmj3iYvua4nDZsUrKvb5U9k+uWnqb5woWPwcmwAWQpMoIkO7T8ha0/Dfi6N243bBmj+idS22SjlXS1SSGVR7G6AdgfqFg8XNgAlwASdpXC91NgxQsaDlvxO2v0nBlnHuPuJ2V1rFCyI5V0sKFAYDtWxssF/UBcDEpWPwcmAAXQJL6gbV92saC9h/27vA5jupaEPiZaZCksWWMZWPkh0JseyWvCQ7ZvCqKfQkAmyqq9v/dT1TAqQKSil8qtQL8MCiyI9sIQEwZyRIaeaRZ9bQcLCQpPZGsq53+/T6Cb9+uc869M0fTc+eJbcT110Yjt/DHJzTjSBwidKxAcXxAfXIqHvfofLzk8x95EiAAAI1zkVtsxj/nBW3otZGIpesLPQ/ssWH9YH+3unmi8PM32hH+pknCjhV49GTMzVb8qDEZuQet9PMfdRIgAACTWeRm45/zglZ8yfTY6++2nsxG/MvRyK180N7fra5/PRqx0++uFo1tPAh0rMChWPv8Smyov/FeOx7ZPGKvM1WB+Q+GBAgA4CPWlRIdqxe04nij4tyj8gPL+9V4kYz32vu91cXoeul+Mx53dlK2dazA4bo10V1/Q7/7aCEK41ezyP29WYH5c/Vjsel4dA0PRNf6kgQIAMA/cy6LCI+JltxPR3of2MPr9dnxyHVuPhfbrM+3e5nx2+9GY0PtP2591o5H6pP/Lbqm23E40LECa395NXIDb67OfLMWw6cuZtG1cqMC8+eyd56KLeqvx6aFaxIgAAB7yyYi56vv5ffT3geWfb0+F121X8YObk/1MuP6X9/Kute6cP67mcWliHj62RefyzYnnInDgo4V+PrOeHQNXL4cP1r9Q7sa8xfPJ+1s4Km2BAgAwJ42v9c424ryvKPofWCZ1+t6I3ZXnKJUfsblm1eiq3b6dGy18kEcHnSswF/b52Ob1fdbVZl/JHY1kLUlQAAA9lI/G7nO3aDMfroYXZ375Qce/Ot1uRmnW7+KHRXfkkXHChyaj5cvZ7HVt9fblZl/MXa1uiYBAgCwpzOjkVtsBmX2081zejtL5QeWf71eXx6N3a22e5zxzre/HY5tOjOfBjpWKma9eTKLWLodpPK3ey+PxWOWri9UaP75H4ZjF1+1JUAAAPa02H0Vmf9zUGo/Xbv2avf3WFu9Diz1en3zXBa7mu11xlh5d+wXP5m0UxzEhI6Vivmv/wrSWrleP3vu2UZsWF69/WW7UvOvvRv/IgkQAIDld4Ne9tPl93sfWPr1evn/HPDWPzcXz42fGBiMDQ8frtyZXwp0rEAS63NzlZ4/FQkQAAAvaOUHJrjVb74J0LECAACgYwUAAAAdKwAAADpWAAAA0LECAACgYwUAAAAdKwAAAOhYAQAA0LECAACAjhUAAAAdKwAAAOhYAQAA0LECAACAjhUAAAD20bECAACAjhUAAAB0rAAAAOhYAQAAQMdKLZAK8wuABEiABOxEABA+OrEf6FgBAABAxwoAAICOFQAAAHSsdIIjoJY0FeaXAAmQAAmQgP4lfKBjBQAAAB0rAAAA6FgBAADQsQIAAICOFQAAAB0rAAAA6FgBAABAxwoAAICOFQAAAHSsAAAA6FgBAABAxwoAAICOFQAAAHSsAAAAoGMFAABAxwoAAAA6VgAAAHSsAAAAoGMFAAAAHSv1X49FrPyhFQAAADpWjpQLYxExeKwVAAAAOtajhPrZ2LDYjCMFAABAx8qZ0YjoTMWRAgAAoGOlfik2tBaC1OpnX3imERuWl+9+2a7e/AlJgAqQAAWAFSwaZQemCfbTL7wwWMy62pxdCHSsVMjQydgw3Q7SGnp5LDY1Gqdfmf9kIf38ycLw/YftkICKBEABqEDY/96ggPcfjdIDy1++/KZen3hxsNuMzn262z+4mP0468kLnVuftQMdK1UxmUXE+r0gqfpL52OL02/MfFqh+R8Zv5rFhpGsHSEB1QmAAlCBUH5vUMD7X87lB+7v8qU39QsT0dW4MNeMHVy8nMUWtQv1qUDHSkVkY7HhQStIqf7aaPxE7eKZD9pVmX/T0G+HozwJSH8DCkAFQvq9QQHvPxplBvZ++fKbemOy9wo4FehYqYrz3dTPRnIa1m1O/OZa6vnT/lU4JKAaAVAAKhDK7w0K+OCjUX5g2cv3uqlPZrGHxltZgI61wupnIzwUnNwvR6Pr4Z27a1E/dWk4uk5cnarE/IXi0aHyJCD9DSgAFQjp9wYFvP9olB9Y8vI9bupnx8s0rPmkD9oR9ZFTPx8JdKxUR3HukoeC07o0HrnOZ19E7vtbjx5/efFuswrz54opy5OA9DegAFQgpN8bFPD+o1F+YNnL97ipZ7/u9qP1LHaSvZlFbvXGbHStf//9rRi7OBXoWKmIc1lsmA0SyiYi1/mwGZtWfl88dVO7eq0C88fjRwAuN6IcCUh/AwpABUL6vUEB7z8apQeWvHyvm3rxDbWZi7Gjq0WTsrD1u7Jzc4GOlYrwUHByxU6d+7QZ/7D+p3e6//H4YKu/5y9kbw9H1+qN+bJfVpGA9DegAFQgpN8bFPD+o1F6YMnL97ipF8cuLUxfjJ1sPjG8cC1Ax1pJR+mhYB+xLszEY9Y+vxIb6pNT/T1/4fxw5B5OfxGNKEcC0t+AAlCBkH5vUMD7j0bpgSUv3+OmXv9VFhHrf4wd1S9FbuWDAB1rVRUPBTeDhE53V19nKra4NdH9z8/faPf1/IWR2FD+x8AlIP0NKAAVCOn3BgW8/2iUH1j+8j1u6mdGY8NsK9vj/3b+sx2gY62o4qHgzt0goXORW2xG7PA3y8ETzX6fv9CZv96O8iQg/Q0oABUI6fcGBbz/aJQfWP7y5Tf1zWOXVm7seWd/bwboWKuq9kxs6CwF6WRjkZuNn1gsUnSy2efzF3PNf7IQ5UlA+htQACoQ0u8NCnj/0Sg/sOzle9zUzz+112eoxZzrNwN0rJVVPN6xuhakTsL206/m28VRBv09f2F6OpKQgPQ3oABUIJTfGxTwwUej/MCyl+9tU29MFp/b7tXPOnAFHWuljUTuq3aQOgnb/2zQ+X40Npzq9/kTkgAVIAEKACtYNMoOPPhg73Xs0uNz+hVGdKw2+geRnlfbdvzE+vJobBh4qt2n86cnASpAAhQAVrBolBn4pIJdHKx0oxU723wo+F6AjrWyin2gcz/Sod6IXDO2WYzcQNbuz/nTkwAVIAEKACtYNEoNfELB3jx2aTZ2MVjb/FgXdKwVVewDiQ9eovZM5B7s9gJQO9bqz/nTkwAVIAEKACtYNEoNfELBvrrrsUuFkWzzY13QsVbWSBaHDwAAGuci9vzpmpHINQN0rFW15Sv0ifmg+35ss7iWRXFafF/On54EqAAJUABYwaJRduDBB3vz2KWbsYstB648/dyFwUZEdH548OVsoGOtGh1rOw4RAABc2P3YpUK9EYX6xMUsCrVG47lXit97RcdKdTQjIUaySs6fngSoAAlQAFjBolEMTBLsbCKiOHZpb532y+djq9NvfPZFoGOlCuqNOMJodSo6f3oSoAIkQAFgBYtGMfAJXf6fH7v06LCn2iuxTe2/D08FOlYqYMuhb0nRWark/OlJgAqQAAWAFSwaxcDDDfbZ8Yhtxy6V9/OYioOHjhUAAKB+KaI4dqmcpenmYkSMnLgyHF0v3m3GoUHHCtSOtSo5f3oSoAIkQAFgBYtGMfDwgl3i2KXHPZz+IgqLi/fGr2bdO7l6LdCx0vcGa3G4AACgMRkbFmaihM7WY5bufPdWFhuOD7bigKFjBQAAmMwiojMVZXw6E1ss37wSG+r/NhPoWIFKfgbuM3gJUAESoACwgkWjGPgELr/fY5duTXQbl5/pWA+DjhVYXMtiL537fTp/ehKgAiRAAWAFi0aZgQcd7OLYpZUb8a/pfD8aGwaeaschQccK1E42Kzl/ehKgAiRAAWAFi0Yx8NCCXRy7NN2Of83610XHmrUDHSt9rtWJI0wWRrLY0Fnq0/nTkwAVIAEKACtYNMoMPOBgZxOx4cG3I/GYenQdfxgR60uPf5Z6PNJDxwocj21GIre6VoH5E5EAFSABCgArWDRKDDzgYA/Wuld6K7arvRK521Oxl8VAx0q1HI+E2Pz74aldXwDafTp/ehKgAiRAAWAFi0aZgYce7Odv5FdbX96ckkrTsdrnU2N9eZfTA+qNyDX7df70JEAFSIACwAoWjRIDkwV7MXJOWELHyqlIicXIbT89oPZM5B706/zpSYAKkAAFgBUsGiUGJg729imr9tA3OlZ/mUzPq+1OP4N9+qluku716/zpSYAKkAAFgBUsGiUGHnSwV+6Pxt6m25H7cjKLiNqxVmxRgYe+0bFylJ61YL69889gn9v8+2G/zp+eBKgACVAAWMGiUWLgQQd7/cPYLnsnv3znw2b8qDifuPZCM7bIxiLXDHSs9Letj3ekw9rceGw4PtjaaTf+qt2v86cnASpAAhQAVrBolBiYKtjFkSvFOUzbP9Xt3A10rPS/xbVHz1okxJfjsaE+ORWPO188Y3Ozn+ZPTwJUgAQoAKxg0Rh6bSRi6fpCyYHpgr3+9Wj3frd+rlu/FLnWQqBjpf9tPmtxshkJ8egpm5ut+FFjMnIPWn00f3oSoAIkQAFgBYtG9nb+z469/m6r3MCEwS6+yBqXZtvxowuj1fkIHR0rm89aHI+UWPv8Smyov/FeOx4ZejPrZmiqn+ZPTwJUgAQoAKxg0Sgeqi3OUCoxMGWwl4vPdYd+cy3+YfxKVOcjdHSsHI0fZubWRHf9Df3uo4UojF/NIvf3ZgXmz9WPxabj0TU8EF3rSxJw9G9AAahASLc3KODel/NI7wNL/quD39RvnutOcOK16+3oqr90PrputAIdK1VQ/OEq8WHBrP3l1cgNvLk6881aDJ+6mEXXyo1KzF+cD7hF/fXYtHBNAo7+DSgAFQjJ9gYFvP/lXG5g+cuXSFyvH7LGmf89f68ZceLcWBQWZgIdKxVQHL2U/rBgvr4zHl0Dly/Hj1b/0K7G/MXzSduV/3uKBKS/AQWgAiHN3qCA97+cSw4s8a8OflP/v43RzauejsesfBDoWKmC4heci+8xJMVf2+djm9X3W1WZfyR2NZC1JeDo34ACUIGQbm9QwL0u58Xo6twvP7Dsvzr4TX39T28PxzbfXm8HOlaqYX35aBy9xMfLl7OUm3Hi+RdjV6trEnD0b0ABqEBIuTco4B6X8+aZv52l8gNL/6uD39TXfv/rsdiq89kXgY6Viii+yFr8MHNa/O3ey2PxmKXrCxWaf/6H4djFV20JOPo3oABUICTdGxRwb9FYu/Zq9/dYW6UGlr/8/jb1zp3zEfHd9jnXr4/94vELdm591g50rFRH8Ve2wRPNSIyV6/Wz555txIbl1dtftis1/9q7kY4EpL8BBaACofzeoID3H43l98sPLP+v9rmpr3/8cexibu7pi2MDgxHxcHX+1kKgY6VS1ubGI6J2shnJsT43V6X505MAFSABCgArWDRKDEwf7IeffRagY62q4rHgn83EkQIAAKBjpXgs+PhgK44SAAAAHSvFY8FH7vdtAAAAdKzcPJfF0XssGAAAQMfKyv3ROHqPBQMAAOhYWZ/OO9b65FQcKQAAADpWvv0ub1mfv9GOowQAAEDHyvrXecc6dNS+yQoAAKBj5dZEnn0d61EDAADoWFn7/EpEjJxqxpECAACgY2Xm2bGIh+04WgAAAHSsrF8PAAAAHSsAAADoWAEAANCxAgAAgI4VAAAAHSsAAADoWAEAAEDH2q9qgVSYXwAkQAIkYCcCgPDRif1AxwoAAAA6VgAAAHSsAAAAoGOlE0cAtaSpML8ESIAESIAEIHygYwUAAAAdKwAAADpWAAAA0LECAACAjhUAAAAdKwAAAOhYAQAA0LECAACAjhUAAAB0rAAAAOhYAQAAQMcKAACAjhUAAAB0rAAAAOhYAQAAQMcKAAAAOlYAAAB0rAAAAKBjBQAAQMcKAAAAOlYAAADQsQIAAKBjBQAAgP8PO1agfvaFZxqxYXn57pft5PNXgASoAAkAK1g0SgxMHOxn/u3swGBEPFydv7UQ1YGOlfpro7G71Y8W4jAx9PJYbGo0Tr8y/8lC6vkThuH7D9shAVUKgAKQAChfmvtfQN5RlB+4n8uX31PqEy8OdlvguU+3t6v/YyQ2Pf30sRc7tz5rR0WgY+XMaOxh4OdTcXiov3Q+tjj9xsynFZr/kfGrWWwYydoRElCVACgACYDypXnwC8g7ivIDy1++xz3lwkR0NS7MNWOLsV8Mxxa1Cy/8uRnpoWMFH3jXLp75oF2V+TcN/XY4ypOA9DegACQAEpfm/heQdxTlB5a/fI97SmOyXBddGPiPT2ciKXSs4OWlcOI31yoy/24vSxJQhQAoAAmA8qV58AvIO4ryA8tfvtc9ZTKLnV3Y8Rq1l+43owrQsbK4lsUeHsSh4Zej0fXwzt21qJ+6NBxdJ65OVWL+QvHoUHkSkP4GFIAEQOLS3P8C8o6i/MDyl+9xTzk7Hjurn42uznf3mhHDp89n0VX79/faUQHoWFn+/anYyej52NC5H4eFS+OR63z2ReS+v/XoOZoX7zarMH+umLI8CUh/AwpAAiB1ae5/AXlHUX5g+cv3uKdkv+42wfUsdrb0l/uRW/zmxqM+eOhnM1EF6FhZ+TJ2cjZyrYU4JGQTket82IxNK78vnrqpXb3W7/MX6hMXs+habkR5EpD+BhSABEC60tz/AvKOovzA8pfvdU85321DZi7GjpauL8Q/3PnureLKle5YdazQOBe56XYcEoqdOj5txj+s/+md7n88Ptjq7/kL2dvD0bV6Y/6tLMqTgPQ3oAAkAJKV5v4XkHcU5QeWv3yPe0px7NLC9MXYZn155MZsPG755pV4NF9l6Vih+PL7ymwcLh+xLszEY9Y+7+7I9cmp/p6/cH44cg+nv4hGlCcB6W9AAUgApCvN/S8g7yjKDyx/+R73lPqvsohY/2Ps5K/xU7cmuk1L7VgrqkrHCtlY5L5qxyHhdHf1daZ23JGfv9Hu6/kLI7Gh/E+CS0D6G1AAEgDpS3P/C8g7ivIDy1++xz3lzGhsmG1lUcra3HhUnI4Vigc+1m/GYeFc5BabETv8zXLwRLPf5y905q+3ozwJSH8DCkACIH1p7n8BeUdRfmD5y5ffUzaPXVq5EWUtRq52shkVpWOFbCJyD1pxuHyqPZtmR04/fzHX/CcLUZ4EpL8BBSABkLw097+AvKMoP7D85YvE9fRRSec/29ETv2mhY8VHrJ2pOCwUz9is34ufmG8XRxn09/yF6elIQAKS3IACkAAoX5qHsIC8oyg3sPzle9tTGpObn9tCyY4V6mfjkDcORiK3uhY/0fl+NDacSj5/v5IAFSABYAWLRvmBBx/sPY9d2vtmO0tRUTpWODMaudk4bF5t2/ET68vdZAw81U4+f3+SABUgAWAFi0b5gb1fvuwbzxutKKt4Ntn31yrcsUL9UuQO8adtqDci14xtFiM3kLWTz9+XJEAFSABYwaJRfuCTCHb2657fd55/qtofruhYYehk5KbbcVioPRO5B7u9ANSOtZLP35ckQAVIAFjBolF+4JMI9tWej11qTFb8wxUdK0xmEcV36gEA4MlpnIsNf29GaUNvZj5c0bFi49gw24pDw2AtYudD2hfXsihOi089f1+SABUgAWAFi0b5gQcf7M1jl26WHzBxMYvc7ZmoNh0rPmK9GQAA8ARd6OnYpaefffG5LLpuT0UloWMlzelrjGTJ568uCVABEgBWsGiMZEmCnU1ElPhGavb2cGyx+udmoGOtKorT1zpTcSTQ6iSfv7okQAVIAFjBotHqPLHLlz526fRwPKbz3Y37UVnoWMkmItdaiENHZyn5/NUlASpAAsAKFo3O0uEG++x4RJljl0bicbXRK3dno6rQsXK6KAKnrwEA8CTVL0WUOjxlMbaonT79y1uftaOydKzYOfzAVSK1Y63k81eTBKgACQArWDSKgYcY7PLHLs3/MBxb1S688NFCVBA6Vs6MRu6rdgAAwBPTmIwNCzPxT629G4WR4y88Oix44I0Pm1FVOlZ8xOqnbQAAeKIms+j1tM/FxbkY+8Vw5Gr/891WVA06VoZORm62FUcEg7Xk81eXBKgACQArWDSKgQd++dLHLm0z9/VL5yNXf+O9dlSRjhV/64rO3ThcLK5lsZfO/eTz9ycJUAESAFawaJQfeJDBLp7sW7kRPVv/+IcrkRv62UxUCzpWGucit9iMFKidbCafv5okQAVIAFjBolEMPLRgF8cuTbfjXzBzdjRyl2bbUSnoWDlXfMQ6FYeMVid2MVLkZCn5/P1JAlSABIAVLBrlBx5gsLOJ2PDg25F4TD26jj+MiPU9rrU+PRq5wRPNqBJ0rBRbR7QWIg2OxzYjkVtdq8D8CUmACpAAsIJFo/zAgwj2YK17pbdiu9orkbs9Fbv69rvRKn60jo6V80UBTLfjkNH5vrvvntr1BaCdfP7+IwEqQALAChaN8gMPPdjP32jHbtaXRzd75wrSseIj1vV7cdjY3HcHnmrHVvVG5JrJ5+8/EqACJACsYNEoP/CIBXsxKggdK6eL/PtpmxQWIzeQtWOr2jORe5B8/v4jASpAAsAKFo3yA5MHG3Ss1C9Fbv1mpOLVtv5vMzv+GWH9XvL5+5UEqAAJACtYNMoPPLhgr9wfjb1Nt2N3I1G9FhkdK2dGi5XfisPHfLu7+rb9rNi5yK2uJZ+/X0mACpAAsIJFo/zAgwv2+oexXfZOfvnOh83YW/EUsl+rrhodK+ci15mKBFibG48Nxwdb8bhsLHJftZPP338kQAVIAFjBolF+4NEK9tDJyHWWojrQsdI4F7nFZqTAl+OxoT45FY8rjm9ev5l8/r4iASpAAsAKFo2h10Yilq4vlBx4xII9mUXOo4GVomNlc+XPRhI8esrmZit+1Jjc3I6Tz99PJEAFSABYwaKRvZ3/s2Ovv9sqNzBZsLN37n+yED9xdjyq+r4VHauPWFdmIwnWPr8SG+pvvNeOR4bezGJDZyr5/P1EAlSABIAVLBrFUUnFGUplBqYL9mDt9JvfTi3F4xr/HtV734qOlXNZ5JJ92YNbE931N/S7jxaiMH61SMrfmxWYP1c/FpuOR9fwQHStL0nA0b8BBSABkK40e19A3lGM9D6w/L866D3lzP9a+sv9eKT+0vkoTLejMtCxkk1ELt2XPVj7y6uRG3hzdeabtRg+dTGLrpUblZi/OB9wi/rrsWnhmgQc/RtQABIASUpz/wvIO4ryA8tf/oD3lGOvx9KdhaWI+qmfj8Sm2zNRHehYOV/kfrYVqfD1nfHoGrh8OX60+od2NeYvnk/a2cBTbQk4+jegACQAUpXm/heQdxTlB5b7Vwe2p7Q6UTh2Obb6diqqAx0r9bOR69yNdPhr+3xss/p+qyrzj8SuBrK2BBz9G1AAEgDpSrPXBeQdxWJ0de6XGlj+8ge8pxRfnN3R7amoEHSsnBmN3GIzEuLj5ctZbPXt9XZl5l+MXa2uScDRvwEFIAGQsjR7XEDeUWye+dtZKjWw/OUPfk+ZXvrF8A4X+WghqgQdK4s/DEfE/J8jKf527+WxeMzS9YUKzT+fV+HOvmpLwNG/AQUgAZC0NHtbQN5RrF17tft7rK1SA8tffn97SufO+Yj4buvV5uaGfpyusHpjNqoFHSvL78ZRwMr1+tlzzza6OVm9/WW7UvOvbatCCahUABSABED50tz/AvKOYvn98gPL/6t97inrH3+883Tx9HMXBgeziHj48MHt+XYkgo4VWJ+bSz5/BUiACpAAsIJFo/zA9MF+eO9ewH46VgAAANCxAgAAoGMFAAAAHSsAAADoWAEAANCxAgAAgI4VAAAAHSsAAADoWAEAAEDHCgAAgI4VAAAAdKwAAADoWAEAAEDHCgAAgI4VAAAAdKwAAACgYwUAAEDHCgAAADpWaoFUmF8AJEACJGAnAoDw0Ql0rAAAAKBjBQAAQMcKAAAAOlb2oxNHALWkqTC/BEiABEiABCB8oGMFAAAAHSsAAAA6VgAAANCxAgAAgI4VAAAAHSsAAADoWAEAANCxAgAAgI4VAAAAdKwAAADoWAEAAEDHCgAAgI4VAAAAdKwAAADoWAEAAEDHCgAAADpWAAAAdKwAAACgYwUAAEDHCgAAADpWAAAA6KljBQAAAB0rAAAA6Fh5bvzZwSwiHi59NdOOVKiffeGZRmxYXr77ZTv5/NUiASrACgDvZexn5QaW+lfPjI0NDOYZWf361lLsaujnxT+L5dVdMmeDRsfK0MtjsenpkycvL11fiMQkotE4/cr8Jwup508Yhu8/bIcEJA+AAqhUAOD/sXMXzq3jQBjAv1gpM2N6zMzM9D8fMzOU+5ihTEkd52Z21DrRFPbIvtn5fg80IHlVrUZvleeWtQwrCsVARa8wI023316ZPofDRHff4dJn9d6b9lNHtI94Y6XonrvQoOPVc7/HyBpFD9yGBoOvnPrDWnyF0sMOALpcDDAB9heAGyDnBSBiLcOKQj9Q32vswTY0aH70/i/XgdAd9zpFP0VEy4g3VnKvtyE0NfxhDMpW9NwAAoU7hj6PrccPtL7UhhATYH8C3AD5LgARaxlWFPqBil7RE2MIofmVL5bDgI+UFP0UEU0j3ljJvXNY4ltf/Bg54IU11C2JsBpf8eEumAD7C8ANkPsCELGWYUWhH6jp9cgYDlF4IbyKPlJS9FNENI14Y6Xo2SJEZfrmFtA14b+ZoPvhX5ElemQAYu/8hSqi/jvbECTCeHwhr0OGmIC8J8ANYHcBiFjLsKLQD9T3cmPwfVYu72FssAUChScb/9/7ztL+o85uIM2c9NNHJN5YybrbB6Sp/XJO2o3Zef8R/9RcGdkhf2jXZhekXTu9/27gLReWzcf3JKQCE5DDBLgBLC8AEWsZVhT6gfrH7y2elnvnpfR4a506hZS7u+5RkrnZO+9P++kjEm+sZFr7PdIkn67DS37buR/yBsbHyAilh3b6GszuB/IODAoPf2w+vkh/WOB2OwJMQL4T4AYwuwBErGVYUegH6nvV1gZQ/zN/d997rARx57kYB24rSvPHKRxY3HhG2qlT+ojEGysZd4+TZnodqVMjcgx0tpSRDUoP7WUcSL5+p+gTYT9+3U/NqEzfeM0hwATkOwFuAKsLQMRahhWFfqC+V7LdP7uAer+0D0jb0p0OjEakWT+FOlfPl/5GRMOIN1ZyY4ecFcmiHCrRPb8iI+TuPiQR1fn7fSKMxxe3tUmzt7iAdgSYgLwnwA1gdgGIWMuwotAP1D/+p5/QKPlJPotDoXcZ+1p7AaAWzOlSSfp1lJURrSPeWGmweNhZcf2mHPOj0zHyxEScvrvoE2E7vuiSGZyeVcRiAnKYADeA2QUgYi3DikI/8O8/fnd1QNpOHOhy8qwtNLgRF//GvOwi3lhJaiSU19EguSqHSrOLkQ0al783loFDPkGUN2hMx/dqN76LkQMmQDEBbgCzC0DEWoYVhX7g33+8Twj6EahU//kXZB/xxspTvhKj0aV7HIBo4hQyQW5MmnMIbACQN2hsx/exbvy+jjwwAYoJcAPYXAAi1jKsKPQD9b3UFB8qKCKaRryxUtQuzTIC5Zo0ncgE+TdekosI+DdjOo3HF4uLyAcToJgAN4DRBSBiLcOKQj9Q3+tQGzhU+h2rXksBkHeFlRGNI95YqdAjzSYC1csl/+IGZfn5cBWB2tqAJCL3+CYxAdwB/PqJWMvwPNMP/PuPT4diObx0FiaXUW/cST7LPKDpcEUQ1X8O1lyMkSHeWGMEku0Bn4jc45vFBHAH8OsnYi3D80wxUN9LyV86p+bKSLm7pTn3/zmgiTdWIgrfaDrkn1sXG4ifASYg3wlwAxD9yd7dfzVx7v0e/yQTCQkErUHdoGkLssVipfVs1+q2Tz7cD137/nvPs2tbu5Z171Xa49m0erByBwUFrZiNCUQSJpmTiY6SSWJDLx3ozPv1q7nyTfiO870+eZgAe/98ZrDQ6HSZkf/NcO8niM5f2bZqOqGGzUVO0CCxtsDg7p4F4P9Ek78RsYFKqOsHhQZwBPD8AfYyDDSDhTu/e38kdtb0kvcTRP2XXkXW0zk1ON/bnKBdILGC7wAAAAD2Mnj7+g/IVSnqlfqNi5Ya+v/1u4Jc8VNjct0ryAWQWPGa7wCUalZwr1shGfO/7OhrxIFCqOsHhQZwBPD8AfYyDDSDhQany0lLroe2tinfnpKr7/PHM7bU/0VKrruznKBfAokVJbn4+WUAAMBeBm+LNSKXc18t5jWlpkN/Wfh5ckz+wAqQWOF9B2D6qnYRMlYU6weABnAE8PwB9jKcz8wXmp8uxxJylQpqNV+ZtuSKjY+rqfpdgRP0KyCxwvv55aHpWW3X/5kl7AUVJ9r1g0cDOAJ4/gB7Gc5n/oWmt0pPyuXMym/p8ekRbfN4xuYEvR1IrKj9PCXX+/GfbHn6T48IwXM2Ilg/ADSAI4DnD7CX4XxmvtDg7uNnLLk6XVFpc2bkw5Q8d2/ZnKBbgcSKhRMJud7NLdwrSdr3Tu4PlgAAANjL4I0Yz8q1eUu/5v2j83e0HUBiRe2HT+Tyvj6A3RMbqESufgBoAEcAzx9gL8P5zHyhwd17nwn+3lYb7wLBnn0fHL9e5AS9HUiseHTjjDoz+wwGAAAAexlYF7p/Jjg++Uc1Of/cb6mp73z+prYBSKxYenLRkk91ccySGQAAAPYymE7IVZxVG+tSSi5nYc6OH/UuG3x8aMbWKwCJFeX/ceK4pW02flhLj6mhWtPuQjIW5frBowEcATx/gL0M5zPfQsNbTeTk2rymNv2XEnKt/lSU6ksPvC4e+vyazQl6G5BYUZ+b2z/xTtKS5Dxbv/tQAUOpZul1nLUQ1g8eDeAI4PkD7GUYaCYLf8vdT0zJVf/Glp/1PLA6c3e8Lt79IiXX0OdXOUGDxIpWT39Qi4ylhqqt4CB2oBCB+oGiARwBPH+AvQznM4OF5nefm5LLuV6RX/zPzwPrtwV5Nv96akyuofH8ayuCxApk5CooEKg46sgbt85GCOsHjwZwBPD8AfYyDDSThTu/+yNn1HSzoDbj2fZ/qv/4bEquiUWbE/SvIrGCs7xzX0HCYLdxW61FoH5waABHAM8fYC/D+cxgYe93f+Ssmn7Kq411Qq67ebWYz+TU0P9unhP0a5BYAWuEl62C5DzNquFg19OxHcL6waMBHAE8f4C9DAPNYOGO7z591vJSabuxhBrqt+Vze9RSw7t5TtCvQWIFhhNqWK8oEKiXs2roS9hqFU/LVQhh/eDRAI4Anj/AXoaBZrBwx3efvvgisM6qg4w6d6i8nPOKcIIGiRVdjXISCFZJrj7LVqvYfrnWQ1g/eDSAI4DnD7CXYaCZLdzR3fdf8AXWHiKnrwgn6M5IrID3QZr7QqDzJX403/EF4vqDENYPHg3gCOD5A+xlGGhmC3dy99alhC+w9hI5OUGDxIoeeF8sKBUUEKzaCTW8m+/4AnG1FsL6waMBHAE8f4C9DAPNbGHvd+/9do0ez+p1BtVFtcYJGiRWdJWelGtRQUFtJaeGwWSlwwvEemiHsH7waABHAM8fYC/DQDNb2Pvdx89l5Sr+TTuV4QT9K0isgHXBUsPmogKD5Zwa4pOz2s67il6Y6wePBnAE8PwB9jKcz/rPZaSNmWKPC3u+lT+wXlNn3lWA/3DLlrqHUU7QfkgI8D7E4XxvKzDwPvNyu9L+AvF6JbT1g0cDOAJ4/gB7Gc5n3pdMB768XOlt4U5Plx9l5dq8ZquL+qOs5P3uansY1Ton6I6QEND/RUquewUFB7Wfp9QQP3/F1gveJfac2QjUDxAN4Ajg+QPsZTifDSfkih/N975wB3d/JifXpnerTkpqOrXW2qYjk9r+/jgnaJBYkTuzcWdRL8VPjalp85aChIUTCTX0/+v1oteaacubt+Gv74oP6IVBNaX61FTfoAFhfwAcAMH+AQD2MuwoMjtfuINbHcnJ5dw+rDb1VVtNj59k1RD7bGHOlic++Uc1zds9VYwAkFgxrIGPP97652K5JqUO5lJ6rv6NrSCh9sMncvVdqOZ/qTV6cdzy5m0E6rusrxJqEf9SLxSv0oCQPwAOgID+AAB7GXYUBgt7v9WommIfqQPv127qNy5aaoiNjz3JlzYk7XvnvcOWmor5nipGBkis2Hf4sFpUv64oWHi0lFNT38mTeqX6jR2N+hpOqJu+hE0DQv4AOAAC+QMA7GXYURgs7P1W8bS6e3WtpfLtKTXFhofVavNabxUji8QKrH5nK2i4YY/J5Z+3UamfUVd9lk0Dwv4AOACC/AMA7GXYUZTU5Kz1vvDNny7nK2fU0eYV27wiSKwIi+Wc/Lbm72gX4MfySUutHs/YkalfUlfVGg0I/QPgAAjwDwCwl2FH4V2B19nofWHvt6qXs+quasuz9PiLlNo4+Zu9VYwGkFjxaObDlLar3lrU7sB/Pjg9om02ZooRqr/6LKUuHto0IPQPgAMgyD8AwF6GHUXt6ifN32Ot9L5wB7e6PWqpq+3N2bw84muenIU5u6eKkQESK1ZW4sO5d6ykJOfZ+vKyrV2DzZn4kdF30mooV+8u25GqX7ssPxoQoQfAARDoHwBgL8OOovx17wt3fKvyf9tB83Q4N9SXVMPW1ubS6kZvFSMFJFbUf/lF2CPqKysRrh88GsARwPMH2MtwPvMvDPh02UPzjCuCxAoAAAAAAIkVAAAAAEBiBQAAAACAxAoAAAAAAIkVAAAAAEBiBQAAAACAxAoAAAAAILECAAAAAEBiBQAAAACAxAoAAAAAILECAAAAAEBiBQAAAACQWAEAAAAAILECAAAAAEisAAAAAACQWAEAAAAAILECAAAAAEisAAAAAACQWBETaAX1+QPQABpAAzrhDwD+fHAEEisAAAAAACRWAAAAAACJFQAAAAAAEitMONoDENvVVlCfBtAAGkADaAD48wEkVgAAAAAASKwAAAAAABIrAAAAAAAkVgAAAAAASKwAAAAAABIrAAAAAAAkVgAAAAAAiRUAAAAAABIrAAAAAACvTawAAAAAAJBYAQAAAAAgsQIAAAAASKwAAAAAAJBYAQAAAAAkVgAAAAAASKwAAAAAAJBYAQAAAAAkVgAAAAAASKwAAAAAABIrAAAAAAAkVgAAAAAAiRUAAAAAABIrgPiRY/vTaiiX7y/bEatvgAZwBABA//sjfUk1lKsP87ZaMdAMFgYwLvYdO5ZMP29eYbHIgNoOJFbkppLS1o/31ar/oyOSnv69IgSn//SIXkinhz9e/akYpfq+h/H0W1s0IDp/APMDIAT1ARiInzhuvTqDHThZvbUoP3YUhgt7v1X6oqUOnG8LPTRv3FmYs3utCBIrImA4KWnfxH21iP8pq4ahgYoQlPipMV9vzudvRqi+JzdtqSFj2RINiMofwPwACEF9AAaOn7TUou/jqetF+bGjMFnY+63iZyx1Epu+2kvzYuPx2R4qItqJFfgoK1elKAQlfi4rn9jxQ9fsiNT39H+Rkg8NiMADMD0AQlAfgIH4Rzm16Tvvf0OPHYXxwt5vZXbePWhQEdFIrMBETq76N7YQ7HjxGfr8agjqG7wqLBoQhT+A+QEQgvoADLQGVk/sM39kZUdhvvBNj4v0RcvgcSGyiRU4MiWXc70iBPy2traW7tcUPziRUtPQ9Gwk6ru8z2P60IAIPADTAyAE9QEYmMh5J7B7JUmZo8ctuWJnr9jyY0dhuNBoXCx2Cqze3a3bUjxz8P2MwRNCRBIrkD6rppsFIeBp68zdkevpgvchmffuF6JQ3+WV9KMBkXgAfCAYwG9lnWg5gak0NzcxJVf/u3n5saMwW7iDu9/8ST71h2plXbDkenmhrPrTpwsaOT5r8IQQgcQKeCePu3kh0Gnbcg29zb+ey0reRQrCXl/bLxRYTsuHBoTgAZgcABGoD8DAWEKum3m9NF/6RC5/YmVHYbpwJ3dfXdavmU7IVWz9TurKisETQgQSKxD/c0Ku4qwQ+LQt6KX6379KqGEwWQl7fZd1KaWm6q1V/1daaEAEHoDJARCC+gAMxI/IVcxrm0dLuc5nMHYUZgvf7Lg4kpOreNX8CSFKiRUYz8q1eU0IjHWiw7St/TylhvjkbNjru8ZScm3N31FafjQgzA/A/AAIQX0ABvoPqMGZVYvlnBpiAxX5saMwWPhmx0V8wttzmj8hREVCgHfVpSqXCQ7ScKLTtF04kVDDH27ZIa/vyqjB+8lwPxoQ5gdgfgCEoD4AAxlLDc6GWqzaCbVjR2G48M2Oi0NZNTjf2+ZPCJGREJA+K1f964oQnFG5SgWpwyuIyaFCuOt7nNUZWx3RgBA8AMMDIAL1ARip1oQez+cGC83HRXvNewXzJwQSK6LDu+oSv2sTLGtErkX5lOSKHSiEur5Xa/WnooJHA8wfQPAHQAjrAzDVZ9lCT+dzg4Xm46K9Zv22+RMCiRUREv+z/9vtCMJwQg31B2rlfaRpMOz1XfPzChINMHgAwR8AEagPwJT/G6vJmNT+WWF2FGYL3+y4GGsuWq+YPyGQWBEd3k80380LQcrIVa3Jx3maVcPBMNc3QAM4AgDAyy6xYwVtN2p1TkMMNJOF5uOiveYiA2oHQGLFRE6u4qywG/PFlk+9nFVDX8IOcX0DNIAjAAC87PLu7YpesU50S0MMNIOFb3JceB8KfsCA6hlIrPAuE8zv2gQtnparoDYlufosO8z1DdAAjgAAqM9n1RA/f8XWS9MJNWwuyo+BZrDwzY6LZMx7+5QB1SOQWGH9Sa76N7YQqNh+uda7nY5jA5VQ1zdAAzgCAODxk6wa+i+9iqync1Lnn01hoBksfLPjImOpoWozoHoDEiu8qy79ni4TDAAAUL9x0VJD/79+V5ArfmpMrnsF7V3IyFVQbwASK7yrLjlcJjhw3vUM19SmVLPkXbs9vPVN0ACOAAAo356Sq+/zxzO21P9FSq67s2rHQDNYuMO7H/oqqaays3pvrUtiXVfDvsPjybQk59n68iIDqjOQWOFddelmXr8jAAAA85pS06G/LPw8Oaa9EViR1HNpDbzX9qvX8bSei584bum5WDp9+OOWG3oAEiu8qy7dzQuBy1jRrm+GBnAEAMB8ZdqSKzY+rqbqdwUG2pteaDQuhi+sfmfLz7FPj/lveH7uTltFgMSK1Fm5irPaS1BxolLfAA3gCACApcenR7SN+/FgMww030LzWw3/5duCPC8uqhT7WG1iH6RmGVAgscJvn1z8qtVucjYiXd8ADeAIAIDNmZEPU/LcvWUz0AwWGt7K+7VUv9hnPX777H3N+ioCJFYUn+bU0P/5Vf2uAQAAvH90/o6we/7xSCrXSmqIDwyNjui52Km1gjrYmC+4t80MTaXU9N59/+0AEitmRxJqGJqeFXZHbKAS4foGaABHAAB4Fwj27Pvg+PUiA81godmt6svy1EulB/LeAI+dvWLLZ+vlqwuNW+amLTXEpq/6KgIkVtSuXrR+h69pAQAAxCf/qCbnn/stNfWdz9/UHoGVR+eycvW/m1cLZ+6Otll68nxDOpisCCCxooX3W2axTy9X9LsBAABgXUrJ5SzM2fGj3mWDjw/N2MLeUP/bi8jqT6w38x03pPGjeQEkVvjMZ3JqiJ+7KuwVyVgE6huhARwBANB/KSFX84c860sPvN/3PPT5NVtmGGjeQtNb1W/0+ObpwolEp2TLgAKJFeKrrLunVLP0Os5aSOubowEcAQBguYF128dL63N3v0jJNdR2RUkGmsFCs3FRXs719Oap8zSrhr6EzYACiRV+3ldZ31/PC8GLHShErL45GsARAADxPz8PrN8W5Nn866kxuYbG8ww0g4Vv9O6Xc3IN6vXqj54nVsv2VwRIrPC+OaCpBxUhQBVHXWQsNTgb4axvjgZwBADAeFaumwW9Uv/x2ZRcE4u2WjDQDBaajYtSzerwXuogA2onQGKF91XW81dsIXCDapORq1oLZX1zNIAjAACsE3LdzXfc0/gvTctAM1hodvde+jyoX1FiQHUHEiu8r7L2T80KgfFeZTzY9XRsh7K+ORrAEQAAYwk11G/L5/aopQZfYmWgGSx8s+OiXvbujAHVM5BYwVdZd0m9/OoaAy3iabkK4axvjgZwBABARq71inzKy7n2UxsDzWCh+bhovVFJ3p0xoEBi3QF4X2U9tVYQguKdsy1brWL75VoPZX1zNIAjAAC85NLbqY2BZrDQdFwkY/LpdGe+z/syoEBihZ/3tY/YWb7KGvh8ab/e+3BCDfUHYalvjgZwBACAQXJhoBksNB0XGau1VcuTlqTYQKVzYrUZUOgkIeDlV1kD/AUzrNqdfyx7VK5qLcz1zdEAjgAAGFRH/lMYA81goem4GFVryKw4aogdK6iFNSJXgQGFjhICvK+yBvkLZqit5NQwmKx0Omc/tMNVPwA0gCMAADJqx0AzWGg4LqyR1pDpXVXpD7fsDu+eOvcZUOgoIYCvsu6K5Zwa4pOz2s67/GE465ujARwBAOCPPb1lGgZa/7mMtDFT7HWh+biYTvgaUn+Uldp+gCg+IVelyIDqjsQKeF9l/fRyRQiG95mX2xW9kp6Ua70SyvrmaABHAAD4Y48/02hdHTDQrEvuzQa+vFzpbaH5uMjl1BoyvS+yamLR1ivjWS/YMqC6IrEC3ldZ4+euCsGo/Tylhvj5K7Y8/RcsNTizYa1vjgZwBABASa62j4YdmZRrc1EdMNCGE3LFj+Z7X9jzrayv6teLajUxpabFijzeDxC1XDslN+UFWwZUdyRW4NVXWadnhWAsnEioof9fX57ic9OWXPcKEajvig/ohUE1pfrUVN+gARF4AAYHQAjqGwDw+ElWDbHPFuZseeKTf1TTvK0O2FFkdr6w91sNJ3Rha37B1kv9X6TUtHlL29wefb7hPDdjqyl+akxNtyq9VwSJFZHkfZX1vfsFIRC1Hz6Rq+9CNf9LTamDxy3v1B6B+i7rq4RaxL/UC8WrNCAMD8DgAAhvfXMA6jcuWmqIjY89yZc2JO17573DlpqKefmxozBY2Pvd7/vgg61/rjytSfHBUa8dqn9jS21vsurQf6w+KEhDoyPy+tZ7RZBYEVF8lTVwj5Zyauo7eVKvVL+xo1Ffwwl105ewaUAYHoDBARD++uYAXmdXbHhYrTavyY8dheHC3u9+3+HDalW9XlGLf6Szahoe9vet94ogsSKi+Cpr4G7YY2pT/boSlfoZddVn2TQgDA/A4AAIcX1zAOYrZ9TR5hVbHbGjKKnJWet9Ye+3KtWsHvtR//ullNo8nrF7rwgSKyLL+ypr5mBBCMaP5ZNW+yk7MvVL6qpaowFheAAGB0AE6psAsPT4i5TaOPmb6owdhXcFXmej94W936o8O22pjTN3R21qf/3TSPvteq8IEisiYflwUtqal0/5/0wnJT0pCkH5zwenR7TNxkwxQvVXn6XUxUObBoThARgcABGobwTA5uWRD1Nq4XgXYuqEHUXt6ifN32Ot9LZwh7daWho5mVGLrfk76qQ+47bO37feK4LEiih49L/U0cqKELDNmfiR0XfSaihX7y7bkapfuyw/GhCiB2BwAESgvjkAKys6nBvqS6pha2tzaXVDr8OOovx17wt3fiu3H/sPHksmLUnOs/XlZfs1rdt3fKTZua3q6kJx5xVBYgUQoPrKSgTrm6MBHAEA8MsvMsdA8xYa3+rp0wX1ZmtujgEFEisAAAAAgMQKAAAAAACJFQAAAABAYgUAAAAAgMQKAAAAAACJFQAAAABAYgUAAAAAgMQKAAAAACCxAgAAAABAYgUAAAAAkFgBAAAAACCxAgAAAABAYgUAAAAAkFgBAAAAACCxAgAAAABIrAAAAAAAkFgBAAAAACCxAgAAAABIrHjbYgKtoD5/ABpAA2gAfwDw50MnjkyAxAoAAAAAAIkVAAAAAEBiBQAAAACAxApH2ANiu9oK6tMAGkADaAAN+B1ihAMgsQIAAAAASKwAAAAAAJBYAQAAAAAkVgAAAAAASKwAAAAAAJBYAQAAAAAkVgAAAAAASKwAAAAAABIrAAAAAAAkVgAAAAAAiRUAAAAAABIrAAAAAAAkVgAAAAAAiRUAAAAAABIrAAAAAIDECgAAAAAAiRUAAAAAABIrAAAAAIDECgAAAAAAiRUAAAAAQGIFAAAAAIDECgAAAAAgsQIAAAAAQGIFED9ybH9aDeXy/WU7SvXN0QAAwL5jx5LPT6PVwmJRnTHQjBfuHxnpS0raqj5a2JCZ/UePvLiv1YWiABIr2uSmktLGjYI6sb7MSM7S/xUC0X96RC+k08Mfr/5UjFJ938N4+q0doQbQAHMAED9x3Hp1Gj0w7izM2fJjR2Gy0H+bffvGx6u3Fn/7UNn/XzKv7mvgvU4tS1+01IHzbUEgsSIS4u8mJQ0cK6iT4Yyk2LH/VxHevvipMbUYPp+/GaH6nty0pYaMZUenATTAHAAcP2mpRWw8Pis/dhSGC0c+TKlF38dT14s7Hiqd7ys2fuy7glrEz1jqJDZ9VSCxAghS/FxWPrHjh67ZEanv6f8iFYEG0AAACOT0dVB+7CjMFsb/NKI2fee/LfTcFX8+9un77GZeAIkV2PPjxTP0+dUI1PcNr6g1gAaYAwD3o6MwGyi9LPxoRB3EPvu2sPOhMj6mDmKn1goCSKzA3vNRVk1bS/drih+cSKlpaHo2AvU9uWkrmg2gAeYAEFi9s+i6LcUzB9/PyI8dhelCywusW/9c2dLIcFLPxc5esXc6VOJH1OQ8eVCQUsNjlv++Xm9RILECCNBETi5n7o5cTxe8z9G8d78Qhfout2T0GkADzAGAdcGS6+VFgOpPny5o5Pis2rGjMF64Nb9gq2H51eTofzf/24bKxg9rcpV+ueUmXP99eTZ/kk/9oUBiBRAc64Skluvebf71XFbyLiwQ9vrafoXHcjpKDaAB5gBgOiFXsfW7misr8mNHYbbQeZrV9msDb14+k1PTxKL9G4bKxkxRLy09uWjJ1SGxVpe1m0BiBTCWkOtmQS/V//5VQg2DyUrY67usSyk1VW+tXrSi0wAaYA4AjuTkKl4VehgoBgvr5YNzd7TdP9JZuZJDhR0OlXo54/tdnPLtKXn1ABIr9iLeYi3mtU3t5yk1xCdnw17fNZaSa2v+jtIRagANMAcA8Qm5Nq8JPQ0Ug4U3bqhV/cbzRBo7UNjpULkhv4UTCTXEBioCSKzAnjKcUIMz2/G8/YdbdsjruzJqcH84PFoNoAHmAOBQVg3O97aw84FiunBzLSvXoPlQUW0lJ4DECuxFo3KVClKHVzaTQ4Vw1/c4qzN2NBtAA8wBYIreKwg7HyjGC+uPsnIdfBNDpSTv/VqAxArsJdaIXItdz9uhru/VWv2pGNEG0ABzAJii9dtCzwPFYGEAQ8VZE0BiBfaU4YQa6g/ks2on1DAY9vqu+fnoNYAGmAMA75JB6xVh5wPFcKGrFPqhAhIrgIxc1Zp83GvINxwMd31zNAAAmKKL2jkGmvlCb6kKb+7xOxsCSKzAXpwvtnzq5awa+hJ2GOubowEAAO9DwQ9kgIHWw8JgerkH3y8HiRVAPN3txcmSXH2WHcr65mgAACAZ894d7B0DzXihP+xqXebGEnvx/XKQWAHE9su13m1MxAYqoaxvjgYAADKW9+5g7xhoxgv9YddZk7H0pFybiwoFkFgBAACAjFwF7Q70H5CrUpSp/guWXPO2ABIrsKckY91enCzVLHnXlA9rfXM0AABIrOtq2Hd4PJmW5DxbX15UDxho5pNo0pLroS0z8RPHLbnu5tVu6KukmsrO6r01/R6AxAoAAADE0/7EI8XS6cMfB/Ir07BG5HLuy8S+d947bKnp7qw6Seq5tAbeU7C9BYkVQMaKcH1zNAAA4Ninx9Rq+PzcHQba217oXSypVNBvYV1KqUX1u17uaPjC6ne2dh9IrAAqTmjrm6MBAADvmkGxj9Um9kFqVgYYaD0sTE/K5czqNxlOaRvnya21Xhf+5duCQGIFEChnIzr1A0ADAADva5aB9lYXxs9Yct0r6DfJaLtYdur+onzq5aw6iH12M6/fDZBYAQAAgI35QklSZmgqpab37heEt2g8K9fmLf02JbWIDQ9/tDBnq8U/HknlWkkN8YGh0RHvtqfWCgKJFUCAYgOViNY3RwMAAFvzd7wYVHqQm7bUEJu+ykB7iwu9zwR/b+u3WX2WUqvY+LHrRW1XX5an3mitRj5MyRU7e8UWSKwAAADA3ue0XmZp6clFSw2DyYrwtlgXTD4T7Kpd1nOZwWPexYL7zr/+K6orj85l5ep/Ny+QWAEAAIC9z/+lxvLtKTXEj+aFt2U6IVdxVsZKpZVXb55+ermi16j/7UVkJbHuOhIrgGQsgvXN0QAAwMKJBKHGYKD0sHAiJ9fmNb0ZK49OjckVP3/F1mvUbwT6DjpIrABKNUuv46yFqX4AaAAAwHmaVUNfwlZnDDTDhRNTctW/sfWG1H98NiXXr33et7ycC/wddJBYAcQOFCJRPwA0AABQf/Q8sVo2A+2tLMxNyeVcr+jNyR/JyjWxaOt1lnNyDQokVgBBqDjqImOpwdkIc31zNAAAeC91UAYYaDtfeOSMmm4W9AbV57NyJYcKO3gzGSRWoFoTAjCoNhmvAWGqHwAaAAAoqTsGmunCI2fV9FNeb9TjJ1nv3d4eovlBgcSKCKiXs6/5H58Rgnt5+GDXMWGHu745GgAA7GR6x0AzXpg+a8l1N/922unPzgCJFf7rErBfDnrYdm5CPC1XIaT1zdEAAEDJt5PpEQPNYGH64ovAOru7b40XBBIrInSet2y52C/vqSbE9su1Hur65mgAAMB/Du3+OVgGmvHC/gtmgdVcMiaQWKOGsNT58uD9B9gv72oThhNqqD8IaX1zNAAAsDxpSYoNVDonVlt+DDTDhdalxNsLrBn1svnMWGxRSayIkFU7IXW5ivioxX45yCa8m/c3QK5qLaT1zdEAAEDFUUPsWEEtrBG5CvJjoBkujP85IdfjWb158bRczppea1RsUUmsiJDaSk7q/FPN1gm51itCIE0YTFY6DduHdjjrm6MBAADvokF/uGV3eHPQuS8/BprZwvi5rFzFv+nN8z7f52zodayRSL2kCxIrlnPq8ibrdEKuRQWDJsQnZ7XdWEIN9dthrW+OBgAA6o+yHV57j0/IVSmqEwZa/7mMtDFT7H2hP7Be09swafXydsl0Ikov6YLECu+Hr/ovXbHVYiIn1+ai8LZ5n8W5XdEr6UnvpB3W+uZoAABgedJqf+19PNs10zDQvK+iDnx5ubLDhfooK9fmNVtmrK/WfirK50hOPbxdksspUi/pgsSK+nxWrv5/vV7UK/FTY3I539vC21b7eUoN8fOvXjbwLsTnzIa3vjkaAAAoL+fU0P/5Vb2Um3pdpmGgDSfkih/N73DhmZxcm+6tzCRjwxcez25ou/RZ+d4usb6qXy+q1cSUmhYrigiQWPFoKSdX3/nVl+eN+NGppJruFYS3b+FEwveyQW7a8hoQ/vqu+IBeGFRTqk9N9Q0aEOIGmAOA26OWGobOzditL7vrVkWdsKPI7Gyh/z1Q5/Zhtamv2jsdKof+ZeOHNd+7Ja55e1u0vrA1v2Drpf4vUmravKXIAIkVsyMJuWKH/sV5+nBdsbGBpMTZIEi1Hz6Rq+9CNf9LTamDxy2vARGo77K+SqhF/Eu9ULxKA0LfAHMAeJNVh/5j9UFBGhod0XPFvPzYURgtHFVT7CN1cHd250Nl4EttLBU3pPjB9zMv76i1b/s++GDrnytPa1J8cPSwpefq39iKDJBYUbtyyWt+7MABebwPfQSJd7rVd/KkXql+Y0ejvoYT6qYvYdOA8DbAHAD8I51V0/Cwttm8Jj92FEYL42l1512uucehUnG80HpSrR7Pym/f4cNqVb1eUYSAxIrN/3kuq04ez9gKBm7YY2pT/boSlfoZddVn2TQgvA0wBwD1v19KsYvZyUApqclZM5hERkPF++Jst7dqPaWapW14TwUJRRXq3+amLflVby0qMPixfNJqn7WRqV9SV9UaDYhAAwwAQO2vfxpRK2fujrpgR+FdGdjZ2NnCejmr7qr2jobK/MaHKbWptl5oqTw7bclFc0FixdKDE8etXc2r+M8Hp0e0zcZMMUL1V5+l1MVDmwZEoAEmAKA+M9ISf5yFOVtdsaOoXf2k+XuslZ0t9C5y1dniDofKykq/V6777nNpaeRkRi225u8oikBiRX1ubt/h8WTSkrS1tX531VbAsDkTPzL6TloN5erdZTtS9WuXaUB0G2AOAFZW9h0f6UtK2qquLhT1Wuwoyl//poXl/2Y6VHzl1HH36eus9h889vxGzrP15WVbkQUSK7YePNCuQn1lJYr1zdEAAMDW3JxMMdDchXtu9/n06cL/Z78OLACAYSCKXvYfOl2gQNCK9xYIOfADihUAAADFCgAAAIoVAACAEcUKAAAAihUAAADFCgAAAIoVAAAAxQoAAACKFQAAABQrAAAAihUAAAAUKwAAAIoVAAAAFCsAAACKFQAAABQrAAAAKFYAAAAUKwAAAChWKpjCfQ8wgAEMcOMBeB+dCRQrAAAAKFYAAAAUKwAAAChWOnygnk7hvgEMYAADGICV7wMUKwAAAIoVAAAAFCsAAACKFQAAABQrAAAAihUAAAAUKwAAAChWAAAAFCsAAAAoVgAAABQrAAAAKFYAAAAUKwAAAChWAAAAUKwAAAAoVgAAAFCsAAAAKFYAAABQrABw2Lvv5raRNI/jPxKwZHFEj0uURyuek2SVNDfBYXPO+SVvnJwjb+yz1jp5hs43Gp5NyhpSgogrsLFmsVrkFhsFrov9/fzNRhMPqh7gQQMPAAAAqFgBAAAAAFSsAAAAAABQsQIAAAAAqFgBAAAAAKBiBaZdcen0syVJ2tu7fTfyaf7sCAABAIBjp0/Pmiy236g3NRL53H3gs8vLM7OSDvYf3Hyc70kFoGJF8cUVJQ5uXY800vJLc0rsvBcJuTj+8rJSpdLi5Z3Pmv7Mb/2NR29Gnh0Ae/89DQAAOCquXwj6WezkanzTurbhiiLTQOs3x46tru5fqzttyzp652Ylae/eVfUVf1DRcPtvNQUqVky/1ZU05aye/ntHIyx9R8bij18R8rt50Lf4s+2r3szfd+ZiIEnlIPLsANj772cAAMDRhecDDSisFmuycEXhMNBeweibufzCW83sf2J1XT2l1XsNPXGqohFmztcEKlZMv7JSmvnBKxou+Fb/h2EkIzuMuotYuHDqjciX+VPHfzLn2QGw99/PAABADvlzQTauKLIMLH5rWZaZn73ZyPonShv6lwAqVszPdjTUSqhJ4vRinPjxKx7Mb92Q9egA2PvvdQAAwFXpF4EwRj53HHhpWbIVfvRmI+Of2Aj0LwFUrChu1DRMcUm5wqWKeg5u3T5UcWFtLs3tF2tezG+cuRh4dgDs/fc2ANkBoGA1SWw3korlhfNl2biiyDYwWJZx8H/3DrS8OCuj8O2/RZn+xNIZHal1GGiEXXkDVKzYK0nSN65FGuJUJf1ZPrBmMnV8/YYSj26mTzfp3O3G9M9vmCk9PQDp/nsdAABwFvw8UOJJE6Duo0c3tXyhJhtXFJkHHmzdjCTpbv/UdfzsdpY/YV4+OygG1hXqXxd0lMqKJMUP5Q1QsaIxEw5kG0tVkrpbF5ULBOtKxP2Hatp/Nc/TFC6+Mu3zG/0Oj3sl3w6Atf9eBSA7ALgYKtEcfE3y3j3ZuKLIMjB+VElvCxjtP185o561epThT5iXz7YvyNK+q6MsKdFpyhugYkV074wkDa1YS1VJ2v1a+YDJ1Lra0BPdd34XSub14qme3wh+Oaf0/vjOLwLfDoC1/x4FIDsASB8pbb4ijM7nWQd29xbMsukTn5YqSsyeaLj/CdN2qbl1QaNYF6baiuQPULFisxqMSGXmdfi4dkx5Yom1ua0+Hf7jBcm8XjzV8xsrc0ocbN1QybcDYO2/jwEAAHfFNSXabwhO+XyMgR9/rEHdj8191sLJhvOfKF4JJHXf1kjWhanadXkEVKxoP6yMSGXBsnn0oqJcYDGUpLimATfXQ8m8XjzN8xtlSTLfevfrAFj772kAAMCdabYRfxAJzvnceaC5hJTm3bdlDmC9E2gU68JU9yN5BFSs6G5VRmSklTDXRy9QVaLVkOy7keY5m+me34h33o98OwDW/vscAADIlMO+aAju+dx5YPdBRYkF522ZtkvtaxrNujDtbsoroGLFTjS895L5tE33jvKB9FZhXYPUkmSes5nu+c1cO581PTsA9v57HAAAyJDDKF8c8rnjwBz+xEo45hJ5+tTxbkdeARUrDkf0XjpVIS/kajG0bwn0byNofrrnN7a2PD4AZv/9DgAAOFsJuUxxz+dZBhqtjNsqbZgV2XGPeFyTZ0DFCtN7qbzQkKVKXshXWYn9Qw0wPeQlLUz7/FkRAAIAgLNoXQ7I564DraFquG3Loe1ScUlpjesZULHCvDhfON3QINNBfAKfvOL8EmmQunsVSZoJo+me3xkBIAAAkD4UfEfOyOfuA7NvyzzJd62j0awRqss3oGJF98Gw3kvVQMqx7xKKJSUasrSUmAmiqZ7fHQEgAAAwW0hX9ByQz10H2musu27bStsu1cfYyTWlQ7wDKlbcXD+691Kwzr3LfBWeNal+WGovPNOZ6vndEQACAADlIF3Rc0A+dx1oFbvxQ7dtXRy37ZKOn5SfSymgYsXw3kvm/fl6R08ZAACAshINYZKsAtLx7bFSVRrzy0Qbgb9LKaBixd0zkt17yTx7Ed8W8jJbSG9OWlqHgUwf+Gme3x0BIAAAUO6v6B17bnW2JCn+evduXaORz7MMtApI3Y9ctpW2Xdocu8b1dCkFVKz48iu795K5dfY09mMDAAAolmQU1y8EMgql0nOXJ/KZawTLyrC0sZq2XRp/iXVTPgIVK9LeS2c3O3ZiqAu5KQd+z58RASAAABBHL69o0OLPrt8gn+c9UCuhzNKGy7ZMr5R2ffwKebcjL4GKFab3UvE/tq3EYHIJJq0T+zO/AwJAAADA9PkpXJal8J9zNcHoxPkMLG0oEddctuXQdkkrYTqfj0DFCrv3Uj8x3I+EnMWP/Z0/BwSAAADAedXI57kONO+hSl80XLa1dKY/dqxVWXWa8hKoWGH3XjKJgZcFnn4AAODxVqMlqXzihTn1nLvdEHJk3kNV+5ocFNfGv8hcDCXxaRufUbHC7r1kEgMvC+TOfJ7M5/mzIAAEAAAOtm7IaLXunLkYSFLh4ivk89wG9p8J/iBy2JZD2yVT5PK2ms+oWGH3XjKJIa7pqQUAABAPtlm69dUvAkman+0IeQl+PvhMsEu529zWGE5VJPG2GhWr33B3I1C/95L5tA0vCzzdAADA1W0N2Nt8QeklDfJyMVSiWZOLjcCsioy7xMrbalSsnsOeeZN1rR71kwkvC/z7zBb8nt8RASAAAGA+gGDaSY5APncfuHZGifYbTttyaLuUrqSo3pG3EAowFevsiYYS5tM23TtCnlqHgUaJH07z/DkgAAQAAOJHFUmaCSONQD53H7j2ghLdVyOXbZnl0va18ZdlFd+WvxAK2IlC9XsvrYTcyZqYwsmGl/PngAAQAABIe3PMBBH5PJeBZ0zBGr/VcdrWakUa9zG+UlWJVkPwVyjg8B8vSGnvJRWXJnEnC51YQ5TNvcTH0zx/dgSAAABgLXVecMjn7gOXrqjnasNpW+bzibtfltWnonrmDyR1H8tSNeNrgsdCAQO9l05VJngnC/OylJXYP5yu+fNHAAgAALQ0Avk848Clb6vns223bZlXWud/IVvhshKf1zTIVLk0BKViBQZ6L1WVqGsiuD28MDS1R9M9vzMCQAAAoLuXpjA45HPXgaVvB6as3M7tpPKNa5EGmZfVaAhKxQr0ey+ZtwUm1neJk63dHKJYUqIx5fO7IwAEAABa6qcwB+Rzh4GlXwTWOmjuJ5VgXVyYQqGAJ72XLr6iaiBNsO8SJ9sg0qDCs0rsTvP82REAAgAAVgob8Rws+TzrwOM/twvW/E8qi6G4MIVCAU96L83PRuvSBPsuUbGal4ft3Ny9M+3zOyMABAAATAeOwjMdDRr9CCr53H1g8MswLVjdt9V+WNEo9sO/xTUlupsCFSvwz95LxVCi79IE17Xtr5xX09vD0z6/MwJAAACgE0vmw3wDgmUlGrKQz7MNLH4/VOLLWoZtdd+ULfhdKCl+syFb2g9Uux2BihVI73qtm+RUV+5weO+MWdfuHHWyvR9N+/zOCAABAADT6Mdq1LMYStajYuTz7AOLP6go0Xx7sieVqhJxTaBiBdTdMi/MK9GuK38w7a6KGzUZhumJ192c/vldEQACAADdBxVJOj6wpGeeIR36JRTy+fEflKXH7zfHHdgvWN+Y7EnF9APl2T+EAhLpwxysrkw85Gc3O+orbSix25n++V0RAAIAAOZ1JvNhvr7VyojrGPK5eRX1mZ/+uTPmQF0ygW2/EU32pGIOsuoCFSugJw9zTG51BWm7q+LP/hbJeNKIL655ML8zAkAAACD9lPzxH7+iJ868MOo6hnxunpk23ZHGGnjljBJt8yvHP+G+xMqzfwgF9GxWA2mSqyu4uR5K0vFfv9WUceZioMQXjamf3yg+o9S8euZm1NN97EUARu2/BwHIDgDXLSd+8H6knuKLK+q51tFRuKIoOw5cOqNEvPmcLN2dKL+TSjXor5mDihVIey9NcnUFhx9+T4mZn+9v/++h5hYuBOppX/NiftMfcEDxp0o1X/EgAKP334MAAEDmRVad+uPOnYZ0oroso7ktC1cUWQZW1VO4JJs+r+V2UgnWB9bMQcUKpL2XJtivAA9unVHPzPPPq2//1ciP+bUYapiZMJquADjs/xQHIDsA+LRUUc/iovrUfkMWriiyDCyWNIJp15zLSWUlVKLeEahYgUS/99JWpAnBx9GKLPt/7/gyf1lDzQTRdAXAYf+nOADZAUD3nV/OyfLl+5GOxhVFSz3xwzEG/htPKsUlJeLbSoGKFUh7L3XvaGLwX3vPB/a51pv5Wxpq/9CDAIzefw8CkAUAHP71W8saFF+/IQtXFINrE/Hj8QZ29yoabj/K66Ryykzbagg+omLFznOz0uPPNei/T5aleLOjQTutshTfiZQD/M+dl5fVZ76S5s38O1/PaYj7kQcBGL3/HgQgEwDovr/80pz64pvXIw3FFcXhK9/rfY+1M+ZA0+RqiHrWk0p8a0XSV/bvWr2T5M57AkLBQ7du6Qjtv+soh39XftB+v7hU/X/261KhwQAMw+iHSyOSuf9IQe8Bb1CYl7lbn7udk/fri+y5uY6+SuMv0Tqo67cfD3uA9qOfQIBFJJNnd7fnFxHRbOR+CzGWbxSV17kOrNyv8p9K5/09hqo8BihW2AqdZPIQr2+AxXkBAM2fn5iev+fTH+ifCooVAAAAFCsAAACKFQAAABQrAAAAihUAAAAUKwAAAChWAAAAFCsAAAAoVgAAABQrAAAAKFYAAAAUKwAAAChWAAAAUKwAAAAoVgAAAFCsAAAAKFYAAABQrAAAAHAa7LqjwBSu7wUYwAAG8ALw+himGyhWAAAAUKwAAAAoVgAAAFCsLKIbW4CjjU7h+gYwgAEMYAC8PlCsAAAAoFgBAABQrAAAAKBYAQAAQLECAACgWAEAAECxAgAAoFgBAABAsQIAAIBiBQAAQLECAACAYgUAAECxAgAAgGIFAABAsQIAAIBiBQAAAMUKAACAYgUAAADFCgAAgGIFAAAAxQoAAACKFQAAAMUKAAAAihV67N2Nbxtl2u/xn2fcvDh135y2JMWFtN2kW5Zs0TkSVLtAQSuhc/7hlYSAsgJ2RbZChFIlbTYBN01aCN7WTtyMM/Y8Ho9bMokT3en0yW1nvh+9w3Xn6vgn3TOXZ2z3Ief86ydzaqnVlld8+/0JAAQAIFXYT80WmlWdK54edCVtbTxa9JXcsddfH4y61sulig4bmFgBDL09po5cbvT62p2K/f7WXoanX/spCCDh8RMAADg3Ctpb/ZuKzHFFYbjQoCpWdOzUqasbM5VkwTmTl93fu566FCzN+TpEYGIF4Lw1oZjRDxd/TEX/uOK0q5a866ckgATHTwAAcLagfQy8OStjXFGYLTSqcqb+oJiRm6U7foLgLl91FZO55FgOF0ysAG8SZy6f/cpPS/+OofeHUxqA3eMnAADgisJsoVGV+/Gwdrp47nP/lZ6dzghMrIA9nF4iJ/56KwX9Y2/bpjUAu8dPAADAFYXZQqMq95Osdht66T0995ErgIkVsOvPBbVtPVhuyDlzZVhtJ6ZnU9E/Upx2UxhAguMnAACoNlztY12muKIwW2hS5byXVVv97m8bUv7CZTdeZBpcbGCNmq77kpM/82ZeYGIFcJiuFBUK5u4r9HTp+eMvbyyX09A/FLVMXwAJjp8AAKD22Rl1U5hQS/BEhriiMFtoVHWpEBV9X1KoOnev8wjPxXnvJYJzb7qd+bektubTp0sauzwrMLECOCzupELB12V1bH4WPXWTmb6Vgv7a/hWAtVzKAkhw/AQAAJsr6ua8Ql5FZriiMFtoVJWbUqj5j4o6mj88u6YW58atlwhuOqtQJf5Z2dVVgYkVwKGZyCr0Y1kvNP8VfQbk+KB39Ptv+4qG+t21j9z+D8Dq8RMAAOTGFVrwZYYrCrOFRlVTrkJ3K/rd4vlCvMg8uPNFhSq3BDCxwjJusVYWtU3jXvR25NTs0e4fmRhWaGvhvnJ9HoD94ycAAIiGps2SzHBFYbbQqMod61LUXCjEisyDc64otPmVACZWwJrRrFqCWcUsTWbV8tpd/0j3j+TVEv0YeN8GYP/4CQAAYkPTI19muKIwW2hU1b3o198K24vMgzvbXhf82xfAxApYM65QtSx1ec9y8ET5qPePBGsz/hEIwP7xEwAARA+vNudliCsKs4VGVXmFvIpimo8Lahlw/QMGF/X8uSyAiRWw/U5wSTtUFcqcKh/x/lGvtTuVoxCA/eMnAABwJxVa92SGKwqzhWZVeYXqvuJWplxJzoVF8+CintbffAATK4Do8ZnmQ+2w5kdfZXC0+0cWFo5IAPaPnwAAYKLrc6niiiLhQqMqJ6dQWTt4gaIi8+Ci/2T9zQcwsQLovBnZ0A7B04JaztjuTwD9hAAAwDmvULUsQ+ynZguNqjInFVrXDo3VYlR0sOCiniUBTKyARXs8PqNmLfrIR9a33Z8A+gcBAMDZgvmUw35quDD5dl1VvMgouM5DwQ8FMLECtnR/fCa2t7u+7f4E0C8IAABe/BxKSYbYT80WmlW92uAGM/HbumBiBWBB/PGZ3SeAzIhnuz8B9A0CAIChUwot+DLEfmqw8KB//rjBWGsQXN6N3dbtb2BiBQAAAKZciQdJrTH/DgKT4PIKlQUwsQIWRQ+8BE+0S7XhyvzHPez3JwAQAADrcuMKlTyZYj81W2hWtftDrfGiEe8gweV/v6177NylwZyk4Nn6Skn9C0ysAAAA4BbrvGBHVaHBE+XkwcnJKeJMXnYVyeRy564f4o+Ig4kVQN49kv0JAAQAwAJ3TKF1j/00wcIEVZ2JNTN965UFF/hvTyhu9MO5+wITKwDbvCCF/QkABAAggYmsWoJZmWM/NV9oULXmtyM4MR3PYOgv7sGDi77sKXNdu2T+OEzGTKwADlWwYbs/AfQ9AgAAd1Ihr8J+mmBhoqrGvWsKvenc8fXc0Ntjrzq4NzWrPgImVgAAAGA0q9CCL9iyNBmFcLG49HNV0rHTxdfc5MFtLJSrkvInrg2r7Y3lssDECuDQZEY82/0JoM8RAAA4VxTaLLGfJliYsKpx+91O6aVLryq4rYX7ilSrD4vTrhR9VLZvgIkVAAAAOFtQ6JEv2PP4u3e0l2DjJYIL4l+z9OC3j1y1HB/01F/AxAoAAABusTbnBZuikTKuXppwXza4HxcVU5u/1l51YVFgYgVg02Ambf0JAAQAIIGhUwqVPJljPzVfaFxV+3v0+6kvbNx+kptQS72RPLgXH5W9yMTKxArgMFQbrvYTPLHdnwD6AgEAwJSrlmBZ5thPjReaVUWac3Mnr5weDBcEz9Z/evSKgwueFtQykPUFJlYAhyRzqpzi/gSA5AEAQG5coWqZ/TTxwuR//ultxeRdtdT9VxFc83E0sbq+/teBiRWAF2gP0d4ebNjvTwDo/QAAYDzaNWZljv3UcGHy7TqvUNksuPi91OMCmFgB+47vtbfXGynoTwBIGgAAuJMKeRWZYz81W5j8z0dFwfKrCa4qMLECOASx9w/P7HkC8K33JwD0fgAAMJFVaMGXOfZTs4XJt2t3LHYf1iy4Zi3WEsgKgAXN2h7fHuDkFCrb7k8A6J8AAHCLtflQ5thPDRcm365Hs2pZ9w4WXFXxlmBiBWBDZzd2fcVlTiq0br0/AaD3AwCAaCRSyZM59lPDhcm36/HYVGscXPeWfGyEiRWAhfOLc2Gx6w7efGi7PwGg9wMAAOeKQs15mWM/NVyYfLvuPBS8fMDgVqZcSZkRT3F8bISJFcBhWvO7/wz2uNH7h/b7EwDsBwAAZwsKrXsyx35quDD5dj3RXlotHzA4L1BL5vVyt/lXZYGJFcBhaKwW1XJ80Ou2Gz/ybfcnAPR+AAAwrlAwK3Psp6YLE2/XuSmFSgcNrvNtT6/d9bvc1Q2WBSZWAIdipagWZ2q2y7uRzXnb/QkAvR8AAOTGFbuJtx/206EbeWljpmK4MPF27d501bJZOmhwzccFtQzF7+t2HiT2KgITK9Lg8lVX+nXGF+x5/pTNvLf73ch1z3Z/AkDvBwAAU65CJYNS9lP347Bs5INPPbOFSbdr5732uuDf/oGDW4n+/5XS9qWXCvG7umBixZF2/i21nL02K9jTuHdNLc6Hn/t6bih6NzKYtd2fANA3AQDgFuumycTKfho9VBt9h5LBwqTb9dD7wwr9XD54cLXovu7QX2/pheI1de7qgokVaZBXD8DSZFYtQ3/7pqJIcdrtbO4p6B9yRtRxXG3DA2prbqTgBUh4/AQAAOMud93M99P8yy40qiq+s3G/pBectybUtnn3ZYKbjypO3Jjxd/y9u57AxIoUOSPY1Lj9rkIDN+uLvzQ0fOayG9vcj3L/iPtJVjHOB+qo3ErBC5Do+AkAANxJ7rol20/NFhpVjWrk+vWt/5ZqDbUqisOKNL/0zYPbdZNVZ///2sOydGJ8TJHKosDEijQpC1Y9flBU28DVq/pd/Us/Hf01mtVeBrK+1Reg94+fAABgIqtQyZM5rijMF5pUxR07d04x9S+8lwvu+1xBbaOj2mbzK4GJFcAh+s6fUFy0uaelf157GnB9my9A7x8/AQCAc16hYFkw2U+raguemC5Mvl2vfeu/ZHDNf308rB3S962hYGIFO7x9P9SuutY2Y/v9q9pTvZGCFyDJ8RMAAJwtKFQtCyb7aec7f4ONgy40qlopaqethfsvH1zjs/8zprhg7r7AxIp08SqCbf95+HZsP96YqaSo/9qzYe3hkZ+CFyDJ8RMAAFTbm9jat4LRftq49W7791i9gy40qno886dhbVe/W0oUXHNmLPYXg6U5X2BiRVo45+OXpLBoc8Y5P346p5Za/acVP1X9G5+mNYDkx08AAFD7VDjIflr74uALzatWV53R4ml3UFLwbH1lxU8c3OrqsctjA4OStuprSxWBiRUpEj2M0ZxXL0BzddV2fwJAagMAAPbTaGHyquYvv+jV2pqbE8DEmkbOFYXueuolAAAAAMDEiqFTUu/9nhUAAAAAMLFiypXU/Kd6CgAAAAAwsSI3LvXkM8EAAAAAwMTKLdaefCYYAAAAAJhYucXam88EAwAAAAATK7dYe/KZYAAAAABgYuUWaw8+EwwAAAAATKwouNLat+oxAAAAAMDEigcPBAAAAABMrAAAAAAAMLECAAAAAJhYAQAAAABgYgUAAAAAMLECAAAAAMDECgAAAAAAEysAAAAAgIkVAAAAAAAmVmyTEYiC/rwABEAABMALAF4+dBMoCTCxAgAAAADAxAoAAAAAYGIFAAAAAICJFYF6ADJWo6A/ARAAARAAAewLvHwAEysAAAAAAEysAAAAAAAmVgAAAAAAmFgBAAAAAGBiBQAAAAAwsQIAAAAAwMQKAAAAAGBiBQAAAACAiRUAAAAAwMQKAAAAAAATKwAAAAAATKwAAAAAACZWAAAAAACYWAEAAAAATKwAAAAAADCxAgAAAADAxAoAAAAAYGIFAAAAAICJFQAAAADAxAoAAAAAABMrAAAAAICJFQAAAAAAJlYAzvnXT+bUUqstr/ip608AAADYPaGZLTSrOlc8PehK2tp4tOir74GJFcDQ22PqyOVGr6/dqdjub/FlePq1n7oAdh9/OgJI0B8AnBsF7a3+TUXmuKIwXGhQFSs6durU1Y2ZXUW5j1x1EXxd7sV4wcQKwHlrQjGjHy7+mIr+ccVpVy151z+6AZgffyoCSNAfAM4WtI+BN2dljCsKs4VGVc7UHxQzcrN0x4+XvOOqm8z0rf6IF0ysAG8SZy6f/cpPS/+OofeHUxGA+fFbCCCV/QGAKwqzhUZV7sfD2uniuc99AUyswFE5vURO/PVWCvrH3rZNSQDmx28hgDT2BwCuKMwWGlW5n2S121BU1JfAxArgzwW1bT1Ybsg5c2VYbSemZ1PRP1KcdlMTgPnx93AA9vsDQLXhah/rMsUVhdlCkyrnvaza6nd/25DyFy67BzmplnovXjCxArhSVCiYu6/Q06XnD0e+sVxOQ/9Q1DKlAYgHgl+qPwDUPjujbgoTagmeyBBXFGYLjaouFaKi70sKVefudR6huTjvaYfNO9qh+ajn4gUTKwB3UlLs2/E2P4ueuslM3zrq/SPO5GVXbbVcKgIwP/4eDsB+fwDYXFE35xXyKjLDFYXZQqOq3JRCzX9U1NH84dk1tTg3bmmH+grxog8mVgATWYV+LOuF5r+iz4AcH/SOfv9tX9FQv7v2kZumAAyOv88DsNAfAHLjCi34MsAVhclC86opV6G7Ff1u8XwhXkS86MOJFeAWa2VR2zTuRW9HTs0e7f6RiWGFthbuK5euAAyOv88DsNAfAKKhabMkA1xRmCw0r3LHuhQ1FwqxIuJFX02sAEazaglmFbM0mVXLa3f9I90/kldLsDTnpy8Ag+Pv0wAs9AeA2ND0yJcBrihMFppXdS/69bdCp4h40X8TK4Bxhaplqct7loMnyke9fyRYm/HTGIDB8fd1ABb6A0D08GpzXga4ojBaaF6VV8irKKb5uKCWAdcnXjCxAv36TnBJO1QVypwqH/H+Ua+1O5V0BmBw/P0cgIX+AOBOKrTuyQBXFEYLzavyCtV9xa1MuZKcC4vEi76bWAFEj880H2qHNT/6KoOj3T+ysJDWAAyOv68DsNAfACa6PpcqrigSLDSucnIKlbWDFygqIl703cQKoPNmZEM7BE8LajnTt/0JAABggXNeoWpZBjihGS00r8qcVGhdOzRWi1ER8aLPJlYAez4+o2Yt+shH1u/T/gQAALDgbEGhkkxwQjNfmOx8WVW8iHjRHxMrgK6Pz8T3dtfvz/4EAACwwLmi0GZJBjihGS40qyJeHMWJFcDux2fiJ4DMiNef/QkAAGDB0CmFFnwZ4IRmvvBAf/64+VhLvEjNxAoAAABMuWppPhQsiH2olXhxJCZWAIMZtQRPtEu14cr811Xs9ycAAIB1uXGFSp4McEIzXWhcFf9Qa7yoy33eE58Mqq0WrP38hHiRhokVAAAA3GKdF+yoKjR4oiwjg4rkNPJG9NvcxIsem1gB5N0j2Z8AAAAWuGMKrXuc0BIsTFDVmVgz07d0cKM31771iRd9M7EC8II09SeA5AAAE1m1BLOCwQnNfKF51ZrfjuDEdDyDob+4MjD6/74uEy96cWIFEGz0f38CAABY5k4q5FU4oSVamKCqce+aQm86d3w9N/T2mOKiD7zulvnLj4vEi6M4sQIAAACjWYUWfMGWpckohIvFpZ+rko6dLr7marfvH0u1RlUtzsiJ8TFFMm89KRMvem9iBZAZ8fq/PwEAAKxyrii0WeKElnBhgqrG7Xc7pZcuaR/NFT3XrFYfauxPw9Gy//u5T7w4chMrAAAAcLag0CNfsOfxd++ou30fKl59fCOKb+jiIvHiiE6sAAAA4BZrc16w6cFvH7naoV6acLW/5j87I+vFReJFX0ysAAYzqelPAMkBAIZOKVTyBOMTmvlC86ra3ycvu9pm4/aT3IRa6g3trfldNOkeH/SIF70zsQKoNlztJ3jSf/0JAABgwZSrlmBZRjihmS80r4o05+ZOXjk9GC4Inq3/9EhmaitFtTgXFokXvTaxAsicKqe4PwEkBwDIjStULXNCS7ww+Z9/elsxeVctdV/7iSZWHSde9NDECsALtIdobw82er8/AQAA7BuPtu1ZmeOEZr4w4fkyr1DZ4DYx8aInJ1YAx/fa2+uNFPQngKQAAO6kQl5FZjihmS9M/uejomDZaOg+Q7zooYkVQPC0oJYze54A/N7vTwAAAOsmsgot+DLHCc18YbLzpTsW3YclXvTdxAqgWSuoZSDrK87JKVTu0/4EAACwcIu1+VDmOKGZL0x4vhzNqmXdk4ky8aKXJlYAVYUGXF9xmZMKrfd+fwIAAFgXjUQqeTLHCc18YcLz5bjRu8CDGeJFr06sABOrc2Gx697cfNj7/QkAAGCbc0Wh5rzMcUIzX5jwfNl5KHhZ+8u7Cq0TL3ppYgWw5mfVcnGx67uR9Ubv9ycAAIBtZwsKrXsyxwnNfGHC8+VEVjL4ZZpxRcMv8aKXJlYAjdWiWo4Pel3ejdQjv/f7EwAAwLZxhYJZmeOEZr4w4fkyN6VQSftzx3YOv8QLJlYM3chLGzMVwaLo57Kdqdku70Y253u/PwEAAGzLjcvoJh4ntPj1n/nCJOdL96arls2S9jed3TH8Ei+YWOF+HOY+8sGnnmDNi6ds5r3d70aue73fnwAAALZNuUY38Tihxa//zBcmOV8677XXBf/2ta9iUfHhl3jBxIroo/LRZ+hhT+PeNbU4H37u67mh6N3IYLb/+hMAAMDCLVajm3ic0OLXf+YLE5wvh94fVujnsl5wP2l+U1HclWtqK3nECyZWvJAXesHSZFYtQ397sXkXp93O5p6C/iFnRB3H1TY8oLbmhuUXwPrxp+MfkKw/AIy7kvjuAcMTWv4lFppXFd/ZuF/SC85bE2rbvKvY0Hxza2HJj821sTriRQ9NrAAat99VaOBmffGXhobPXHbjm/YR7h9xP8kqxvlAHZVbdl8A+8efhn9Asv4A4E5K4rsHEpzQDBaaVo1q5Pr1rf+Wag21KorDijS/9BV37I9/3Prv6tOG5BwfP+fG6ogXvTWxAnj8oKi2gatX9bv6l346+ms0q70MZH27L4D940/BPyBZfwCYyCpU8mSIKwrzhaZVMcfOnVNM/QtPkX3LVP/GI14wsWKbqtqCJ4Jd3/kTisQ397T0z2tPA65v9wWwf/wp+Ack6g8AznmFgmXB5IQWv/4zX5jgfLn2ra/tqg1X3Wx+7hMvmFixXec734INwbIfalddxf0646emf1V7qjfsvgD2jz8N/4BE/QHgbEGhalkwOKHFrv9MF5pXrRS109bCfcXVZqdd7RLM3SdeMLEirnHr3fbvcXmCbf95+PaYttmYqaSo/9qzYe3hkW/3BbB//Gn4ByTqDwDV9iay9q1gcEKLXf8ZLzSvejzzp/ieXr9b0i4PHoxdze8310aIF0ysqH0h9IjNGef8+OlcO5b6Tyt+qvo3Pk11APaPv/FpH/cHgNqngvEJLXb9Z77QvGp11RktnnYHJQXP1ldiFbEynTzz+uCgG6sjXvTwxAqgubqa1v4EAACA/RNatDBxVfOXX2Ti6dMlAf/Dfh1YAACAQBS99h+6FgiCwHsLRAf+Q7ECAACAYgUAAECxAgAAgGIFAAAAxQoAAIBiBQAAAMUKAACAYgUAAADFCgAAAIoVAAAAxQoAAACKFQAAAMUKAAAAihUAAADFCgAAAIoVAAAAFCsAAACKFQAAABQrFUzhvgcYwAAG2HgA3kcHxQoAAACKFbgY9u7wua3q3BfwKymxbSUOOXGS1D5xwUkmoaEEestML/f0FOCeGeae//d+uMNA0xmgnaYdpgYySXEdMEmcFKOT2LGxbFm6lpZDIm8px0Zgbazn+dZUyy/jtWa9+6e9vTYAAEisAAAAO4HESiPIgUJfp0J9E2ACTIAJMAE/QVo4ILECAAAgsQIAAIDECgAAgMQKAAAAEisAAABIrAAAAEisAAAAILECAAAgsQIAAIDECgAAgMQKAAAAEisAAABIrAAAAEisAAAAILECAAAgsQIAAIDECgAAABIrAAAAEisAAABIrAAAAEisAAAAILECAAAgsQIAAIDEChTPnH2uHFtWV2/frQ1GfUwAAH1oKD0MfO5fzwwNR8TG+uKtpXimw2fPDqeft16ZX9Ih9w6JlanLwxEbn9yODs6/WIpYubYU+4ORlydiW7l88tXFT5cGp37mP+Phh7WIQanfwwQAUH6rFB00PqxEhiuK3gc+9z/GYtvhw0eeb9y6UYsuihfPl578vOPnnvps8fXx6G79oyUdchsSKyeHI+LwhduRVfxZKSKOvDAT7IfiS9M75uaNuc8Gof4OU1dazW2sVIsk//X7OAEAFH9Vik4KV65GhiuKXgdO/HI02hTOnf1zJZLsvY+dny3ORHJqPJ5h6IUZHRKJFXKmw3eNhfOnPqgNSv1tI/8+Gn2T6g/gAgDAFcUuBqbsmDH0b5/N7balnjggHRKJFbSX5Nhvrw5I/a6NcFDq93cCAHBFsZuB56ajg8JLDyqxU/mt0gHqkEiswCvj0bLx1e3NKJ64MBotx67MDET9JD2Q2yep/oFZAADMR5Yrip4GFs9ES+ObO5WI0ZPTpWgpvPZ+rWNgTT/uUS2iOHbihbF4YnmzFM/wKF8dEokVuDCVOsCNz6Pp4a3Hj9I8f7syAPVbBvaB4N4nAIC1T2OH+r3ozBVFjwNX/voghc5/Xn/8Xe/Iz+eiTenN9H+sX5+PlvrDh7di4vxMbFt970R0Mj4dWxoPctUhkViB0sWIaDvWcO299AxM4crVAagfTx8nuFqONgNQv9cJAGD9btBDQ9ntwB1vkfjqm+1bqTsT65UULJba/9p0YSG+s9Z5xs5EU3UpVx0SiRWYPhRNn1XiO/U/vdP6x6PD1YNdPym9PRot69cXU/PLyH/9/E8AAK4oehhYXx27Ph9PW715OTr88DNTKbBejT0qT0bTbE2HRGKFHH4hujQXT9n8e6sHFC/NHOz6yXQKjBuzn0c5svJfP/8TAIAril4Hfhw73brYihCFI9V4onghmtY+iL26VGoNnM9Vh0RiBU4eii2NmY494GfXawe6fjIWW7q9hPzA1+/nBADgiqKHgZsLU5GRXrba+Est9qg0EU33arnqkEiswGQ0LVciOnyDOHysctDrJ43Fa7Xom1R/oBYAAK4oeu9Ey9FUOF7J/LQvK7FX6Rng+k0dEokV+i/7heJ81x5wwOunWoufLkXfpPoDuQAAcEXReydqPMj8tJQ792T7GeBHVR0SiRVyJT3xUr8TOyzW0sECB7t+MjsbfZPqD8ICAMAVxT50oulD7blzjwMbMzokEivky1g0rW/GDo2H47HlxEGrjwnoPwANpYeBmaGNlcw/zcdeFc9E03JFh0RiJZf0l1rsUF9tbcdDh2oHtD4moP8ANJQeBj5+bvdRdec/1e/EXp0aT1FXh0RihXwplqOpEhnL0TRUqh3U+piA/gPQUHroRNOHMjdUhwvbN0b36PE7ceZ1SCRWyJfCc9H0qNt2XDhSPaD1MQH9B6Ch9NCJypeeTpnJWGn7xugejRyPptmaDonECgAA9GrkzdLTKTMZ274xuleXShHpaWKQWCFX0sMzjQeRsbxZinR2e47rYwL6D+DYO8PRstpY/PJB7JqG0sPA4sXzKbB+MRdPGXtyY/Tw6XPD5YhofPvo7nw8W3kymuarOiQSKx0MTUZWoRwAAD8Fw5GU48jz+/CObQ7/y/OnS9HyxUw8pVh+OtAmhXL59KsdZyVzi/VmgMRKByOvRd8wVhqc+pgAgH1w8s3FP9c0lB9lYOnt0Wiz/udKZDVqL0/vnJU3bnweXWUPHdYhkVgh96qNwa2PCQDowcn/82ElsjSUngeebAusjW+uP4h26bikwquRUfjF6Ex0kw4dbszokEiskFONlQGtjwkA6EF6NWdW4d8+m9NQfoSBY/G0wvjl2/Oxay/ETHRWupiS6JIOicQKAMAB8rf7Eauby7GleOTY5EQkhZceVOIHx3K0KZw8+cqtG7XobGW2shwRY8cuj0bL87cr0dHJlERmawESK+RT4Uh1UOtjAgB6UL8bj9WXl+/ExC9TOiq89n5NQ/nBBy5+O7pz3LmzHy1F1sbs55FsTcvUlVLrs1euRifFC9G0Nq9DIrHS2dLVyCq+Ph4AAD8pC/e3r2BGfj4XPzQ2341k7OjZ06VoGXoj+1fDjfZjlr765q3Wh48OV6ODU2nK7tUCJFYAAA6y+h+3I6vE+mNaXl54cj/7f71bjXY7/4x49ebl2FL817nut1i92gaJFX5ihgsDWh8TANCD+sfZ+3kayo8xcOH+S9Mpcr7xfi2e7dbFQ12/Rhg5Hk3zVR0SiRVyaHmzFM/SeJD/+pgAgBxZvTvV6X6ehvKDd6L6J99ejojdPILdeDgeW4YO1SLjUqt+47YOicQK+VU4XhmE+pgAgH2QEmsc1VB+9IFzZ8aj6cJ8LZ6pfj8l1lItdipPpoBa0SGRWCGPqo3oYix947hykOpjAvoPcLdRQ+l94Lb6bEqsw8cqbfdSj8buTaYqMzokEivk2dHIGIum9c0c1scEAOQ/u52I3dFQehj49Tfju7sTuhxdlC6mSVvSIZFYIZe2v4s80XU7rh3Y+piA/gPQUHrqRPXV8ZQr2//3idi16ZRCZms6JBIr5FJ9tctJBMVyNFXyWJ/8TwAAldgNDaW3TrTc8X9nf9h/c4u1fkeHRGKFnEo7e/YkgsJz0fQoV/XJ/wQAMFyILA1lHztR5od1f5L3ZAoh81UdEokVct1fskfwpx28fidX9cn/BAAwVtp9otFQeuxEY9H+y77beldN4Ui1c2LN3C+9EE31mzokEivk1WKt8yu1J7PfRea/Pv2fAAAmY/eJRkPprRNtP6HbeBDb0rFXhbOVaFOaiKZK7HBqPAXeqg6JxAp5tbkwFVuODlc77ez3anmqT/4nAIDSxO4TjYbSYycaOZ4S60ps2z4v6WfXax3uizZuR8f02ZjRIZFYIb/Se86Ll2biaenkvPrNXNUn/xMAwJVDz0w0GsrI62MRK9eWfohOdKm04x5p/f54q0b7ndH08G/2FTbllFiXKzokEivk1+NnXm5W44nype0GkKf65H8CAJiaimclGg2l9HbzY0d+9251TwNL7zz4dCl2ODMVLfNPxcwUYi/M1+KJc+Pb3yJ0DrzzOiQSK+TY5t8vx5biG+/X4rGRN0uxpTGT//r0awIAKL1T/2gp2l24HC3z1ehEQ0kP6KYTjfYycLhw8s2vZ1biaeXXomVtPr6zmu6Mjvz2anxn6nLnbxHKk9vDdUgkVsizWxcPtbbg//iu605dKUXTl5UDXz8pHoltR6NldCha6iv5r9+XCQAgZa83N2Zv1eI7I/8+Gi1r16MzVxRj378TnfrfK399EI8VX5qOZLYWT9ycbA099vq12o7PXa9Gu/TJuFfTIZFYIc82//qbaBp6c33un5sxeuJ8KdNtD2r9pPTOoWhT/F1sW7qa//p9nAAADv/iFxv/tfBwM6J4dPJ0KZL6H2qR4Yqi94FHfhcrXy2tRBRPvDAW276Yi8jcZI1T/7l4pxJxbHIikqW5aFe6uH3rVYdEYoV8u//VVLQMvfhiPLH+h9pg1E/PJ3U2dKiW//p9nQAADp8+He3WP6pGhiuKngZWG5EceTHafT0Tbf5WHo+WkyfjKWsfxA7Tqf/OV3VIJFbIuY9r05Gx/vvqoNQfi66GSrX81+/PBACwvFmKTtber0U3riiWo6XxYG8D0x+VdvDFTLSr/+nt0cj4+lot2hXPRFPjtg6JxAq598nqi6Xsxj4w9Zejq/XN/Nfv0wQAsDpzpRQZjRufR3euKLZP4G2s7HHg7MovRyNj/aOl2GnzvV9P7GJSTo2nLlzRIbtCYmXx9HDExmx0UL93vBSx8kWwL/5x5+WJeCK9JW1g6i9+Oxpd3Kvlv36/JgCAr76aeHEs2mzMPjuvuqLYvPqb1vtYq3sduLAwkj7yxPr1+eigfm2iLd02bt2oRcZyq/0u/lmHRGLlWft8dPWPfwT7aO1a8czkv5Rjy+r6F3drA1V/893IGID6vU8AAAsL8dyJs8PDpYhofPvorg30v28oq7//PgPTR+Lw6XPpt72x8eiLxVr3eTl8fmJouPm59cVbS9HJ6rs/pQ6JxArUFxYGrT69TwAADx/eCnbXUHofuHHnTuzKxo0bOiQSKwAAABIrAAAASKwAAAAgsQIAACCxAgAAgMQKAACAxAoAAAASKwAAABIrAAAASKwAAAAgsQIAACCxAgAAgMQKAACAxAoAAAASKwAAAEisAAAASKwAAAAgsQIAACCxkg+FwFSo7xdgAkyACfALwK+PThqBxAoAAAASKwAAABIrAAAASKz0ohHkQKGvU6G+CTABJsAEmICfIC0ckFgBAACQWAEAAEBiBQAAQGIFAAAAiRUAAAAkVgAAACRWAAAAkFgBAACQWAEAAEBiBQAAQGIFAAAAiRUAAAAkVgAAACRWAAAAkFgBAACQWAEAAEBiBQAAAIkVAAAAiRUAAAAkVgAAACRWAAAAkFgBAACQWAEAAEBiBYpnzj5Xji2rq7fv1gatPlYgQG8Onz07nHax9cr8Umyzn//0G8FzExNDwxGxsX7/1kogsTJQir+eiE7W3q8F+2zk5YnYVi6ffHXx06WBqZ/9z3j4YS1C/UFbAQA9KF48X3qyix0/17h1oxaJK4reB+66XxVfH4/u1j9a6jJ7zw+3gvLCZ50rJYcPnzu3fn0+kFgZIOcmoqPhY5VgXxVfmo42J9+Y+2wA6u80daUUW8ZKtUjUH5wVANCD8y+Wok3hXHEmtrmi6H3gbvvVqfF4hqEXOk/KuYvRUj63UIk2E78cjTZDr15OsReJlcEwFvRfl28kC+dPfVAblPrbRv59NDLUPwArAKAP++eJyHJFsfeB+9Cvypeio85PAw698WElkFiBvraX5Nhvrw5I/Q5f7ibqD8wKAOhB+a1S0Nt+3n3gPvSrS6Xo7JWJ6KDwbyKrxAqNlWA/vTIeLRtf3d6M4okLo9Fy7MrMANRP0gNGGeoP0AoAeiKwpk3sUS2iOHbihbHIcEXR88Bd9KvlzVI8w6Po4MxUdFaaiGTjvxY2YuLkcCSF1wbsxBUkVtY+jR0eVYN9dCHt1I0bn0fTw1uPn7Z5/nZlAOq3jHggeIBXIEAvSm+mjPTdkTz1hw9vxcT5mchwRdHbwF30q9X3TkQn49Otn/8gskq/boXSYik625i91cqnd58UH/n5XCCxMkjW7wb9VLqYusSTR1zW3kvP5hSuXB2A+vH0CY+r5dhB/QFYAQA9uHIompba/+RyYSEyXFH0OnAX/WrtbnRyJpqqS5E13ZrAufOR0Xg4nr6I2Lb27q+mouXCfC2QWIH9knbq+KwS36n/6Z3WPx4drh7s+knp7dFoWb++uPNvkdQfgBXQA4DtR0qXrga72M97GdhDvypPRtNsLTLSsUtLs+cjo7564sbn8bS/lVs52mstJFboA7dYl+biKZt/vxxbipdmDnb9ZDo1wI3Zz6McWernfwUA9EvxQjStfRDsYj/vaWAP/SqdrbQ2HxnFX5Uiov7H6OTjj6Nd/eOUlAvHK7FPkFiBk4diS2Mm2ty62Prnn12vHej6yVhs6f1d7+r3eQUA9EF6/2fjL7VgF/t5LwN76FfbRyjdq3WbwPlqKXZl7cF4NB2N/YLECkxG03IlIvPNZnrq5YDXTxqL12rRkfoDsAJ6BOiiX1aCXeznPQ3soV+lp47rNyMjHbu0dj12qX4/JdYTsU+QWIHtrx3nY4fliEhPvRzs+qnW4qdL0YX6A7ACegDooikKsYv9vKeBPfSr7aeOH1U7Zdmc3yJHYgXSkzj1O7HDYi0deHCw6yezs9E79fu6AgD6IAWeFIXYxX7e08Ae+tV0h6eOk/Kl7bu7u7Yc+wuJFRiLpvXNaJNOdN9you/1cw4rALCHzQe72M/71QiKZ6JzLs0cu7QLY9FSCSRWYH/7Sy12qK+22sTQoVrf6+cTVgBAaSJzd7A7+3mfGkE6XCnmu/0/16uRW0isQLHc7avC5WgaKtX6Xj+fsAIAhguZu4Pd2c/70wgev4BoPnbaPnZpfu+5PB7F/kBiBQrPddt4l9P/f6Ta9/r5hBUAMFbK3B3szn7en0YwcjyaZmux05W9H7u0Ha8bDyLfkFgBAGBs++5gjnGpFNHx0e3yZGz5svI94m91KfYHEiswXOj2VeHyZinSmfL9rp9PWAEAY0/uDh4+fW64HBGNbx/dnY9O7Od9aQQpl8Z8NXbYPnbp5veIv3GvFrmGxAoAAMVyJMWL50uRFMrl06/28TXXZDNm52B67nscu7T96tjG7RgsSKyMRbtva7FfGCsNcP3eYQUANGovT0e7k2/c+Nx+notGkDJmh1fmli5G7PXYpfRm1/SinEGCxMqxt6Jd/d1q0HfVxuDWxwoE2IV0ZlDh1cgo/GJ0JkiqjT42gpQxG9nZ+B7HLkX5Umz/NAY6sYLDQfugsTIA9fcPVgDACzFjP+97I0h3UjudlHRmKmJvxy6lv3zNjMo9JFYAAFiZrSxHxNixy6PR8vztStBvJ1PGyLzapnghYs/HLp0bj6a164HECvxkbmu7rY4VALAx+3kky8t3pq6UWjvblav28343ghRMs3+t+r2OXXr8TPBfHLgisUJ1KX4aAAAa7ccsffXNW63IenS4GvTXqfFoulfrGD6X5mIPSm8O7DPBSKwsXY2fKACAz+aizerNy7Gl+K9zQV+lW6wdHv69VIo9H6B0JcWVpZnIBSRWYLgwgPV7hxUAcOti68r253NB2s/71AhGjkfTfDXafZ9jly60xsTaB7GfkFiB5c1SPEvjQa7q5x9WAEDj4XhsGTpUiyz7+b41gnQrNRq3O9x63esBShcuR1P9D7XYf0isQOF4ZQDq7wusAID6/ZRYSzX7eT8bQXkyReJKtEvHLs3WYvemUmBtfFSNfYXEClQb0cVY+l5ype/1cw0rAHAv9Wiw+/18HxvBZBo/E+3SO1offT0WTylGy9GNiKhnKp75VbR8VgkkVqAvjkZG2sfXN/NVP/+wAgCWI8t+vt+NICXT7Dsohgutem9FVuHVaPpiJtqceS1aPp0LJFagP18Pn+jaJmp9r59PWAEA9dXsFtad/XyfG8F0yhezex//s+ttY8qvlVKQnQskVqBPzTZ7OESxHE2VvtfPK6wAgOXIbGHd2M97GNjLLdb6nehR+a3S4zuvSKxA35ptqRbtCs9F06O+1883rACA7BbW+XFW+/m+NoKTKV7MV6M3I28KrEis0P/+kn3Ledrn63f6Xj+vsAIA7rZen1I4Uo12nR9ntZ/vZyMoXoim+s3Yae3BeDxL+4PEpbcP9TOwIrECi7XObzmf3P56uO/18worACAdc1s4W4k2pYloqkSW/Xy/GsGpFEsfVWOn+oeRVXrnUEQ0PqxEu+L/TCnl65mgLyRWYHNhKrYcHa52arb3an2vn1NYAQDp0KB0UE/25mDjdmTZz/erEaS825iJnhRfT8F36Y8BfUqswN1WmyhemomnpfP16jf7Xj+3sAIA6vdbeWak/fbg9vOo1aXoxH4+8vpYxMq1pR+1EZRTYl2u/DCB9YOAfiVW4PGzODer8UT5UjQ9qva9fn5hBQCkP2SNC/O1eOLc+DNuDtrP0x+GHvndu9UfsxGkiYn56MkraSrXPqgF9CuxApt/vxxbim+8X4vku2PxGjN9r59jWAEAq+n24Mhvr8Z3pi5H95uD9vP0zHQ6aWk3A3u6xbo2H7341VT6Kem/iz6RWIFbFw+1WsN/fLQUydSVUjR9WTnw9ZPikdh2NFpGh6KlvqJ+/lcAQB/dnCzFlmOvX6tFS/Gl6Wi5Xo1OXFGM7X3g3vtVmpYe73OfSYG1cfN0ZNQXa7E/kFiBzb/+JpqG3lyf++dmjJ44X4qWtesDUT+dD9im+LvYtnRV/QFYAb0C3GSNU/+5eKcScWxyIpKluchwRdHbwN33q9LFH+I+92S0FF6JDG+72U8SK3D/q6loGXrxxXhi/Q+1waifnk/qbOhQTf38rwCA/vlbeTxaTp6Mp6x9EBmuKHocuPt+NZ0+OV+NHhTL0VU6IHqfILECH9emI2P999VBqT8WXQ2VaurnfwUA9E/9T2+PRsbX12rRmSuK5WhpPNjrwN33q+KZVOJ2HAxIrMAnqy+Wsr12YOovR1frm+oPwAroAcDme7+eiHaNG59HN64otk8GbqzsdeDu+9Wp8fT5SvSivjoe3a3XYgAgsXL39HDExmzQd/+48/JEPJHekjYw9Re/HY0u7tXUH4AV0AuA+rWJX47GE41bN2rRlSuKzau/ab2PtbrXgbvvV8utDy7+OXav8dV0RHzTVjMdq9XFfAwCJFbu/7/ICdauFc9M/ks5tqyuf3G3NlD1N9+NDPUHZQX0DmBh4fD5iaHhiNhYX7y1FM/kimL197sa2EO/Wt17Y6t/8kn2x/zfyA8kVqC+sDCI9XuHFQCwceNGdGI/1wiQWAEAAEBiBQAAQGIFAAAAiRUAAAAkVgAAACRWAAAAkFgBAACQWAEAAEBiBQAAAIkVAAAAiRUAAAAkVgAAACRWAAAAkFgBAACQWAEAAEBiBQAAAIkVAAAAiRUAAAAkVgqBqVDfL8AEmAAT0IlfAH59NKIXSKwAAAAgsQIAACCxAgAAgMRKI3KAQl+nQn0TYAJMgAkwAfj1gcQKAAAAEisAAAASKwAAAEisAAAAILECAAAgsQIAAIDECgAAgMQKAAAAEisAAABIrAAAAEisAAAAILECAAAgsQIAAIDECgAAgMQKAAAAEisAAABIrAAAAEisAAAAILECAAAgsQIAAIDECgAAAM9MrAAAACCxAv+fvfvwauPa9jj+Y0Y0GVfhAn7yC+WB01zSey//8OvpvTfisNweOHJ/IYotipEYae46S9YKg5HYC6fsK38/q8y9yZyzd8remj0clOjgv+zOS9LKyqUrif/4ABXgJQEAB4p7+2NJa8vX5hIZ0E9NC7d/1+6Rkb5+SWu16/PLXdAfwcQKYODhEd2Wzw+fWDhV6db4hjRufpJIxPefABXgLQGAj9DePXuOLn9VkR1PFPaF1rsy/0R6x8drsyVlRE8X1F7t0wr90RsmVgDRg2PKGH5x7qdui29QPBaHy844UUB8BwlQAc4TABBN/5sydrxUOpXIjicK+0LTXSMPDSqj78QD2SF0f0Ed9N03Q3+Eo4kVQJt3jT0T+z9Ouj5+1sDzg8ogvoMEqADfCQCIXxnURkcOvJvIjCcK+0LDXdGjI7pD34uflOmPYGIFuunjJdj13PtdHN/wcjcgvuMEqAAHCQCI38zpTgP2+uGJwr7QdNfxEW2i51nDyOq1P4KJFcDxggKtXbxUV7RvcvB2Pz4209Xxs8J5VDPiO0iACnCQAIDoqZwC1WZ/XZZ2Hp6I7fXDE4V9ofmueERNa79dXdPIcL+aeh57N1HLYj1WB0u++iOYWAFMFhWkp88puDnfOpz5r5fK3R8/4ECu/wPBVIDLBACMFxSkP5QULJ4+e/u8yJEzVZnxRGFbaN9+7fx8Eq5X1LpFA0fm1LLyzj5tpjCmsP8NV/0RTKwA4ikF6e/HZVbfaZ6B6Tn2fvfHD6KpiViBVvLKIr7XBKgABwkAyE8raHxY0W2NH289EK7R04b64YnCutB+V3qzoPXfDbz61smiFEyWErWsXtFmDiqoVlz1RzCxAhjLKfipLLU0Pm/+Ws5Qf7X746/71oza7MLLsTKI7yABKsBrAgCmYwWzFf1u7mDBVj88UdgX2u9qrOw7fU7r/ZAvKOjfVVZn+VEF5xP6I5hYAYcvRCtzWqd+tvmGeHqm2+MHY4MK1s6fU14GxHeQABXgIAEA8cgm9dM4XzDWD08U9oX27b/7TlmN75ovQ3v2lE0vIFZLrvojmFgBDOckKZ1RxvxULlwOzSZdHj/YKUnp/GlDLOI7SIAK8J0AwEfoL78WrPXDE4V94fa3X71RUDBkewFxLXHVH8HECmBUwWJZ2uQNYjhB0+Xxm9KFrxIZEN9BAlSAlwQA7FRQrSijcb0QLn1xIgOeKGwLt7996x+I9qmz5hngxhlX/RFMrADiEQUlbbCoIJyg6e74zVgLpyoyIL6DBKgAbwkATKy1RFlXpmNJ0eE5GfBEYVv453ereErBUtVVfwQTK4DmiZfGZW2wkOTCZajb4wfnz8uA+A4SoAI8JQAgyisoa4NqKkP98ERhXXjX3WpRFmOtM8D0RzCxAh7fD9e1QXqzEC77HMQHqACPCQDo2a1gSRvUrxYt9UM/tS+0b98+gMrqJDqoYLHsqz+CiRVAmxNNaqwUwqUvl/iPD1ABnhIAsChT/dBP7Qv//G61v6CgRH/0hYkVQOtEU9uP2zjpwvgAFeAgAQD0U/tC+/btRmItqYNoUsFqif7oCRMrgPYnmlrtuGdH1W18gApwkACAoW1PNPRT+0L79u1G4vSGOhjYo+B8Qn/sAkysAAAAgPvfZ0RmGK1W1MF0LEmNy/IFTKwA+nvavXZcrMdqfne7u/gAFeAgAQBtf58x1I/lZ3D0U/tC+/ZthlFdS9ReflRBqUp/7A5MrAAAAMCigv5dZfmFeERBesnwI9YzcgZMrAB2xv7jA1SA4wQAJtaeY+/LgH5qX2i4y24sp2CxvPVUu1TtEBHIyRUA1dRvfIAKcJAAgIUkFy67js1ovYFnY1nQT+0Lt39XflpBOrP1VJvO0B+dYmIFkC77jw9QAc4SAFA/+4CC+6JTiVoGHh6hn25n4Z+zfXQyVvBzWe3FUwqqFfpj12BiBQAAAOancgqOFOd/XpTUu7d4KJYjGC8oWJ1VB8M5BecT+QQmVgA9O6r+4wNUgLMEANS/eVKBesbHZUQ/tS+8++1bZ4K/TtReNKlgtUR/7CJMrAAAAMD1706qDc6TOhC/ZDgTrP0FBdcSAUysWCf/cqyMxltV/RMBAAC4+OvLsTaolcZieYBjOQWVGW39I9bGGQFMrFhvZ6ys6PCcHEF/j+/4ABXgIAEAK/81NRFrneVvbuTHJKlWlx391L7QftdkUcHqx+pkYI+CUpX+CCZWZOzURkP662GxHquT9Ibb+AAV4CABAI3Tp3dP7u2PJaW3li5ckw391L5wu9tPPqCg8UGiTqZjhQ0u0R/BxIqsRW20pL8LevaU/ccHqACfCQC4+Y0ymgfJagn99C4W3v32xQcUpJ9W1Ul+VMFieYuIABMrb+Ial/XXQzVVG82P23TZf3yACnCVAICdCsoyoJ8aFm5v+4MnFeinsjoaba6foT+CiRUbrPyH/MBQu4/bWt1/fIAK8JcAwMSaXpIR/dS+0L79wccU6NScOoqnFFQr9EeXmFgBpDcL4bKvbTtO/McHqABPCQCIRww/gqOf2hduZ/v8Y7GCC3PqbCyn4HxCf3SJiRVAY6UQLn25RFlRXkHZf3yACnCVAIDhnCQtVWVAPzUs3Mb2rf+K4oUZmX7E2rhMf3SKiRXAooK+OFFWz24FS/7jA1SAqwQAjBoGGvqpfeE2th94yTiwajinoFSlP4KJFXD9+RIdntu0gzcu+48PUAGOEgDQOhR8SQb0U/NC6/ZB/ErOOLBGkwoaZ+iPXjGxAlhIcuFyZG7TF8S1uv/4ABXgKQEAYzlJWizLgH5qXmjfXtFTOQW/zGgr+wsKlqr0R6+YWAHUrxbDZai/uskLYl1L/McHqABHCQDITysoyYB+al9o3z56uqCg8pm2NKognfHbH8HECuBKUZKi6ZlNXhA3zviPD1ABjhIAEL8Uh8tqSW3QTwee3iktf1WxLrTflR1YP9aW8qMKFst++yOYWAG0zrycqd75gnip6j8+QAW4SQBA60Bq+nWizdFPm79kuuOFt6rWhfa7guMFBasfJ9rSdKyg5Lg/gokVQP3sA+ESvfhuottaX7GXzviPD1ABfhIAMPD8oIKfy2qDfjqcUxC+0ci+0L79yaKC1XCX8UesqyXP/RFMrADmp3LhMvDapxU1FY/Frc/b7o8fRDt025ACDfYpUGOZ+F4ToAIcJACgeHL5XEktih4cU6DVWbXDE8XObSy033WwqCA9c0B3aCwkyhiNFVxLPPdHMLECqH/zpIK+l2pz/1/X4L6J2P556zi+XfxmThnRC7qt8j7xnSZABThIAMCwdpw4sfZbaaUuDe4rDqqp8UEiA54ozAvtd40qUM9xbeLCjNaLpxQ0zvjuj2BiBXD9YlGB+o4e1e9qHyT3RnwN59ROXy4hvuMEqAAHCQDoPXBAGbX3qjLgicK80H5XlFcHh2Yz+43lFJSqzvsjmFgBfJeMKTB83nZl/J1qqy9OiO8/ASrAUwIAFr5M1B5PFIsKlN6wLPwzu1V0UEF6yX1/BBMrgB9XjsbK+uWr5J6Jv6i2anXiO02ACnCQAIArRW20dv6cOuCJovUNvOmyfaH9rsZKQe3VMhvuLyhYLPvvj2BiBfB/lx8e0TrLX1XuofgLtwbVxrWE+E4ToAIcJADg+lcPZRtYbbakzniiqL//5M7wx6v2hfa7dGY0VlslrbcYPn208KX3/hiAiRXA6lfRwdG9eUlaqV24ktxT8etvyY74XhKgAhwkAODq1Wi4uDful5TeWrpC8Vjaycp7toXbumvlP2S18hb9EX/axIp/sHfHz1GVad7wr+4TQhIIoIlixKgBB9ig6OxOlTuvOqjvVFn7N1vjsE+puyUzZT2MUqDZgKCiEnoxITGJnfTTp+mYdCfZvYsu+8Q+n8+vc9+5Tt3XuY79ZU46vwLYvHu3lPXBBPRwAcDmDz9EOs/T9I0pqzwfkVgBAABgKAAAAEBiBQAAAIkVAAAAiRUAAAAkVgAAACRWAAAAOPiJFQAAACRWAAAAkFgBAACQWAEAAEBiBQAAQGIFAAAAiRUAAACJFQAAACRWAAAAkFgBAACQWAEAAEBipRJohfoOQAM0QAP24gBwfDQCiRUAAAAkVgAAACRWAAAAkFjpRSM4ACqFtkJ9DdAADdAADcDxgcQKAAAAEisAAAASKwAAAEisAAAAILECAAAgsQIAAIDECgAAgMQKAAAAEisAAABIrAAAAEisAAAAILECAAAgsQIAAIDECgAAgMQKAAAAEisAAABIrAAAAEisAAAAILECAAAgsTKAzpzPItY/qQUAAIDEykFSfSaLiOETtQAAAJBYAQAAQGIFAABAYuW3aXNlIjhAqiefOz4WTSsrX39bL0l9MAEaQAHcwE4jYWMfDvv4qZPDhyPi5/WFm4uxr5EXp1rLYmX9u/l6ILFSMo0HwUEw8spUtI2NTb628Nli8fULO4YfP6pHqF+OCzABGgC9j4YbOO00et+YsCq9ccf/eTzaDh068kLj5vU911XPnsm2K544v37tdiCxAv1WvTATHSYvzX9eovpbpi9m0TSe1SOB+sVfgAnQACh+NNzAaafR+8aEVemNm3p5NDpUTj/3SS12yf+0RYfh12Y/XgwkVqCvqn+ciC6VM099WC9L/baRt0YjnfrFX4AJ0AAodjTcwOmn0fvG9FXbjUvPx7nhNz6f71736vQe6y59VAskVkphKZoay3FACKxdjr15eaDrJ/zHS/0SXIAJ0ADoYTTcwKmn0fvG9FUpjTs9E3uoXHhQiw55YN2t8kZfIysSK/DqRLT8fOfrjag++dJotBy7eLUc9XOtV4fSqV/8BZgADYDCR8MNnH4aPW9MX5XQuOrJaGnc/6YWMTo5015d+cMH9djhpemtgl8tRcT4qTPZ9jokVqBf2o/jxvUvI/fjza33aF74ulaC+jkvBJfyhWAToAGQMBpu4D6Mc8LG9FXpz7Tlvz+I3NIP17YS7sjz87EtO9tRMJauX39pdnsdEiuDbymKx/bjePsFl9W/PHrrpnLxcgnqx86vAVwZi3TqF38BJkADoNDRcAOnn0ZvG9NXJT/Tlq8sxi/u3H8ni1xHEp0ZitzO326dW3p9ax0SK2WxvhHFYutxXItfbP7ne0PRdPTw2qDXz2XvjkbL+rWFd7JIp37xF2ACNAAKHQ03cPpp9LQxfVVS4zZXxrv+Rs3Kjdno/kntd4cX52OH7+9M97W9SKxAdnaPx/HGF7PRVD13ddDr52ZGI/fz3JcxFunUL/4CTIAGQLGj4Qbu/TSSNqavSmtcfBrdbp4diqbKkbXYMnIimhpdV/7t9NY6JFYG39JGFoVjcqjzcdzx3H7mWn3A6+fGo2m/Pxyu/sG/ABOgAVDUaLiBez6N9I0pq3p4pm3cnY4u41nE7j9rsVAfCiRWSmW9HoXi2cgt1SL2+DfLw8dqA16/rbFwpR7p1C/+AkyABkDxo+EG7v000jcmrerhmbYUucqJrgIF/wIbEiuQTUXudupze8Dqt2stfLYY6dQv/gJMgAZA8aPhBu79NNI3Jq7q+ZnWeBBdhrN6gMRaVmuNKBrtd2w2v4ku7Xdejg56/dzcXKRTv/gLMAEaAMWPhhu499NI35iy6ld7pnX/xurhSjQ1lgOJlRJo3JuKxu0oFOOR2/3GS+PHiWh6svj6YAI0AAb0BnYa6RuTVvV+/Y3l7jBcea4WOz2bRdPDtUBipQQ2r8RB4b+29eiyuTIRTcND9eLrgwnQABi8G9hppG/sw2FnU9FOot1h+Pkba7EtOxu529EXSKxAdSxytdhlKXLDWb34+mACNAAG7wZ2Gukb+3DYM0O7kujm3EQ0VS99UI9fXGytW70dfYHEClSOR+7hfv8BqBxZK74+mAANgIG7gZ1G+sY+HPbYudidRO/dn4imkXe3I+sr09HU+Fs9+gCJFQAAYOTtLHJz9dhh89N3smga+fMntchVL8xE7qta9AcSK9D+wrsHscvSRhatb4svvj6YAA2AgbuBnUb6xl/7sKtnz2SRuzUfHVZuzEZu+M17V+oRI2+NPlp2NX5tSKwAAACHnnjh6Sz2SaJzMRstT/3bzS/OzYTA2m8SKzCeFV8fTIAGQGlvYKcxnhVz2Nm7o9Fh/ZNa7DK3djGLXOX06a5lxUJiBdYaxdcHE6ABUL4b2Gmkb+zhx0+Oxg6N+9cexF7u3HtlKnbIXw/uNyRWoLFcfH0wARoApb2BnUZjud+HPR47VSZmv74de1m9MvXyaGy5da0evyYkVgAAgKXoUJmcfPXm9Xr8L148Nfdl9BsSK1A5slZ8fTABGgBlvYGdRr6xv4e98NNodKqcfu7jxeg28lbHukP/dCZf9GtBYgUAANh4Px4ZP/rc01m0DF/6qBYdqud+Fy2N/z7+y6L5z+NXh8QKAACwtHQ3tn5VtfL/vb8WO2x9oXDj5vV69dTW1wafOXalHgVDYgUOV4qvDyZAA6C0N7DTyDf26bDvfn9hJnLVSx/U4xcj7w5FbuGzxYjNO9+cPZNF7qk3P6xHPyCxAksbWfxPGg+Krw8mQANg8G5gp5G+sQ+HvfmPn2YjN/L8fGzJHgXWxvUv24uu32r/UuuxNy9H/yCxApUTteLrgwnQACjrDew08o3FHvb8yYnIvXS7Ho9U//VRYP1ou+jqXy7MRO7Y6fnoAyRWYK0R+xjPoqmxXHx9MAEawMByAzuNpI19OOzNuYnIHT5Wi0dOT0Tu89pe/19sHmyRWIG+ORq7jEdufaME9cEEFMgB4AZ2Ggkb+3DY9+5PdPz/uNnZyN2ajw5z49MR7beHf3VIrEDjx4loenLf/wDUi68PJkADGFhuYKeRtrEPh725MtGRimeGomnzRnS58WwWTemJFYkV6P3pPDxUj07VscjViq8PJkADGFxuYKeRtrEfh720VxR+uBZdVr6d3rqUXx8SK7AUueGsHp0qxyP3sPj6YAI0gAHmBnYaSRv7cNjJUXj7UpBYgX7996V6aj46TQ5F0+Y3xdcHE6ABDDA3sNNI29iHwx6Plod7R2EYCqAIC/WhiD1+GePZyK1vFF8fTIAGMMDcwE4jaWMfDrs6FrnGg9jpaOzWx/4isQIbd6ej6ejhtdgpm4rcd/Xi64MJ0AAGmBvYaSRt7MNhj5yIiJS/kzMeSKxAH307HU3Vc1dj2/b34xVfH0yABjBI3MBOY+SP4xHLVxbTN/bnsM9lkXu4Frmtbyd+5lo9osB/kUBiBbbesrmxFtvGzrUf2sXXBxOgAQwQN7DTyN7Nlx350/traRt/hcPO3nvw2WJ0OTkdLbfjkc3vJyK6/+7qdkiOh4HECvTFxhez0VS99EE9toy8nUVT42rx9cEEaACDxA3sNCaHIlc9NZ+08dc47MOVybfvXV2Oncb+EC2rt6NtKVouPKjFTifPba1DYgX64+bZoWga+fPHi/HI9MUscl/VSlA/Vz0SbUejZXQ4WjaX1T9wF2ACNACKHw03cA/jPP64G9NWpT7Tnvr/l//+YHvPhZl4ZK4ebffuT0RT5Y2b1+vbC8/9bnsdEivQFxt/fz1yw2+vz/+wEaNPnsmiZfVaCernsveGokP1T9G2eFn9g3oBJkADoPjRcAOnj3PvG9NWpT/Tjvwplu8sLkdUn3xxPNpuzceWzU/faRWonJ65P7+0HBGHnnjh6XbNxflAYgX65fs709EyfP58bFv/93o56sfkUOxneKiu/oG8ABOgAVD8aLiB08e5540Jq9Ibt9bYCq3no9O9q7Ft5cZstFQmJ6PT6oeBxAr0z6f1mdhl/a9rZak/HvsazurqH7gLMAEaAMWPhhv4scd5KVoaD9I3pq1Kb1z+K7F7unU1dppb+33safWDeiCxAn30j5XzWXS6d6VemvpLsa/1DfUP3AWYAA2A4kfDDfz449z+zt/GcvrGxFXpjZtbfnk0dln/eDE63bn31h7rGvOfBxIr0F//9c0rU7HD8pXFEtVf+Gk09vFdXf0DdwEmQAOg+NFwAz/+OG9cfr3191jX0jemrkpv3N27I50/KGL92u3YZfX9qe5s28i/iAmJFei31SvVk88+MRZNK+u3vq2Xqv7G+1Eg9ZMvwARoABQ/Gm7g3k9j5a/pG5NXdTcu4Trj0NOnDx/OIuLnnx/eWtin4N278fT0seHD0Vq3emdhOZBYgUJs3r1bfH0wARpAWbmBnUa+sZ+H/fM330SKH34IkFgBAACQWAEAAEBiBQAAQGIFAAAAiRUAAACJFQAAACRWAAAAkFgBAACQWAEAAEBiBQAAQGIFAAAAiRUAAACJFQAAACRWAAAA6CGxAgAAgMQKAAAAEisAAAASKwAAAEisVAKtUN8BaIAGaIADwPGxl0b0AokVAAAAJFYAAAAkVgAAAJBYaQQHQKXQVqivARqgARqgATg+kFgBAABAYgUAAEBiBQAAAIkVAAAAJFYAAAAkVgAAAJBYAQAAkFgBAABAYgUAAACJFQAAAIkVAAAAJFYAAAAkVgAAAJBYAQAAkFgBAABAYgUAAACJFQAAAIkVAAAAJFYAAAAkVgAAAJBYAQAAQGIFAABAYgUAAACJFX6DqiefOz4WTSsrX39bL1V9MAFA8RPsNJI2FnDYIy9ODR9uVVz/br4eSKyURPbuaOxr9YN60F8jr0xF29jY5GsLny0WX7+wY/jxo3qE+iW5ABPgDoT0W7PHCfaJoveNCavSG5e0qnr2TLZd8cT59Wu3A4mVUpgcjf2NzF4N+ql6YaarP5fmPy9R/S3TF7NoGs/qkU79wi7ABLgDofhbM32CfaLofWPCqvTGpa06cz6LDsOvzX68GEisQF9V/zgRXSpnnvqwXpb6bSNvjUY69Qu/ABPgDoTib830CfaJoveNCavSG5e0qvrqdOwyfOmjWiCxQhEE1g7H3rxcdP1i/1U4p37hF2AC3IFQ9K3Zhwn2iSJpY8Kq9MalrcoD626VN0RWiZUyWNrIggPi1Ylo+fnO1xtRffKl0Wg5dvFqOeq35C8FpVO/+AswAe5AKP7WTJ9gnyh635iyKr1xSatemt4q+NVSRIyfOpNFrvIHX7kisVICKx8eiT2cmorcw6B/2o/jxvUvI/fjza03ZF74ulaC+jkvBJfqhWAT4A6E9FuzLxPsE0XSxoRV6Y1LWpWd7SgYS9evvzQbuZHn5wOJlYH344+xW/Za5FZvB32z9TjefsFl9S+P3rqpXLxcgvqx82sAV8YinfqFXoAJcAdC8bdm+gT7RNHzxoRV6Y1LWzUzFLnP5+MXc0uvR05ilVgprYtDkZurB32z9TiuxS82//O9oWg6enht8Ovv+FNL69cW3skinfqFXoAJcAdC8bdm+gT7RNHrxoRV6Y1LWlU9GbnF+djh+zvTWxWRWCmjk9NbTwb6Jju7x6FvfDEbTdVzVwe9fm5mNHI/z30ZY5FO/WIvwAS4A6H4W7P3CfaJInVjwqr0xqWtGjkRTY2uK/92OpoqR9aihCRWyP4lcpv/EfTP5NBej+ObZ4ei6Zlr9QGvnxuPpsbN6+m11C/+AkyAOxCKvzV7n2CfKJI2pq9KaFz6qvGstWg5OizUh6KcGArYeif42lrQP89GbqkWsce/WR4+Vhvw+m2NhSv1SKd+8RdgAtyBUPyt2fsE+0SRtjF9VUrj0lfl1jeiBYYCingnmGwqcrejy1LkKidqg12/XWvhs8VIp37xF2AC3IFQ/K3Z+wT7RJG4MX1VUuPSV+WGs3qAxEqukHeCab9js/lNdGm/83J00Ovn5uYinfrFX4AJcAdC8bdm7xPsE0X6xvRVSY1LX5Xr/o3Vw5VoaiwHEmv5UMg7wYxHbvcbL40fJ6LpycGuDyYAMMEFn0bSxgIOux2GK8/VYqdns2h6uBalg8RKoe8E+69tPbpsrkxE0/BQfZDrgwkATHDBp5G2sYDDbofh52+sxbbsbORuR+kgsVLMO8FUxyJXi12WIjec1Qe4PpgAwAQXfBppG4s47M25iWiqXvqgHm1b7wSu3o7SQWJlZihyt9eCfqocj9zD/f4DUDmyNsD1wQQAJrjg00jbWMhh37s/EU0j725H1lemo6nxt3qUDRIrY+cit3otCgcAAJufvpNF08ifP6lFrnphJnJf1aJskFip/j7zL1aFaH/h3YPYZWkji9a3xQ9wfTABgAku+DTSNhZz2Cs3ZiM3/Oa9K/WIkbdGI3frapQOEiunJ/yL1UECAMBczEbLU/9284tzM1HawIrESmHvBDOelbk+mADABBd8GuPZQT7subWLWeQqp09Hy/ontSgdJFYO4jvBrDXKXB9MAGCCCz6NfGPhh33n3itTsUP+enD5ILFS9DvBNJbLXB9MAGCCCz6NtI1FHPbqlamXR2PLrWv1KB8kVg7+O8EAAPDiqbkvo2yQWCn+nWAqR9ZKXB9MAGCCCz6NtI1FHHb+BcE7HPqnMx8vRrkgsXIA3wkGAIDqud9FS+O/j2fRMnxp/vMoEyRWsrOR27wRBwYAAGTvjkaucfN6vXpq62uDzxy7Uo/yQGLl4lDkrq3FgcLhSpnrgwkATHDBp5FvLPawR94ditzCZ4sRm3e+OXsmi9xTb35Yj7JAYuXkdOQW56MILG1k8T9pPBjk+mACABNc8GmkbSzksLNHgbVx/cto2bx+q/1LrcfevBwlgcRK9i+R2/yPKBCVE7US1wcTAJjgQk8jYWMBh13910eB9aPtoqt/uTATuWOn56MckFgp+J1g1hqxj/EsmhrLg1wfTABgggs+jbSNRRz26YnIfV6LbZv/+Gk2ci/drkcZILFyQN4J5mjsMh659Y0S1AcTAJjgAk8jYWMBh52djdyt+egwNz4dTSPPz0cJILFS+DvBNH6ciKYn9/0PQH2Q64MJAExwwaeRtrGAw54Zitjrr1nceDaLpnIkViRWCn8nmM2ViWgaHqpHp+pY5GoDXR9MAGCCCz6NtI0FHPZ45B6uRZeVb6e3LmXgIbFyAN4JZilyw1k9OlWOR+7hYNcHEwCY4IJPI2VjAYe9FYUTLnhgIbFyEN4JZily1VPz0WlyKJo2vxns+mACABNc7GkkbCzgsP3LIRIruZmhyN1ei+KwUB+K2OOXMZ6N3PrGYNcHEwCY4IJPI21jUYd9NHYrS3+RWBk7F7nVa1EgNu5OR9PRw2uxUzYVue/qg10fTABgggs+jbSNB+iwx6MckFip/j6Lpsbf6lEkvp2Opuq5q7Ft+/vxBrg+mADABBdwGiN/HI9YvrKYvrGQw25/O/Ez1+oR/kWinCRWTk9E7qtaFIqtt2xurO3+P8Afrg1ufTABgAku4DSyd/NlR/70/lr6xiIOe/P7iYjuv7u6HZLjYQw4JFYOyjvBbHwxG03VSx/UY8vI21k0Na4OcH0wAYAJLuA0JociVz01n76xkMNeipYLD2qx08n2R9jbMeCQWDmXRe6Hp2Mvm98F/XLz7FA0jfz548V4ZPpiFrmvaiWon6seibaj0TI6HC2by+ofuAswAe5AKH40ephgnyjGH2Nj6qqExqWvund/Ipoqb9y8Xt/edu530TJXj8GGxEp1LFqefz729Nl80Ccbf389csNvr8//sBGjT57JomX1Wgnq57L3hqJD9U/RtnhZ/YN3ASbAHQjFj0bvE+wTRfLG9FUJjUtftfnpO60CldMz9+eXliPi0BMvPJ21F81HyUmscDTom+/vTEfL8PnzsW393+vlqB+TQ7Gf4aG6+gfvAkyAOxCKH43eJ9gniuSN6asSGpe+auXGbLRUJiej0+qHgcQK9M+n9ZnYZf2va2WpPx77Gs7q6h+4CzAB7kAofjQee4J9oliKlsaD9I3pq1Ial75qbu33safVD+ox6JBY2VyZiAODf6ycz6LTvSv10tRfin2tb6h/4C7ABLgDofjRePwJ9omi/Z2/jeX0jemrkhqXvurOvbdGY5fG/OdRAkis3Jgcjf01vg766b++eWUqdli+slii+gs/jcY+vqurf+AuwAS4A6H40Xj8CfaJYuPy662/x7qWvjF9VXLjEtu7+v7Uy10LG/kXMZUBEisr78cBwuqV6slnnxhrtWb91rf1UtXfKPRmVD/9AkyAOxCKvzV7nmCfKFb+mrYxdVVC43po79278fT0seHD0fTzz6t3FpajEEiswObduyWuDyYAMMEFn0bSxgIO+4cfAnpIrAAAACCxAgAAILECAACAxAoAAAASKwAAABIrAAAASKwAAABIrAAAACCxAgAAgMQKAACAxAoAAAASKwAAABIrAAAASKwAAABIrAAAACCxAgAAgMQKAACAxAoAAAASK5VAK9R3ABqgARrgAHB87KURSKwAAAAgsQIAACCxAgAAgMRKLxpxAFAptBXqa4AGaIAGaACODyRWAAAAkFgBAACQWAEAAEBiBQAAgERDAQAAABIrAAAASKwAAABIrAAAACCxAgAAILECAACAxAoAAAASKwAAABIrAAAASKwAAABIrAAAACCxAgAAILECAACAxAoAAAASKwAAABIrAAAASKwAAABIrAAAACCxAgAAgMRKrnryueNj0bSy8vW39fhN0Qf3ASYAYOTFqeHD0bSy/t18PRJ4niZs7GHV8VMnWx35eX3h5mLs6+npJw5n+bLlffumvUisjLwyFW1jY5OvLXy2GGWhDwn1CzmGHz+qR6hf7AUUPwEla8DjA6pnz2TbT5AT59ev3Y50PlGkbkxfdfyfx6Pt0KEjLzRuXq//Lz/q0IkT55evLGrvbkisVC/MRIfJS/Ofx4GgDyW8D6YvZtE0ntUjp36RF1D8BJSpAUAPzpzPosPwa7MfL0Y6nyhSNqavmnp5NDpUTj/3SS26Vc/9Ljocefv2Z3XtRWKlS/WPE9GlcuapD+txIOhDye6DkbdGozjq5xdQzgkovgGPD6i+Oh27DF/6qBapfKJI2Ji+alemzQ2/8fl8dMreHY1uzz/9QV172ddQ4LG25dibl6M89KH4+vv/J079Qi+g+AkoSwOAHuxONLnKG+mZxieKhI3pq07PxB4qFx50NiR7byh2G+kqqL1IrLw6ES0/3/l6I6pPvjQaLccuXo0DQR9KdB/k72MWR/38Aso6AcU34PEBL01vPUC+WoqI8VNnsshV/vBBPZL4RJGwMX1V9WS0NO5/U4sYnZzJYq+GVP91KFrWr91f3u5bV0HtRWKl/RhoXP8ycj/e3Hop7oWva1Ea+lD8feCF3BK/EFz8HVh8Ax4fkJ3teIDE0vXrL81GbuT5+UjlE0XaxvQfv/z3B5Fb+uHa9MVsj4acnohc4//ebvfti/aLLs/fWNPeXZBYPeW3X6xY/cujtz0qFy9HOehD8fVj59cAroxFN/ULvIDiJ6AMDQB6MDMUuZ2/JDm39Hrk0iONTxRpG5N/fMeX/t65/062qyFj5yK3+X8Wo23zHz/NRlP1j5e1dxckVk/5Wvxi8z/fG4qmo4fXohT0ofj6O758Yf3awjtZdFO/wAsofgJK0IDHB7RfQV2cjx2+vzOd/gTxiSJpY/qqzZXxrr8+s3JjNrov4VwWuWuLsW3+5ETnMu1FYiU7u8djYOOL2WiqnrsaJaAPxdfPzYxG7ue5L2MsuqhfwAWUagKKbwDQg5ET0dS4Gh2+nY6mypG1SOETRcLG9FXxaXS7eXaoqyHZ1B4/anNuovNHaS8SK5NDnY+BjqfKM9fqUQL6UHj93Hg07ffnxdUv4ALKNAHFNwDowXgWTY3l6LBQH4p0PlEkbezhx2/cnU4qeO/+RMeP0l4kVp6N3FItYo9/Kzt8rBYHgj6U4z5oLFypR2HUb11ASSeg+AYAvVrfCHp5niZt7OFxvRS5yolatI1Hbm0xOmx+PxFNw1lde5FY2flCxu39nyoloA9F12/XWvhsMQqifvsCyjoBxTcA6FkecUh6nvawsefHdeNBdCbW9Xp0+vZcFhHVU/Pai8RKrv1CxuY3EXu+a3E0SkAfiq+fm5uL4qifX0CJJ6D4BgA96/6VxsOViF0vk/pE0cPG9FVJqmORq0WXtUbkjmovEisd/7y1EV0aP05E05NxgOmD+wATANBOS5XnarHTs1k0PVyLJJ6naRt7eFyPR2fGrByP3MPo0v6F1ye1F4mV3L4vZMTmykQ0DQ/V4+DSB/cBJgCgnZaev7EW27KzkbsdaTxPkzb28LjOpiIxYy7F9o/SXiRWul7I2P20yOpxcOmD+wATALD1B1EufVCPX1wciqbV25HE8zRtYw+P65mhx8iY2ovESvcLGV0PHn/m6sD3wX2ACQBo/0GUkXe3M80r09HU+Fs9knieJm3s4XE9di72zphH9w+/v/32IrECAMDmp+9k0TTy509qkatemIncV7U4EBh5O4vcXD3a0r6pQHuRWGl/0dqD2GVpIwt/3ubg98F9gAkAWLkxG7nhN+9dqUeMvDUauVtXI5HnacLGx//x1bNnssjdmo+23b/62v2jjqwNQnuRWAEAYC5mo+Wpf7v5xbmZODiJhkNPvPB0tldHliJ3+FhNe/8HSKyMZ/Ebpw/uA0wAwNzaxSxyldOno2X9k5rnac8be/jx2buj0aG7I0uRq1y8rL08VmKFtUagD4XXJ4kJALhz75Wp2CF/f5T052nqxvRVk6OxQ+P+tQfRof2HVuPYxaux08gbmfYisdKtsRy/YfrgPsAEAKxemXp5NLbculb3PO1lY++rxmOnysTs17ejw8YXs5F7sfpZPbaMvDI12O1FYgUAgBdPzX0ZRWIpOlQmJ1+9eb0eO9w8OxS556dvfpWvPvTE9DOZ9u6GxIq/dfhb74P7ABMAkH+D7A6H/unMx4uepz1s7HXVwk+j3ftOP9fRk42/v771P5we2PYisQIAQPXc76Kl8d/Hs2gZvjT/eRSGjffjkfGjzz39S08+qsW27z/9feynsXwA2/v/2LvL5sa1LArDK1aYOZfCOMzM/I+HLjMzNGXcmTCTY4xsTenE7siynVbLU1dO+X0+n2Opam3t0jbIYGIFgCcHAEDpubTOw7t27NnSc2Xn+9+3FTUkEjsq/Qi15ZfPZ3Vt4+gPlnxy67MW8QbAxAp0tAjkQB2ATnQLAOj8Y6tch1+cS4WNraV5S66xX79hC/X1U7Ox3lU7e9+alSv2u5e8kaT+YbK6lvzwtNuszOWJF0yscCXylm7inAqNnAN1AK4AALCuJhrn7gMZhbtrxV899v/6FfnRT8NvDN+uC5+nvylX51RcRimruwMLQx2Wuzl9sbZLvGBiRVUtg8cCOVAHoBPdRgBiP7+aaDw/kcy8WPxIr38uTj/9f28M9/LxiRG5FtZtlTn7UGX6zFScM6uIF0ysyDoq4+8WTlINjByoA3AFAMDciFxfHld+pFc5H9FPw2+sr10XVq9y6ug/1o365DomXjCxwqu3VrfI5dW4yIE6AFcAAFhLcq3FVWa1b1Kq+BIq/TT0xrpf/uBoJNAntOalnE3iNcDECufM9I7hmo3HVuMiB+oAXAEAMGtuYAv35HPvGUuS/CMN/TT8xvradSE1UjnvVrKeNkdKEi+YWOHtHe2ttsrFuuU6VgMjB+oAXAEA0CfXRVY+qe3JytZCPw2/se52nVAQo63ePIkXTKxIyNVu2SrXMiDXhRoXOVAH4AoAAN+sFKC10E/Db/wa2vUzZXkSL5hYkZAr9my86vtbhS01InKgDsAVAAAhZiX6afiN9bfrPgWIqvil4E3iLQITKw5tk/pUvOr7W7m8Gh45UAfgCgCAXlWqbCH009Abg60K8Gm4c6qbzJoDJI6JtwhMrMjvTJo+0JGt8v6Wdm3dRuRAHYArAAD6VIF+Gnpj/e26c1AuJ6kbdC/LtU68j4CJFdum8cSWP5OH77lsjYkcqANwBQBA8fG1T31lS8GnKPpp5y/6pOT750E31t+uly25LrKqzfq9WZRZJ94iMLHi+tsd97L+97dMS2lg5EAdgCsAAAp7I5Lvjzk9U5QuVAX91Pqju6znt89nA28Mvsr62+kX5/KZmJSxrtpiPzev7nxgE+8jYGJF/v43TYf43Uu2Sjqv3t9yPlNDIwfqAFwBAJCQ8a3TY3lNLMvzaZ0P/dQ8Ksk8QynwxuCrOlpGf3/wWVJe3T/WYwPp/E2XXP89Jl4PMLHi4ZLJvfPPb53ryuR3LX+7iBQ5NEkdxHpU1Cujq11GIcnxoz+BSCuwGQIIDcDB0Ygktfzq4V1bJbHlRRmrtqrgjqIv3Mbg7XrsT8kPT1US+9asKgKZ/EHywboq12S+Il4vMLEi/+HP5Gr/fS6+n1fX8LzlaxfNgByirwPrb74OFPutis5f4fjRn0CkFdgEAYQGoPDxHywz08zNHsUTSUltQ9PjlozzuHy4owi1McTL9/xWyY3zpBQbnulT0ZonkFH1fP/7lyfrqbzUNTzZVQr0VZt4wcSKMnsbkzLaV1Z0LWfaBZolh+jrYLR2A2pvtTl+xCcQdQU2QQAAQkvd+6aMltFRlcu8IT/uKMJuDL4q6+hKz4rKHXwmn7bxcZXJvZwlXh8wseJje1aGv12giXKI/vh9qqndsjl+xCcQbQU2QwECqMNq9geqKvOSraq4o0jIcE4Dbwy+yvzYtaq1z/Q4h+/ZxAsmVlT4PLViqdzB+7bQTDlEf/yEasrlOX7EJxBtBTZFAQKox8bBb7pUwYl/qeq4oyg989dJPsHG4KtWk9+uEkjurXN5bU/K73L1AfFWAyZW/GfrO0/Lw/w7F5oqh+iPf5juUg27NsdvghOoXoFNU4AA6pJ5/mn/iOSYJ/XUwB1F/pWfmf9jzQbYGOLld3Y6zRKP3FfrKrf3vgmtcgnxgokVlTLvxyaeGeqWpFRubdsWmi2H6I+ff16R4fjmBJr7Csg/LwC32c6Oxif72zsk6fIys3GY1E24o0i9HGxjqFVmidrG5zo6LBPIxdqhXS202OjkkOWG5qQvtrdt4gUTK25Q2NkRyIE6AJ0IwG21vy/4+2n4jfWvutza+h97d/7V1nX2C/xBRwGMTQbLrmMS0mL7QlYGN+88dJ7/4zt1cm/H1bR3IIlXnPDiljjYaaheB2yKsISuDkd2DUFk51AfG+nz+ZU9aO1nLZ39Pdqc85nD5EVTXiRWAAAAJFYAqAIAILECAACAxAoAAAASKwAAABIrAAAASKwAAABIrAAAACCxAgAAgMQKAACAxAoAAAASKwAAABIrAAAASKwAAABIrAAAACCxAgAAgMQKAACAxAoAAAASK2OBUpjfAiiAAiiABcDycZBuILECAACAxAoAAIDECgAAABLrUdCNJwBjj7UU5lcABVAABVAALB9IrAAAACCxAgAAILECAACAxAoAAAASKwAAABIrAAAASKwAAABIrAAAACCxAgAAwKGJFQAAACRWAAAAkFgBAACQWAEAAEBiBQAAQGIFAAAAiRUAAAAkVgAAACRWAAAAkFgBAACQWAEAAEBiBQAAQGIFAAAAiRWonXvxmano2dy8sdoevfkBgOqv6Okd01sl+8LscxNZRNy7e2u5nd4KiZVRcOmV6PnDYgxS+4fzEbH9q/WoBJOvn4++qakzb6y9vT5086d/jE9+2Y7PYH4LAFD7t0YMkLCJsaNI7JjeKqEkA4Z66tlnX7775nr0pbdCYmV4TUfupWutGGDyC9HzVD2qQO3VudjjzDeW3xm2+RPMXs6iZzprx2cwvwUAONuIQ4x/aTEKdhRlO6a1KleS2sJ/iT1OfnPl7XYU0lshsTK0VmeLb4HFGGAmi57WejwebhKPXTz7i/aozN83+bUTUR3zWwAAO4r0jumtkmTfPhH7vfSFn7TTWyGxMuTW2vXoef5qOw5UOxe5W+2g+stL4emvXhnW+RNu7lbA/BYAwI4ioWN6q3TZD+rxaZPFUOmtkFgZYp2bs9Ez8XQzDlQc6ujeCCrw5UbsuvfBjU7UTl86Ebuevrw4CvMXivOg6cxvAQA2Olkc4k4ksKNI6JjeKrUktX+tx67tq3++GzH9wsXsgAnTWiGxMqyKY8FjLzbjQDORcyi4EpdmI9d99/3IfXL9/uHIL95oDv/8hf6U6cxvAQA2f3w6DtKYi57u7UhgR5HQMb1VakkuNIqh/t9K5Dbefa84aFM8YyW9FRIrw+zwY8HZ+cg5FFyFbD5y3V82o2/rx8Wpm7HLV4Z9/kJt/mIWuzanIpH5LQDA1moc5Fz6fXc7iqSO6a3SSjK1ELmd/7UefTtv/eWV6Kn925WI9FZIrAyzw48Fn6lHOBRckbl65N5pxgM7vyn+b+PURGv453/osQrbV9e+lcVRmN8CAEzNRG6pHUnsKBI6prdKKslCFrmr6/FXy+ca94dKb4XEylC7NpPFwGPBM5HbaAZV3RBdX46HdN4rbiEuLA73/IW5E5G7t/R+TMXRmN8CABRBZ2slkthRJHRMb5VUkuz8AUPtLDX6Q6W3QmJluG3dbkQMOBbc/4pYCR69/u/Zi7HH9fn7p7aHev7CdPR0r7979LnMbwEA0v+1yY4irWNiq4SSHDrhx3++vzVNbDXskFjZ+agRMeBYcPEVsfNhPAIk/J5d3LMsyjPs8xe6a2+24+jMbwEA5opdzLVIYEeR3jGtVVJJpiPXWj9wazqetRNbDT0kVlYXBh4LnoncnVY8AqT9nr0RubFnm0M+fzHX2tvr8TdgfgsAkM2n72LsKNI7prVKK8l05LbbB25Nay8sJ7YaekisDD4W7FBwhQb9nt1/mPOp4Z6/sLQUfxvmtwAAcweeJQ07ivId01ullaQ2Fblm7NPqRu5UYqvhh8TK4GPBDgVXqH8DsRP7dD9pRM/poZkfACpQOxe5jWYksKNI75jWKqkkY89E7k7s03+RxenEVkisjIDiVMUBb+hyKLhCA468xM5m8W8a9faQzA8AFTjbiNxKpLCjSO+YPnz5kmxEf6jEVkMPiZXN1dmIA95olZ2PqOg4DfePvAz8Ps7awzE/AFSgdilyaa+2saNI71h6+KOUBCRW8sR6wL+uF4eCW+vx6DHoyMuDJxmcbA3H/ABQgclnI7fUjgR2FOkd04dPLsmphPCb0GqoIbHS/1/5l5Zjj5nIHbPXmAEALGQRT/SzOJQk8VkZnqiRQ2Klc/OgY8H9Q8E3ggpMjEVP93Z8ykYni+Jp8cMwPwBUYGomciutSGFHkd4xrVVSSQb/62t/qJOtxFZIrIyAA44FH+9DwQCA3/OuxZNMSTYid8DrKuKQVlAPRs+AY8EOBVdpOhuJ+QGgAtn5yN1p2VGU71i+VXJJNiJ3wOsq4pBWUA9G0AHHgp+YQ8G0uqM4f3kAMFeP8LqD9Ct6esf0Vikl6f9k8vTlxXjY5Fey9FZIrIyKazNZ7DsWXBwK3mgG1eneHe75AaAC2XzkWut2FOU7lm+VXpLOe69E7ku1t9tx3+Tr5yO9FRIrI2PrdiNi77HgmcitxDECAFDcdT8Gr7ZRkuvz9ci9NHv9jxsR8dRzs89nUUhvhcTKSNj5qBGx51hwdj7CU+GrNnayNczzA0AFapcit7ViR1GqY9lWJUrS+f2/9Ae8cCH2G9AK6sFoWl3Ydyy4uBd2vB5ZAABwthG5Y/DwSCX56P/8XQzSvZvcComVEbD/WPBxPhQMAPiJ1attjkVJPvjzt7LYZ3tlLktvhcTKqOgfC54+3Yzck3MomImxkZu/PACYfDZyK60g/Yqe3jG9VVJJNv/b/MUsHnL397en5qJnu5PeComVUVD8U/vYi83IORRctY1OFofp3j7+8wNABRayiPT389lRpHcsMXxCSXbeffeZS89NZHmLv9z5w61Ib4XEymjpv5L1+avtyM1EeI9Z9caebQ7v/ABQgamZyG007SjKdyzfqlRJPvl97DGdRc92O70VEisjYXU2eiaebkYUh4KrfI8ZrW4MUHwfd+8e+/kBoAIzWam77nYUaR3TWh2xJNORaya2GhlIrKy1HzoWXBwK9pC9yp0a9H283Tnu8wNABbL5cNc99YpevmNaq5IlKYbq3khsNSKQWNl3LHjGd0DFup80ouf0wAtA+7jPDwAVmKtHbqkd6ewo0jumD1++JMVRv+7dxFajAomVPceCHQqu3M5mI3rG6+3YqzYVueaQzA8AFfzEmv62AzuK9I7prY5SkoTnfya0GkJIrOw5FuxQcPU2IjeetWOvsWcid2eY5weABOlhJ/3VNnYU6R3TWx2xJDORaya2GiFIrHTeeyWiOBb8uA4FS6y1F5YP/J7f+fCYzw8AFahditzOtUhnR5HeMblV+ZI8OO57I7HVKEFiZXUhi91jwcV3wEYzqPon7nhp+cA7iNudYz4/AFTgbCNy6UdF7SjSO6a3OlpJ5urFPjSx1ShBYmXrdiN2jwUXd8lWggr1n3x1aqJ1wB3EuNU+5vMDQAVmItddjHR2FOkd01sdoSRTC5FbSWw1UpBY2fmoET3PX52JcA60csWTr2oLiwfcQdy5dsznB4AKTM2EH96Sr+iT/zYdcffN9fSO6a3KlyT7ZhY9WyuJrUYLEiv9Y8EvnI+o/EAN90/ZXGt9+g7indYxnx8AKrCQ+eEt+YqefTtvdvLrP2yld0xvVbYktX/dHb37u3Ziq9GCxEr/WPCXfdtX78GTr2rf+Ek77pss7iB2F4dgfgCo4CdWP7wlXtGLRyUVz1BK75jcqmRJJr92InJ/bCa2GjFIrBTHggsOBVfu+nw9eia/+6v1KMxezvpfyEM/f6F2MvpOxa4T47Fr5675LQDAZ5nJIsLDFxKv6NPlOia0Si/J7N/dfX8lHqi9Ohe7tq4mthpJ1APfcDnnQKvX+f2/RG78m9vLf+rEidMXs7Qv5CGYv5D9oB571L4efetXzH84CwCQzUfOwxcSrujlOya0Si/JmTj5xhv3/nNlsxO9cWZPRGHnZ+3EViMHiZX+49+KYx1U7aMPZmPX+Msvx19t/6w9EvMX55MGGK+3zX8oCwAwV4/cSitKsqNI65jUKr0kT33hC7HH9k9bia1GEBIrq7NRaK0Hlfs/7bkopH8hD9P80zHQeNY2/2EsAEDtXOS6N4KUK/pG7OreTu+Y3uooJVn7bTux1ShCYqX/+LfH9C8gvLX5chZ7ffxme2Tm34iBtjvmP5QFADjbiNxGM0i5ovc3fd276R0TW6WXZHU29ru39H5iq9GExErnrVcmomftavA4/MeHr5+PB4q3pI3O/Gt/OREHSLiFYn4LALCx+yWy9tsg6YreufIvu+9jbaV3TGyVXpKP3nztRDxs++pKYquRhcTKBx8Ej9PWm7VzM89NRc/m9h9W2yM1f+eHUZL5LQDA5g+Dz3NF3/xpqY4JrdJLcvNm7czsc9lERHT/cmd1tV2+FRIrUJGdmzdHen4AoPorenrH9FYpdv70p6O2QmIFAAAAiRUAAAAkVgAAACRWAAAAkFgBAACQWAEAAEBiBQAAgHoAAACAxAoAAAASKwAAABIrAAAASKwAAABIrAAAACCxAgAAQEpiBQAAAIkVAAAAJFYAAAAkVgAAAJBYGQuUwvwWQAEUQAEsAJaPg3TjKJBYAQAAQGIFAABAYgUAAACJlW48ARh7rKUwvwIogAIogAJg+UBiBQAAAIkVAAAAiRUAAAAkVgAAAJBYAQAAkFgBAABAYgUAAEBiBQAAAIkVAAAAJFYAAAAkVgAAAJBYAQAAkFgBAABAYgUAAEBiBQAAAIkVAAAAJFYAAAAkVgAAAJBYAQAAkFgBAABAYgUAAACJFQAAAIkVAAAAjmFiBWrnXnxmKno2N2+sti2AAgBQJRfU8h3Txyo7I0isZF+fjp5715aDx2Ly9fPRNzV15o21t9cf36f45JftEViASucHoAK1+S9ORM/mzXcinR1FUsfavzVisO1fraeMVf6jKi8SK5enI/fUKx+2gurVXp2LPc58Y/mdqNzs5Sx6prP2CCxApfMDUIEL87Fr6sLNZqSzo0jpeLYRhxj/0mLCWOU/qvIisZKdj0LtheWgOoPvW45dPPuLdlRq8msnRmMBqp8fgApMLUQ6O4ryHcuPVXpG5UVi5Uw9+l5ajsfN5aXw9FevVHxTdlQWoPr5AajAQhbp7CjKdyw/VukZlReJlZm479REK6jYlxux694HNzpRO33pROx6+vJiVKQ4EDwiC1D9/ABU4NxslGRHkdBxo5PFIe6kjFX6oyovEivZ+bivtrAYVOvSbOS6774fuU+u3z+e+8UbzahGMeNoLED18wNQgewfoudeLYt0dhTpHTd/fDoO0pjb7Xk7aayyH1V5kViZq+9+1zwXPc9fbQdVyuYj1/1lM/q2flyclBm7fCWqUJu/mMWuzakRWYDq5weogM1MLF+MBHYUJTpurcZBzkWutZ40VsmPqrxIrNTORU/r7X/PImLi6WZUzyU23mnGAzu/+UE9oqoz2tm3T8Su7atr38pGYAEqnh+AChTP5Vlfuhjp7CiOfiWcmoncUjt5rBIzKi8SK5PPRs+t/1ydjYixF5tRPTdE15fjIZ33Xomo6oz23InI3Vt6P6ZGYAGqnh+ACtT+LouInV9HOjuKo3UsFM9D2lpJH6vEjMqLxMpMFhHdG5EnVseCq1Y8p7m7GHtcn69XVozp6Olef7c9CgtQ/fwAVKB4W+hKK4t0dhRH7fjgUSi32sljlZhReZFY6R8KXo+1dj0iJr3gplIzkdtoRhxwn7GqM9rdtTfbI7AAlcxfPQCK5/JsXY0S7ChKd7x/unfnWvpYJWZUXiRWzjb6d8c6N2ejp8rESv/m5ErssxG5sWcrCEwbsfb2+ggsQEXzVw+A4hmSv2tHOjuKI3d8cLr3Tit9rBIzKi8SKzPR070RURwLrvRpMxTnYnY+jH2KH7zjVDx6S0sjsACVzV89AKYW+j/ZlWBHUapjYa5/ujd9rBIzKi8SK8V9rtb6gy+K2gvLURWmI7fdiX26nzSi57QFUAAADue5POUvaEfpGLVzUWTJ9LFKzKi8SKwU97lutSMcC35815d27LOz2Yie8XrbAigAAIcp/r/paitKcEEt37G/8LHyecf6PDMqLxIrDx8Kvn8sePp0M6pBbSpyzfiUjciNZ20LoAAAHKL/XJ6VKMEFtXzHqF2K+yufPtbnnlF5kViZmonoHwoujgVX+UpWxp6J3J1BX9pjJ1sWQAEAOMRlz+Upf0Er3/H+C/1jqf05x/p8MyovEiszWcSD92h1bh67V7ICAO69/7EZFWMhi56dD5UXiZVHqnYu4sGh4OJYcIUvoWRiLHq6t+NTNjpZHP5MeQugAAD0n8tzLUpxQS3fsciSsdL6vGOlzxjKi8RKcaDjwaHgY3UsGADggufyPN6fWK8pLxIrj1ZxKHipHYX7Twu+1ooqMJ1ZgNIUAIBsPnq2VsKOouKO2fnI3WmljlViRuUtILH6nt/zHwjFsWCvZH38Wl0LoAAAHMpzeRK0uo+k41w9erqL5cdKaKW8gcTKmfq+22PFseBqX8lK964FUAAAPr9zsxGey1P+gla+YzYfudZ6qbGKVsqLxEqCmcitxAOd916JnlMTrQAAeJLVLkV4Ls9j/NEjltrKi8TKI5Wdj9j3WPLVhSyqPRaMl36WWQAFAMBzedIvaOkd08NkbK2UHiuhlfIisbLvUHBh63Yjei6ttAMA4Mk1tRA968tRNc42InerrbzlIbGSfn9sJR6y81Ej4kl/JSsAwEIWxbN/eDxbyJ1ryovEyqM1+WzEvkPBxbFgr2R9/CbGLIACADCY5/KUv6AdtWOxhYyVVqmxElopbwGJlZksYt+h4AfHgp+/2g4euY1OFofp3rYACgDA4N/5tq4GJS9o5Tsu7Pbp3ig1VkIr5S0gsVI7F7mV2KP6Y8GMPdu0AAoAwOdSPJdnqR2Uu6CV7zg1E7mNZtmxElopbyCx8uBEx2uvxQHGLl8JHrlWNwaYziIGvKzMAigAAMULQe98PB0PqcWuU/ciYuduHMYFtXzHmeIvi+XGSmilvAUkVhayGKjSV7JyKj5lOnLbHQtwAAUAoPifx1Pfik8beyNyf1iMwVxQy3cs0mS01kuNldBKeQtIrGTnY7BqXslK95NG9Jwe+KXdtgAlKAAACc/kcEEt13GuHrmldrmxUmdUXiRWztTjUC8tB4/azmYjesbr7dirNhW5pgVQAAB4BBe00h2z+aLjhyXHSp0RJFZm4jDVHAtmI3LjWTv2GnsmcncsgAIAwCO4oJXu2P/NY6VVdqykViCxUhwKPvifAC69Ej21hcWohOvLAUewi6vBzocW4CAKAEDxOr7BEp4z64JapmPtUuR2rpUbK6GV8haQWJmrD/y6WV3IIir5/wDW2vWIA45gz0Ruu2MBDqIAAOz8Mj4t+0E9Irq/bEYCF9RSHc82InenVXqslFbKG0is1M4N/rrZul3VK1np3JyNKI5gH/AL+K22BVAAAHgEF7SyHWci110sP1ZSK5BY6b+MdSUOsLPUiJ6xF5vBo7Y6G1EcwU78BdwCKAAAlL6gTf7bdMTdN9dLXgmnZiK30Sz/IZJagcTKTBYx6L8aitMalRwL5v7JmGut+KuphcG/gFsABQCAshe07Nt5s5Nf/2Gr3JVwIYvcSvkPkdAKJFYOPxT84LTGpBfcPHqd94rnXH3jJ+24b/KbWfR0Fy2AAgDA3/KCVjzeqHjuUULHAT+xbq2U/xBJrUBi5WzjsBtk/dMaUUFi5fp8PXomv/ur9SjMXs4i98dmVKJ2MvpOxa4T47Fr5+4ILEDC/AAwNDuK6bIdCzNZ5G61y3+IpFYgsXL4DbL4+M+NiEpeyUrn9/8SufFvbi//qRMnTl/MYtfW1ahA8eC9PWpfj771KyOwAAnzA8Aw7SjKd8zmI7dzrfxYSa1AYuWznsa281EjojgxwqP20QezsWv85Zfjr7Z/1o5KnKnHIOP19hAvQML8ADACO4r0jnP1yK20yo+V1AokVoqQ0r0RAxSvZK3mWDD/pz0Xn7L901ZUYzoGGs/aI7AACfMDwJDsKDZiV/d2mSth7VzR+Ub5D5HWCiRWZiLXWo9Btm5XdyyYtzZfzmKvj99sR0U2YqDtzggsQML8ADAsO4r+c3q7d8tcCfvPQdlolv8Qaa1AYmUjerZ/145Bdq79w0RliYX/+PD18/FA8Za0yqz95UQMcKs9AgtQwfwVAaD7wVxE/Hk9BrGj6Fz5l933sbbKXAk3dvcMa78t/yESWykvEitLS/EZ1v5HVIetN2vnZp6bip7N7T+stqNCnR+OwgJUP3/1ANh56604nB3F5k/LXwk3f1j2QyS0eqLLi8QK7Ny8aQGqpwAAuKCW71h+LNdeJFYAAAAkVgAAAJBYAQAAkFgBAABAYgUAAACJFQAAAIkVAAAAJFYAAAAkVgAAAJBYAQAAoB7VAAAAAIkVAAAAiRUAAAAkVgAAACRWAAAAkFgBAABAYgUAAEBiBQAAAImVsUApzG8BFEABFOAgFgDLRzeOAokVAAAAJFYAAAAkVgAAAJBY6QZPgLHHWgrzK4ACKIACKADHcPkAiRUAAACJFQAAACRWAAAAJFYAAACQWAEAAEBiBQAAQGIFAAAAiRUAAACJFQAAACRWAAAAJFYAAACQWAEAAEBiBQAAQGIFAAAAiRUAAACJFQAAACRWAAAAkFgBAACQWAEAAEBiBQAAQGIFAAAAiRUAAACJFQAAACRWoHbuxWemomdz88Zq2wJUCgBcUNM7PvXiixNFy+3mynqU9cwL58YnIuLe9tr1dTsEJFYelv2gHp/h419HhZh8/Xz0TU2deWPt7fXH9yk++WXbAgBw7NTmvzgRPZs334kEdhQlO9bmL2Z/bfnshe71d9tRqP1bIwbb/tXDQz7z99PR99RTJ79YjJL2uUYAEitn6vFZGhOtqAq1V+f2Vegby+9E5WYvZ9EznbUtAADHzoX52DV14WYzEthRlOp48eUs9hi7UFuMwtlGHGL8S4tx3/nXTuwf5cXfNtM/FxIrw246eFIMuCM5dvHsL9pRqcmvnbAAABxbUwuRzo4iuWPCxfL0EYN1Yfwr7yyX+FyVQ2IFl5fC01+9Uv1NWQsAwHG1kEVJdhTJHae+lcXfwIW5OMDYq7eb6Z8LiZXhtvrZX+rbnagIX27Ernsf3OhE7fSlE7Hr6cuLUZHiPGwVLAAA/5+9+3Bq4+z2OP7TrigSyE04BG5cKAO+6bnl7SW9/cnpvVc5YUxMBJG7jTVYQpjFK+07z+yOQay05vFEyqL5fqZ79tjmMKNzzj6rs70xeUr26CjsAsOBNbxw05ecwomzBe2qN10l2FTImZSh4PaVqpSbmImiMv/3nm/x/xpkYGLF1tdZ7co8npOk9TXtccdXf2D+lIzgwsUw86vRAzc6c7mq/jD/IgkAABxi7v9K0j3HlR06CotA93lXxs5SRYZad+6samqupMjWuyfUSXFGkoIN7dX4dkNG/eZSdN9Yo6fLFv+vgQYmVtzUHs7ZnCRtXpX6D+6CjODTqiLb74bPwGSe/kD9sLvzbytPAg4lAMBMVpLKc7JER2ER+HRWRu0TX3tcu6b7tq+qk0kZXk27Gl/XdN+l29Hh7elyGjoEMLECiJdY/VzVfa0vwtcPjY946j33xZyiO6brL7gk4BACAIRrl2orc7JDR2ERGD14XftAlvLTMlZ8hVpbhaWK9tpaflzRv5eCDgFMrADi9w9rZe3R/OVxSXIWS+q9mZyMeysXlScBhxEAwHnOldT6XJboKCwCnXkZ25/I1qIrE1hRRN9rv9WFrCRlxrwUdQhgYgWg6N24CkodP7cfXfLVcwVJMu/tJgGHFAAgfA9oxXNlh47CIjBMcvCNL0vulIzrSYHNa6dS1yGAiRWAMS2jXpU63EEcOVJVPwTrX/sk4LACAIRrl7aXZIuOwiIwvO63qmyFT/e2lpWkLiNzrJqqDgFMrADcKRmV5M/tnqpr/acaCTi8AAAzWcvDPzoK+8DwutaybLkLMjY9PViwkaYOAUysAKInXtS6on3W/XCxgHpvZYUEAAAOs/xidBhngY7CNnAmG82dtsLAoHT4OgQwsQKQCjJ2mtonuFOUpBMkIBkAAPZrlyio9oHRdRXZciZ1kBsKBRlBI5UdAphYAeqLr31aW0VJGs76JCAJAADhRqAlTxYoqLaB0UPBVx7y16OKEoV/vTa9VHUIYGIF4ORlVBVTlzHs+iQgAQAA0dqliixQUK0DRzLRkaclZ14H+f3MZGVU0tUhgIkVQOaojM1uH8eZMY8EJAAA4Gn7tUsUVPvAghsdeVoaPSZjJTkwvxjNtXQIYGIFAADAAMlPS7bvXLGHgoyqbC260gOfJh593o3NtWkAJlYA4SM2wYZi6k1XybvbSQAAANHapWXZoKDaBxZ2jzyHHpkdyUsK7m5erRzohoIqnrpzFuZcGWtlOgQwsQIAAGCAzPZl7RKc/P7xUsrk8488m/RO890j1mV1M3T8zCOuDK2VlDJgYgVQcEkAAAAPzV2QpO2K6Cj6ERj4T82o3cS/L1xUF/EVwLvcF3Nqs/NVlQ4BTKzAIeIFJCARAAA9WrtEQY0HhouQMs8qJvPfuZK6CVcAByXFTOS0R3B7aSO1HQKYWAEEDRJgDwCAyVNSbO0SBbXPlfisSolH4PJqiilor0zx8csVOgQM0MQKAAAAOPNS39cuobFSrUsqHHk8JxlnLlfV0URWxoqvmLraZCYmnlm94AtI4cQKgFeK2ScAAICEtUsU1J4F3lu5qFC9fuXU064kZZ7+IOGOgrYrilu/m1O7zOxjn9XoEDAYEysAAACQX5SkWln9gqB9zdKl2y+4kjQ+4qmDk0UZ133FNd9WqDD+WLQsWMP//rQqYBAmVgAAAGDRlRSU1Df4uaw2W8uPS5LzX+XuR6ytZSWp169p6smcjMzf3vYEHIqJFcBIhgQkAACgV2uXKKgWgasLWUk6XVbc6DEZFU8Pcu3GEzMynH+/59MhIEUTK4B601WSYEMkAACArid420uyR0G1CkwS3ClK0nDW73IGruCyHqx1/u7jMkZPl+kQkLqJFUDmWJUEWAEAYLYoxdfQUlD7G9i6EU6srq/98tMy6lUdRHmyKGO+4tMhID0TKwAvUBcFV5KCBgmIAwAgetXn5q2C9nAkY/yepFZDySioFoHRWeq4Dm46jC/pQForRRkjR6p0CEjdxApgXDEFGTtNEhAHAED0bcbxFxSXeVbGWkltKKi9CKwn31KQV9PB3LpdjE5V6RCQnokVQHTH8kTXj2OfBDwUAAAeXfKVhIJqEdjail+WbCYryeKx7ehf0DgdAlI0sQJobXXZV+DkZVRJAAAA6FFBtQisq/NlSj5ibV3RQdXpEJDCiRVAXUZ8X0HmqIxNEgAAAHpYUC0C45d1f0Z3Iiuj4tEhYAAmVoD6En/x9kS2+41JEgAAwPZGUclWfCWjoFoEXl10JWXGPLXp9oyuMy+jtawDK0jGJh0C0jSxAlj3O794e7rLHUsSAACA0fpUce5rWUnBp1Ulo6BaB3qBJGUeq6qNOyUjlvCTRRmbng7KycsINugQkKaJFUDz2ilJGh/xOn3+X/dJAAAA6E1BtQgMNyGF66ziJ57BZXWcK4OSDmz0WBjSoENAqiZWAFdPSZKzWNJe4X691jIJAAAAv2dBHf1rQWp8XbMMbN0oykS3n3k68zK8mtrlp2XUqzqwRTc6laVDQIomVgC7z7wse9qVX4w+tEkAAAD4HQuq+2JW0ti/3vYsA8Mvsmq+4mvXbLHziWd4rSrqxH1t46ea9pk8pTCEDgHpmlgBNH95XJKcf7/nS5HR511JCkokAAAA/J4FdSIrKdxoZBe4FZ55jv7jA9136nEZreXOR6zbFXUykpl4/lap0R7xf4pC6BCQsokVwOpCVpJGX/6sptCpp10Zv1XVF86YIuOSkRuWjFaDBAwUAAAdReFhA7U87UrSkb9+7UuG88SMZCx5ahdemfRl05MvNb7dkLTvb9KKn6IOAUysAIzmt3+WMfz8TvlmU7kTc65kbC+pL8xexTbOvxSpfUACAAADjI7CIjA6ZNXJN9evVKUj01MK1cpq5y7Ej15jxv6lxqVaQ3JOnC0oslZOUYcAJlYAoRuXTknG8Llz2rXzoa++mMiqm+GsTwIAAAOMjsIi8Md8UTImJrTH9ifaZyYro+KpIy9QaOyc2t0qpapDABMrgND3/oxidt731B8FdTXs+iQAADBA6CjqkhFs2AZKrS9ezCnm1te+2jmTMoLL6iz6gmrcWildHUIETKwAzm+dc5M//nuprq52miQAADBI6CiiDbxBwzLQaL77v1NqF1y4qP1OFmXUq+pipfFkTjE7n9VS1iGAiRWp0bp+zJUaa/qj4NcrT01pV/iWtH5Zv5tTF9d9EgAAOESCSzOSbtfUDR1F84M/F8yfe7aBRuvrqbZZM1i94Cumbgqr1r9SV9eujbb/c9LOUiV1HQKYWJEev/6qPxa2v3Ymp4/nJWlrZ+2qrz5qvk0CAACDoXX+vJLRUWy9bxMYnzWH5qaGRyT9h737f47iPvME/sz0oG8g7CABK2LFkaHAwQnJ3aYq5dvE3zZVrrv/+IqKw1bFvpRZV2oVm4JYC44MCGJ5DiQkM1JLc9Mz2CAx6JrtoZupeb1+/nz8dH0eqp9+a9oz21urN9ain82Lea4zDp14Y3w8iYjt7QdfraYVPiEgsQI57K6sOIBKAICBmn/j9tWrMRDbt26V8ISAxAoAAAASKwAAABIrAAAASKwAAAAgsQIAACCxAgAAgMQKAACAxAoAAAASKwAAAEisAAAASKwAAAAgsQIAACCxAgAAgMQKAACAxAoAAAASKwAAAEisAAAASKwAAAAgsVILtEJ9B6ABGqAB/TgAHB/tKAKJFQAAACRWAAAAJFYAAACQWGlHUL1apa1QXwM0QAM0QANwfCCxAgAAgMQKAACAxAoAAAASKwAAAEisAAAASKwAAAAgsQIAACCxAgAAgMQKAAAAEisAAAASKwAAAEisAAAASKwAAAAgsQJwIAAAiRUAAAAkVgAAAJBYAQAAkFgBAABAYgUAAEBiBQAAAIkVAAAAiRUAAAAkVqB+8rVXpqJjc/Pm7TRGjQZUWx8AAy3Xxld+fHJsPCK2t1ZvrEUUWFWg4qhAYuXkr8Yjtv96M6rHxC/m4pGpqdlfrX6+Vt1V3P84jcwoXED1DShQH4Cp95Poo/1xM/LzRJF74yv/fToeOXTo8OvtG1fTyL9qUBVHBxIrp8Yj4tCZm1E16m8txB6z717/Iko3fyGJjukkjcwIXED1DShQH4D6f0uin9qFS7GfJ4rCG+d+Phl71N547dNm5F81qIolQ2IF6m/PxD6108f/lEapJn43GVXKLmBEG1BNfQA8UeTf2EuY+439yxfXI/KvGlDFiiGxgvGSOfrbSxX8UbbSvwqPagOqqg+AJ4r8G99YiD5qb91rRv5Vg6pYJiRW4Jcz0bX99c2dqB87MxldRy8sRmmy93GrlF3AaDSghPoALMc+niiKbqyfjK72t7eaEZOzC0l01X79URr5Vw2qYnmQWIEz85FpX/0yMvdvfP927Os3m1GGkX4huPoGFKwPwMPPY5/dO9GHJ4riGzc+uxeZ9X9c+f5vzRM/uR6Rf9WAKpYGiRVIzkbEnq81fPiHt2ciyvveiPrZ00l0bU5FFaq9gKobULA+AFu3gxwDpfjGjctr8YOvv30/iUyWH/OvGlDF0iCxAguNyHzRjB/s/vnDRnQcGW/Fi5d8MBldW1dW30+ifBVfQNUNqKw+AJ4o8m/c3Zy+shxP2rx2Pvasyb1qkBWRWIFy/iC6dj2esPO389FRP7dYxoCbjMz20pcxFVWo9gKqbkCF9QHwRJF/419ivxtnG9FRO9yKyL9qQBVLgsQKzDaio73Y9478T1fSeOGmo6PKX+Su9gKqbkAl9QHwRFF8487KfOyTb1WhiuVCYgVORWa9GdHn74zjR5tRhvbq5TSqlF3AiDagkvoAeKIovjHWI1N7NVuSf9VgKpYDiRVI5iKzXOEdeT1WP1+L6vQuYFQbUG19ADxRFJ5E7XuRQ/veQCuWBIkV6L0Xs3sr9llNG9FxJF68paWo1tLSCDeg2voAeKLIv9HsYwQTKzAdma2d2Kd9fyY6jsXw04DK6wNgoA1u4/6t7Y3I5F81iIpIrEC58yWNfXY3Z6JjrJHG8NOAyusDYKANemMkc5F50IpM/lWDqFgOJFagPhWZZjxlPTJjSRrDTwMqrw+AgTbwSbTQiMxy9ORdNYiKJUFiBWqvROZB/5v2EPzgmAYMb30ADLQCG2PqXGQeLkdXjlUlVERiBQAAmHgvicxSWmBVgYplQGIFxmsR/b+kfX0niWH7dRMNqKA+AEc/HI+uzfbq3+9FbgZagY31s6eTyHx1PXpyrxpAxWGBxAoAAOPRMxWHXy/hN7459KPXTyTR9dVigVUFKpYDiRWYTmJkaEAJ9QGYfW/109RAeyEbkw8mY4+tT5v5Vw2wYvWQWIFWO0aPBhSvD8Ds//y4GeQeKPk3zk7GE9rfXrkXPflXFa9YPiRWoL0Ro0YDitcHYHdzJvqo/csX1w20F7BxOp5Umzl/czn/qoFVHApIrAAA8B93IzZ31qOjfvjoqbnoqb11rxkDx3rsUZud/eWNq2n+VQOrWC4kVmAUf3RTA4rXB2D3dnxvd339Vsz9fDIytV9/lBpoA9+4+t3k/n1vvPbJWv5VA6s4dJBYAQBg5e7bM5GZ+Mn1GDR2LkbP9JHXTiTRNfbux838qwZWceggsQIAwO7/eRRZX2RiZX195fHn2f/jYqvAqgIVq4TECozXYsRoQPH6AOz+5f0kOo6Mt4J9A2WgG1fuvrUQmfq7H6X5Vw2sYhmQWIH1nSQO0r4XQ0sDKqgPwObt+eio//h67GOgDXRj7P71u/OR6b2CnXvVgCqWB4kVqL3ajBGgASXUB6CXWOOIgfbCN14/OROZM8tp/lUDq1gCJFag1Y5nmE6io70Rw08Dqq8P4NNGA23wk2h3aSYy40ebkX/VoCqWB4kVOBJPmY7M1k4MPQ2ooD6AP0Yei3wMtAIbv/l2Zt/npblXFa9YAiRWoH1/JjqOPfOmncYQ0IAhrQ+AgVZoEu1uzuxLnzlWlVARiRUoaP99d6yRxl71qcg0Y/hpQAX1AWhGHgZasUm0HnmsD7RimZBYgfXIjCVp7FV7JTIPYohpQAX1ARivRQ4GWt6NZh8SKwhMfb6Cf7YRHbu3YohpQAX1AZhO8uceA63gJJqOrgeRf9WgKpYCiRVYTRvR8dTPip2KzNZODDENqKA+AKciR+4x0AYyiepTkWnfi/yrBlWxFEiswM7KfHQcGW/Fk5K5yNxJY3hpQAX1AUjmcuQeA20wk2ji1ci0NyL/qkFVLAcSK9D7nfP6ucV40kIjOnavxRDTgArqA3ChcWDuMdAm3p6O2Li8NohJdC6JzINW/lWlVERiBQbl8Zsx11rx2NQ5t+Phb0AF9QGYn4+Dco+BlnyQLTv8zsXWc21MPrz3+Vrsc3I+upYj/6pBVkRiBUqw87fz0VF/96M0vjfxXhId7cVgOBpQQX0Akg93P1mLvc6cj67lVvRloM02ItP73qP8G8drs+99s7gRT5r6dXQ9XM6/amAVRwgSK2OnYp9/pEF5bpxtRMfE73+YuvMXksj8vRmlqB+OR45E1+RYdO1ujMIFVNmAAvUBmG3Ee9tLN9L4wcTvJqPr4ZXozxPF9H99Eh3/143P7sX36m8tRM9Smn/VwCqOECRWJn4d+6xdCsqz89lvIjP23tb1f+zE5LHTSbnTNvmwEXvU38n/T6H6C6i+AdXVB+DQz362/X9X7u9E1I+cOpFEz+6/pZGbJ4r8Gw+/Extfr21E1I/9dDoe+ep6/lUDqzjaJFYYa6RBee5+PR9dY2++GY9tlTVtZxuV/lOo/gKqbkCh+gAcOnEi9tr6pBX7eaIotrHVjp7Db8Ze3yxG/lUDr4jECpTgL+lCPGXrj60ox3Q801iSjsIFVNeAAvUBWN9Jop+HH6XxLJ4o1qOrfe/5Nmb/62lfXy1G/lWDqjgqkFhZj5cDf918M4m9vrmcRvX/DrZ2RuICqmtAgfoAbC5eSOIp7atfxrN5onj0Pb3tjefcuLTx88l4ytYna5F/1aAqjgwkVq7/aC76uZMG5frPW7/Y04vsV9JKs/rdZDzDnXQkLqDCBhSoD8DXX8+9OR17bC99GQfxRLFz6Tfd32NtPe/GlZWJvUsitq4sx/OvKlpxhCCxsns5XhI8vFw/eepHU9GxufXV7TRKtHMxqrVzcZQbUKA+ACsr8cqx18bHk4hof/fgthvo/3+gbP4x/8b9S+LQiTd6p729/eCr1TTyrxpkRSRWoAK7KyvBaDagQH0A7t+/ERQfKPk2bt+6FZFnVQkVkVgBAABAYgUAAACJFQAAAIkVAAAAJFYAAAAkVgAAAJBYAQAAoBF5AAAAgMQKAAAAEisAAAASKwAAAEisAAAASKwAAAAgsQIAACCxAgAAgMQKAAAAEisAAAASKwAAAEis1AKtUN8BaIAGaIADwPHRTzuKQGIFAAAAiRUAAACJFQAAACRW2hFUr1ZpK9TXAA3QAA3QAIbw+ACJFQAAAIkVAAAAJFYAAAAkVgAAAJBYAQAAQGIFAABAYgUAAACJFQAAAIkVAAAAJFYAAAAkVgAAAJBYAQAAQGIFAABAYgUAAACJFQAAAIkVAAAAJFYAAACQWAEAAJBYAQAAQGIFAABAYgUAAACJFQAAAIkVAAAAJFagfvK1V6aiY3Pz5u00ngMa4AAADr322njvLrbVXF6LRwy0IR4E2ovESv2f5+IJ7e+2mjfvBZWY+MVcPDI1Nfur1c/XqruK+x+nkan+AjRgJA6gOID62dPJ47vYq2+0b1xNo8cTRfGNuedV/e2ZeLatT9aea/ZpLxIrb8zFk2rZLSC+WdwIylZ/ayH2mH33+hdRuvkLSXRMJ2lkqr8ADRiFAygO4PSbSexRe6O+GPt5oii2Mce8Oj4TBxj76eJzzT7tRWJlOvo4/q/fXE6DUvX5i2Tt9PE/pVGqid9NRnHVX4AGVH8AANXfP49Ff54oCm/MznvwvdPe/CRWOP77T9aCSsdL5uhvL1X5R9nq/yqsAaNwAMUBTL2fBMXu5/k3ZvOqvNnXv71IrDD2zsVWUJ5fzkTX9tc3d6J+7MxkdB29sBilyd7JqVR2ARowsgdQHCCwZjexB2lEffrYT6djP08UxTfmmFfrO0kc4MHzzj7tzSCxsvZZdNWPnDqRRFf93Y/SoCxn5iPTvvplZO7f+P71l9dvNqMMI/pCsAZUfwDFASTvJZHZurIcXbv379+IudOLsZ8nioIbc8yrzT8ci35mFqKjfe+5Z5/2ZpBYWY+e+7di7ueTkZk4vxiUJDkbmfbHzXjk4R967+bULlyKMjz+Br7Nqciv+gvQgOoPAKBqFxqRWftTGk9YWYn9PFEU3phjXj28Hf2cjExr7Xlnn/buJ7HCyt23Z3y2UrKFRmS+aMYPdv/8YSM6joy34sVLPpiMrq0rq+8nkV/1F6AB1R8AQLVOzkdm7VKQ535eYGOBeTV1KjJLaa7/Vv/2QiPgyftT7bVmlMlHrGvX4wk7fzsfHfVzi2UMuMnIbC99GVORX/UXoAHVHwBAxepnIvPwT0Gu+3mBjQXm1bmk26XlA2Zf3vYiscLOZ7+JzD9dSYMyzDaio70Ye9w42yitDdPRUcFvcVd7ARpQ/QEUB9D7/c/2v6dBnvt5gY0F5lUyF5k76QGzL3d7kVjhm29nomP8aDMow6nIrDcj9v9ls8Q2tFcvp1Gl7AI0YDQPoDjAFP17M8h1Py+wscC86r11vHvtgNmXv71IrLB7dyY6aq82gxIkc5FZjn3Wo7Q2rMfq52tRod4FaMBoHkBxgCm6ey3IdT8vsLHAvErORuZBK8fsy9FeJFZYD0rUexNn91bss5o2ouNIvHhLS1GtpSUNGMUDKA5gofEoCpH3fl5g49JSkS61F3PMvjztRWKF9Z0kKM10ZLZ2Yp/2/ZnoOBZogAMAOPAethw5uJ9XNQjqJyOz3tReJFYY4vmSxj67mzPRMdZIAw1wAAD9PHpr9FbkYaBVNAiOz0RmeVDtRWKF6SQoTX0qMs14ynpkxpI00AAHANDPeO3Rp4N5GGhVDILHv1CzPKj2IrHCdGTa94IS1F6JzINnjYna4VagAQ4A4Nl/Zd9KIw8DrZpBMPFqZJZS7R0wiRWJdSMAAF76Z5Zm8BI7l0TH7i3tHRSJFZK5yGztRAkYrz3rE+31nST8uIgGOACAZ5t+/OngoRNvjE9FRPu7B7eXox8DrZJBMHUqMsst7R0UiRUWGpG5kwYAwMurPhU99bOnk+ipTU2d+NW+n/qsno9Yr2nvoEiscPJ85L+xUJjvudIABwBQSDv9xULsNfvu1S/dz1+KQZDMReZBS3sHRGKF+QvRtdyKatFqBxrgAACerfedQbVfxVNqP5tcDHpa7QoHQe/dvfai9g6GxAqH3lyIrodXokS0N2Jw0AAHAPDTWHQ/r34QJGcj01rTXiRWipiOrslj85PR0/73NIYFAMDGUnM9IqaPnp+MrtdvNqNqzDYis5RqLxIrBRx9P/Zpf9GMEuE3LzXAAQAUsL30ZfSsr9+av5BER+3CJffzqgdB/UxkHi5r70BJrLD1aTOGAgBAe+/38Hz97ftJdBwZb0W1OD4TmTup9g6SxArfXE5jOAAAfHE99ti8dj466j++HpWifiYyu9e0d3AkVmivLm4EL4PxWqABDgDg+d0424iOn1yPLgOtqkEw8Wpkllvai8Q6ELS/27pzayNKxfpOEgdp3ws0wAEAPI/2/ZnoGGuk8ZiBVv4gOJdER/um9iKxUszapagYtVebMRBogAMA2L3bizRJ6n5e5SCYOhWZ9ab2Di+JFWi14xmmk+hob8QB0AAHAPgs9UjkYaCVPghO9fYvau/wk1iBI/GU6chs7QQa4AAAnst6PM1AK3sQJGcj01rT3uEnsYI/Dx975phIox80wAEA7G4+uoXlYaCVPQgWGpFZSrV36EmsYNj2+faA+lRkmtEfGuAAANajzy2sPwOtyMYCH7Hu3tLe4SexgmHb59sDaq9E5kEcBA1wAAD7b2F9X2c10MoeBLONyCy3tBeJFYZ/vvT5GezZxoF/mEQDHADA7XNJRNQOt2KvPq+zGmglD4L6mcjsXtPe4SaxAqtp/5/BPuXvhwfTAAcA0GpHR+21ZuyRzEWmGU8w0EoeBMdnIvOgpb3DTWIFdlbmo+PIeKvf3fhOGv2hAQ4A4NGXBv3TlbTPh4Ptm/EEA63kQXAqMu1F7R12Eitwez466ucW40kLjYiDXqVBAxwAwO7dmeiY2PvxYP1MZFpr0Y/7+cTb0xEbl9de6CCYOhWZ9ab2DjeJFXj8Ls61Vjw2dS4yB7xKgwY4AIDe/+kYZ5bTeOyNmQM+HHQ/Tz7Ilh1+52LrRQ6CXmNiWXuHnsQK7PztfHTU3/0oje9NvJdEHPwqDRrgAAA2ex8PTvz2Uvxg/nwc8OGg+/lsIzL1H1/PubHAR6wPl7V3+EmswI2zjeiY+P0na9EzfyGJzN+bUYr64XjkSHRNjkXX7sYIXIAGFDiAqgFcO5VEx9G3L6fRVX9rIbqutKIfTxTTz7/x+edVry1xJy02+7QXiRVeBjuf/SYyY+9tXf/HTkweO51E18MrUYrkw0bsUX8nHlm7VPkFaMAQHEDVAB+yxvH/tXqrGXH01Fz0rF2P/TxRFNyYf14lZyOze63g7NNeJFZ4Kdz9ej66xt58Mx7b+rc0SjHbiGcZa6SVX4AGDMEBVAbgP6Zmomt2Np7w8E+xnyeKohvzz6uF3srlVtHZp71IrPBS+Eu6EE/Z+mMryjEdzzSWpJVfgAYMwQFUBmD3zx9MxlO+uZxGf54o1qOrfS/vxuefV/WTkWnfLDz7tBeJFV4Of918M6nuZrwez7S1MwIXoAEFDqByADt/+Oe52Kt99ct4Fk8Uj74ZuL2Rd+Pzz6vjM731zYKzT3uRWLl9Yjxieykqx3/e+sVcPNb7lbSyrH43Gc9wJx2BC9CAAgdQPYDdy3M/n4zH2jeupvFMnih2Lv2m+3usrbwbn39erXcXrn5adPZpLxIrd/938JJ4eLl+8tSPpqJjc+ur22mUaOdiVGvnogaM9AEAFLSycuj03Nh4RGxvrd5YiwN5otj8Y66NBebV5sUcs097h4zECuyurMR/ARrgAAC2r16N/NzP82/UXiRWAAAAkFgBAACQWAEAAEBiBQAAQGIFAAAAiRUAAAAkVgAAACRWAAAAkFgBAACQWAEAAEBiBQAAQGIFAAAAiRUAAAAkVgAAACRWAAAAkFgBAACQWAEAAEBiBQAAgEYMO2qBVqjvADRAAzSgHweA46MdSKwAAAAgsQIAACCxAgAAgMRKEe2oHlGrtBXqa4AGaIAGaACODyRWAAAAkFgBAACQWAEAAEBiBQAAAIkVAAAAiRUAAAAkVgAAACRWAOAl9v/Yu8OnNq50z+M/dcsIZIQdhO0IGztgLjg4Icmd7OZ6J4nt7FSl5v6/W/vClcSz5SRTYVKpITFlx4xwwAY7JhqQACPRUq+OhN1BCOI+BrVA38+rvOjT55RPSs/z6266AQAgsQIAAAAAQGIFAAAAAIDECgAAAAAgsQIAAAAAQGIFAAAAAJBYAQAAAAAgsQIAAAAASKwAAAAAAJBYAQAAAAAgsQIAAAAASKwAAAAAAJBYAQAAAAAkVgAAAAAASKwAAAAAAJBYAQAAAAAk1jaGU5kziYQryX9eevLritBizrkLp5Kq2th4tOgpBLABAIATFy4k6j/jpdx8XgEK2jGohACJFaf+M6UXYsnk6SvaWrjnCS3T/W5G25LJgfeXf8pHt4rVrz0Z0S+ADei4BQCAHWfsshv8jJ8e8eeCNoaOwnagVblI3nTVhP91LuRRzrW09lb6Ji+QWNFBhiYSanRiZGR9Ki+0hHN1WDsMXM/eVcsNTbqqSrmejOgXwAZ00gLsAcDlK652iI040wrQUdgNtCgXzgeumolN3g551Jm09tH11rQ6Bkis6P6kR02dvPFsytPhQ5OriLHLZ+540f+P0BkLYAOCBRwXAOhk+hWgo7AfSLmIHkisGJ3Qns58fFsRoLwYfR/fjvSirNEhC2AD7BcQPQAwD5jCoqBZDKRcRIvECn7a/NXVZ5IyyWRC27ring4b3kurZmvhUVlO/2iPavomp9Uy5vkeO9EvgA2IfgHRA0BgNb/ia57kpPrfSikEOoowA63LxXzYowplV/tYU6cBiZXAGryiYFFS5kJGLYLRIRn+vQcyVudePG1z6VFOrdDpz6OyAdEvAACsuTdcGaWZedVUVlfnlLk8rQZ0FHYDrcrF5k9qUHkS9qiNL/rVTHpYVf6KQGJF5wTWIK8GlpaUeadHaAF3TNKOt+NtfmH2pf76gVYIXrC4kVSD6BfABnTAAgDA3mRcRv5OYyPTgI7CcqBVuSgtKmB71Oaimjkno5gXSKzoAMEzIM3eEL60VM2sJU84ZMNxGXdzeqny98/jqupNFHX43M96VFOaWb7pqkHUC2ADOmABAGDv3JCM/G3BoqCFGNgu5SI5KGPWE0is6KBf+eC6ZGNmPZtTa3CLNZ9VQOWfJ1TljE/r8A33yNiafaCkIhDxAtiA6BcAANacURmbdwSLghZiYNuUi3FXVZvzAokVncD9UxBYm/tVOGwDcVX509phbiyuqjdnPB26lKqi+tR69AtgA6JfAABYq3+z0/+HJ1gUtBAD26VcuBkZTzyBxIpOMBzfvi7pCZEZlFHISU2ubCb6cmoFf3nKk4XIF8AGRL8AAIi+iv6SE+wKWoiBQbmIvnut3BdIrOgE7pgivy4JNyNjXg0KMmKnczp0BS3/lFc0ol8AGxD9AgDAmpshvlgUNLuBQbmIvntdKwokVnTQLdZCTohO/UmcymM1WPbqLzzQ4ZudVbRmZ6PeADYAAI5qL0N8sSholgNnZ9tlx/1pgcSKTuCck1H5VohQSkaprAb+alpV/QIbAADYQ0rGvGBf0I5UJXTOddLtFpBYcSYtrku2TX3x1KCykVZVV9xTM2ADAABuJrg7aIGCZjcw+u51XiCxoiOkVDMvRMhJyshpl4KMLtdTM2ADAACJWHB30BIF7ehUwuBjRvMCiRWdwDknrktGL3ZKxtpeZSJ2sqhmwAYAAFJucHfQEgXtKFXC7tMyZj2BxIpO+mEr6ggCAABIycgJHWLc7aTbLSCxIhFrm195tsFf0S6Fsqu9X0YPNgAAkAruDp44O5JISvKfry3OqxkKWgsrYd/nCdVs+Mu/rFgf1SA5KGO+KJBY0RFSrow1HUEAAABOUnXO2GVXdbFk8uz7kX82FAnVJXXykoL9sDqq8RbrfYHEis6QkuGvCFFKuQIbAACw53vvDmungev3HlDQ2qcSDtxY/s57/aPcjIy1okBi7Sgk1nUFdO4j7VT6qihEo+gLbAAAYG/1d3LE3tcusbd7poWgoEVdCQf++nXutY8ajqvKnxZIrOhgg2rQde22cPj8dR0csAEAgLc0TUGLohJWNtJqIvbnu9mwRzVwx2QU8wKJFQgEX41uWwAAAOuzuYKkVN9Ej2ouPcoJEfjnU2mjXFCVc7JvMKO62NWVXMijGgzEZcx6AokVQKvZf+oMbAAAYGv2geoKhcdDk66qYpO3KWhRVMLKol6oVLdDmXd6ZMQ+/NILdVQDZ1TG5rxAYkUnK+hIAQAA8He+Zmnht5uuqnoTRSF6S0+vpWV0X8y+zlFn0jKeeAKJtZNxb2n2l269cOE/1O4AAAAa//Rx4/6EqpzzWbUBVL7dDqMXs5ZHBbdY+bQNiRXcT93aCv5TiFQiJrABAIDw5sbiQfRBIhZxJaz8ENz1tj6q+7SM+aJAYu0wJNbY6ZwQoULZ1X78FYENAACE4a+mpcbXR1LQoquEG4tDwV1vy6PGXVX5jwQSa8ehU+f6Y8QO9sIB2AAAQOVpPbG6HgWtPSphPYuq1/6o5KCMQk4gsaJzFH21x/VHtqG5lCvxoVA2AADwR/dSewWLgmY/0P4GsP1Rg/W1TAskVnTer3yiLydErle7pGSUygIbAAAIpaAQKGgWA+3idL/1Ue6YjGJeILGig2w/MRO7kBMiv3DQv2eZ8NQM2AAAQGUj+A23RUE7EpVwOC5j1hNIrOgki+Ouqi7eLwpRF9vdD2c7SRk5NQc2AABQUPAbHgIFLaJKmLM9yh2TUXkskFjRUTZX0qpyxqeFyIut62mn2CkZa9oP2AAAQONveNPHWSloUVbCROz1jhqIy5gvCiRWdBTzWHCb3GQlMO1+k/tAfN+LiWADAAD158ViJ4vNE6unAAUtykqYcmWsWR7ljMqo3BdIrOgw29/Xdq5/6SkqWPaaf+V8cP/Lw2ADAABFX2ryTg43IyOnRhS0iCrhoILwa3HUmbSMtaI6DEisKH//kYzu//GtooLy0pCqehPFZsX2iafmwAYAALZfGvTmjNfk5qD/SI0oaBFUwuBUpbLlUYMy/Gl1HJBY8ey3tIwzk9OKChaHpN1/Tjwcl/Z7/AVsAABg+y+cunfeHnRGZRTzaoaC1n0tJa1P5VtXCSfjQfi1OCo5KKOQU8cBiRWVH266Mt56M6IHgxE8i3O/qEByXMZaUWADAAB72f7wwei8p8BIep98REFzPzOHnfz0VrFVlXBoSEH4tTiqvsmaVwcCiRUb//hINd1/vfdAOzj9agmUf56QGv6cuPuGK+3/+AvYAADARv32YPfHt/XS0MR++YiCNhCX4ZzPHkIldD+vfJPXTqMTqpkvhjuq4Rbr5rw6EUiseDozoZrY21fm7nl64dRYRi2C7Tdgdf/l5Y/30KQr45ecWsI5qW29qunpUk1lPfIFsAEdsQAAsHV/0FVV37UpTzXO1WHVzBTVDB1FKvTAEOViIK4bW7Nznl7q/qRHNZszUoijAvUt7thXS4DEitniB6qLjYz4q6V5KXH+ZEKtguANWF03Stlfy+rpv+wGP9qt4H4e1w7Op9qWvx35AtiAyBfQ/gBwk1Vn/nv5cU7qG8yoLp9VgI7CeqBFuTjx9ttb/15aLUtO7+BZV3WVv3kyQh1luGPBPfOOBBIrFn676Wpb7LTOKtCi61l4ujCkmq4rVxQo/c1TSwzEtZeuuNcBC2ADol4AANj7ZzKtmoEBBbR5R43oKGwG2pWLE2fPaqfSN0UZ4Y8ajsuYL6pTgcSKjf/7p4z28mxGOHw/eMPapfRVUa2R0p66XK8DFsAGRL0AALBX+ftnPdrl2ZSn5ugoCqrxV0IMfOVyUSi7ambzS081IY6qc87J8B+pc4HEisqUect5E/7y9LpaAT9uXHGjq7UF7alU7ogFsAG2C4geAJS/2HXp3b/3QHuho9h+M7C/HmLgK5eLjelJV7sEGxLmqLozaRmFnDoZSKzY/OrElYuudlqeWVGr4F+P380oEHwlrRWWn/doD0+8jlgAG2C9gOgBQGUq806PAr55l+Se6CjKtz+qfY+1+IcDbcrFwkLmSko7bM0+UCDEUTWF2qTL3wmIq6Nh68cfT5x98w03oaqtrbWl5XW1EjannHODbyRVtVF6uOiphcq3FKnoF8AGCACOsqWlE5czXQlJW6Xlubz2RUex8VX4gSHKxdKSTvVfSCRcSf7ztcVFz/ooY+OWABIr6rYeP1aEUFlaEtgAAICFrXv3FKCgRVwJV1fn7I8CSKwAAAAAABIrAAAAAAAkVgAAAAAAiRUAAAAAABIrAAAAAABxAQAAAABAYgUAAAAAgMQKAAAAACCxAgAAAABAYgUAAAAAkFgBAAAAACCxAgAAAABAYgUAAAAAkFgBAAAAACCxAgAAAABIrAAAAAAAkFgBAAAAACRWAAAAAABIrDhYMYGtYH7+AdgANoANaIZ/APDPB18gsQIAAAAAQGIFAAAAAJBYAQAAAAAgseJ1+GoDiEW6FczPBrABbAAbwAYcQZRwACRWAAAAAACJFQAAAAAAEisAAAAAgMQKAAAAAACJFQAAAAAAEisAAAAAgMQKAAAAAACJFQAAAABAYgUAAAAAgMQKAAAAACCxAgAAAABAYgUAAAAAgMQKAAAAACCxAgAAAABAYgUAAAAAkFgBAAAAACCxAgAAAABAYgUAAAAAkFgBAAAAACCxAgAAAABIrAAAAAAAkFgBAAAAACRWAAAAAABIrACccxdOJVW1sfFo0VMLAAAAOgqLgScuXEjUjyzl5vP25+p+K9OVqJ/nSdajRQKJFY3OvZ+Qtn58pOih+92MtiWTA+8v/5SPbhWrX3syOm8B9vNHDwDgjF2qp5+luwrQURz0QGfsshsceXrEn7vn2Zyr4TxXSjPzIdbVEUBixWBC0onRR4oanKvD2mHgevauWm5o0lVVyvVkdN4C7OePHgBgZEw1yZGlnAJ0FAc78PIVVzvERpxpi3PtOk/X+xPf5NuxRQKJFYBzLa0Gsctn7nhqqe5PemQv+gVEOX/0AADJcYVCR2ExsHmx7A9/Lue9Ie3Sdf3rXIh1RQYkVoDyYvR9fDvSi7JGJy3AzA8AOMLGXYVCR2ExMHnTPZhzmcC6W+zPX+farkUCiRXAe2nVbC08KsvpH+1RTd/ktFrGPA9rL/oFRDt/9AAA54YUAh2FxcAgsJoD1zzJSfW/lbI51+jQi4N+KUhKnb/syoh9+KXXTi0SSKwAgh9t/94DGatzLx64ufQop9bggWAzPwDgCHP/pKotx1UIdBThBro3XBkv35FUWV2dU+bydNhzuWM7DlLh3r3RCRndF7Pt1CKBxAog+NEOHoPZ/KL+DExs8rZaIXhX30ZS9qJfQFTzRw8AMBxXVfayQqCjCDlwMi4jf8dTQEtLoc4V7JbuZvXSbOEjGRezbdIigcQKoOFHO6eXKn//PK6q3kRRh8/9rEc1pZnlm67sRb+AaOaPHgCg/tql/OxlhUBHEW7guSEZ+duvey7nnIx8VgE9XRgKjoq4RQqAxArAHWvyo13+eUJVzvi0Dt9wj4yt2QdKyl70C4ho/ugBAJwPXEmVbxUCHUXIgc6ojM07r72I7tOq8hvWtDikqtjJYvQtUgAkVgAD8WY/2nNjcVW9OePp0KVUFXz92170C4hk/ugBAM6kVTVfdBUCHUW4gfV/ZP8f3msvIuWqyl/XDstePNy5WgEkVgCDMgo5qckVxERfTq3gL095shf9AqKfHwAQofprlzZnFAYdRYiBwXG/5A5qEaVy+7dIILECcDMy5tWgICN2OqdDV9DyT3nZi34B0c8PAIjUcPwPb/7RUVgP3HFc5f6BLaLL9dq8RQKJFcCLJ14qj9Vg+8mYXh2+2VlFa3b26M8PAIhQcjy4GRcKHUWIgcNxVa0VD2wRwV+s1iViqvLXo2+RAiCxAkjJKJXVwF9Nq6pf+wAAABavXaKjsBmYkjH/uosIQmfsQk6/N+gGkZgWCSRWoM3qi6cGlY20qrrinvYBAADqbwSaKSosOooQA7cfCn782osIQufF+0UF3DEZ87RIILEC7cRJyshpl4KM/f/EAwAAbL92aV6h0VGEGJiINd7ytD9XZTatKuf6l55emowH+0iLBBIr0C5ip2SsNf85Dv7EozkAADBp/dolOooQA1Purlue9ot49ltaVd2fBZH13SEF+0iLBBIrAAAAjoXkoKp+yQmHKiUjpwNR+eGmq6ruv3yXk+FcHRb7CBIr0Ia2X4u3ol0KZVf7v7sdAABsv3bpvkKgo7AYmApueZ44O5JImkHP1xbn7RaxcX9CRtfHz6Y8qfuTHhkPp2mRQGIFAADA8THCa5dawkmqzhm77Koulkyefd/ym+azmlDNmb/O/Tw+rCCwAiRWoJ2kXAEAAFvumKo250VH0YqBvvfusHYauH7vgc25ZouTrozYyIhqSt/laJGODhIrgKKv/QAAAIvXLtFR2A2svwgp9r52ib3dM22ziIVn72YU0LMpjxYJJFagTfnrCg0AAJwbknhdT8Bfj6IVeUvTNufanMq806MXHs54tEggsQIAAOAYcUYlXrvUcuuzuYKkVN9Ej2ouPcrpdb11fvaBABIr0I74pBgAABbsX7tER2E/cOtlsCwUHg9NurXRk7ctzlV7QXDgxNuXv8nTIoHECgAAgGMiOa6qfFZoFf/eAwW08NtNV1W9iaJCcsb/QzX+v0+5qum6nr0rgMQKAACAY2HcleRPCy1zN6sdtr+r6pzPKhz3sx4Z/tw9zzn/4rXBl/umPB0JILECSMQEAAD2YvHaJTqKgx84NxZX1cVsuHN1fxaXUfuaa2Xh8YuPvJ75+I5HiwQSK9BGCmVX+/FX1AQAAHBGVbU5I0t0FPYDA/5qWlVdcS/MudxaYA2eMa7ce/hJj4y+j2/TIoHECrSd2OmcwgAAAPXXLs16akBH0cqBlaf1xOp6Ic7l/Fc9sH4dHLj5xdVhGX0jWVokkFiB9lH0tYeUK/EZMgAA9uCOqWrtWUoBOarp3ZJUWVcDOgrLgcG91N4DWcRIWsbdnAKVH59PyBid92iRQGIF2k2vdknJKJUFAAB2S8RU1XtTu8Xel/FwWgE6ikMaWAh/LndMxsOsdphNDamq+2KWFgkkVqA9BFcs+/f8OfYEAABsvDnjqQEdhe3AykbjYfbnGo6rqnJfDe4Puqq6mKVFAokVaBuVjeB9BTs4SRk5AQCAA0JHYT+woIbD7M+VkrFWVIONxaFgOC0SSKxAGwh+/11PO8VOyVgTAAA4UHQU9gMbDwue0X31c+0dOYPhtEggsQLtVV92f3h7IK6qymM1AQAANlfS2t+spwZ0FPYDF8ddSbGTxeaJ1Xv1cwWRkxYJJFag/S17zT+8PRhcsQQAALtUvtZu7udxBV9N2YWOwn5g0VdV7EJOO7gZGbnwi+jVHkplWiSQWIH2UV4aUlVvotjs9/+JJwAAcEDoKOwH1t+EZF5n1eSOp//oQNqaFC0SSKxA+6m/ZMAZn1ag8S16AADgYNBRdF9LSetT+ZADK0/TUuO3Z+SMyijmQ5xrd/ZtDKO0SCCxAm0jeOblflGB5LiMtaIAAMDBoaNwPzOHnfz0VjHkwPofsmp03lNgJL0dMkOcq2n2DcKo1miRQGIF2kn55wlVOde/9PRC9w1XVf60AADAAaKjGIjLcM5nQw7c/vZM98e39dLQhIzK/VDnKqjm6kpOv3duXMbmPC0SSKxAW5kbi6uq+y/f5FU3NOnK+CWnlnBOaluvanq6VFNZ74wFRDM/ACACdBQp24G6P+iqqu/alKca5+qwamaKoc717Le0qmJ/nrvn6QVn/D9UM+uFXBdIrAAOV/n7j2R03Shlfy2rp/+yq5rNGbWEea/iDs6n2pa/3QkLiGJ+AEAE6CjsBwY3WXXmv5cf56S+wYzq8tlw56r8cNNVVWxk+LdsYV3SiTcunXWDk4VbF0isAA7Z04Uh1XRduaJA6W+eWmIgrr10xb0OWEBU8wMAIkBHYT/wn8m0agYGFNDmnbDn2rg/oZpYcKbgZKHOBRIrgBb4wRvWLqWvimqNlPbU5XodsICI5gcARICOoqAafyV8K1L5+2c92uXZlBd6EbPFD9TU5pdeyHOBxAqgBX7cuOI2//lvhYL2VCp3wgIimh8AEAE6iu038PrrFq1I+Ys/ZbSTf++BxSK08OyTHu3iZ++GOFcHAIkVy2cT0tasELl/PX43o0DwlbRWWH7eoz088TphAfbzAwDajL8wLOm3vPZCR1G+/VHte6xFm1akMpV5p0cBP3h3Ushzbd6qn6nhZCHO1QlAYsXCgtAmNqecc4NvJFW1UXq46KmFyrcUrfKtTpgfANAClR9/1P7oKDa+shtYt7R04nKmKyFpq7Q8l7dYRHAmnR3qq51KW1ubC8vr1ucCiRVAC1SWlgQAACJARxFi4Na9ewd1rl9/pUUCiRUAAAAAQGIFAAAAAIDECgAAAAAgsQIAAAAAQGIFAAAAAIDECgAAAAAgsQIAAAAAQGIFAAAAAJBYAQAAAAAgsQIAAAAASKwAAAAAAJBYAQAAAAAgsQIAAAAASKwAAAAAAJBYAQAAAAAkVgAAAAAASKwAAAAAAJBYAQAAAAAkVhy+mMBWMD//AGwAG8AGNMM/APjngy+QWAEAAAAAILECAAAAAEisAAAAAACQWPE6fKENxCLdCuZnA9gANoANYAPaGiUcAIkVAAAAAEBiBQAAAACAxAoAAAAAILECAAAAAEBiBQAAAACAxAoAAAAAILECAAAAAEBiBQAAAACQWAEAAAAAILECAAAAAEBiBQAAAACQWAEAAAAAILECAAAAAEisAAAAAACQWAEAAAAAJFYAAAAAAEisAAAAAACQWAEAAAAAJFYAAAAAAEisAAAAAAASKwAAAAAAJFYAAAAAAEisAJxzF04lVbWx8WjR65gFMD8AgIoeYuCp8+e6EpK2Sstzeb2eU5nM9rmezq0LILFiF+dPGf2e/7y0+nTZEyLT/W5G0urXXjQz1yWTA+8v/5Rv+wUwPwAgedNVE/7XOXUA24JiP/DUf6a07cSJk5f8uXuebVsTzGfONTJSmplnexuBxIqRjHaIJZOnL8mf4ypXVIYmXVWlXE+t5Vwd1g4D17N323wBzA8AcD5w1Uxs8rY6gF1BsR+YeadHO8RGLnyXs2prdp+r6/2Jb/Js704gsSKlZmIjI9zfiUT3Jz2KhnMtrQaxy2fueG22AOYHAMC+oNgPDDJto64/381atDXmOb9duq6/6r1TkFiBgRvPpjxFi4uiUZY3o+/j2+24AOYHAMC+oNgPHBlWE7GrK7nwbc17GTUR+zOR9ZWRWIEzf/kuJ7SQeXImKu+lVbO18Kgsp3+0RzV9k9NHcgHMDwCYVwewKSj2A51zqvF/e5yTegaGXdXEPvzSC9vWuBnVbf17aUuZgYT2ORfbCxIr8t+rzjmZ6UupLnjIA60Q2QPBxuiQDP/eAxmrcy9Wc+lRru0XwPwAgM2f1KDyRB3AvqDYD1z/fkVG4deZF6m0+2LWrq3Zmp3zVLUYDNh1LrbXAIkVBW1bXZRO/c8e1cSuKiu0hDN22VXNRlIt545J2vHevc0vrqWl4MUG7bwA5gcAlBaFEAXFfuD6VF4vLfx205VxMRu2rfFX0/r9u4E3b30wpJrReW//7QWJFVi9VX93W/B3CThs7mc9qinNLN901WrDcRl3c3qp8vfP46rqTRTbbQHMDwCAfUGxH1jZSNUyZmDj/oSCY8K0NZWN/trt3MA/k2kZib6c/gBIrMDS0/rfygd/S4DDNdwjY2v2gaK7xZrPKqDyzxOqcsan224BzA8AgH1BsR/4gxrNjcVVFTtZDNvW/NB4ssoP9XQbO53THwGJFaj8+HxCRvfEtHD4Uqqqf4M7AgNxVfnTTWvQmzNe+y+A+QEAsC8o9gPLS0MH1tZsrqRl9OoVgMQKzKaGZFy8XxRawV+e8hSNQRmFnNTkymqiL9f+C2B+AADsC4r9QBXUeF/Uuq2pPE3L6NerAIkVqP8xAc8ktkZByz/lFRE3I2N+7xrU3gtgfgAA7AuK/cCAv9LytgYkVqAym+Yma8vMzio69SeBKo/VYNmrv3ChfRbA/AAA2BcU64EtamsKCgMkVuDpwpCqnPNZ4VhLySiV1cC8d76q//gugPkBAFR0+4HBUH/94NavnF4NSKzA4pCMi1l1AuqbpwaVjbSquuLe8V0A8wMAqOj2A+VmZKwVBZBY0XrLXpx+uQM4yb0uaBZkdLnesV0A8wMAqOj2A19+x3X+ABO31vRqQGIF6u8r51Wlx13s1F7loSAjdrJ4bBfA/AAAKrr9QCXHZWzOH2Di9lf0ikBiBXhVKQAAAPbQfcOVMevpAHSfllHMKxSQWEFiVa9wnCVie13QLJTd4JJF+y6A+QEAfZ8nVLPhL/+yohCo6NYDnbHLroyHWR2EcVfGE4/txV7iApr9SqlfAAAA7SyhuqROXuJroC1w4o1LZ13VPJzWQXAzMvxHr7y9ILECRV84/lLusVoA8wMABm4sf+dR0Q9loPtZj3YofZfTgRiOyyjk2F6QWIEW4JJFdAtgfgDAwF+/zilART+wgQM9Csj/bWZFByM5LsOffvXtBYkVMJ+N7hDw14/gApgfAFDZSKuJ2J/vZqnohzAwpd+LpScezesgOB+4Mn7Jsb0gsQIAAODY+OdTaaNcUJVzsm8wo7rY1ZWccOAK2iE2MPDe3D1Pr20kLWNzhu1tBiRWALGTxSO4AOYHAFQW9UKlUHiszDs9MmIffulR0Q984PLznsZxIxe+yeu1BM8E/8Nje0MgsQKxUzpKAAAAlp5eS8vovpgVDlr5lupSvRfOuqrpuv66f1bq3gieCQ69vSCxAjkdEQAAAJVvtzMNkeYwFQpLwQ3P/3WrqNcxGZeRn2Z7QyGxAomYwP8AR2sBzA8AqPxw01VVb6KoABX94AcuPb06LMO5/qUne6NDMjbvsL3hkFiBlCtjTTjOCmVX+/FXjtQCmB8AsLE4pCrnfFYNqOgHOlCVH59PyHitZ3RHJ2RU/uaxveGQWIEU/XLniJ3OHZMFMD8AoB5p1EtFP/SB2XNpGaPzniwNTcjwvymyvSCx2iGxrgvHWdHf/ya7v368FsD8AMDdRir6gVWiymxaRqIvJzvnPlDN3VzI7QWJFXAzMkpldQD07nXJolQ+kgtgfgDgamy/QqCi2w189lv6tW7tnvtQNT9l2d6wSKzAQFzGE084zvzVtKr69yxT3vFdAPMDAKjo9gONykY6yLvhJT90ZTzMKiSQWAFnVIb/SDi+gkrTFfe0k5OUkTuaC2B+AEBOjajoB1+JCrKn5M3twDrN9iJ0YgXOpGUU8zreUJDR5XraKXZKxtoRWwDzAwASMYVARY+sEnXfCAIr22uHxApusWrWUycgse5+R3z9sfDK4yO2AOYHAIT7QB8V3XqgkZL1P7b7WTwIrGwvQiZW4L20jM15HXNY9uKq2vUhtUEZpfIRWwDzAwAG1TxpUdEPvhI5SRn+ikJz/isu49k024vwiRUYHeIWa6coLw2pqjdR1O+5GRlPvKO1AOYHAIT83AEV3Xag0X1ahr+usJxraRn5b9lehE6sgHN1WDX5rI491D/E7YxP6/eG46qq3D9iC2B+AMDk/p87oKJ3X0tJ61P5g6hE466MtaJ1YL3D9iJ0YgUy7/SopvKtjjsEzwLdLyqQHLcsQNEugPkBAEND2i9pUdHrfz568tNbxVAD3c9Xfsqrwbkh1cwrnOAP0O54bC/CJVbAGbuUUF3l/xV1/KH884SqnOtfeqp7+fI+f7p9F8D8AAD388o3ee00OqGa+aKaoqIPxGU457OhBiZiAzeeTa/r95IfyrB48ckHQ/WBwYxsL0is2FvXoOoS508kXellYM2rNeCc1LZe1fR0qaayrsM3NxZXVfdfXpaFoUlXxi85qV0XwPwAgIG4bmzNznl6qfuTHtVszqgjWBSUlH0lOvO/179f0bbgz8g064Vpa4J7s/79s9qlsuyxvTuBxIruD9UguOjVCnA/j2sH51Nty9/WoSt//5GMrhul7K9l9fRfdm3KQQQLYH4AwIm3397699JqWXJ6B8+6qqv8zVOHsSgoFgNPfqr1hfy65PS/ldK2h9mwbc2gamLvqYmH02wv/jixAn72rlqIS8R76Yp7OnRPF4ZU03XligKloBy07wKYHwBw4uxZ7VT6pqjOYVFQLAYWfdWdvKKdnk2HbWucpPbx5ozH9uIPEivgL095ahmktKcu19Ph+8Eb1i6lr4oKtN0CmB8AUCi72q2jHhSzKCgF1fgr4QaaP3Zt6uH0obQ1bC9IrDAKamb9wbwixT4ESmW1wo8bV1zt9GzKU6D9FsD8AICN6UlXu/j3HqhjWBSU7TcD++shB86uv9OjXUrf5MO3NZWNtPZW8tjeF0BiRfaNjH5vQ5sLuYJaDMvPe7SHJ55a4l+P380osOMrbW26AOYHACwsZK6ktMPW7AN1EIuCUr79Ue17rMWwA5eWuoND6koz81Ztzf1BV3uaZ3tfAokVlSm1AZRvKXKbU865wTeSqtooPVz0jsICmB8AsLSkU/0XEglXkv98bZEf0D8uKBtf2Q00h+jE2ZH6v/bW1trDZc+yrdn4P2wvSKwAQqosLR29BTA/AGB1dU5WqOgWA7ceP2Z7QWIFAAAAAIDECgAAAAAgsQIAAAAAQGIFAAAAAJBYAQAAAAAgsQIAAAAASKwAAAAAAJBYAQAAAAAgsQIAAAAAjmxiBQD8f/buxDvKMksY+K16QzYIKInSQaMT4QOPC/Y2S68u39L/8Lfbi/P13ozHM7RyRJlgRxaXUAMJiVSopL56ExQKKs7bdplbVv1+Z2/vM/c5z73P+86tFAkAACZWAAAAMLECAABgYgUAAAATKwAAACZWAAAAMLECAACAiRUAAAATKwAAAJhYR1UtUAr5HYACKIACOAAcH720AxMrAAAAmFgBAAAwsQIAAICJlb9FOxgAtdRSyK8ACqAACqAAOD4wsQIAAICJFQAAABMrAAAAmFgBAADgr55YAQAAwMQKAAAAJlYAAABMrAAAAGBiBQAAwMQKAAAAJlYAAAAwsQIAAGBiBQAAABMrAAAAJlYAAAAwsQIAAGBiBQAAABMrAAAAmFgBAAAwsQIAAICJFQAAABMrAAAAmFgBAADAxArUjz15ZDo6NjYuX22lb2C08idQADdAfvA8r76wD1GeD5hYYQhMvjgfETd/28rJvGt6eu7bK2+v5m8gP//gN4ACuAHy4+1YPSpf9nXqw8J+RNV/MBt72/zdqufDgDKxAgtniuiYKVqxv+rPL0aXuZeX3snfQH7+wW8ABXAD5MfbsXpUvtTr1IeF/Yl6bDa+xPjfnfN8GEgmVmDyJ1ORoPdnnbUTj/2mlb+B/Pz5DaAAboD8eDtWjaL6daq+sL9Rng+YWBkCPhTNf72VDv/4jfwN5OfPbwAFcAPkx9uxYhTVr1P1hf2L8nz4JjOxAuWXmbK8NBs77nx4eSvqR09OxY7DZ87lbyA/f34DKIAbID/ejtWi2Ps69WVhv6LWtor4Erc8HzCxwsBJ/TLTyYUotd99P0o3L32+m6cvN/I3kJ8/tQEUwA2Qf3ThC8H7cJ2qLOx/1MYvjkYvs4s7K294PmBihQFTP3WiiB0b07HvilNRav+2EXfd/sXud3BqZ97I30B+/vwGUAA3QH68HatFDYGE61RhYb+jbl+NXo5Fqbnq+YCJFQZL8dpU7Ng8v/JqEfttcSxK7zTiC9t/+NlYdByaaOZvID9/fgMogBsgP96O1aKGQMJ1qrCwz1G9TR+P0sWW5wMmVhgsi1NRunPx/cj7EevqUtxn673noqN++lz+BvLz5zeAArgB8uPtWCVqCCRcpwoL+x7V2+kiOm4vez5gYoUBMxMd7UvvtiLD3NhO+nPR5dKpsej41vlW/gby8yc3gAK4AfLj7VghimrX6Sss7HtUb8V8lD5qeT5gYoXB014524ocx6O01ojo8QnmxOFG/gby86c2gAK4AfLj7VghiqrX6Sss7HtUb7vfAd6+4PmAiRUGzVqsvL0aSYr5KC0/vKlS7ZFG/gby86c2gAK4AfLj7VghiqrX6Sss7HdUb8WpKN1qej5gYuU+ky8d2/2nH5m4eDHy7H7jZvtKPGClNRYdh/I3kJ8/tQEUwA2QH2/HClFUvU5fYWHfo3pb7P4OsOcDJlZK9e/NRsSBZ683YlQxE6XNrXhA++ZsdBxN38Cw58+jAG6A/OB5Xn1h/6J6qx+L0lrD8+E+mFipHYlS7clGMOLvt1Y8YHtjNjrGx1rpGxju/HkUwA2QHzzPqy/sX1Rvj81Gadnz4X6YWJmoxYijPh2lRjxkLUrjRSt9A0OdP48CuAHyg+d59YX9i+qtfjJKt5c9H3rAxAp+zn5rr9dB7WAzfQNDnT+PArgB8oPnefWF/YvqbfKRKF1seT7cDxMrzXYAAECu00XEQ79mCUys3P2X6+3LMarY/WZ4+0Y8ZG2riN3fHZ+9gaHOn0cB3AD5wfO8+sL+RfU0fTxKy03PB0ysdNl+c/ev2zQCAABSf8R6IcDESrfbf4zRxkyRvoH0/CNLAdwA+cHzvFy4n1G9FfNRutX0fKDqxArQbKdvID3/yFIAN0B+8DwvF+5X1OJYdLTPeT70hIkVaK+nbyA9/8hSADdAfvA8Lxf2P6qy4lSUmqsD9XzAxAoAADA3FqWLregFTKxA7WAzfQPp+UeVArgB8oPn+e7C/kdVUz8ZpdvLA/V8wMQKAADw2GyUPmoFZE6sAAAAvX/Eun0hoPrECjBRS99Aev6RpQBugPzgeV4u3JeoyUeitNz0fMDECjxkbauIL9O+kb6B4c6fRwHcAPnB87z6wn5GPeD0zpr2Zc+HvWBiBWqPNNI3kJ5/NCmAGyA/eJ5XX1g9qrrp41Faa3g+YGIFHtZsxx5miuhor6dvYLjz51EAN0B+8DyvvrCfUd2O7/6Xc54Pe8PEChyKh8xEaXMrfwOjkD+PArgB8oPnefWF/YzaVZyKUnPV86EHTKxA++ZsdBzd83XQSt/AcOfPowBugPzgeV59YT+juiyOReliy/OhB0yswPbGbHSMj7WiW306So30DQx5/jwK4AbID57n1Rf2Lar3j1i3r3g+9ISJFViL0njRim61I1G6lb6BYc+fRwHcAPnB87z6wv5FdZkbi9Jy0/OhJ0yswFqU6k8s9XyDbF9J38Cw58+jAG6A/OB5Xn1h36K61E9GafuC50NvmFiBldZYdDy1FN2OR2lzK30Dw54/jwK4AfKD53n1hX2L6vLYbJRuNT0fesPECmxdW4iOQxPNuF8xH6WPWukbGPb8eRTADZAfPM+rL+xbVI/ps33O82EvmFiBqwvRUT99Lu63uPuNmwsjsIG8/AkUwA2QHzzPJ38wE7F+drX6wn5GdZk+HqW1hufDHjCxUv/efMSdd5ZjVHHvOzcXmnHP9Oko3WqOwAbS8idQADdAfvA8L14rww7+9PVm9YV9jOpyuojSsufDHjCxUv/BbEQceOlWI0YWW+89Fx31l3/Zis9NvlJER/vcCGwgL38CBXAD5AfP87mxKNWfWKq+sN9R3T9ivb3s+bAHTKzUjkSp9mQjyFQ/GHcdih1T47Fjez2+fpdOjUXH5H/53WrsWjhTROkvjYj8DaTmH+AGUAA3QH68HatH5Ruc6zTzVRf2M2rX8SJKH7U8H/aAiZWJWgwAip+NRZf6T+Ou1Tfia7f15j9GafyVzaVPtmLq6Ikidtw+H9VlbiAhf34DKIAbID/ejtWj8mVfp34s7GPUruJUlLYveD4MNhMrMDcWexkfa8XX7uMPF+5me/bZuGfzn6vnzt1AQv78BlAAN0B+vB2rR+XLvk59WdjPqNLiWJSWm54Pe8HESrMdA4CZ2NN40Yqv31utxXjI5q+aUV3qBhLy5zeAArgB8uPtWD0q3SBdp7XY0b5RfWH/o0r1Y1FqX/Z82BMmVto3Z7ufFKRYiz1tbsV++PPGs0V0+/RsK6rL3UBC/vwGUAA3QH68HatHZRuo63T3N/C216sv7H9U6bHZKK01PB/2hImV7TdfOhZx52IjyLTy2VTs4aNW7It/u/LifNzT9Vfa8jeQk3/AG0AB3AD58XasHpVrwK7T1hv/OFP+781qC7++qLWd2q38yfMBEytf4vYfg3xbr0e622frx44/Oh0dG5sfXG3lbyA/f34DKIAbID/ejtWjqHqdNn5VbeHXHbXxuudDdZhYge1r10Z7A9n5MymAGyA/eJ7vLux/lOcDJlYAAABMrAAAAGBiBQAAABMrAAAAJlYAAAAwsQIAAGBiBQAAABMrAAAAJlYAAAAwsQIAAICJFQAAABMrAAAAmFgBAAAwsQIAAICJFQAAAMYCAAAATKwAAABgYgUAAMDESq5aoBTyOwAFUAAFcAA4Pnppx98CEysAAACYWAEAADCxAgAAgImVdgwAaqmlkF8BFEABFEABcHxgYgUAAAATKwAAACZWAAAAMLECAACAiRUAAAATKwAAAJhYAQAAMLECAACAiRUAAABMrAAAAJhYAQAAwMQKAACAiRUAAABMrAAAAJhYAQAAwMQKAAAAJlYAAABMrAAAAGBiBQAAwMQKAAAAJlYAAAAwsQIAAGBiBQAAABMr8FerH3vyyHR0bGxcvtoaig0k5NcB8juABA6AI/Pz4xMRcWfz40vr0U0393thH6OOPHHsbuFWLq3Gnh5feHSiKMPWP1pqBSZWINHki/MRcfO3rZzMu6an57698vZq/gaS82c3wOAXQH4H4AaQ3xrd1Ttw4JlnNs8vO63q3Vx9Yd+jjnx35l7hDj7dvvRu6z+q7yOPPLt+djUwsQJZFs4U0TFTtGJ/1Z9fjC5zLy+9k7+B5PzZDTD4BZDfAbgB5LfG/AtT0WX828/9bjUGX343V1/Y/6gehas98+SfGvGg+un/FF0OvrL8diswsQIZJn8yFTnqP5iNB9ROPPabVv4GkvNnN8BgF0B+B+AGkN8a9e/Nx0PGX/5tI/INfjdXX9jnqB4zbWn8R+8sRbfital40FOP/7IVmFghnw9FM19vpcM/fiN/A8n5sxtgsAsgvwNwA8hvjZfmo4faj5JH1sHr5v4s7F/UMz3LWnv+Rnfhip+NxcMm3U4TK5Cg/MpTlpdmY8edDy9vRf3oyanYcfjMufwNJOfPboBBLoD8DsANIL81ivnYdeffr92J+bmJ2FX7fv5P4Qa/m6sv7HtU/VjsaF+/0oiYmlssehau/k9jsWPz/PX1iJknThRup4kVyJH2bbjSyYUotd99P0o3L32+m6cvN/I3kJw/uwEGvgDyOwA3gPzWuHPxUis6rt5bMPnUUuQb/G6uvrDfUaX1N29Eae2T8wtnih6Fe2Y2Su1/Xd6Ne/e9uz9yf+pCMzCxAvunfupEETs2pmPfFaei1L73Darbv9j9Pk/tzBv5G0jOn90AA1wA+R2AG0B+a7Rvzsb9vxv49uvfWYgdJ5dbkW/wu7n6wr5Glbp+6e+H118tonT/xDp9Okrb/++LwO0/f/ZcdNR/4HaaWIH9c++3CmyeX3m1iP22OBaldxrxhe0/7P67kUMTzfwNJOfPboDBLYD8DsANIL81tjeOvvt+3O9fp2ejNHG4EfkGv5urL+xr1PbGzPnluN/GhefiwY2eLqJ0fjXuWTo263aaWIH9tjgVpTsX34+8H7GuLsV9tt7b/Qjz9Ln8DSTnz26AAS6A/A7ADSC/Nd56K7ptv7U73dYeaUS+we/m6gv7GhVvxYMunRqLjtrBZtxVzPf4P7V9cdbtNLEC+20mOnb/bnaCubGd9Od6vje+db41FBtIyJ/fAAqQkN8BuAHkt8btG7NROhT5Br+bqy/sb1QPW9cWKm3r0+uzbqeJFdh/7ZWzrchxPEprjYgen4ZW/1JV/gby8+c3gAJk53cAbgD5rbH98WyUjka+we/m6gv7G9XLWjzww/GZKDVXexZ4vGgFJlZgn6zFyturkaSYj9Ly3u+N/A3k5s9ugPwCyO8A3IB83o70v5urL+x71Jdo34juiXWzFd2uni4iov7EUmBiBfbJxYuRZ/crN9tX4gErrbHoODQkG0jIn98ACpCQ3wG4AeS3xlqMgL52c7WFfYqqrj4dpUY8oNmOEbqdmFiZfOnY7q80GFnMRGlzKx7QvjkbHUeHYAMJ+XWA/A7ADSC5qNGIinRztYX9jPqSbbTX467akSjdigdsXVsYnduJiZX692Yj4sCz1xsxmtjzKzexvTEbHeNjrSHfQGp+HSC/A0jmANDNVRf2M6qXYj5Kt5oVfoo+OrcTEyu1I1GqPdmIkUTXV256vw+K1lBtICG/DpDfASRwAAa3uBXV6OZqC/sZ1dPiWJSWA0ys3GeiFvjUonRrr1dL7WBzCDaQkF8HyO8A3ABSB7f2jahAN1db2Neo3qZPR+n2cjzg0LB8noSJFQAAJh+JUnM1vkGYfKWI0sVW3OVfk2NipdRsB37Ovscn0WtbRfThTzukbSAhvw6Q3wHkcwCcLqL0USsq0M3VFvY1qof6qRNFlD5Yis/t/U9f17aKEfgGBCZWuj68al+Obz4AgGI+vln/vw0HHn368SJ2fHAu7rMWpYnDjYDRnVjZfnP3r9s0glE1U4zABhLy6wD5HUAOB8DiWJTWGrq5+sL+R1VRvDYVXTb/1IiHJ9bamTcCRnhi5fYfozdotodgAwn5dYD8DiCRA2D6dJTa54Iq3Vx9Yf+j5qbiPu3r529Et5XWWHQcPtNdzckfFYGJFRgx7fX0DQxBfh0gvwPI5gCof6eI0l8aurnPC/sfNRP3q80+d3k5umy991yU/q7+dis+N/nifHwDYWIFAIBnZqN0+3ww8NaiS21u7qVL77biPpdOjUXpqYVLfymjDzy68K0iMLECI6h2sJm+gSHIrwPkdwCZHAD3vhP8Ly3d3O+F/Y9a+WzqwXXPPPm71bhn681//Pw/PBPwTZ5YAQCgeOUb9J1gtl6PXTOHnny8iB3jL/+2Efd8/NZ3ordv1rf5MbECAMCZsSitnotvEtbWrsX8C1NRqv3w9Wbc8+H1V4t4wObyYhGYWAEmakOwgYT8OkB+B5DEAXByIUq3fxP0o5vLhfsWde3j5xejVH/5l624Z+N/nTpRxH3W37wxvRO5uRWYWIERsLZVxJdp3xj8DeTn1wHyO4B8DoCTz0Vp+59bUYVurr6wv1G9bf/5s+eiNPnUUtxn+913j5x8dKIoF39264OPAhMrMIpqjzTSNzAE+XWA/A4gjwNg4bkotX/X1M19WNjvqAqWjs1G6eRyK7rcfDO6zBTRsdkKTKzACGi2Yw+774P2+uBvIDu/DpDfAeRzABz7Tux4pxHV6ObqC/sd1dv2xdkoTRxuxJeaiVIjMLECI+TQXu+Dza3B30Byfh0gvwPI5wA49v3Y8fZSVKSbqy/se1Rvn16frfQT2pnoaF8OTKzAKGjfnI2Oo3u+WlqDv4Hc/DpAfgeQzwEw/f0iSh8sRVW6ufrCfkftYXtjtnve7a2YH4kvQGBiBbreDuNjrehWn45SY/A3kJtfB8jvAPI5AKZfvTuwnouqdHP1hX2P2staVDE3Fh23moGJFRgJa1EaL1rRrXYkSrcGfwOp+XWA/A4gnwNg8hUDa4Vu/soL+x/1Nznu4yQTKzCC77f6E0s9P8HcvjL4G8jMrwPkdwD5HADFa2MG1grd/JUX9j9qDzNRYay9+6Xgy4GJFRgNK62x6HhqqecnmJtbg7+BxPw6QH4HkM8BUP+nsSh9ei6q081RfWH/o3qrT0epfSO+zOJOgrVGYGIFRsPWtYXoODTR7PEJZnzUGvwN5OXXAfI7gHwOgPoPZqO0+vv4CnRzhYX9j+pt8pEotdfjS0yfjtJyYGIFRsXVheionz7X4xPM7QsjsIE+5NcB8juAdA7AwPqbqEg3T/5gJmL97GrVhf2P6u10EaVbzdhb8cpO0O3lwMTKqDjxbBHtlbOtYETd+/7OhebDn2Deag7+BvLy6wD5HUA+B8BLs1G6/ZtWVKObd//d78Gfvt6suLD/UcXPbry9Gg84thA7lmNvd78C3v6XVmBiZURMP1tE1B57aikYWVvvPRcd9Zd/2YpdX/zWxfa5wd9AXn4dIL8DyOcA+M5ClG6X9atGN8+NRan+xFLFhf2PmqjNvfLpufW43/T3I/6jH59O/mQqSn9pBCZWRsVMEaVDkYr6wSjdK8XUeOzYXo+v36VTY9Ex+V9+txq7Fs4U1V8I+RvIz5/fAAqQn98BuAFktMaxhSi1LzweD9leacXgS+jmma+wsM9Rpcf+8/qbN+4V+/nF2HWxFZ9b+M76+8vxcMzt84GJlZExEwyA4mdj0aX+07hr9Y342m29+Y9RGn9lc+mTrZg6eqKo/kLI30B+/vwGUID8/A7ADSCnNY7HjtpL0cPg/7Wb5G6uvrD/UaWDP431D1fXI+pH/27mi6otxRfm4uC3v33n35c3tiKmji5Mxa7tf27FfsLECsyNxV7Gx1rxtfv4w4W72Z59Nu7ZrP5CyN9Afv78BlCA3PwOwA0goTXq0/ElvnW+FYMvrZurL+x/VLMduw4+G116/I2iA48/Hl02f9UMTKyMnFuRiZnY03jRiq/fW63FKCW8ENI3kJA/oQEUICG/A3ADSGgNqnTzWuxo36i6sP9Ru//Y9av9XHzlT63AxMrIad+ITKzFnja3Yj/8eePZIrp9erYV1eVvID9/fgMoQGp+B+AGkNAa2xuzsbfNVgy+hG6++9t82+uVF/Y/6uL6C1M9Kva71bjf1YV40J2L7wcmVkZQczUysfLZVOzho1bsi3+78uJ83NP1V9oGfwP5+fMbQAHy8zsAN4CE1rhwvIg9Lcfgy+jmrTf+cab835vVF/Y/6tq1ye6QiM3zy9Ht47MvTPUOwcTKyKgf63ruJ2Hr9Uh3+2z92PFHp6NjY/ODq63B30B+/vwGUID8/A7ADSC3NTb+R/BXd/PGr6ot7H9Ud0gcePyZiYkiIu7cufXBSo+ga9fqcwuPFhMR0f7s1tURvJqYWHlsNjq2LwTE9rVro72BxPw6QH4H4AZAfjeXC/c16s6VK/Ef2P7kk4BRnlg5HqXzzQAAADCxMkimj0fH6lIAAACYWBkop4uI2P59AAAAmFgZwB+x+k4wAABgYmUgf8TqO8EAAICJlQH8EesAficYAADAxMrxIgbvO8EAAAAmVopTMYDfCQYAADCx8mgtYuVPAQAAYGJlwKz8j7gHAADAxAoAAAAmVgAAAEysAAAAYGIFAADAxAoAAAAmVgAAADCxAgAAYGIFAAAAEyu1QCnkdwAKoAAK0IsDwPHRDkysAAAAYGIFAADAxAoAAAAmVv4W7WAA1FJLIb8CKIACKIACMKzHByZWAAAAMLECAACAiRUAAAATKwAAAJhYAQAAMLECAACAiRUAAABMrAAAAJhYAQAAwMQKAACAiRUAAABMrAAAAJhYAQAAwMQKAAAAJlYAAABMrAAAAGBiBQAAwMQKAAAAJlYAAAAwsTL9o6mIOxeWAgAAwMTKIKl/ZyoiDpxcbgUAAICJlQGyvTEbAAAAJlZgcNWPPXlkOjo2Ni5fbQ3BBhLy6wD5HQApBeDIE8fGJyLizubKpdWoQDdVWJgQNejlxcQKTL44HxE3f9vKybxrenru2ytvrw7+BvLz5zeAArgBboBnsLfjke/OxF0HDhx8un3p3ZbTqtBNFRYmRA10eTGxAgtniuiYKVqxv+rPL0aXuZeX3hn8DeTnT24ABXAD3ADPYG/H+RemokvtmSf/1IjBl9hN1RcmRA1ueTGxApM/mYoc9R/MxgNqJx77TSt/A/n58xtAAdwAN8Az2Nux+phVGv/RO0uRb5C7qfrC1CjlxcQKA/2haObrrXT4x28M/gby8yc2gAK4AW6AZ7C34zOL0UPt+RsNA2uFbqqwMCFqIMuLiRUov/KU5aXZ2HHnw8tbUT96cip2HD5zbvA3kJ8/rQEUwA1wAzyDvR3rx2JH+/qVRsTU3OLd6Nr3f9mKfAPcTdUXJkQNXnkxsQKp34Y7uRCl9rvvR+nmpc938/TlxuBvID9/bgMogBvgBngGezuuv3kjSmufnP98wp18ainyDXI3VV+YEDVg5cXECtRPnShix8Z07LviVJTav23EXbd/sftNndqZNwZ/A/n5MxtAAdwAN8Az2Ntx/exqfOHD668WURr8kSa5m6ovTIxSXkyslNYiG8VrU7Fj8/zKq0Xst8WxKL3TiC9s/+FnY9FxaKI5+BvIz5/UAArgBrgBnsHejtsbM+eX434bF56LETi9PnRT9YU5UcrbDRMrm61Iw+JUlO5cfD/yPt5fXYr7bL33XHTUT58b/A3k589qAAVwA9wAz2Bvx7fiQZdOjUVH7WAz8g1yN1VfmBA1UOXFxArMREfaX8SeG9tJf67nG+Fb51tDsoGE/AkNoABugBvgGeztuHVtIUZAH7qp+sKEqAErLyZWoL1ythU5jkdprRHR43POicONYdlAQv6EBlAAN8AN8Az2dlyLUu2RRuQb6G6qvjAhapDKi4kVWIuVt1cjSTEfpeWEN0LGBhLyJzSAArgBboBnsLdj+0bkG+xuqr4wIWqQyouJFbh4MfLsfi9n+0o8YKU1Fh2H8jeQnz+/ARTADXADPIO9HelzN1VfmBQFJlagNBOlza14QPvmbHQcHbINJOTXAfI7ABQg4VDb61GBbqqyMCVKeTGxAl0vjVY8YHtjNjrGx1pDsIGE/DpAfgdATgEo5qN0qxkV6KZqCzOilBcTK1CqT0epEQ9Zi9J40RqCDSTk1wHyOwByCsDiWJSWowLdVHFhRpTyYmIFSrUjUbq110ujdrA5BBtIyK8D5HcApBSA6dNRur0cFeimigtTopQXEytdj4ZGfMMBAEy+UkTpYiu++VBeTKzARC2i9y+JX9sqovqfVsjfQHJ+HSC/AyC/ANRPnSii9MFSVKCbqi5MiBqi8mJiBQCAA48+/XgROz44FygvJlZgGMwU6RsYgvw6QH4HQF4BKF6bii6bf2ropj4sTIiqXl5MrADNdv4GsvPrAPkdAINfAOam4j7t6+dvBP3ppmY7PUp5MbECpfZ6+gaGIL8OkN8BkFEAZuJ+tdnnLi/rpj4sTIgasvJiYgUAgLXoUpube+nSu61AeTGxAkOjdrCZvoEhyK8D5HcAJBSAlc+molvtmSd/t6qb+rAwIWqIyouJFQAAtl6PXTOHnny8iB3jL/+2ESgvJlYAABgMa2vXYv6FqSjVfvh6M1BeTKwMg90/1XwrusFEbQg2kJBfB8jvAEgsANc+fn4xSvWXf9kKKnRThYXJUcqLiRV8YrG39o0h2EBCfh0gvwMgpwBs//mz56I0+dRSVKCbKixMibpHeTGxArVHGvkbSM6vA+R3AAxHAVg6Nhulk8st3dSHhZlRyouJFWi2Yw8zRXS014dgAwn5dYD8DoCsArB9cTZKE4cbUYFuqrAwJeoe5cXEChyKh8xEaXNrCDaQkF8HyO8ASCsAn16frfAjPN1UfWFalPJiYgXaN2ej4+ieL43WEGwgIb8OkN8BkFYAtjdmew1EuukrL0yIUl5MrEDXc398rBXd6tNRagzBBhLy6wD5HQCJBWAtKtBNlRdmRN2jvJhYuf3JfMTmlWCkX+vjRSu61Y5E6Vb6BoY4vw6Q3wGgAKR1U/WFWVFgYmXX9tnA+63+xFJ0mxuLju0rQ7CBhPw6QH4HQGIBmIkKc49uqrwwKUp5MbECpZXWWHQ8tRTdjkdpc2sINpCQXwfI7wDIKwD16Si1b0QFuqnCwoSofSwvJlb4/+zdiXNU17kg8E99G20gg5FsIhyRCHjA4Hibl6rs3mbJzP87u7M4U4nnVXguV2SbMjZPODKLF6yHJSSrRUs9upKSRnTL77oi9FX6/n61wzl8p853zrl8997uriARG3dmYsuxkVY8rJiO0qftARhAXnwrQHwTgAQkGD0Rpc5KVGA1VeiY1KokvahYgdszsaVxcS4eNtuMLZvXBmgACfGtAPFNABKQ4GIRpfut6MtqGv3JRMTKlaWKHfNaSS8qViC6b+Zca0XX+MXql4P8AeTHtwLENwFIQIbil/feW4pHnJqJbQvRl9VUvF42O/ryG63KHRNaSS8qVvbeZ1v/42JQUxsfXo4tjVd+0+6uileL2NKZq8EAcuJbAeKbAA4gAYwMTb36xdxKPGz8h7FtbSH6spqmmlFqPDNfuWNCK+lFxcre+2zDP/vDYqShcTR2HYttY8OxbXMlHr8bF5qxZfQ/vrUUO2aeL6L058WoIGsA+fHzF4AE2AF2gDPY1fGp/7Dy9r1un2dnY8f1dtROtdU08e07JrWS3hIqVkaGojR0YjHIUvyyGXs0Xo5dS2/GY7fx9o+iNPzq+vznGzF28lwR29auRgWJA8iPn78AJMAOsAOcwa6OR1+OlU+WViIaJ78/Ebs+no/6qb6aqnfMbFWSXlSsTBSx7ViQZqoZ+xlutuOx++yTmd1oly5F1/rvKsROGkB+/PwFIAF2gB3gDHZ1bHVix9FLsdcXc1FH1VdT9Y5JraS3F80AkkzEvoaLdjx+77Rno8f6b1tRQc4A8uPnLwAJsAPsAGewq2P5aci+Pp6LeqqympZjW+detY4praQXFStdyxtFlO4HaZZjX+sbcRjeXb1UxF5fXGlHddkDSIifvwAkwA6wA5zBro7XV34wFj3W31qK2qm+mna/p7ezUq1jYivpRcVKae3eZGzZvBWkufv1WOzj03Ycin+59dx0dO35lbYaDOAA4mcsAAmwA+wAZ7Cr4507ozuT17V+dSFqqPpq2njzRxPln7eqdUxsJb2oWCltvr3z6zatIM3GG5Fu7Urj1Oknx2PL6vrHt9v5A0iOn74AJMAOsAOcwa6OFScvjjx9dmSkiIgHD+5/fLcd9VR9Na3+tlrH/FbSi4qV0tpvA7Zs3rkzYANIiG8FiG8CkIAED27digNgNZUd81tJLypWAAAAVKwAAACgYgUAAEDFCgAAACpWAAAAaMbBAgAAABUrAAAAKlYAAABQsQIAAICKFQAAABUrAAAAqFgBAABQsQIAAICKFQAAABUrAAAAqFgBAABAxQoAAICKFQAAAFSsDAVSIb4JkAAJkAATgOmjn06gYgUAAAAVKwAAACpWAAAAULHyt+gE+WIoNRXiS4AESIAESACHOX2AihUAAAAVKwAAAKhYAQAAQMUKAACAihUAAABUrAAAAKhYAQAAQMUKAAAAKlYAAABUrAAAAKBiBQAAQMUKAAAAKlYAAABUrAAAAKBiBQAAABUrAAAAKlYAAABQsQIAAKBiBQAAABUrAAAAqFg58vTZkfGI6Hx9//ZCAAAAqFhJVzpy7lwRO4bGx59+8e57SwEAAKBiJVvj2dnYa+rVL660AwAAQMVKqsZPJqPHU6//ph3UUuPUd4+Px5bV1Zu32wMxgIT4VoD4JgASHH/m1PBIRDxYv3tjKapznlfvmNjq+PT0bno/u7ESqFipkdET0ceokjXT6HPTEfHVH9pJkbeNj09Vf0E8fwD58fMXgATYAXZA/gDy4rs6Hv/3E7HryJGj3+vc+KBttqpv5+odU1qVbbrpPXt2/epCoGKlbtbnl1YixqZmi9g2+vM3gyQzzxexZaJox6HqfUN86pX599MHMADxExaABNgBdkDiABLiuzpO/2As9hg6+90/LkZtVd/O1TvmtepN7/CLl99aClSs1ESrE/Hg+o12lJY/v/qXM+GJs/NBhtFfjEWOPm+ID5176vft/AHkx89fABJgB9gB+QPIj+/qWLXMKg3/7P35qKnq27l6x7xWjX+cjh7Dr/xhMVCxUg+dryauLkTXnc92T47zC+0g/6Zo5uWt9MTP30wfwADET1gAEmAH2AFJA0iI7+p4djb6GHr23mLUUvXtXL1jYqsXpqOPoZ/VpWRFxcrmH2KvzX/6ZTO2jJ6ZDw5b+cpTlhcmY9uDT25uROPk+bHY9sTzc+kDGID4CQtAAuwAOyBlAAnxXR0bp2Jb58tbiw9/xGnoh79pRx1V387VO+a1KqZjx4N/vfMgpqdGot7ppRkQG2//KEqHXLGS/DLY+ZkodT74KEpf3fjLaL53czF9AHWIn7oAJMAOsAPCC8F/91fHlbfvRWn586tlhVuDu+8Hvp0rdExoVep+hO12lE3qnF6aARFffDkZW4ab7eAQNS6cK2Lb6ngcuuJClDrdV2zWfr3zps7Q82+mD2AA4icsAAmwA+yArAEkxHd1XLmyFH/1yZevFTW4+37Q27lKx4RWna8m4+HvBl5746WZKNX4E2wqVtj8bKdiLdrB4SleH4tt61fvvlbEYZttRun9xdjVfUH82EgrfQADED9hAUiAHWAHJAwgIb6r4+bqzndydK1euxzVl2++/O1ctWNCq83Vkx98FA/70/hklEaeWAxqWrHCcpSGjraCwzM7FqUH1z+KvEesS/PxkI0PL8eWxsW59AEMQPyEBSABdoAdkDGAhPiuju/Eo25caNbg/zIHu50rdUxoFe88mt/Nd3ZuXgydWAxqWrHC8kZx6McAE7El7QfPp5rb4ef6XvC/c7WdPoDBiJ+wACTADrAD8geQEN/VcePOTNTAQW7nCh0TWvW3dm8ySseCulas0OoEGTp3r7Qjx+koLS9G9N7nrP7WTf4A8uPnLwAJsAPsgPwB5Md3dVyOGjyEO4jtXL1jSqv+dj/AFicDFStweJbj7ntLkaSYjtJC2gU/cQAJ8fMXgATYAXZAwgAS4rs6du5FDRzAdq7SMaVVf6hYYWTo8E95rl+PPFPN2LJ5Kx5xt92MLcfyB5AcP3sBSIAdYAckDCAhPmYmYTtX7JjUqr/lqBdUrMBElNY34hHlN8pvOTkAA0iIbwWIbwIg+VjrrEQFzvMqHbNafcNgYzHqSsUKE0U9T3kVazsesbna/W3eQRhAQnwrQHwTAAmK6Sjdb0UFzvNqHTNa9YeKFU7X7JSnMb7frcrlKA0X7cEYQEJ8K0B8EwAJZptRWogKnOcVO6a06m8itt2PmlKxwvjpmp3yDB3f7+Dv/jbvIAwgIb4VIL4JgATjF6O0thAVOM8rdkxptX95XeevXFGxwsUitmzeir87AACjrxZRut6OQcToiSi1lqKeVKxwfiZKC62oC/b/dujljSKqf8N8/gDy41sB4psASNa4cK6I0sfzUYHzvGrHlFbf8HAlPm0HKtY6YvS56ShtXou/KwAAR5783tNFbPt4LgYSxXSUOjejZlCx0jga8cSFidjWeasVtcFEMagDSIhvBYhvAiBB8fpY7LH+x0Xn+QF0zG3V32wzSsuLUS+oWHluNro67y9GBLQ6NR9A9fhWgPgmABJNjcVDOl9evRccxHbu6ZjfavxilDpzUS+oWBk/475k3XVWBm8ACfGtAPFNACSYiIcNTV6+ueA8P4CO+a16NF4qovTnxagTVKzseTWjc+ODdvy9AABYjj2GpqZeGMz/znB2MkprV6NmULGyvFFEafX+B/eilhg62hq4ASTEtwLENwGQ4O7XY7HX0NnvvrXkPD+AjvmturrvBP9zO2oJFStLb8bfGQCAjTdix8Sx7z5dxLbhV/6wGIOF4tW/13eCUbECAMDy8p2Y/sFYlIZ++kYrBgrPN6O0NBdbULECjAwN0AAS4lsB4psASHDns2dno9R45TftoMJ2rtYxv9X5mSit/T7qAxUr0P0U83469wZjAAnxrQDxTQAk2Hz368tRGj0zHxU4zyt0TGjV4/zlKG3+rh31g4oVGDqxOPADSIhvBYhvAiDB/KnJKJ1faDvPD6BjZquumctR6rzVilpBxQq0OrGPiSK2dFYGZQAJ8a0A8U0AJNi8PhmlkScWowLneYWOGa32OPVSbHt/MeoLFauaZTFqjGPRYyJK6xsDM4CE+FaA+CYAEnzx5WSFR3jO8+odU1uVTv0wtr03HzWDihXofDUZW07ue9FoD8wAEuJbAeKbAEiwuTrZtyBynv8NHRNadY3/sIjSx/NRU6hYwWV9uNmOvRrjUVocoAEkxLcCxDcBkGA5KnCeV+6Y06pr/LXdgnUuagoVK50vpiPWb0aNuawPF+3Ya+h4lO4P+gAS4lsB4psAIH87V++Y0qpr9FUFa+2pWNm8EnXn+tZ4Zj72mmrGls1bAzSAhPhWgPgmABJMRIU7Ls7zyh0zWnUVrzcVrHWmYgXutpuxpedX605HaX1jcAaQEN8KEN8EQILGeJQ696IC53mFjkmttjV+3IzSF3NRS6hYgY07M7Hl2EgrHlZMR+nT9uAMICG+FSC+CYAEoyei1FmJCpznFTomtSo1fjIZpaX/F9CMWgJuz8SWxsW5eNhsM7ZsXhugASTEtwLENwGQ4GIRpfut6Mt5PvqTiYiVK0sVOya06i1Yfx/1hIoV6L6Zc60VXeMXq1/t8weQH98KEN8EQIbil/feW4pHnJqJbQvRl/N854OhR19+o1WpY1qr0guTUVr7fTvqDBUrjWfPFNGZfz9qiY0PL8eWxiu/aceOv34tX2euBgM4mPhWgPgmABKMDE29+sXcSjxs/IexbW0h+nKeTzWj1HhmvlrHvFbx0kyU1rZbQTNqixdmImLo3NfzQZLG0dh1LLaNDce2zZV4/G5caMaW0f/41lLsmHm+iNKfFyMGYgAJ8fMXgATYAXZAwgAS4rs6PvUfVt6+1+3z7GzsuN6OWqm+nSe+XcesVt3H5Z1rT0ePzbvtqAtUrDTGY9uZ+SBH8ctm7NF4OXYtvRmP3cbbP4rS8Kvr859vxNjJc0VsW7sa1eUPID9+/gKQADvADkgfQEJ8V8ejL8fKJ0srEY2T35+IXR/PR/1U387VO2a2Oh3bhl6IHn7tplZUrAwdD3JNNWM/w812PHaffTKzG+3Speha/1312PkDyI+fvwAkwA6wA1IHkBDf1bHViR1HL8Ve9fwtlOrbuXrHxFaN8fgG37naDlSswOGYiH0NF+14/N5pz0aP9d+2orr8AeTHz18AEmAH2AGZA0iI7+q4/WlIz9++5XZejm2de9U6prYqgYqVzleTQarl2Nf6RhyGd1cvFbHXF1faUV3+APLj5y8ACbAD7IDcASTEd3W8vvKDseix/tZS1E717bz7Pb2dlWod81ptrk7G/tbbUQ+oWOkeBwtBkrtfj8U+Pm3HofiXW89NR9eeX2kbgAEkxM9eABJgB9gBCQNIiO/qeOfO6M7q7Vq/uhA1VH07b7z5o4nyz1vVOia2una6iH0tRH2gYuVP7e1ft5kPkmy8EenWrjROnX5yPLasrn98uz1YA0iIn78AJMAOsAMSBpAQ39Vx7UocefrsyEgREQ8e3P/4bjvqqfp2Xv1ttY7prVb/e5RAxcrmu+8GbN65M2ADSIhvBYhvAiDBg1u3ggPYzmXH/FagYgUAAEDFCgAAACpWAAAAVKwAAACgYgUAAIBmAAAAgIoVAAAAVKwAAACoWAEAAEDFCgAAgIoVAAAAVKwAAACgYgUAAEDFCgAAAAdbsQIAAICKFQAAAFSsAAAAqFgBAABAxcpQIBXimwAJkAAJ6McEYProBCpWAAAAULECAACgYgUAAAAVK3+LTuQjhlJTIb4ESIAESIAEYPpAxQoAAAAqVgAAAFSsAAAAoGIFAACAb1+xAgAAgIoVAAAAVKwAAACoWAEAAEDFCgAAgIoVAAAAVKwAAACgYgUAAEDFCgAAACpWAAAAVKwAAACgYgUAAEDFCgAAACpWAAAAULECAACgYgUAAAAVKwAAACpWAAAAULECAACAipUjT8+OFiOxZbVz98/3onZonPru8fHYsrp683Y7fQDp8WtEAuwAcIKZjd6Oh9CqoqdnnhwpIuLByqfz7aglVKw0Lpwr4i/G4+j3YuXtjKKV0eemI+KrP7STIm8bH5968e57S+kDyI6fvQBqlQDxrUCotDQTNlCWhOOkWseDaNX4yWTsb/2tpX3+qSMnTlxaubIUtYOKlSOXZuNRR19ev7oQHLKZ54vYMlG043A1np2NPaZemX8/fQDZ8bMXQH0SIL4VCBWXZsIGypFwnFTreDCtnpqMbzD8/bn4q8bFf4g9jr668F47ULFSx+tAj+EXv/vHdnCIRn8xFjn63OscOvfU79vpA8iOn78AJCA/vhWYD1fHhA2UK+E4qdbxgFpVV7zem/0zT/+mHXVEM3Ar7lFT/+X/LkUCmci/vJWe+Pmb6QPIjp+9APITIL4VmA9Xx4QNlCzhOKnW8YBaVVf8shm9RmuaXZqBW3ErK3cexNDskYnY1XjlD4vB4T3qzvLCZGx78MnNjWicPD8W2554fi59ANnxsxeABGTHtwLz4eqYsIGyJRwn1ToeVKvljSK+wf3Y1fhxM7atX/1yJWLimXNFfbOLilXB2v2qpVsRxy9Mx7ahn77RCg5B6tt452ei1Pngoyh9deMvo/nezcX0AWTHz14AEpAd3wpMhqtjwgZKl3CcVOt4YK1Wf30y+pmc3e55L3adnYxS508LUVr+4MPdR+5nrrUCFSs1uxW392uWvrryl7Ol8cohfFKA7nc1r47HoSsuRKnTfaC+9uudOxlDz7+ZPoDs+PkLQALy41uB+XB1TNhAaRKOk2odD7DV2u3o51SUWkuxY/xilDa7n1LbfPfryzuPXOqSXVSsnJqJbWuP1qVrv35hJkqjl+fi8aL7rQLrV+++VsRhm21G6f3F+KvNf9r53MixkVb6ALLj5y8ACciPbwXmw9UxYQNlSThOqnU8wFb9jZ+O0vV27LhYROnqUnTNn5qsU3ZRsdI437dgLW3+KWYO6bULZsei9OD6R5H3iHVpPh6y8eHOLcyLc+kDyI6fvQDyEyC+FZgPV8eEDZQm4Tip1vEgW/XqVqhrC7GjmO7zT21en6xTdlGxcnYySpu/a0ePzbnpphPhcEzEls6ND9qRYaq5HX4u9rhxoRlbvnO1nT6A7PjZC0ACsuNbgdlwdUzYQJkSjpNqHQ+yVa9uhfpp+xuH9cWXk3XJLipWuh80eKsVfWy8/aNDe8hK5+6VduQ4HaXlxYg+d0NHnlhMH0B2/OwFIAHZ8a3AXLg6JmygXAnHSbWOB9iqv9lmbNm8FrsmotRaij02P5uMLcNFOwYfKlammr2HSu89rMYz8/FYsRx331uKJMV0lBZ6B1UaOrGYPoDs+NkLQAKy41uBmXB1TNhAyRKOk2odD7LVNz1Jud/aW7Gut2Ov2xcL/z9VsVKzW3Gduehv94MCcWY+HiuuX0+/b7F5Kx5xt92MLcfSB5AdP3sBSEB2fCswD66OCRsoX8JxUq3jAbbqb/aRl4Ab41FajEe0OlGX7KJipZjuedmi7+Ey3GzHwGIiSusb8YjOV5Ox5WT6ANLjDzQJsAPACWY2qnU8uFb9NU5Fqfvq39DxKN2PR2zcmXE8qlip1624+LQdvbonwkB/DIR9X7mJzdXJ7v2K3AGkxx9gEmAHgBPMbFTreHCt+ntqMkoL8W9ajnplFxWrY75zM/ZRg4+B0PPKTc/1oGinDyA9/uCSADsAnGBmo1rHg2vVX+N8lNYWAlSsPFqxrsS+dj7aHsdiQNH7yk3P/YqjrfQBpMcfXBJgB4ATzGxU63hwrfobPRGl6+14xDH3I1Cx1v7G5PpG7KvVidLJeFwAAOBiEbH3K5t8nH8XKlY3Jtfbsa/OV4P+MRBGhmJL5170WN4oovtOeOYA0uMPLgmwA8AJZjaqdTy4Vn2Nn47SQit27f/R1/KfqtMTdFSsjvlYjHQAAHjEei0eshwl3wBKjStWJooo3Y8ePTe3inYwsMsgfQDp8WtMAuwAcIKZjYnisFv1KqajdL/VW7EOPf9mQG/FCtDqpA8gPX6NSYAdAE4ws9HqHFar2WZs6czFw+62m7Hliefn4mGjPyuiZlCxAp2V9AGkx68xCbADwAlmNjorh9eqR3EhSq2leNjGh5ej9P3Ge+1uvfrcdKBiBQAAOCRTzShdb8ceNy40o3Rm5saflyPiyJMz3ymihlCxAkNHW+kDSI9fXxJgB4ATzGyUHQ+3VVfjfJTWFmKvjbd/FNuGzp4NOPSKFQAA4KnJKH3ajkd89s5L0Z+3wVWssMf6RhwwAADoPmLdvBY9PvnytSIesb4wW0QtoGJl5+eX41jsrzEetcXIUPoA0uPXmATYAeAEMxtlx0NoNXoiSgut6LX6Py+cK+IhK2/fG5+t1wMVVKycjP0NHY/SejsY8BsX++rcSx9AevwBJgF2ADjBzEa1jgfXqsfF7T6dm9HP5gcfHD//5EhRtvj6/sefRo2gYqXVqXo7bDEGHEMnFtMHkB6/viTADgAnmNkoOx5mq67x01Fa3rfPV2/HHhNFTR6ooGKl89VkbBlutmM/E0WU7gc1u3HRzX5nJX0A6fEHmATYAeAEMxvVOh5Yqx6nd/5mLqqaqMsDFVSsbK7uVKxF+5tPhDq8U8Ox/bK/vlGDASTHzycBdgA4wcxGtY4H1aqruBCl1tK3q1g7N2PwoWJlOUqNZ+ZjH41T3SOEwX7UfnLfS0s7fQDp8QeYBNgB4AQzG9U6HmSrPWabUbrejoqK6Zo9QEfFqmKNM/Oxj9ETtTnvPWpvtmOvxniUFtMHkB5/kEmAHQBOMLNRreNBturziHXzVlQ11Ywt91sx+FCxcrfdjC3HRlrR3+kiSgvBwN+46H05fOh4lO6nDyA9/kCTADsAnGBmo1rHA2zVW3/GQiuqOl2f2xGoWNm4MxPRfS24wk2vgcP+L4dPNbvZTx1AevyBJgF2ADjBzEa1jgfZqqtxPkqb16Kq3ZeCb0YdoGLl9kyULt9qRT/Pd296MfCP2s/M972Dub6RPoD0+ANNAuwAcIKZjWodD7JV11OTUbrfiqpmtwMsL0aNoGJ1zjcuzkUfp2a6N70Y8EftvS+HF9NR+rSdPoD0+ANNAuwAcIKZjWodD65VbyXbmYuqxi9GaSFqARUrGx9ejtL3789Hj/EfhkesNXrUXt636L2DuXmtBgNIiJ9HAuwAcIKZjdGfTESsXFmq3vGAW3WNn45v98S0eLWILWsLUQ+oWLlxoRmlZ4uP4hHjrxVRWrsa1OJR+5lrrd47mPdbNRhAQvw0EmAHgBPMbBSvl82OvvxGq3rHg23VdfFbfstn48fN2NL553bUAypWNt7+UZSG/t3UlXY8pHHhXBFOhFo9am+88pturkd37mB25mowgIT4eSTADgAnmNmYakap8cx89Y4H2ar3EWvlJ6ajvxiL0p8Xoy5QsfLZ1cux7an/euODduxqPHN5JHa8vxiPH42jsetYbBsbjm2bK4f3qH30P761FDtmni8qXBByBpAfP38BSEB+fCsQ8pdmhQ1UO9VmY+LbdzzYVl2niyh92o6+Zl5a+Wgh/qrx7GyU6vUGICpWrk/MxLahs2cfrCwuRow8c3Qk/urUQjseN4pfNmOPxsuxa+nNw3vUPvzq+vznGzF28lxR4YKQNID8+PkLQALy41uBkL80K2yg+qk+G9U7Pp5Wpe4PKV6L/qbi6IsvPvjXhdWNiLGTM2OxY/N37agRVKz8qT0bu46cOHE2HvFUeYPsMWOqGfsZbrbjsfvsk5ndaJcuRdd67wUhfwD58fMXgATkx7cCIX9pVthANVR9Nqp3fEytSrNVfkjxyNNPxx7rv21FnaBiZfPd1UtF7G/41YX32vFYMRH7Gi7a8fi9056NUsIFIWEACfETFoAEJMS3AiFhaVbYQLVSZTaWY1vnXvWOB9+q1DgVpc7N+Dbu/rEdNYOKlX+59dx09Lr7r/8Q28585+pCPE4sx77WN+Iw9Llv8cWVdvRIH0B+/PwFIAH58a1AyF+aFTZQPVWYjd1v8+2sVO/4WFrFU5NRWl6MfdyeiUc9uP5R1A8qVtauHLl0poiHdb58bynuP19EafjFy4+1ZuXu12Oxj0/bKfct9vxKWy0GUDl+/gKQgPz4ViDkL80KG6ieKszGxps/mij/vFW94+Nptbyd4bt/jP18duUHY/Gw9asLUU+oWHnw7rtHnp4dLUZiy2rns4Wl2PLJl68VsVuzvlB+lfBjwsYbkW7tSuPU6SfHY8vq+se32+kDyI6fvQDqkwDxrUCosDTzN1C+g5uN1d9W7/g4W63+mxm+c6cxNfNkMRIRna/v3653alGx8uDWrXjU6v/8x+nYMXR29v35GGRs3rmTPoD0+PUlAXYAOMHMRtnxUFpVt/n55wH7V6yweWXm+SJ2DJ2ZjwQAAADN6AM+ufXsbJSyfuQAAACgGf3A5rsfPTcdeQAAAJrRH6xdGf3JRESstyMBAABAM2A/a79tXPjeyGJkAAAAaAbsb/ODDwIAAEDFCgAAAN+2YgUAAAAVKwAAAKhYAQAAULECAACAihUAAAAVKwAAAKhYAQAAULECAACAihUAAABUrAAAAKhYAQAAQMXKUCAV4psACZAACejHBGD66AQqVgAAAFCxAgAAoGIFAAAAFSt/i07kI4ZSUyG+BEiABEiABGD6QMUKAAAAKlYAAABUrAAAAKBiBQAAgG9dsQIAAICKFQAAAFSsAAAAqFgBAABAxQoAAICKFQAAAFSsAAAAoGIFAABAxQoAAAAqVgAAAFSsAAAAoGIFAABAxQoAAAAqVgAAAFCxAgAAoGIFAAAAFSsAAAAqVgAAAFCxAgAAgIoVaJz67vHx2LK6evN2O30AtYtvBVgAwP9n7656Y0eCKAAf2xNm5mSZmZnhTy8z84ZzmcFKhkLOeNXjS+PNQy1cn5ZyvuduVUtVXaMa8r83PjfUEQHYr104lsBA/dyw0bSqgMQNzEy0d7hFe1eOl3H0iCZWGX26A0iX18An6Hx0CsDWlwkncqa7e/SJK3+U+Qfgx+cXgBLAj8+vABGxX+C2wcEHat+X4T9+P7NvNK+y9zR74gae6ruxqK1nIT2+nOCIEU2sMtgBIJhZg/DNPRYBQF+UoFjhw3eixejrx/7kH4Af3/8CUAL48bkVICLh/feiRc8bp/5I4D9+P7NvtK+y9zRT4qYe6UKL4K7Z72JQiCZWEel8tQsc4YsjyAnuHvsi4R+AH59aAPQEKL73FSAi0VtdyJsf/ygBn//93L7Rvsra0wyJy+bjvPaX/zwG0cQqIvw3Rakvb07/K5/4fwB+fH4BKAH8+LwKEJHo/RL+rtN8gfn4/cy+0bbK1NNMibvrThwieHgzhmhiFZGiuW/OsDw+gqb902cOEA7f04Wm/sd+8/8A/Pj8AlAC+PFZFSAi4QslNO0tXq0BfTN3R/YLzMfvZ/aN9lWWnmZKXDiBpvTq2RjoGr0zQlPwTNGfoYsmVhGhfhvwnjkAN/9+a+v49dMsnIn9PwA/Pr8AlAB+fFIFiMhdI3DSX0/BqSyvPnwnnPmVXfD538/tG82rTD3NnjjUftzM1lxavD4Hd84fg2hiFZEChffdHaGp3o3CRffBSb+Mcc3Oh9m3foLHPvH/APz4/AJQAvjxORUgIt33w2l8VsY1jd+3HwKA8MVPwOd/P7dvNKyy9zR74lr+QPj01TcjOJpYNbGKSKFu/PfA3uKVNyMU7c4SnD9j3ND4Jvt1SW/HLv8A/Pj8AlAC/I9PqQARuT+Cs1jGTccmRuwXmI/fzywbDavMPc2euEa9b/EUblVfeQiFZ1c0sYrInV1w9tfXwPuItXwMtzhYzd7ovP83/gH48fkFoAT4H59RASISTR1ygRvrI/YLzMfvZ5aNhlX2nmZP3M/IO35fCQCCnl2IJlYRKUwfANCeiD1aaob/7dBXhMnFhH8Afnx+ASgB/Pj8ChAR4wW+fHXEfoH5+P3MtNGwyt7T/n3iDs7PgUA0sYpIeuX7BBzTcCoxcMh7ph39Mf8A/Pj8AlAC/I9PqAAR6YOzW0aLxsURAGiPEvD5389tGw2rLD3tvyeuAicYjCGaWEWkMBVc+aMMkmgKzinCKwLhAIT4hAJQAojxCRUgool1L0Grc/dHAMKZY+Dzv5/bNhpW2Xvaf09cugnRxCoixVlfB0/2xZzGWeRcSbK/UuAfgB+fXwBKgP/xCRUgImE3nBg5uynMF5iP388MGw2rzD1NiRNNrCLyL96fPkBOujUCAMP8A/DjqwIUX0S8FAzAqSLH/dbRfoHVz20bLasKSFxfFrSGo0U0sYpoYk2Q06hnPyYpJfwD+B9fFaD4IuKTCgwXWP3cvtG4qoDERVNwqrvwmPzF3l3wttEtYRx/7HU4Lrpcl19mZqZvfJmZoYxpGuaC46R21t6ro5TcxldzYTvW7v8nrs7RjDTTWY0paSkphwDc/2BO16dGFPsn4B+fDiA+AGRuntsv9s64PF5SMCGwsQLIhe4fzJFqCgojDf8Eej8+HUB8AH5GzTsU8/y/v2g7lXbhhp9TcHdCYGMFAAAAelj+vnBO4QY/jxRcjZUTYGMFMFCQtv6R+ForUvcfw/dPwD8+HUB8AK66f4Oy1orM7/oxz20XbadSLVzx2ZORgvExgY0VAAAA6HE1BQPbVoSsF65v59G9kRSMnxbYWAHkRjnKTgL+8ekA4gNwWHwKr/5CQjlK9WI58ilc9OWQOjT/tCIJbKwA0EhymIB/fDqA+HYAluKSJG179bQeNfhRJNjnmfGi4VQKhasM6RHJ8vlbAhsrgPxJ6hlIwCE+HUB8VwBal19UcKx4NtZ9g68cYJ6ncNFyKoXClfWowu4XpybU+8DGCgAAAOj6syUFR6rXb9Qk9e2s7o+EDBWupg6FSuW16xdjgY0VQL4URhoZSMAhPh1AfFcAWn99T4EKJ07Ijnluv2g/lU7hltaH1Klw4vDv7qjXgY0VAAAAmP/7G+qGD/xnoXCtH2tTefTw3kiB+j/77Yp6HdhYAQAAgMnlLyI9pjlxPBIyVrhabVYHXh5SUPjwxw0h5xsrAAwUcpqAPT4dQHx/ANa+/+zJSI+o//XW8HFJarZkxDy3X7SfSqFws/MvHVdQ/OxnscDGCiAPaq1I/05yq/cT8I9PBxAfgJ/2xYvbT+0ciCQl66vjc7JjntsvWk6lX7j2mfUXFQweGRPYWAHkR2HHShYTcIhPBxAfgIPbf1WHciRJzZh5/l9cNJzyLNzYvt0KTk3EAhsrgBxoJOqiHElSUs9QAg7x6QDiA3BQVrAiA+a58aLtVPqFa1/drWBgW57qCzZWAKPdnhrNVtYScIhPBxAfcMDGmkzJgnluv2g4lX7hFpd3S3w4ho0VQG4kt3dL0q6uD6A4Owk4xKcDiA/AQXTA+KYf89x+0XYq/cKpvbZbwajAxgogD+7N/f5SrE7FYQUrGUrAIT4dQHwADiolSVptyIB5brxoO/U0ClcT2FgB5ElNQX8Uq1Nhu4LVDCXgEJ8OID4ABwfNKxTz3H7RdorCgY0VSAUba/HQ2Javc7ans5OAQ3w6gPgAHNz7bOmUDJjn5ou2U+kXTmXxiiIbK/KmLOTZUlySpCNjW77O2WxlJwGH+HQA8QE4OF6SpNqKDJjn5ou2U+kXrjisILklsLECyIXWbFWSRgcaW7zOqbk4Mwk4xKcDiA/AwfBzCiZkwDy3X7SdSr9wgzsUJHWBjRX5wM+LYKYqScXnTm/xOmf7UmYScIhPBxAfgIPo80iS7k6oC+b54Adlqf7nO/aL9lPpF+65SMFqQ2BjRV4Utgu5dv9TPpcaT77OudrIQAJe8ekA4gNwUHy/JEnJX2JtjXkefRmOjXz644b5ouFUCoWLvrt19o4es6+qfLyHDjZWFPfOaVNlcz5MCTnVuvyiJBU/+1ms+wY/jyQpOZ2BBLzi0wHEB+Bg8JMhBTdW1AXzvFJSEH5DyXjRcCqNwg0UKp8vnq7rUcNvS/l4Dx1srHit2vzdHUkafEtBUhf8FEd0z6gCDfUrULuu9F1/tiRJg1+HlghUfTUyPO8dE/CP798AFMA/vn8HAKi+Ub8yoQeKLx1XoLvnlUe2eVb+by/aTplmmrlwe76q//XWk+d0NVbmgY0V/Z83p1YKBw8o4LNvrqLvSupQ/FT33PmFUtf663v3W2JsoaWhXScjw/PeNQH/+P4NQAH84/t3AICKRl5/fePmxFpLGtpVHdKm9i9j9T7/eWa/aD9lm2n2wmnkU9Un79Sl4q5jZd0zPiawsSIP+k+c0D3JacFPpdS9SKVYqZufrN6L9vzzeqhpeN57JuAf378BKIB/fP8OANC3d686NH/eUD7Z55n9ov2UfabZCtdItGnkeXVaPC2wsSJfnL/tgbK66o9ipe/v8XEFDs97hwQc4js0AAXwiu/fAQCW/hQrryzzrKZAyS37Rfsp80wzFC58cXZL46eVfWBjRY1Xqnq1Gp2aLT0NZ9aej9Rp8c+xDHwS8I/v3wAUwD++fwcAmKnqcRtXryjHDPPs3m/+JnX7Rfsp40yzFe5q/eUhPSH8FAvYWJEDY30nIt2TXPQd7VhaH1IXc7GeimvTrxzQAx1/pS0DCTjEd2gACuAQ37sDAMz/+bGVpnl+QrlmmGetX7xXDv/esF+0nzLONGPhZmcHQzgqDDbWXGpfuLTv+eFI2qiPTwi+Wj+Wu7t/Lu47uHNYktaa4zNxBhJwiO/QABTAM75/BwCYnS1WqjujAUnJ+urMDK/yGObZ2s/tF+2n7DPNXrgQTn17TwwMRJI2NlbHl2KBjRW50Z6dlQHoiN5NgP8SFIAGANBeWJAd89x+0XYq/cL9i/060EAYiuI4fBYqwQCZQu//UAUt9QBdbGONIAQcbOz7ICg394/t17dtgGIFAABAsQIAAIBiBQAAQLECAACAYgUAAECxAgAAgGIFAAAAxQoAAIBiBQAAAMUKAACAYgUAAADFCgAAQIZiBQAAAMUKAACAYgUAAADFCgAAAIoVAAAAxQoAAACKlSowhfNdgAEMYIB/XACujzFQrAAAAKBYAQAAUKwAAACgWMkYYwGoZp3C+QYwgAEMYABcHyhWAAAAUKwAAAAoVgAAAFCsAAAAoFgBAABQrAAAAKBYAQAAUKwAAACgWAEAAECxAgAAoFgBAABAsQIAAKBYAQAAQLECAACgWAEAAECxAgAAgGIFAABAsQIAAIBiBQAAQLECAACAYgUAAIClFisAAAAoVuqm2e6mz7573d6xWmyO5/oQk1Luj2GFf2De8xMMALC/fF9monTP6xA/PNETP0x8qz592LsP57atbI/jPwJUo003ytZKDpOorOTnur3vurz+B79p3r5pk+Z5WlsjxXqSQ/dY5sqkpZAyRDxeko4og+Bicie8tvD9TM/g8N7JD3PAY4DQROfr5cZ6hXgtgIkVoxcm1TE0NDOzs1SSc+Tx7P3A5ZmQy43/YONmJWUbsF/f/QlAAO4DAOCCNz/r73WQY2dS8G3Gtp9aFCY56uiP8ntfLw+9E64vB+rm/bKgeDsfVIj3JTCxYvL8mPYZ/sFZ0yUcQfGir6a8H2iwvHPT2mf88tot5xtwvX4KTgACcB6APQCzZ3y+zSTrp/aFSY6KfL3MzLz1cVldThbUx/C7i8QLJla0eT+eVMTw5ffLcgKjvx2TA73/rTMze/K9wPkGXK+fghOAAJwGYA+Ad6nIt5mE/dS+MMFRZqaNGP71rTXitYWs0geXJtVD5tfuuwD/KOr68mYc+c2f07IB+/XdnwAE4D4AAE5cKvJtxqKfJi1MftTMdM9Azm2WidcSskLq+JNqe/GPhy80OT6itsxP/hho0GAeR3TlUkEtL+7e25V3Ym5MLUcuLqZkA/bruz8BCMB9AABcmCu+bCBfViXlT8/6Kfg2Y9FPLQoTHeVNqCV8er8sjY1P+4oGUt311cdz4u0GJla8WF0P1PRg74m40bfXNFAw//OdX+3D5dsynq2/3M0798qp2ID9+u5PAAJwHwAAF/z5fQ1E1eXlubMp+DZj0U8tCpN//NZnmzKqXy0VL/qRQLb/cEK9FKbVFG4SbxuYWBE+K6j7dWu16z8sqmWuFGiAsPcWvO2cu6v93gM2tT+0n/rJXPxzCjZgsb7TE4AA3AfgHoDprIzuH0muVn8uI3UjjUU/TVaY+OO3PqnoG3efXvUjgdQeqJcJGfUK8YKJFW2N7RPLt9Xtf3MFGSNHysLg+NfG1LKztHHVd3a17wq98dF/ZtV0eKSegg1YrO/wBCAA9wG4B8CbkFFZU5fHd4vRDuKe+35uUZj8qMZ2fqmkbtsrZ5UskNyUjNWAeMHEio4bN7Rf40b721rmWFkYnOkxGS9Wb8vRLdbI5WD3i7Nq8hYWD+QG7Nd3fwIQgPsA3AMwekxN4aL2eVBUU+ZQXWli0U+TFSb8+Bt61fp8NlkgC76aaiXiRfzECtQ2CzIOCwOUV1P7r2s7MJ6NXA72ri7fWwoO4gbs13d/AhCA+wDcA5D31RRuaZ+NIKuUseinCQotP373YVFJ+JMyHgXEi/iJFWg8Lsg4IQxWuPFJIDemZFTLUuTfTC0eEHewAQfruz8BCMB9AO4B2NkVbPppokKLdl2VlOARvvZTx40V4sXrNrECqGrjZkWO+JMySrFXl4O7Afv13Z8ABOA+APcADPuBkKifWhRat+twU3358zKe14kX/SZWoCoM3uqq3Gk/49O4r1d0nrk5fHA3YL+++xOAANwH4B6AyE8aRzJqCreUJhb9NEnhANr1dPSpY+KNYmIF8mopK12IPPrETfisoKYTB34Djte3QAAA0J6WMm+V1W3K73mvjn5uVWjRrvNKMGN6EzKqZeIFEyvQAxNroFc0tgtqGs4GB3wDjte3QAAA0JmW3l6pa48/L6OkZOjniQot2rU/qQQz5smCjBLxgokVSZqdngsp4eXi7qpXZQz7wcHegOv1LRAAADRWC2ryLv8x0DcuZtVUKykR+nmyQot2PZ1NMGN6c2rHRrxgYkWSZhduCimROSrjedwFKHOofrA34Hp9GwQAAE+eFtQ0em1vprlQVFP4aaBE6OeJCi3adW5BCWbM0WMyVgPiBRMrknSLekUAAACvu8aNq76aRv/t47IM79y0jC/Lwmth9IofnUWjFvxWnveJF0ysUIJuoUeBkBIjmbi76tVdX/Fvq3e/Affru0cAALC9clbG8G+efBJIo78dk3FnUVH0c4vCb/nx3vys305kTf3kpmSU6sQbD1kB8idlhPf0BgAAAFjVWbWc/O/1LxamxUTz+hg6/s4pP1kinVusK8TbB7ICNJ2VUS0LaZH3U74B1+tbIgAAWK1f9GVkZmbUsvNxmX5uXWjx8f61MXUkTCT6OmHiRVRWQG5BRrgoQPUwpRtwsL4FAgCAu08uTKqLeX4U9v00aWH0qPExdQmfLm0mu2kSLhIvmFj7gvdDXwY/Zk+fcCvlG3C9vgUCAIDaJ5Pnx/TSnaWAfm5TaH9UXt0yhbP3SurLn5dRrxAvmFj7wkxBRm1JbyYAAIB3T6/eFlyqap/M+Pil9eVA8cazMlYD4u0HTKzILcjgD1ylUeZQPd0bcL2+BQIAAPMG2S5D/zL7QYV+blFoe9TG12Ov1s281ScTb05GrUS8/YCJFf6VN+2ZYAAAAG/h+2oJ/3HUV8vw5bVbgjO719WWP/zWqW8yeb+sGCcLMh4FxNsPmFhxMSujsqg3AgAAwN57acP15cA7/fK9srNHPgkE16rVh3r5I9TMr67X+95ibawQbz9gYsVcUUbtPQEtI5k0bsDB+hYIAABGr2VlbNysSI279+dnfRknf/NeIFj1U1Nof9TDx+emZXiX/xj0zvCYjFKdePsAEyvmzspo/CUQUqW666ufcPOAb8D1+jYIAAD89kQTLt9WS2P5TudXj0d+82ftRz+3KLRo142/f31Wxujba+plwVdTeI94+wATK4pnZYQf1IU0yhwrp3sD7ta3QAAA4P2iPdF0/USy9ofOLb0jM2v0c/tC24831iYKMuZKgaJyUzKqZeKNByZWTPxQLbfKQsrUQ8XI+2oKtw74Blyvb4EAAGCmEP0CY27p9Z6P6OcWhTbturFakDFypKyoqXb9IvHGAxMrJn6ilptrQkodVkRexs5uOjbgan0LBAAA/ryMO2vaZzVflKIPodLPLQrtPv7J00LnDm1siPUK8YKJFbFyP/EjDSEtED4rqOlE7AUoOOAbcLW+PQIAgOms1Osdsyvt23YJRhr6eZJC63bd2C7IOBwbolYD4gUTK+LkrnYG1kWlDzrXkOFsoP28nIzyQd+Aq/XtEQAA5GU8r+sV2w+K0dZCP7cotG3X1X92n7xxn3jBxIo4o1dSPbCiKmPYD7Rf5qiM5wd4Aw7Wt0cAABCZlZK1Fvq5XeF31K7HszJKdeIFEytimNeGM7AysXqn13peQRr3D+QGHKxvjwAAwGpWop9bFNq267xiovLmZDRWiBdMrIjReW24niwqnbARZKUePwaZkrGze+A34HR9ewQAAIcVI9JC6OcWhTbt2svJCDf1qpMFGc/rxNsbmFjh/bIgo/KhUgq7D4tqOjxSVzd/Usaj4EBtwMH6DhAAAOQVRT+3KLRs16PHZIRbUs95N1wU8YKJFf0H1veUWmi/vsBbWNSevffzpWADTta3RwAA0Hl97feWAin5FEU/H/1lXtr6pJK00L5dL/gxd1JzUzKqZeLtDUysuFSQUXsvUEph7ymflbr25BY6l5YUbMDJ+vYIAAAajwtSrz/MOZ2V8VxR9PPOO0wO/e56PXlh4qP8/9y8WdErJopqKcWNsiXi7Q1MrPhhUUbtj4HSC7tfnFWTd7nrPOi8QTpcTMMG3KxvjwAAoKqWc5tldZtYkFErqQf6+XhWhnd6LXlh4qNGMuNXnixuqVvuJ4oJJDfVLyniBRMrJooywpVTimhsBMLAeIfUcVgtY8OdHLb03Vufz6pp9N8+qKiteNGX8WVZSsEGXK9vfwIQgPsAADjx5GlBTZlfry8Heslb+L5aVgOlSPJ+mv92hcnb9cl/3fpscy+Pc9OKC2TKl/EoIN6ewMSKKbVkLimKv3YzSP5/ZrWP9zt1VP6s79zuZz+XMXxlZ+2rXY2dmPXVUluS4XIDqVjf/gQgAPcBAHCiceOqr6bMzPTTteqWpKHj75zy1VJZUwok76f2hck//tDvtHW3siV5J97Nq+NOJBB/XkZjhXh7AhMrvJz6MD9zx4CMZxVnODuAHB7fLXZWO3NGe3b+EshwuYF0rG9/AhCA+wAAOLG9clYtmfFx7Vd7T+kT30/tC5MdVQ/VduiMuvX8S4rTWRml+usdL5hYAeQVa9gP9N27EUwrYudPdbW520BK1rc/AQjAfQAA3Fit/1A9pPAtHcn7aVUt4WbywuRHtX/sGtXr6T1vQkZ4j3h7AxMrGtsFxdsJhEGp9slhV4Pw9+0zvvZ78kmgtjRswO369icAAbgPAIAjd5/8dkwR4dotpUzyftp552+4peSFyY9a3To/poidDyqKOFmQUS0TL5hYEWNlyleskjAwG1+PKcajQAPxf/cvTGpP919pc78BR+un6gQgAPsAADhSuz756ogUmjf1pE3yfrr755/nzX+vJy9MepTx8OFo9yHGzlJJPVRb3XfjY+IFEyvibP+PXgvYvS7nap94E1PHc2ra3rnzIEjdBlyu7/4EIIA3GYCHD3WqeGR4RE0vXtTubmwpBSz66fafkhcmOipyiIZOzYyM+K1Ant/ZCNTT9nXiTQ5MrAAaDx+mewOO1rdHAADw1VeyRT+PFFoc9eL+feLF/7NfBxoIQ3EUh8+KRjBBQ/X+jxUkIRANLVYPEGTY5X7fC9z5H8NPsQIAAKBYAQAAQLECAACAYgUAAECxAgAAgGIFAABAsQIAAIBiBQAAQLECAACAYgUAAADFCgAAgGIFAAAAxQoAAIBiBQAAAMUKAAAAihUAAADFCgAAAIoVAAAAxUoxmmAK7zuAAQxgAAfA+fhlCnMoVgAAAFCsAAAAKFYAAABQrEwpAM2iU3jfAAYwgAEM8A+cDxQrAAAAKFYAAAAUKwAAAChWAAAAFCsAAAAoVgAAAFCsAAAAKFYAAABQrAAAAChWAAAAUKwAAACgWAEAAFCsAAAAoFgBAABQrAAAAKBYAQAAUKwAAACgWAEAAECxAgAAoFgBAABAsQIAAKBYAQAAQLECAACAYqU79Js2yfi6nx+hWqv+2G3zNQyX67vCD1j2/RkcwB8A7E+7dp1kfN4+7N33c1PJmofxRzpykI1I9gSCmUtYPDV5bs45/Mebbs6BZQPBk7yGS5xgtMZCBpkjaQOm1tLIt96aEmoO5/n83F3d1e95v3Ifp7WcOPMsPjEyavyFMx/ljVUHPt9gx9TU/Ev9K+/mpKPZ148Ad3+fJ1l5x9zc4lvrlzbLs4H06wceAA/ADpAU6J+pgwdfbp/b9DjicRKbGBgVD/V44cxHeWPVkdfqDKicOv6XJkpl6Y0MoJHlTFb11ZMMWPzO2uWCbSD9+gkeAA/ADpBUXf47Bsx/99qlnLKKx0l8YmhUPNTjhTMfNaAGMtMApr9xeQ0lMfutOmlUv7bAkMrp536XF2ADKddP/wB4AHaApOz7dYadeP4XOeUUj5P4xNCoeKjHC2c+yhurTp1khMqrG02U/gVC2o83YP83f1WADSRcP/0D4AHYAZKyn9T4tNmy9k88TuIT46PioR4qnPkob6yqvgAA/Ts3m1BfPJkBQOWLCV5MaumNjFTeXACAh9dvdKkePlMHgP1vXEi+gQKsn+4B8ADsAEnVr9YAYHvlThsax05npe6feJzEJ8ZHxUM9XDjzUd5YBe3zGwC0Pl55HC6zJ9bQZCX8eVA4swRA/90PALh75fFuXrrRTL6BAqyf7AHwAOwASacWAOj/xzUAWu++v/OtvRPvdSiqBHESmRgYFQ/1YOHMR3ljFQN/le36ne9lAHhjnbDq2Z03i2zNMXHZWQD6v2+y48HPv7YAUHnjV8k3UID1Uz0AHoAdIGluGYDebzbZ0bt4/xWA6tdS908R8jw+MT4qFOqhwpmP8saq3lZj5Rq7bb33CgD7ZjpoUnb97YHtlfXvZUzayRoAl5vwWO9PP6kFnoSEG0i/fvoHwAOwAyQtZwCsbPL/1l5YKGb/JIiT+MT4qFCoxwpnPsobq/6NYVfO1gAq8x00OSfrADxc/YB032DaXGOX7vuvAFSXLxRgA0nWT/8AeAB2gKTsyIj+6a0uFLJ/EsRJfGJ8VCjUg4UzHzWoBkjd20to4hoA/Svv5qSwWAPoXxj58uLFlTz5BtKvn/4B8ADsAEnx/vnkzkIR+ydBnMQnxkeFQj1SOPNRo2+sUguAysEmmqj++rmcNI4C0GrCiDeYM/ubBdhAsvXTPwAegB0g+cqXziYDeh8tAExnOUWSIE7iE+OjQqEeLJz5qD1vrFJ/A01Qi/VLmySSHQHgWuDlRQE2kGD9xA+AB2AHSN5Yt3MG3VrOgOqxNQokQZzEJ8ZHxUI9VDjzcZhqJCJpdZV0FmsAvZsMWc9rAPsKsIEU66d/ADwAO0BSdQ6AJkM6fYrXPwniJD4xPioU6sHCmY/yxqq933n126hk76e7DOnfXQA4XIANpFg/PQ/ADpBUOQDAPYZ0by8F+sc8i0+Mjxpj4czHYaoBUnYEgHsdSsYba86Q3tYCwHQtT76B5OsXiwdgB0hqEegf8yw+MT5qjIUzH4epBkgnawBcQ2Ux+IM5Iz41srwgG0iwfvF5AHaAJPMsNjEwynx8wlQDaW4ZgAfXUDns/YM50ALi/5s3/QaSrJ+eB2AHSNr32W805ll4YmDUmAtnPmpYDWn2uxkAqzlPM0mSpJL9PqOFk7yxqnr2dAbA1TVUGjMVGP3/jFrdjNDfjk+/gQTrp+cB2AGSBn+fcbB/wt+DM89iEwOjxls483GQvLFq6tBLz2cAcPUCTz1JkqQWADP7m+gZLZzkjVXZ9+sM2P5LE5VIIyv5BhqZT0Cx2QGSF5/KG78CNbLxTwyPGn/hdlaUvLFqsc4u/TsrGwAgdfrJN1DG9eM8ADtA0npeA9j/xgV2m/1GRpx5FpwYGDX+wpmP8saqBrtVFl65cQ2VT79d8g302z4BxWMHSOq+/woAn6teynls9vUj5tn4J4ZGjb9w5qO8sarFgMri4ptX3s156kmSJF05WwPgxNKVv7aAqUNLL2bo2Smc5I1V6/frDKqcOv6HTVQulflO+g2kXr9wPAA7QFL3/Fcef/lyijjzLDAxMGoChTMf5Y1V3Z/ySGPf8eczAJj+zu+bPO0kSZI++re32Uu/jZ6ZwkneWNVq3ebIa3UAKl//aYennSRJ0vU738sYsn3tZIaetcJJNaTbH716EoDqd36Ro5KbqSTfQFnXj/MA7ABJW/9w9nTGLu3zG3MnAba7xJln8YmhUeMvnPmoGki9i/dfAWD2xBoqhVY342/pbxRmAwnWT88DsAMk9d5998CZQzMZ0L9/7+qHxJln4YmBUeMunPkob6waae2FBQDOXMtReVQONtNvIPX6ReUB2AGS7p5nQCMD2M7Ns3FODIwaf+GGV5Q3Vqm3ugDAzP4mKoNOnz00MoB+O/0GUq9fMB6AHSCpAUCTCPMsNDEwatyFMx/ljVWjfXJnwRdaJbRvr0+N7W76DaRev4g8ADtA8sbav0GceRaZGBg1/sKZj/LGqiG9rYWdeFAp9O8uABze8+MgT7+B1OsXiwdgB0jKjsS/BWeexSYGRo21cObj3ryxSi1UwlcU07WcQdU5AJrpN5B6/YLxAOwASYs1gHsdIsyzyMTAqLEWznwcJG+skq8oprOcQZUDANxLv4HU6xeMB2AHSDoav9CYZ7GJgVHjL5z5KG+sGq1BCVPAG2v12NrI95y9m+k3kHr9YvEA7ABJOz9beoMY8ywwMTBq/IUzH+WNVSNV5wD/xVWJrOc1gBNrI99zbnfTbyD1+sXiAdgBkk7WAFpNYsyzwMTAqPEXznyUN1aNNHsQ8A+Gl0j39hLAvpnOiPecfJin30Dq9QvFA7ADJM0tA3CNIPMsMDEwavyFMx/ljVUjLWdAmf5agW4tAVSXL4x4z9l7L/0GUq9fKB6AHSAp+24G8OAaezDPZr/WgPa5zfjE+KgxFs58lDdWZT/ZuLTJkBeWKNmLST3+mZv3Op9+z3mvk34D6dcvDg/ADpBU/WoNoP8vOaOZZ9n3a8D8t3/aiU+Mjxpf4cxHeWPVTGXxu59caLPb3BehZC8m1X3/FYDqd36R89jsdzOA/oX0G0i/fnF4AHaApNlv1QH4a5M9mGeLNWDnLxpFJ8ZHjbNw5iPIG6ue+0H7/AaPVV89ySOrOZqg6jw79gFAfRoAem2evCtnawCzP/zDJo8svZEFPu+TbiD9+ukfAA/ADpC09Hb7g2t8+iuZByuUUSxOGp9hYnxUINTjhTMfAXlj1fy3aV/fbEP18Oca7Li6hiYo+0mNAdVvs2PzVzxx3fNfAWD6u9trH3epHz6dBT7vE28g/frpHwAPwA6QtMj8W289/K9rW12oH16q80jv1zllFI+T+MT4qFioxwtnPsobqzp9Hpl/mUGfXECTtFhjL9O1nCfuo+tLO6u9vPtZ2A583qfdQPr10z8AHoAdIGnq+ecZsP3LDuUUj5P4xPioUKjHC2c+yhuruu+/wkhXL6CJarCn6Sznyfu3/CRAqs/79BuIrl+AB8ADsAMkrf8lp6wicdICgP5GeGJ8VCDU44UzH+WNVavt1+owbPsPm2iyWuxpu8skXNx6OWPQJ+dyAlJtIP366R8AD8AOkHRriWEPVz+gxAJxsvMXePvt+MT4qECoxwtnPsobq27fnn39CAO2V66hSVu/X2cPH+ZMxH/eHHgUBv5LWwE2kGL99A+AB2AHSPro3M7bd7+QicdJ91dfaUD7XCc+MT4qFOrxwpmP8saqB+eYev7UzEwGPHx47+p6jiav+1NI/yhUXzh6aA5ga/vqrTz9BtKvX4AHwAOwAyTfvlcXlw5lM0D//r1bNk8kTrZ+GZ8YHzUY6uMrnPkob6x6ePMmIPVu306/gfTrF4sHYAdI6n38MQrESWxibNSEC2c+/jf7dWABAAwDUfSy/9DpAgVSGry3QMiBj2IFAABAsQIAAIBiBQAAQLECAACAYgUAAECxAgAAgGIFAAAAxQoAAIBiBQAAAMUKAACAYgUAAADFCgAAAIoVAAAAxQoAAACKFQAAAMUKAAAAihUAAADFCgAAAIqVmQqmcN8DDGAAA3gA3sdNB8UKAAAAE4oVAAAAxQoAAACKlc4C1Ncp3DeAAQxgAAPgfU+AYgUAAADFCgAAgGIFAAAAxQoAAIBiBQAAAMUKAAAAihUAAADFCgAAAIoVAAAAxQoAAACKFQAAAMUKAAAAihUAAAAUKwAAAIoVAAAAFCsAAACKFQAAABQrAABw2K8DAQAAAAAg/9dGuFAda1VVVcdaVVVVx1pVVdWxVlVV1bFWVVV1rGHvzpubRtY9jn8tmcQxhM2BTDLHnAlkCJeds+8sd3+/d19n3zJT1MlAiiU3Ycw+BA/YibEd2br3HpcKDFHoUpX9HFf/Pn93p7uftB7rkWXJH4X3ZsbGARrtR6sR4qlg+kf7igCNxr0HkfkE/Bs/MwVA6xeRw+UD4yGwtalTGbd85t7RPl3um+mdqW61H69t4h1RxSrB8WMhPRSL+0+0lyuImcKZGeD5p5HNyMk+mDq/fq1mPwH78e03gAJgv377AIiI+wG8a//+E5uLNXzmns/cO7q3csppwa9LpGt/Vkv57+46elQnqqpYxT/HToT0GTt/spcnDEj5bAgwGUYMV3Bqjj5TF1evm0/Ak/GzbwAFwH799gEQkWDhffrsvlS5FuEr93zm3tG9lWNOO1QiHWPvLZGYOT2hE1VRxeq34FyZN4xd/LSKASn8fgIb21zrzB079ElkPgEfxrffAAqA/fqzB0BEwisTvO7I4f+K8JN7PnPs6NZqQDkt+OmMTlR9p4pVtitYIfdb+0ygi6LGH2/A3t99YD4BD8a33wAKgP36swdARMK/zfOmQnIA+8Y9n7l2dGs1oJx2bkYnqr5TxSrzZQDYuvtdHZh891gIQO5nw740KcmdMybOlZKNcK9DcHB+AgD2nl0yn4AH41tvAAXAfv3ZAyAiwa/yANBefrqZnMokB7CH3POZe0f3Vs45rd4JId0GPeEMPVs/PNxiZmocdKLqGVWsEh4HIL5xGwDqN27MnwSgcGSV4RHjuwHny30b4flaMpsf36vaT8B+fNsNoAB4sf6sARCRoyUA4j9W6J3K3Op9tceRmy18kz2fOXR0aOWe0xr/eZDtlOYA4me8amtlLQJ4kPxZj05URRWrzOUBuL4KiZX6LwEYaiKQlw9sbhTtrly8vMWm+Z+9u35yZz+wn4Dx+OYbQAHwYP2ZAyAixQUAuh/VoKf77YuTAMGvP8A32fOZS0eHVu45rfmA7UwD0KrREz8v8eqzgZv/fqEMAPOVCA+IKlYJpgGorfKKx3fLAHvGWwyLJA+NoL28fjk0u3JRhUT3i7/Nu+8D+wmYj2+/ARQA+/UbBEBEFkIAlmu8tDpd8vRUJns+c+vo1orsOa04C8BKRE+3cfDGbV71x2IJgPG9VTwgqlilsB8gXqLPgzJAbneLYZG5CQC2Vm5j9wVT/5WLzq2TAMHCkv0E7Me33wAKwAis3yAAIhLObHMAd1dK7gewPft85trRrVX2nJZcgGhWSFy9Sr/u1V4NnNtfxQOiilUmQ4B4kz7rUZ7hkkmAeO1GhIWp/HZXLtaO5wHeWY7sJ2A/vv0GUADs128fABFxPICfPC25H8D27POZY0e3VtlzWnIB4lFEuuazEgB78IeoYpV2B7EXry9G2JgFoF6Fba6Zut91Yz8B6/HtN4ACYL9+gwCI6JIvrRp9uo9LAGNhhFey5zO3jk6tsue05K7j7k3SJf9cDuIPUcUq9vlc6qxfq2EjuaBZeXNS4HDXjeEE7Me33wAKgP367QMgooq1HdHvwUIIBO+u4hGHfJa9o3ur7Dktuet4o0UfEVWs8vovVsdzAPEmMjQrK9iZygN079MvuT18zwhMwGB88w2gANiv3z4AIhIUAajymlYMwB584pDPsnd0b0X2nDaX3HW8ozqiilW8kWSY3I+qvGo29PH6lq5Pd+jTe6I8cNB8AiMxvgEFQOsXkdw+ADZ4Tedh2fEAVj5z7zjgdJm8w6JedVklVUQVq3ggyTB9r9hO7sioIF5IvaOKbqMEMJaPzCcwyuMbUAC0fhGp43gAK5+5dxx0ujxUev0UVEQVqyRPf7/4XxEkzuYBmhXED8kdVakf92E0AhMY4fHtKABav4gon7l3HHS6DOZxOgWdBIANRBWr+CB5+nvhysuS9UwZIP46QnyQfkcV1AH3N/PaT8B+fBMKgNYvInucayjls+wdB50uC/sBWImc6vL4GaKKVbyQvIW58FdfVQEITs0B8F2VP2MiIiIiPv3g3AMLIUD3vlth26ohqljFD42bJwEY+92TxQgKv58A4M4S4ovxXNqlynonxOHlHvYTsB/fgAKg9YtIyi8okwPY5Vs/5TP3jgNOl8VZACotp8KWRxGiilU8scJJADj092u3FuYYlYJVREREpA7A+N4qXvDgK9ab7CycASC+h6hiFW+stM6GAOSOHgWA9ldVxB+ToecTSMYfVQqA1i+iijV39gOQyTB7R9t0mVSiDm9XnMsDUK8iqljFH3efnJnhFU8WIwCRVmw+Af/Gd6cAaP0ikrxanr1nl3hV4bch4p7P3Dtmb+VUicZL7Ky4QNJOVLGKR5qLM6cnSNxZjhD/xJueTyAZf5QoAFq/iHRunQTgveBaRKJwZkb5LHtHk3QZHgfe/jyl4EIIeP6IUFWsIu+9u3IbERERkRGwdjwPwJHy2nd1YNeB8jshMmqm8sDbX21ztARAcxlRxSo+SR4QnNj1F8c+qyGeye1u+T2BZPyRogBo/SLS+eaXAMnzOCTJZ9k7WqTLYB6AZoUdJfcEfx0hqljFI8HC+wAQ/7AvBICxi6vX+bMnIiIi8vjqBdLEm8hIOFQC3vrKmvCSj/cEiypWCa9MABCv3YiCd5PHBh/bq8cviYiIyAi4+/RyyGvalbkQGRnBPPD2V9uczQNQW0JUsYpHClfyAKxfq0H37v3jx0IADv3ukwjx3HjOfAK+ju9OAdD6RaTxz73TFxKb3zwrzgG0O0iSz7J3HHy6LOwHoNJiJ/NlAJqfIKpYxSNhr2CNb9wGgO6NO70ftbL3dx8gXqh3QnYSPzOfwOiMb0AB0PpFpHvjxr75A+MhEL/YuPMIN8pn7h0HnC4XQoD4HjuZPwlA98MIf4gqVgl+1StYP62SaP7nqTkA9h5dxR+S21/1ewLJ+KNIAdD6ReT5N/SZDAHakfJZho5DT5fFWQDqVUhXPglA/FkLf4gqVkkeEX69ykvdb1+cBGC+EuEBacWkmAwB4s1RnoDB+PYUAK1fRCYBqOJA+cyx4+DS5Wyv/xKkm75ActbqD1HFKsnLmu+s0mdlsgxQOLKKP2RP2sd9uzPyEzAY354CoPWLqGKN7+FA+cy9o3urDCekrRrppn8GANdW8YmoYpW5PGz3XLabsyGAHxWrxM9LAAdTP4CiEZ6Awfj2FACtX0TCGYcv/ZTP3Du6t8p8QspKRKriz8Lkaxb/iCpWXX9ko8VrGg/KAGN5naj5oNsobf/vDooAVEd5Agbj21MAtH4Rmcpvd4qjfJ61o3ur7F+xdu+Tqng5BODOEj4QVazikF/qAIyFER6QtH93bh8AG6M8AYPx7SkAWr+IzDqVUMpn7h3dW2W8vEClRZrCJR8LVlHFKv35RVSxBu+ubvsJ0r0/uhMwGN+eAqD1i0hyU/A9HCifOXccTLoM5gHo3iRNeCXvd8EqqlhlDynaHXwg61Eetvnd8myyDUZ3Agbj21MAtH4RmctDystSlM+ydxxMujxUAki/hTt5GSNPlpCEKlaRSTwinYdlgD3jrW0uUPMoGt0JGIxvTwHQ+kWkuABABQfKZ+4dB5MuZ4GdXm0T/LoEQO1zRPL4RZJHvr2zHIFO1Hz2oAwQLCzxquRR0qM7AYPx7SkAWr+IhJdCgGaFFMpnhV9PwuZizb3jwNJlcZbkC/GdC9ZPQCSPZ6T7uARvvnc1yTxs4AdJ7vK52XrzAvVGa1QnYDC+PQVA6xeR5CbS+OuI7SifJT8M3f2Hf2+5dxxUulwId/5C/FwJgOYnEYjk8Y3UAeDUsyqvml7Aq0uT0rl1EiC4+F8R9CSP5YuXRnYCBuPbUwC0fhEp/H4CgO+qpFA+m8oDyTOU3DsOIl0WZ3c+67xQBqCZjOgZUcUqT56WAHK/XbsRkQgW3geAlYihkWA39OwBgIkxAOhuMnhrx/MAhb/6rEZP+Wzo/nlvPwH78S02gAJgv377AIhI+cLm7QokglNzANBcxkdu+WwyQ0eXVhly2mwIpP8UbboMQHzzMG/orkf4RvL4RrpXL4cAuaNzT1frm8CuAz8+HAJAbZWhkfBv8/QJ/gA9tQ8YuM43vwRg7FJ79fsOEwePhe6f9/YTsB/fZgMoAPbrtw+AiEyx+/z5rR8qjQ5MHCxP0NP9MMJH7vnMvaNzqww5LTwOkP4j2FkAyJ1jG3rbjQ9UsUrj5kkAyE1N0a/5CcMjU3nSjOUjBu7x3TK90U6c4KW2++e9/QTsxzfZAAqA/frtAyAiuw4fpk/7v1v4yCGfZe/o3so9p831WlZabCsokip5eKhXJI9/ZKV1gW0M++cCMkmqsTBi8K5GcwAGn/cGEzAY32ADKABm67cPgIisfxXhK5d8VgeA+JlbR8dWGXJaMA1AfI80IqpY5e6T30/whnj1OsMkdVK1OwzDt40TIf2eLEa4s5+A7fgGG0ABsF+/fQBE5EGZ122t3MZfDvkseeZvvOnW0bFVhpx2qASQ/mqbbqNEunaED0QVqzT/feb0BH3i5EFMQyPrLyZI8ShiKP7n/pkZSPS9pc2PCWQf32oDKAD267cPgIg8XnztPKa9XMFrDvms88EvJ2FzseXW0bFVhpxW/1PD9a9Ic3M2JFUFT4gqVnn4kMPlvWPjAFtbzbvrmwybdP4dc83FYHr2QBGg0b7zIPJuAtnHt9sACoD9+u0DIKLzmGCqfCAcB+IXGw8eRPjOIZ81/tutY8ZWzjmt8baGjX8EQEQVq3z/PYh0Hz70ewLW42sHaP3/y34daFAYwnAc3d7/nVuAINBQcg4A18f+5P5OAMP/mP57tn744XOJYgUAAADFCgAAgGIFAAAAxQoAAACKFQAAAMUKAAAAihUAAADFCgAAAIoVAAAAFCsAAACKFQAAABQrAAAAihUAAAAUKwAAAIoVAAAAFCsAAAAoVgAAABQrAAAAKFYyMIXvO4ABDGCAHQfA+ajoQLECAACAYgUAAECxAgAAgGKl4gHk1Sl83wAGMIABDIDzgWIFAAAAxQoAAIBiBQAAAMUKAAAAihUAAADFCgAAAIoVAAAAxQoAAACKFQAAABQrAAAAihUAAAAUKwAAAIoVAAAAFCsAAACKFQAAABQrAAAAKFYAAAAUKwAAAChWAAAAFCsAAAAoVgAAAFCsAAAAKFYAAABQrDDZu+/mNo4tYeMPMGCCRCUqS5TN8Ip6HXhzzjl84M3h5iTrBtpmiRaXWlF5TWMtUqQFagBsFdFVKBCg1KWi0XcKz+9v9nRXn8EBD2bmTBBP5XOXj1cBdnbuPciTLyD5/MXhBhgASWenT45lwPPtR2s5EUwnkQMHkK1GLl8eax9vt7a+aXhlxaqA6cUM2P5NnV5vzwCtv9xj0DT+9gXgyW/zJDMH1erpz268t5l8AannL84J4AYYAMkvz2DkxIlr29c3KZj06SR+YOThY5Nq+epc1jneidnW7Zu54ZUVq/aMZQBHvvYLepybASiNojS/IzCZ5QxW+c0Zupz+ztr7BVtA+vkTnABugAGQVF74f3Q58t3193KKLUE6iRgYf/jopDp3LaNLaba8ZHhlxao9t69WAI7NrrFP9gUAmvfRYI1/a4I0yl+bYp/S3Jnf5AVYQMr5058AboABkJR9f4L9rpz9j5y0ipRO4gfGH743qUb/ySnDKytWtTVufAWA+fWcbjMVAJbrKMWPoum/3oJj3/xF8gUUYP6UJ4AbYAAkZT+p0Gs88eenWOkkfmD84aOSavV7meF9AVmx6sOPpgDG31iiS3UBgM01BkfhzplEPjPFnud37zUon5qfCN9Ai0vJF1CA+dOdAG6AAZBU/mqFPbvLH23D5KW5rFCfn/TpJH5g/OFDUo0qWMPhnuZQnjz1+qThlRWrOpp/aeeJKyt1oGMhA2gtMTBKfDvk/DQArZu3AHhyO6yG1+7Vki+gAPMnOwHcAAMgaXYKgNbf1gHYuvlBuLQX/r0ppATpJG5g5OEjk2r23SxUo+vsaT55cpsLc0uGN5AVq9h5MA1Q7m6+dK6djO7UGBh1+uTtVBm47CoArd/WCJ79e/uun9LiL9IvoCDzJzgB3AADICncGNb81SZB891P3uj8e1NICdJJ3MDIw8cm1cUKAJvdT8E+fGh4ZcWqjqULvc2XyvMANFcYFHW6Cuwub3wvY9DCg8vv1wig+Yf2cyNHx+rpF1CI+ROcAG6AAZAUbgxjeZOOtXNTxf78JEgncQMjDx+ZVMM1ks1fGN6DyYpVvc2Xwu0Xg227pJl2Zn++eot0l1i7H1xufND+CXNhKf0CCjF/ghPADTAAkrILfT4/zdWpQn9+EqSTuIGRh49MquEaybPfGN4XkRWrepsvdZLR4GgSILwxe/BOV6D3weXw9qPzy3n6BaSfP/0J4AYYAElRn5/w703qz0/B0kncwMjDRybVM1MArXdyw/sismJVb/OlxU5uGCS1Nq7npHERgK0a9PnNdOxYLf0CCjN/ghPADTAAkj/5Ut+kS/PxFMBollNECdJJ3MDIw8cl1XC0OzXD+0KyYlVP86VqJ30MjrbYeG+TRMItN+u9iwIonailX0Bx5k9wArgBBkCyYt3N6fZgIQPKl9YooATpJG5g5OHjkmo4WnPF8L6MrFgVmi9NnqoBlD+XhfQxSFpdJZlwy03zPvts5O1WCskXUID5k5wAboABkFSuAlBjn3qLVJ+fQqaTuIGRh49LqqGL09O64ZUVq14mNF8qffE/cuCMbZeG9vfpBvu0nkwBnEq+gALMn4QbYAAklY4D8JR9Gg+n4z8/ppPIgfGHj1/suuGVFateptN86coaZF8AbLs0VA685YbmTvsxkUqefAGFmj89N8AASNoi/vNjOokceKjZKtwUfN/wyopVL9NpvvTG/Toztl0aOj233PR8H2R58gUUYP6icgMMgCTTSdzAw81WY6VwwVayYtXLdJovLSxVFwDbLg2ZPrfcBKGTwpF68gUUYP503AADIOlodA1lOnn1gYebrSazcMHW8EaQFatC86XX7r1m26XCkCRJhX3eW5MA1AxvFFmxKrxHq/SVEcC2S0Mm3JbT+pgeW42M0K0+8QIKMH8CboABkNT3Ccrw+Ym+6mc6iRt4uNlqsnPBduTs7FgVaH3y9MG64ZUVq/paOzcFMALAs3UKQJIkaQuAsWM1CkXlKm3lq3MZbaVq9exnw5tcDW8XWbGq3XwpaL2TM0w0mQ3xAsL8heYGGADJirW0+AvQZPbKAxNlq1b+9gzdTn/n5i3DKytW9QrNl8C2Sx2qt4ZwAfHzp+cGGABJG3kF4NjiEtAx/o2MOKaTiIGHf/jQxqn0WXqU/v/EkuGVFat6heZLtl0aWq3tIV5AmL9w3AADICn04uD18ns5BONvXzCdHMLAVNnqdZYMr6xY1SM0YysQSZKk21crAFyZvn1nCxg5OX0+o0i0vVrbAiaPvTHBntfu1QzvfrJi1ewUbeWFJYaOQr+9oV1AmL9w3AADIKlx4yvsKc3OEphOXnVggmz1fPUWbVtb96cXMwgPrhreLrJiVXaVIPysVQCSJEmP//I5+vv7v99erdBmKbj7UbsX6NGxuuHtJitWLVYI7MdWHJIkKVQ53XbXZzL+/un9NbrsrLwBUL60Zni7yIpV56bbWaIKcGx2DUAaKw3pAuLnT88NMACSdv4xvNKTYPvGx9UZgN0GEUwnEQMHla3Cg6tX1sDwdsiKVeV5ADZ//ZMKwBv36wwPbTUyXqT1cfIFFGD+dNwAAyCpefPm8fmTYxnQ+uTpfz8inukkbuDAslXoBTpayQ1vh6xYFdoutZbC0+02XxpGpRO1IV5AmL+o3AADIOnJDbpMZgC7uenkFQamzFbNx+2KNcsNb4esWFVdAOBOjQ8/mgKbLw2Zeov+wvdBazv5Aoo1f3pugAGQNAlAjRimk7iB8YePv5Z61PDGkBWrFjKA5go0V6fA5kvD6ehB3we7jeQLKOD86bkBBkCyYm3dI4LpJGLg4LLVluGVFat6hLZLy3Xg8d1psPnScAm/cp468AsoL/AC0s+fgBtgACRlF+Iv+plOIgcearZq7oSDGV5ZseqlQtulZ+sArFzMAObXc4aEmjv7exwE5SoAtSIvIP38CbgBBkDS6QrA0zoxTCdxAw83W20RDmZ4ZcWqlwhtl1jNAQivwRp/Y4lhofCdkeV0Kx0H4GmRF5B+/gTcAAMg6WJ8CWU6iR54+Nmq52C9dxgbXlmxKrRd2lyjLbwGy+ZLQ/f9Fl7W3fMLZvN+gReQfv4E3AADICncNXqPOKaTuIGHmq0eLGRA6Ui9f8WaG95AVqwKbZdaSwSND96AoWq+pI1838u6g4vhV84CLyD9/Am4AQZA0kwFYKtGHNNJ3MDDzFah83Dpcq1fNUqNwPDKilWh7dKdGgRr56ZgmJovqfFwGuDoWL3fd8ajvLgLSD9/Am6AAZAUbiBbJ5LpJG7goWar0Mfp/HLe53pt657hDWTFquwLADRXIAhvuBmm5kt6MA1QXljq8wtmc6W4C0g/fwJugAGQlH03g9BUsi/TyfjXJmH7+mb8wEPPVs3HUwDj3VdsQ0PQ+qbhlRWrunIMy3U6whtuhqX5kjp3+azUe3/BfFov7ALSz5+AG2AAJJW/WgFovZPTn+kk+34FOPLtf63HDzz0bPVgoc/7KUJD0Ee54ZUVqzo5pudXqvCGm5COhoDCw8vl7/xHDsH4d8MTzoVdQPr5E3ADDICk8W9NAOGJp35MJ+HW29BDKX7g4WarnfYV2/Fv/gIIpt+g63qt4ZUVqxayfr9ShTfclL/2CzQo5SMER9kzMcqe5jafvtAhevyHv9ukbXoxi/hCSLqA9POnPwHcAAMgafpz27fWgaD85gx7ni0zjOLSyeSrDIz/q8ikGi6RHPva9Xxf8JbrhrdNVqwKbZe2av2T1uCaLyn7SYUu5W8TbP6CT13jxlcAGP3u7tr/NJg4NZdFfCEkXkD6+dOfAG6AAZB0miOf/ezz/13facDEqekJ2pq/zCmQ9OkkbmDk4eOSarjIypmfb9yvwbGLF2jbXDO8bbJiVWi71Frqf0vJAJsv6XSFg4xWBhCF8PAyjF67Rsdu+EIowAKSzZ/+BHADDICkkbNn6bL7n3WKJH06iRgY/1eRSfVv1anw96eh49lvDG8gK1bNVHpu4wjCG24G1nxJkxxoNMv59P0lnyGI+EIowAKSzZ/+BHADDICkjT/lDKuYdLLFntbH8QPj/yo+qTb/8P0Jenx4PTe8bbJiVXYV6P9we3jDzcCaL2mLA+02GIR3d65lEV8ZBVhAgvmTnQBugAGQ9GCa/Z6v3mKIRaST0PO3tU38wPi/ik+qjX//wgW6tW52gmd4ZcWqJ1PA7p/q9Hp8+0oG1BpoIDY+meAAj3IG4r/uv32Bjq63tBVgASnmT38CuAEGQNLj629NdJdEy+sMtYh00vjFV/bex1qPGPgKh49Pqs3rF7rC17p9M4fA8MqKVY3fcrB330UD1PhXknt2vXzu/9iva7QIggAKg427u0Xc/wxcYyIcRhPcNV53q0qRnq8f7O6/vzYf/jy/n99+jtoDNHF+7/8AXIABgDge3zxam5j5752Xx1v/PPW8nDyfNPmD1b+riRfVOJ463pv+X+/jvTi7Ny+KFajiO45H+wH+zx80LsAAwHeWBdrzcvL/g11+tfqIIvOiWAEAAFCsAAAAoFgBAABQrAAAAKBYAQAAQLECAACgWAEAAECxAgAAoFgBAABAsQIAAKBYAQAAQLECAACAYgUAAECxAgAAgGIFAABAsQIAAIBiBQAAAMUKAACAYqXTxgKmcL4LMIABDOACcH2U8xNQrAAAAKBYAQAAUKwAAACgWGnFT6APjPV0CucbwAAGMIABcH2gWAEAAECxAgAAoFgBAABAsQIAAIBiBQAAQLECAACAYgUAAECxAgAAgGIFAAAAxQoAAIBiBQAAAMUKAACAYgUAAADFCgAAgGIFAAAAxQoAAACKFQAAAMUKAAAAihUAAADFCgAAAIoVAAAAFCsA0NcAQLEC4zuHK/Phz/Pz9e3nqD1A8+f3ngsA2D5am/ll7z6c08qSPY7/4GIjISEHNAHZeEbB2dbmnHP4g19+3hy13uBUTk9aKzpoGEtIWKALvLqgBELergm0b/H9VFadQ3edvtWXJimQtL35dDaUAf3csLFHt4tjZ8+mW49XLc6vU96DwMSKzPcCddH4XVHwMXA9L2ntd6FP5JZMZvSzq3fW/RPwj+9/AXAA/vH9EwBgb2DHTp68tDmzrvhz6Oe2jaZV9p6WvDAZ7D/eyYnG3P2Q8oKJFbuSnwvUTWL6l3KBwnQgSdkgVG8lr46rzeh3Zu/GPwH/+J4XAAfgEN8hAQDJi+fVZui783dCxZtDP7dttK2y97TJS4HaJCaStygv3tCJFcDAtwblI/m1nDokJt/6bRj/BPzju10AHIBDfIcEAATfH1Snc2/fCBVfDv3csNGwytDTDEtOU14wsSIGeFHU+/YWGfnmL90T8I7vfgFwAA7xY5UAgOAnKR02YG9g/vz7uXmjaZW9p2W+F1Dej4aJFZgXeq4wHcjLZ3Jq2l5YrCl5empQTSPTt/wTcI7vfgFwAA7xY5QAgORXU2qq3vtgU8qemQzsDcyffz+3b7Susve01sDaeriNUEpmT7+fpbyHgYkVW3fUof5U6CnnTwNOFRRp3H+kyNrcbjbvLRbdE+iD+O4XAAcQ3w8EA5jIKdL4x7wipfsPd97aO/egotjw7+e2jZZV9p4WfDfYmUbn1VRfW5tTfvIW5e0AJlZUlwVn+7+TV86o54ILktp+Inrrf7+Wk+y/weWfgHd8/wuAA3CI758AgMxFReq/XteO+u1XVyQp+bVfKp4c+rlho32VuadNpxRZb/8W7MrKG1deMLEC2PtVgeq91e8F6rXxlCJ3i9pT/2PreyPD6Yp/As7x43kBcAAO8R0SAHAxUOTeuvbNvpOzNzB//v3ctNG+ytrT3ikosv5LygurlAA4GR9UZPvxI/m9xbo+qwNqD1svYV685Z+Ac/xYXgAcgEN8hwQABPkuDaz+OGdvYP78+7llo32VtaclpxTZ+i3lhVlKAJxkJan1H7MdjKaa4W+pzdyFlCS9ey/0T8A/vv8FwAH4x/dPAICxgb34IGdvYP78+7lho32Vtae9lWsu+0tIecHECsRCY3UmlI8xRUpFqctrpumRon8CzvHjeAFwAA7xHRIAkFWksq429Wc5SToehIodh35u2GhcZehpnTGfFCkvmFiBGChp9c66nAR5ReYPJxVJnCz6J+AcP74XAAfgEN8hAYCJtRqq3fLFQFLyzKxix6GfGzbaVhl6WmfM+gPKCyZWIA4eP5af1kdu6kvqsBq2fkrBPwHn+HG8ADgAh/gOCQBIZhQpqkOlIXsD8+fdzw0b7ausPW28uWmjQnnBxArA9vp0TR0aazlJOh3DBBziO+AAACBxQpENdaitFOwNjH5u3Gh/eHuy85QXTKyAERNrqA71cutrIqkw/gk4xnfAAQBASfYGRj83bLSvMtr5UPAS5QUTK4DX6vjITbf7QRDGOIEYxHfCAQAA/dy+0bzKKp3o/oYtwMQKoEPnR246b0CJoUpcE3CI74ADAIBh6wxFP/+oG82rrLJBxxu2lBcGKQEAAACxwRfuYyurSJHygokVJiM/Saup3Fh98lLoL62P5TS6FL5UC2T/5yb+CbjGd8ABAED3b1C2GpjhXT/6uXmjeZVVdv8N22NvT6QzkhqvNpbnKS+YWNFVWi0ZDb3HfwUEAAAxUVIkPVIUYiWZUUvywmSglkQm8/Zn256HUl4wsaKr0e+u/jkU+kY2iH8C/vEdcQAAmFgT07+UkA0++kaf20UjvD6udqPfuf+I8oKJFf/K6M9+VxRQacQ2AYf4DjgAAFgNU5I0Mn1LBw18I5AJ/dy+0b7KoPUzTonP6pDE5cFblHcPmFhRL+fUReIbd2eFvtLYjH8CvvEdcAAAUHt4RZH3k3dC7Rq4nqeff/SN7reL93WL8u4BEyv+8Uwq10qSlBwaGcurJXH1ZVFvNgAAgLkLKUXOFeaelCQdO1V4NxDiZPNxsSQpO3JlUE3vLRYpL5hYsau+rF31UmlJ+WuDiiS+eCMU+khiqBL/BHzjO+AAAKB28ytqSkxMqCv6uX2jw+1i+/EjtZRKS4XpQGp9cZXyopuUBKw8+1pOkYFzs3qzAQAAPPvb59QdX3h48zXuP9IBCx98L5Ck4XSF8h6FiRWo/2FnZGVifeMBAIDWlNOhOj8e6M2Hzh9OKT+4IknJM7OU90hMrED9b52vbqFfpROxTsAhvgMOAADK/976l557Nm++zIxLUrUmA/q5dWMPbhc7X1w9N0t5j8bECpSXC3uvbqEPlGqBXqfxMq4JOMR3wAEAQP3+/RNTp9KBpMarjX8+lR393L6xJ7eLxlpOko6nQsp7NCZWoDWxaljoI4mTxfgn4B/fBwcAAGs31SYbSFI1pJ9/9I0ut4v6s9bEGoSUF0ysBrznhr5QaahN5/2gsRn/BDzjO+AAACCrSFEG9HPjRvvD299LHRblBRMrPnq/Oy30k+Gj7gfVWvwTcI/vgAMAwMTaWJQB/dy+sQe3ixLlBRMrgK6vcp4+8gYUxj8Bx/gOOAAACPKGN/3o5/aN9lVG9fJRD0Z5wcQKs6LQF+rlzt842JHMKFKMfwKe8R1wAAAwmpKkjYoM6OeGjfZVViV1PhjlBRMrzNIJoZ/s3DOCUO0SJxTZiH8CnvEdcAAAMGYaoejn9o32VVZdH6z7J4wpL5hY0SEb9OHTVCbW5JnZrq9g1pfin4BjfAccAAAEecnwPUf6uX2jfZXR8sVAUmKo0n1iDSkvmFjxGmPiaWpfWQ07/ll324VQrcU/Acf4DjgAABhPSVKpKAP6uWmjfZVRpSFJibPFbtOoipQXr5lYgSDfX09TUVspSNJwutLtQngaxj8Bv/gOOAAAyFxUZF4G9HP7Rtsqo53fcXr3Xtjl/drGIuXFayZWYDrVZ09TsVyQpOTFW11ewaw/iH8CfvEdcAAAEHw3kKSteR2Bfj7wtay0ObNu32hfZVR/lmtm0v6ObXJKkco65cXREytQKKi/nqZi71M+DyqHX8HcqMQ/Abf4DjgAAEh+tfU23V9CdUc/D74fLRv69n9X7Bvtq4xaX2TV1HyofRO5g++bUF4wsSL4Sf3362o3dUVN8xWhX9QeNque/M6NULsGWq9gNm7FPwG3+A44AAAY+NagIk+KOgL9fDSlSPLMrH2jfZVRebnQ3P/NX2pP4Urb+yaUF0ysGE3pu9uP58LDbUBb94ReSg5px7CaBo+rqb6pT9/chVSz/D/cewWjMB3Ybwj+CfjH978AOAD/+B4JACh8bvPRvPYkr47H7ZmMQz/PftSNtlXGnvZgrLl15GszYUfx7lUoL5hYse/Y5cvbH66s1aTk8NjbgVrqvwqFHgp+klKb5Le1Y/2X+tTVbn5FkePfrc4+r2nw9GRgvyH4J+Af3/8C4AD84/skAGBUQ5/97PaH8+WaNHi6MBj7ZzIO/dy+0bbK2NN23mTVWz9fXSpKI2P53TWzlBdMrGh37O231a76+4rQ47e7j3I81YOm/GyhsBPt0iXtq9pvCDFPwCe+wwXAATjEd0gA4KlM9RcVxZVDP7dvtK0y9rR/ZHI760d1wNZvKS+YWLGrVAvUzdaNUOiprI50POhFNf4WjividkPwTsAjvsMFwAE4xHdIAMDqn0PFhkM/L6mp8dK+0b7K3tPqf/z+oA55MRNSXjCxYlf51nSgQxr3Hwk9VtKRqjX1wu3ypcB+y/BPwD++/wXAAfjH908AwHJBnbYfP1KMOPTznd/8bWzKvtG+yt7Tav/7hfxrn4ZSXjCxYmEhfykr2oC/1VeDOsLTUD3xf0vX89rT/l/a4p+Ad3yHC4ADcIjvkACAZzPXBnVQ9d68YsWhn9d++ZVs9PeKfaNh1UfoafWZfFv5GnP3Q8oLJla0W1nRidNn0+lAUuPVxvJyKDio/bfcbc0k3xk7lZGkcvWfy2H8E/CP73oBcAAO8R0SALCykhwtnArS4pmMvZ+Xf2HfaFvV2dPs5Ts2mT+elrRdXZ1bp7zdgIkVa2tzkgTUV1bin4BrfAccAADUnz8X7P3cvrEnt4vt/2e/jmkAgGEYCLr8CZpNS6BrpAx3BCLF07fmRbECAACgWKcBAACgWAEAAECxAgAAgGIFAABAsQIAAIBiBQAAQLECAACAYgUAAADFCgAAgGIFAAAAxQoAAIBiBQAAAMUKAACAYgUAAADFCgAAAIoVAAAAxQoAAACKlRNM4b4HGMAABvAAvI+fGxQrAMBuj/06JgIAAGEgBv5Fg4x2SAxwR6cHQLECAABAe7ECAACAYuWmABudwn0DGMAABjAA3geKFQAAABQrAAAAihUAAAAUKwAAAChWAAAAFCsAAAAoVgAAABQrAAAAKFYAAABQrAAAAChWAAAAUKwAAAAoVgAAAFCsAAAAKFYAAABQrAAAAKBYAQAAUKwAAACgWAEAAFCsAAAAoFgBAABAsQIAAKBYAQAAQLECz959+LaNZGEA/0jKRbKZeG0nXnmt9Hbp1/ttvfonb++9phjOxmdn3bNxBEXFsWRKPAyGcDSgBEwIOS+Y+37oq+HOA8zVt4+a4Tw1f2bucAEAdnbWNiIHCpCbn4iIBAzNzY3or/FWeaWKBBNdJgkPvzQzPAJgr7W9XM0yiglN7FjpzEUAuHcDaf6viwD2bq6hh9MXAiD+pAw6CKNXigAefRLJzKwVCtPXt29V3StAfn6BG0CgACIiAf650wEShcLEqXh5IYLb7ANtsBdaxMXhX4VIDA2NHdd/DKtR9nW5j9ixUgjl2J0mUo4UAWDo4laElOB8AMCbKIMOQOlqAABhEOHZ8i+dhGH65aXbDhQgML/ADSBbgDwiIv1A3eCd8m/AfQMMNMsLLeKieDkPg3dq7suy3Sj7utxH7FipBsUbayJlFgqGgwgpIx4AxBUMHo3+NQ8Z/h+nYIJ3+sjHkXwB7s8vfwOYBbiCiBigk3Bf9kCzv9A6LswO0zT859tLdqOs63IfsWOlDf1j6VwZJsAvQIH/0hJSZgMAiBugA38oKhdv2qG/vC9egAPzC9wAkgUQEQkovBqAsgea/YU2cXGq56fepUrZbpRtXe4jdqy0W5kCgBfnI5gwOgHt2BJSQij1JgaM9PoaGdeSNNhbXWvDnzyTT/Lg6g3xAhyYX+AGkC6AiEigYdXf4vUI8MPJEyGcNfhAs7/QIi78GSiIH66Xgfz0yWS095t3I7tRtnU5j9ixUmdnCui59DcMoA3nUp8FRSgrGCwSXY55pgQlXrgL5dFyUg2Or5XdL0B+foALgrMjIgpeCaC05legoPPo0TKKp2/AWYMPNLsL7eOi8U0FSu3n+aTDxeixJbtR1nU5j9ix0kYJ6Ln0dxaJkUNlmDCdA4DOOmhwul9wuFMQiPpzAIwXQO++o9fgeFffd6AAgfmFbgCBAuQREV3NQamaWxs3N+GswQea1YX2cdH4qop9qw+T38CPLdmNsq7LecSOlbajXK+vD/gFaL02uYZQWm3QAAWv5ZE8Ht4W2IpzMgfldhn7Op//MwcA4yNNBwoQmF/kBhAoQB4R0UwJSvV9kGWgZbjQPi46O+H8Crrt3LmI5N9kN8q6LtcRO1Zqb5aA9NJfvY1Vm4Rhf9fBVgQaoJN5KHuLdyH3E2t1CV3aP14EAP/8DQcKEJhf4gYQKEAeEZF/BsruxyDrQMtwoX1cfAcTsHwuB+gDKqxGWdflPGLHSjUoqaW/YYBE+vGVdxgA4jXQIIUAIHbUuV7pHd/okRv6zVwOFCAwv8ANIFCAOCKiI1MAEH8dgewDLeOFGeNC/0hiP8q+LtcRO1bqc77NLADs+QHSm1yTb45mFTRg8fZXEWTMQqmVgdQTTP1Aw5UCBOaXvwEECiAiEkixn8og+0DLfmG2uKhB8SbKdqPs63IdsWOl5HybSRj024AfPyoBwHjPb7RWBBqkGrZvVSHCeP1zhnSRL0B+fvkbQL4AIiLZFOvcAdkGWoYLBxMXccV+lH1dxI6VnNa5PwWklv6OeACw0ij1WHDhF6CsYKBocRFy+r3+OXkz17gDBQjML3ADCBQgj4joZA7gOfH2gZb9QoG4sK6L2LGSu2oAjB3uymwAoLMeRTmkFlyMTiTfHOSOfq9/jh/pn+BdLyD7/PKIiCi0f5bORBdLQj1B3LAcxYQmdqxkPKJKbWQN9ZeD/jLwJszPAlcfZDLfIsDU2ZkC9LukXS4g+/zyiIgoKML+WToTXSgJ9V8J9ab9KCY0sWMlrb2ZXvqrvy62Iuglw+ZprbNQyiB3+IV+f9QalOEgcrqA7PPLIyKiEQ/gOfH2gSaThMmpqivWo5jQ+4gdK22UUv/B66/+un6TsN7kanazPNvGLd5hKHWkmIvGXS0g+/zyiIgoDAD7V0Iy0UWSsHAeyu6K9Sgm9D5ix0q1duoMm2QbK9CMU18GupttViGPiIiIKIRSBj2/Rl8JoCxGTz+KiB0r7VZSS3+Tbax6ybDe5Gp2s9iKQO7QjyHiSu/nGXorszsFDH5+eURE7FjrADB09NRIAUD8uL6xgl6Y6AJJ6J87HUC5t2Q3igltIHas1Llv7lzv2sYKbBibXI1YEEdERETkF8yOR/EKhaPXhU+ZJm3oheNHA0C5dyPDKCJ2rKQ3qxpn2OiTr+pInl8Zm1xdfB8fhYEDBcjNL4+IiOLoykmYpl9euMtEF0vC4LU8DK0vy7ajzLqI2LFSMwaMpb8hkqZULxk2NrlO85Du/8Obw/ECss8vj4iI9Lt5vOtI8X6RvwErTPTBXzidR5f44Xwl6ygmNLFjpeR8m0kk/JknTWnHPN+Gh3S7LG7IFyA/PxEROeQEbjDRhZIwRDdv6uLaStZRTGhix0obJUCfYdP1rLIMKDUoySZX3c1yUTARERE9jxqL5RqA8NDFPKAcXytDBNVg8Kanry0vRJlGEbFjpe0oh/0zbJKFv/Fa92fJJlfdzfKQbhfpO8CBAmTml0dERHuLd6HVauulqwEAeFffZ6LLJOH24zxM3qm5T6tZRjGhiR0rxY+m0LWRNQT2l1+Y59vobpZn2xAREdFzJjZfs7T68NUA0EvIJFD7LWjh+FzyGmAMv/xJOcMoInaspDer6jNsjG2sinm+zSz0769EREREz5HbSzDs3LkI6LdHiqJabRPFy3ko3p/eamYYRcSOlTbOd51hY2xjNc+3SY48a1ZBztNGPAcKEJhfHBERLZ/LAd1vj2SiyyXh5v1LJ6H4L78bPe0oJjSxYyXjDBtjG2vqs9EJAGhFIKfoxxL9xRUHChCYXw4REelNT/rtkSYmukASdm4+vghl9NiS9Sgm9D5ix0qdna4zbGbNn1GN821mAwBYAbnImyiLF+Dm/EREJED/H4xeJsZEl0/CpZkpKGdWoqcexYQGsWOljdL+U0i/YPyMap5vEwIOnm1DzRh9hAEAxA2XChj8/EREJP9b6jjsMdEFkrCzOAVAH0BhPYoJTexYSTPOsNELf1d6fhYUAaDeBDlpHCkhlFbbgQIk5yciIgE1pDHR5ZLwwcMp8/dS61FMaGLHSsYZNmEAIK70/EzvcS+D3Hw8Pdk3DiLxAtyen4iIskv2Nk3CHhNdIgmTPxTGLUcxoYkdKxlqUCaR2sZqfhbA4bNtGPbpl1P4BShl8QIcn5+IiDIz9y/ZYqILJGHNehQTOo3YsZI+32Z8pGluY4X52UzSzTqKYR9EMHmHodTFC3B6fiIiGoD0d7j9slEmumwSMqGJHStZ0GfYeGPN1DbWrvNt9HfDVgRyM99Sp6zro47QWXeqgMHPT0RE8o/dvbEmTL2XjTLRxZIwBJS65SgmNLFjJYNec+HNlZNtrOnPMJ58N9RBztmOep+yPmv/eFq+APn5iYhIQjMG9Bs3DEERShkmJrpUEvoFKHHFdhQTmtixkkGfb/PivLmN1fzM2bNtSL9eSy397hX2W5F4Aa7PT0RE2SUv53lxPkr/CJd+/QYTXSoJ9To+xA3rUUxoYsdK6Sdrw6PF9H/+yWcjh2cAp8+24RML//wNdDupV9zcES/A/fmJiCizzv0pABg1f4bzz8B8Cm9goo/+MQQaX1WfXRKeD6DUm9ajmNDEjpXST9b80x4A1Ht95s0lW1zJPftrbu408UThvE20yBcgPz8REUnSG1lxZiXCE6em0P9HOCZ68JoaNva3t5oHkITBPyu3qoBppgQoK/ajmNDEjpUMNSjHgdTCX+OzuAJyUPvHiwDgv/xuBCRGXwkAIL4hX4D78xMRUXY7+me40b+8j32li+j/IxwTXa+Z1m80GnwSjnjTrzy40UC3wm8AZXfFfhQTOo3YsfL5pNZq9/vsABfXkD+GxDig5IcBpdPAwVs+lwOA0Tc+rUIrXQ2g/FQGhAtwZH6BG0CgACIiAXdmAwA49MevIkDxL50ElPkm3Jcl0MJsF9rHxZHXG99UoBh/ECxGsB9lXxexYyX3JWfYaFuR/Wc0KME/czD4f0Oi+j4OXPub30MZfqW19HMb+cnTAaDszkNzoACh+QVuAIECiIjkf2TFkf9sr5eBQ7NFaNUluM8+0AZxoX1cjP0NjdVqA/AnT4RI3FsCYD/Kvi5ix0ru068t0Oow7J9vgwN84x5N59DPcC7Cgbu/Wkpmu3ABT7Q+iKDJFeDM/AI3gEABREQCfihMAcr0NLrsfgzHDD7Q7C+0j4tmDG3sAkwPbkCzHmVdF4gdK7mvBq3X+TUbJWhxAweDQvQ1HEQ4eN9FJ5HSeq8JTa4Ad+YXuAEECiAiEtD5/LU8Uh58FcF92QKtBihxxf5C+7hItp6m3bsBzX6UdV3EjpXcp1/FptSb9p/RwNTQ1zM6HvvmzoVAIOsFChCbX+AGECiAiEhA+51fF2GKF+7CfVkDLflfu7gB+wvt42KxcTmPlNb+RlT7UfZ1gdixkvvaX14vAEDjW6S0b54vAIgffokDQtuP8+jp2W0e/u/6lSL2mae0SRXg2PwCN4BAAUREAjpfFY32J15eiOC+zIHWfv/3ofrnTYsLM8TF5uao+S8CWvMrMFmOsk9oYsdKztt+G32truJgUfstiNv9yp+ZfaEAADutexuReAHuz2/cALwDQUSU3ebm0Oni8AiAvdb2chVOGXyg7byX8cL2W5YVYOjoqZGRAMDeXv3edmQ/KntCEztWInJdZ3NTvAAX5iciIgF7CwsgM9Akk3BvfX1go5jQ9D/268ACABgGouhl/6HTBQocWry3QMiBr1gBAABQrAAAAKBYAQAAUKwAAEALUKwAAAAoVgAAAFCsAAAAKFYAAABQrAAAAKBYAQAAUKwAAACgWAEAAFCsAAAAoFgBAABQrAAAAKBYAQAAQLECAACgWAEAAECxMsEU7nuAAQxggBsPwPvYoFgBAABAsQIAAKBYAQAAQLHS2PCBeTqF+wYwgAEMYAC8DxQrAAAAKFYAAAAUKwAAAChWAAAAUKwAAAAoVgAAAFCsAAAAKFYAAABQrAAAAKBYAQAAUKwAAACgWAEAAFCsAAAAoFgBAABQrAAAAKBYAQAAQLECAACgWAEAAECxAgAAoFgBAABAsQIAAIBiBQAAQLECAACAYgUOe3f/08aV+Hv84xmHBweTFJNQSJ0UyEJKtmyq7VU3artJqpWqvf/w1VXVbParprsqW1UlDYKGr0lNgGRDvWCDi83Yc++IcwseP8Wd6yfm/frZxxzNQXz4zMOZllkT71yKSVI+/2LbCcsEAAAg0duQxEPvTg4MSlK++DLl6DcBaKywbk9Lkrux6qja7C1b2v3GUedg6P1JSfuPna78ZCMWG7+z+0M2bBPwLUDfAQBYczdOOtLOU4VUg0ANPjD2wFYN7uNM9UrM2qffdflWcSWtM6y7CdVX/DpLQhugsWJmWp7IzPgjVbHetiUlRjNCxyQXbUmK204XTl5UGL+XehqqCQRfAABAt83MyaPYzE5G4dM4UIMPtD6wVUtk8VGNqx4VBu4snK2hVxJqYODdZRLaAI0VcRmjMymh64Y+HVZ31DjXGZm98pUThgn4FqBvAQBi8wqb4IHahiS2/pBUlYF7jzMkNGisCGBhq6Aew0nRrsWbMfrJo9BMwL8AAIA+NG8rBIIGavuT2BRWn8jHjzMk9G8HGius+WV1EczdLl3yB5NSx5svSrLGbg6bnFpcDssEzAIAAPrYRFIhFDxQgydxWmfdTMp81U85SfFrs7Y8kQ8fOjqRK9lq4ICEBo0VNdx4kVH3oKt3u5hocVefybO/YWZjfitCMAFuNwKA/mf/UZKOLVshECBQgw48+kE+5Zc6w56r+CrlVldvLsgzdD2lE/kvx1RLYlqS3D0SugporDAPzXcJTnfUy8fUYSZaKnb6O/rybsL8VoRiAv4FAAD0oemoJKVmFQKBAzXAwOL2m6yDnqb0q/XcR/JcT8k42lYtE/IUsiR0BdBY4e69JUnxsYy6A/ZnwyYEVnYf2F2KeD3N6Fflf34elaSRwUIYJuBfAABA3zHbLmXXZxUCAQK13UlsTciTTemMV5vJN/mu2JQ86w4JXQk0Vqz+j6jMwwVdgelheY7Xn6lrl1h90VL6cUEyzzef+wn4FwAA0HfMm1fK/1AIBAjU9ifx0GVJcn2DtpOSFLlYUANm66yjNAntAY0V/r9I5uGCbkBcktyNVUfdMB6tFS0bc1FJenvFOf8T8C8AAKDvmDd8pgu2QiBAoLY9ieO2JLmHqrDrRNWUPSnPS4eEBo0VfuYvUhffcAN3d8lRd0zJk8vUPI8xOJo5/xPwLwAAoN+YbZeOVhQeAQK1/UlcLKll5t7k8hoJDRor/ILdgBkcctr9IasuMSc009WT8kQuZ879BPwLAADoN6bsuP9yFB4BArX9STxgO2qVuTf5oFAnoYGowEXW62sFdQHW19U15k6g8pZ8zP07I+d/AmYBAAD9KzZvLhKGSIBAbX8S+59YHYxIknvY/BKru1wvoYGoIC6y3n0khE1cnmJJPu5+QpLGen0CAACw7VKgQA2cxNU1N/JORmdN2ebyaX3WhGqfdgBorPBu9khNJKQwv+GGfHPkU84nJGkg6vT0BAAAMNsurRTUEIne/iQ2Ndd/45654TfdeBEbfAagsaK87n9LNELCismTUZWcPAO209MTAADAbLuUVmMkeoCBrf5Pad17eGbUYrTpClk31egzAI0V5s3OozMpIVQil+Q5qBdTkYuFnp4AAACLrW+7RKK3LYlf/5yQpKHPTivr+0k1XaGhy/KsO6oNoLFibcqWpJtpR30DAAAgNiVJP2XUC1D+7oEtSUN/+SYjj3V7Ws1XaN6WzPZPNQE0VuS3k5I0dD0lhInZvG9PVXIlW2ZP+56dAAAAZtulNTVHogcfqNHPB+VR3t39aU/V8msL8gx88nrJkYY+HZbn+XLz0w5KF1QPQGPF8mRUkha2CuoTAAAAM53ddgmDOhHTxRs1X5e6rgV5dOWvGz/OT8tXWBtdYl1THQCNFadvuJlfFkIkbvfvBAAAMNvQHqVFoncjicfv737jyGe9sGjLE5mZkUfFbzJqxJ6U1OT1NwCNFRtzUUm68SIjQCq4PT8BAACCb7tEogcaOP7Xxxn5bL5+f1JneLcHNzQdlSR3WQCNFQ2Uvv1I4g034eQe9uMEAACYSEr+TX1I9PYMNO9n9Yt8/DQln6Olyd8Py9DzFedNLpSrkBVAY0UjZjfy+FhGvQ8AAMC6KfH4Y6d8/0rKl3KSZF0cnZrUicjtvYwaeffa+jM1Mh6VZ90RQGNFI2Y38siHDx0hXCIXC/02AQAAgmy7RKK3PrC8LUPlXG5L5jpq1f+OpxsEGxfem/062+y8Aw8jo5moAN5w00cAAEBsXpKyKXUDdl7dTajG/47W/O/kkfufS7Y8GriXeqp6riTkeekIaCQqQGtTtiTdTDvqcQAAAPO2urhfD8r/MJW1orHanw3L426sOta1/7dt8OzoktPwEmt5TUBDUQHmlc8aWuBPPzQY6ekJAAAQfNslEj3YQPNImUYGCzI09FlUHu9VrSpvbs3N2vJc+eQrR7UMXZYnXRBAY0VT5g0319cKQjjkSrYacfd6cgIAAJhrc0crCoJED5TE5pEy61pKhn1SWN3VZ/KovPrcPNQ6+smj+lfK5b4QQGNFc6UfFyTJml8WwiRyOdNnEwAAYCYhBd9glkQPNPCksWpEhvWnk8L6OCNDR1/enpZndCalarEpeXIZATRWNKfUREKSbrzICKFQcFVH3JYk97AXJwAAgHmJ58HruM6w5NHIsaTyofxI9OADG1+hnUnI8zSjU+UnvyxIqrNVypQt8TQyaKx4Y+X1hCRFFh8JYTKiKnF5iqVenAAAAOYpy5EHqha5I8/zZTVGogceaPruWMVpBD1PqcJ6vO77KMyIQlZAE1F5gNc/JyQpPpYRwsDdT5igqRNTTp9OAACAt1cc+ZHobU3i6ahUa9tf8z6K66naI9785m7QWAGz51tYLrKinE9I0kDUUSUrJk/mPEwAAAASva1JnKkouQcF+ZgdmswPqb7EWt4S0ExUwNm/KPGxPYUBcvIM2I4qRS7Jc3BeJwAAAIkePIkHI81LbqMfMh6VxKttQGNFS5Yno5Iii/+l0CDfzK701QlS3urNCQAAcLSXUGPrjhoi0YMncdyW5+A3nm62bspTXtMbA40VMG+4GZ1VGGDXiUo1HiyZkqdY6s0JAABQfqxq9udRmXerNEeiB0/iKdWotSOqVvvLriTkOSgIaCoqA9iYi0rSbEkhgNJOUpJGBgs6y56U56VzziYAAACJHnyg70PNTzDHGxVed1kAjRUtKH37kSQNKAxgXv1tzS/rlG+vv3MzAQAASPShu3HpcCkbPImlxWhFrTX7DptNmpvX39iUPLmMABorWmDecBMKOL0XaK2gU7F5eQ4K52oCAACQ6PZnUUkX//xFIXgSJ5OqqLXlVwmpxntXTf3VgSrN2/KkBdBY0ZLyekKhAfPgsnXvoSNDQ/dtSXKXz9cEAAAg0cejksxOSy0MtD8vf51VpZsL8ihdkJGTR7f3MjprYl6eo3TNS6xHaQE0VrTm1WZS6CDroowReTQ8II/Kh2o/8+Dy0F9+DaLkoi3PTxkpDBPo0gIAANCFQI23PtAU3fvH6xuOfjX06bA8OlqRYW7UU+TjjVVHhqz538lTtXnzlC3PS4eEBo0VrVqbsoWO8fY1rGD9WUb2kdrOPLisgfvF1L9LGh6btX0B1L0JhGIBAADoRKAGH3jhvfeO/7OzX5Kskamrtk6U/+7IUPm7B7YkRWamf07lDr0xb90wn1Q2pQr2nDzlNRIaNFa0LL+2IHTMeFT1DESdDl5TH7h1S6eKJoC6OYFwLAAAAJ0J1OADL1y9qkrFrwu1/oeMjI+r0tFXqjQdlSddIKFBY0XrzN0h6Ii46hqwHbXfd860qhT/VpDRtQmEZQEAAOhYoObkkbvX2sBcyVYtRw8dnbVe+EBv9EFZE/K4L0ho0FjxG5QePbDlKWSFdsuprmJJnfAkf8tWpddLjoyuTSA8CwAAQKcC1ewM7B62NjC/vGirirv6TD6brz8dVhU39VQ+VxLy5DIkNGisqGv76qC0v6Ua8l/ejUsq/ssR2m33l2HV8dJRR/z31vuTOnX2LW0hmEDjBegjAAB3c1rSz1mFVfNALT36KC4dLhVaHLi5OXkrrgrH689U7eiLyd8Pq4LrbcTkl/PiV7vfkNCgsaK+V/9bdR39TeiQ0hfquqMla2LqrZgk5YvPt51QTcAsQP8DAJSfPFEIBArU/N9+48CdHV0ae2dw0Jbk/nKwbT5T84NXk6MDg5J0fHy0uXuoGvJfvHlCAzRWAOWdnfBNAAAAEr2Fgfv7G3oj//63ABorAAAAAIDGCgAAAAAAjRUAAAAAABorAAAAAIDGCgAAAAAAjRUAAAAAQGMFAAAAAIDGCgAAAACgsQIAAAAAQGMFAAAAAIDGCgAAAACgsQIAAAAAQGMFAAAAANBYAQAAAACgsQIAAAAAQGMFAAAAANBYAQAAAACgsQIAAAAAaKzoERGBpeDncwBYABaABaiFAwAOH1yBxgoAAAAAAI0VAAAAAEBjBQAAAACAxoogXKEHRLq6FPx8FoAFYAFYABagtxHhAGisAAAAAAAaKwAAAAAANFYAAAAAAI0VAAAAAAAaKwAAAAAANFYAAAAAAI0VAAAAAAAaKwAAAACAxgoAAAAAAI0VAAAAAAAaKwAAAACAxgoAAAAAAI0VAAAAAEBjBQAAAACAxgoAAAAAoLECAAAAAEBjBQAAAACAxgoAAAAAoLECAAAAAEBjBQAAAADQWAEAAAAAoLECAAAAAEBjxYWr00P2oCTl3cPnu47CBtbEO5dikpTPv9h2OAAhAAAg0NqZhBfeeWfw5PuKmXRWv9nV5FuDtqTjw5cpR6EEGiusuVlbhmK6eFXFlbTQeUPvT0raf+x05Scbsdj4nd0fshyA/gIAsOZunJx833mqkGoQaMEHxh7YqsF9nGn232UsdnnG3Vh1Wl0437QuXL5863Apq9ABjRUXbk3Lb+DOH1afCR2WXLQlKW476izr9rQqjN9LPeUA9BUAwMycPIrN7GQUSg0CLfhA6wNbtUQWH6na7C1bFSIz1nLrC2fN/04VLt5P/+AolEBjpSX5Rd6b/TordNDQp8PqDutuQj6R2StfORyA/gEAiM0r5BoEWvCBwSN9rPWFsz8blt/1qw8dhRGiAqfi/AbuPc4IXV6JLsSbMfrJIw5A/wAAzNsKgeCB1v4kNPcPB184+/Ooqg2FNKARFfjLdni4c6zI9IW4jMjHT1NCVy91d8QfEvLoePNFSdbYzWGTU4vLHIB+AQCYSCqEggda8CRM1yys5usOHMmKj70b/w0LZ/0pKo+KKz8fSvFrs3aIAxo0Vgrr4bd78mhLujQ3KY8it/cyQtuZm2e65WZSHtc8uby/YWajGy8yHID+AACw/yhJx5atEAgQaEEHHv0gn/JLVbLv26Znps0n9vc3NDm73OrCzSTkcb9Py5Nb/dHcj3V9raCQAI0V5i+Bb2vg/SXzd0qRDx86Qrud7qaXj6nj7DlJFTv9HX15NyGZrRQ4AP0AADAdlaTUrEIgQKAFHljcVjOLUXmylU/B7uy0unDm+dbyf2VllJ/8snByyeWRwgE0VkwsyKMjfy89+vIPSXmGFpaF9jrdVaC4svvA7lLE62lGvyr/8+S5kZHBAgegDwAATLvJrs8qBIIEWvuT0Nzlm30UdOHmbXlWsjqVmkiEKaBBY4V1s7qwGuXvlZTUifsiMT0sz/H6M3XvCmM2pTNKP56cwpxf5gD0PgCAefNK+R8KqQCBFmBgo38vj74KunD2ZI1pldcTYQpo0Fhh7gku/91RlfLyZFSSIu9k1F6IS5J5r3bnjUclyV1WhY25qCS9veJwAHofAOBKQpLSBVvhFCDQAgxssBTuv5wAC9dgWq9/ToQnoEFjhTUheVYKqqH07UeSOvNsO9zdJUfdMSVPLiPVOLM6OJrhAPQ6AIDZvedoRaETINACDGw+jZ8ygRcuLk8hqwrlVwlJGrAdgcaKkJyO9N1sUX0Oy7qWUlshp90fsuoSe1KedPWkPJHLGQ5AzwMATEfNZb2wCRBoAQY2n0Z5LfjCxeUpOqq0PW/z/ymNFSE7FecuqzbzoICup9RWWF9X15hbbspb8tl1opI0wgHoeQCA2Ly5SBhGAQItwMDGHVQHhcALZ8Xkycin4CpkAQ0aK6fiClnVseuwXer5Z05gluTj7ickaYwD0OsAAGy7FCDQAgxs8G3p4AsXuSTPgXxKO8lwBTRorJyK00tHdZi/CJGLBeG855sjn3I+IUkDUYcD0NMAAOY5p5WCmiPQ2pyE5qbgrTYuXE5hCWjQWBGXx32hOkLwJB/8t9xU54HtcAB6GgDA7N6TVnMEWruTcDDiv2DLwoHGiqCN9VD1mEfbNaJzCvVvuZFy6ocr7BwAAMAi2y61HmjtSsK47btgG3ThRjiljNA3Vk7FNToJVnDlGVNvAgAAiE1J5m0qXYe4PBkFXzg2lACNFZFLanYSzN0/50/ywdy84+6pSq5kq9fvCecAAADM7j1rUnMEWvCBo58PSp68u/tT9aD46QXbC1dnBmOS3F8OttOtLlyDx2jNtLgJisaKsPxhU0b9CgAAYIZtlzprUCdiunij6oXqVkwnrLlZWycisdjVO+aDrSxcTp7B0YyAkDZWxG15DiQ1O7llOzqnELc5AH0MAGDPSdJRWiR6N5Jw/P7uN478XOf9af8H760+a3HhcvJEFh8JqG6sAFBwOQA9DwDAtkvBAy3QwPG/Ps5IhnnoLHJHVSLvDS+3tnC7TlSSRhcrxmnoY1ugsQIIGfeQA9CPAAATSYltl/yB1p6B5t47v8jHT1N6E+9quaWFK/24cDLO+sGRjKH3J9UPQGMFAAAArJsS2y51yvevpHwpJ0nWxdGpSZ2I3N7LqIbD9UxOUnx0YVjy3HiRaWnhNuai8lxPbvyUk3ThreTbtkBjBRA+7LfXlwcAAMC2S60HWoCB5W3JKOdyW5r8/bA8kQ8fOvI5Xn+mE//3k8lFWzKPpLawcKVvPzKTm5mRgKj6CAAAABCbl6RsSt2AnVd3E/IMXU+pglu5zdLmzw9sSRoZLLS0cK+++0D1uIcSaKyAUSyp1wAAAMzbktxldQfK/zCV1d9Y/U+25tcWJMm6lmpl4UzV9Smmp22BxoowMK9f1ojqs2JCaA1GOAA9DQDAtkvBAy3YwPJ3voun9ZhHUq+nWly4/P8y73WVcfjtXmw6XBdUQGPFmOqLXJKn6Ohc48RFA+4eB6AnAQDM7j1HK0KQQAuUhPntpMzF04bc/YQkDUSdFheuvLp66eZbg7Yk95eD5y8FGitCpOC+6am1jM45RC5nOAD9BQBgdu9Zd4SAgRZg4Elj1YgaK786aay20/rC7X+rCnE7DBdUQGOF/2RXbXFbngMhfCcuzOq7hxyAngQAsOck6eB1XGdYkmfkWFL5UH4EWvCBDa/Qmn8vR9q5cPGwXFABjRXl/OnJrjrikrgtMhRG6q1+scQB6EUAAHMr2MgDVYvckef5shoj0AIPNH13TE3kAi6cf1ruC51/oLEiJ6nhgwfWhDyFrM47LrWP1Y0phwPQpwAAb6848iPQgg9sfkFkrI0LZ0+aK7+gsSIsjVXXU6pj6DL/sofmUnvUUSUrJk+GAwAAwPkKtDYkYUZGTjJf1i7jUUk6KOj8A40Vu05UarQf+ZQtT1rnGEyy2I4qmY2iDzgAAACc60ALlISDEVWr+rL/n8/aTHFGmcaK8CjtNN6P3J6Tp7ylcwv1bw4fj/by6nMAAABHewk1tu6oMQItcBL6t+ncnrclRS4WajdWJ/DCmZuCXwg0VoSB2Y98YaugWhaj8qQLOv+41F51c/iUORfKAehNAIDyY1WzP49Kch9n5EegtSUJp3zXNwquJEXeydTqmcoEX7jpqCTlMgKNNUToKtb8smqYSMpTXhNCcKndf3O4SZaXDgcAAIBzG2gBBpoP+Wqt2cfJv3fSeNRcGQ0qNi9PWqCxIhRKPy7I8+5BSlViHypEl1i51O4/bzEdPY/nKzgAAAACbehuXDpcykrBk3Ax6qu15VcJSRqqvGJr3ZSnkFVA9n1bko7SAo0V4bAxF5Xntv1MPrEHtjxHK0IoLrVfXytUn8E8KHAAAAA4V4FmfxaVdPHPXxSCJ2Gy6o488yCrbqYdnZpJyBTbYKw/RSXJ/Zcj0FgRDqVvP5In8t74kqMzrLlZW6H6i8ClduveQ0cyhk7OYLrLHAAAAM5XoI1HJZmdlloYaH9e/jqrSjcX5Km4Iy9/csV26JNH+lVyQabYBjP06bA8P2UEGivC4tXKguS58teNVUeGdW1hUCeeZtR+sC7KGJE8wwOSp3zYuUvtQ3/5NYiSi3YbAoEDAABA9wMt3vpAU3TvH69vOFX90X9H3tqULUmjd83lEFm3pyXPSkEtSX5w+Cwtw3yP+XmgsSI81uNJyROZmTk+zGSkwWsXByXjeUrtB297vArWn2VkH3XuUvvA/WLq3yUNj83abQkEDgAAAN0PtAADL7z33vF/dvZLkjUyddXWifLfHanqIquu/M/drYw0OjWpE9mUWjOui3fuHP8nnS9Jw2PJYf/PA40V4fCdMy3jwuXLMzrLXX2mDsB4VPUMRB213avNpPlpt27pVLENgcABAACg64EWYOCFq1dVqfh1QRW+jyVMvo/rjKOv1KLaP7D4t4JAY0WoPNlbtFVT8eusOgFx1TVgO509b9HGQOAAAADQ/UDLSR53r7WBuZKtWo4eOqpU/udnw6ryesmRFNzuN45AY0XIbL5+f1LV3NUNRx2BnOoqltQJT/K37DYFCwcAAACjJwLN7AzsHrY2ML+8aMuv9g15pS//ONn8c81tJ+V3vP5MoLEifI6WLty6bqtCcSWtTsHuL8Oq46WjjvjvrcrzFodLWQ5A/wEAuJvTkn7OKqyaB1rp0Udx6XCp0OLAzc3JW/E364/lpcnfD+uUazb4bHHhXi2Zb+H/U9BYcfzkyYWr00P2oCTl3cPnu446B6UveuG8hTUx9VZMkvLF59sOBwBv6P+wdy9eTZz7v8c/yQRCAkFLqDaUaLkcsFjR/tq1uu1N7bn03P/ac++qdZ/VurvK7nKVKgcrGzQqeMFsSCCSMMmcTCYKGYJhnJKg836te/s8+brmYc03n7k8wZECoPL77woEHw2t8MNrTlxZ0bGB4WjUkGQ931h2j2kY2jWW6o5K2i6tLuVec+FWVsKD6XeMqLseSKwIpO2HDxVoqKyscACCBwBAQ/MwcX19SQezPT8v/ypPnsgnkFgBAAAAACCxAgAAAABIrAAAAAAAkFgBAAAAACCxAgAAAABIrAAAAAAAkFgBAAAAACRWAAAAAABIrAAAAAAAkFgBAAAAACRWAAAAAABIrAAAAAAAEisAAAAAACRWAAAAAACJFQAAAAAAEisAAAAAACRWAAAAAACJFQAAAAAAEitCAktBfQ4AC8ACsAAcAHD40IwlkFgBAAAAACCxAgAAAABIrAAAAAAAkFjhhyUcAaGOLgX1WQAWgAVgAVgAcPgAEisAAAAAACRWAAAAAACJFQAAAAAAEisAAAAAACRWAAAAAACJFQAAAAAAEisAAAAAgMQKAAAAAACJFQAAAAAAEisAAAAAgMQKAAAAAACJFQAAAABAYgUAAAAAgMQKAAAAACCxAgAAAABAYgUAAAAAgMQKAAAAACCxAgAAAABAYgUAAAAAkFgBAAAAACCxAgAAAABAYgUAAAAAkFgBAAAAACCxAvAsfHL4WFxVhcKDZVMAACA4Hd3HRB9OpN+JGpK2Nx8tmtrHsfdPdkftQaXVpZxAYkWghD9JabeCNu6umkLn9JxLSVr/yexMZUc8Pnhh9Wau8wcggPUBAD6EJ05HVVVYuaWg8tHRW06MXzHUhPVT1ntXdRXsOn78zOZMTnsd+5fEy0FdvaetpXlTILEiOEZTahBX/IQ2f10TOiQ9bagqYZhqr/DZETUYvLR4q/MHIHD1AQB+jE6oJj66klWw+O/orSeGPzbUTGj62ut01fDkv1KD3suZm+6RqY9irmKjw79kBRIrAiOhJnq/Ll3PCR3Q81VMnRG+mJRLaOzdH83OH4BA1QcA+BKfVJD47+g+JvrvqsY3MbmdOnHVdKfoPbq/uLUokFgRcN2X5u8IHbso2vn25uj/8lrnD0CA6gMAfJo0FCD+O7qPif67qvFtRHv1NBYcHVETobNrWYHEioALfVheVHshPW2oU84nVbN9/0FZ4YHxmGr6p2c7fwACUx8A4NPJtILIf0f3MdGR8d5Vw3+JqKY092xTSrw/ZuwtGD6pGuvZw6wUGxwxVBP69KopkFgRJLlf5UgcT0flaOvFK3T4edTxtGxW/db6+tKLf83pB1m1CQ8EAwD8MT5R1XbYUAD47eg+Jm7dlEvlkfeuOpp0Cv6WkS0//0f9nuyp20U1erHDSv7J3Isc3HNqUSCxIlDycuSX55wzjPMOfdsgPDFmqKYQV9sZE5Iadvrb+v5isv5nEIQD0Pn6AAD/RiKqWhxTAPju6D4mlpb9d9UXrxxX/m9OdZXfn0/VJl9sLNiwgfD9Z1cM2UisJFYE2NZ341OyJQayag/s7D1Qmlu9YnSoxetWVi9VfnbeLumLFgNwAPzXBwB0nJOBcgtjCiAfHd3HRB9dddKQbS6nHYsnk66ClUJiLqPdCren5BoUIIgI2H26CA1nhTYZicm2vXBHnbvFmlvULuU/nAudk7OdPgABqO8fAMD55ZXK3xREPjq6j4k+uqqRalKwspB0F7wht6WJiKpCvUUhsIkVqNxwLoe9N2cK7ZFQVcd+EXswoiprdm9HcP4MOn0AAlDfNwDAu0lVZYqGAsJHR/cx0UdXbV3w6bNky4LllbQQ+MQKbK0lVdVtmELbWKszpjpjSLZ8VmpyZTXan+30AQhAfb8AAM62S1tzCiQfHd3HRB9dNSFbMacGlccH+Aqaly10PCsEN7EClUJSaKu8Vm/m1CFGSrZMJzuCcwACugD+AQCcFzGtv5sKJB8d3cdEH101IVvJVKPlSUNS+P1FtWKtCSRWAO2zsKDOcR7MqTyUy6rpbLjQ6QMQgPp+AQDik/WbhIHko6P7mOijq4bjsmXlUrTkFARIrADclznLcrHWk6oaEAAAR5v3bZfo6D4m+hc6JtuGXMor6ZYFE7JZmwoIkFgBNH8w5+XT4d0RUwAAHGnOtktzRbVCR/cxsQ3yalXQSMm2URQCnFiBcNx1pQ0BWO7svl3DMAUAwFFW33Ypo9bo6P4ndtRIRLaMQGIF1yn1yFQAwP1gjrtN8YNnAICjbtr7tkt0dN8T/evzHpHjk+LqBIkVCI/LZj0QAADAkRcfUtW9rPBG8PGCbM9lQ7YFUwhuYgXC55Oy5bMKAkRDUvNN4vNlQ/zgGQDgqKtvu3RbB0dH9zGx/9uoagrW6r01eed+QdZdcN+buuGJMUO2u4tCcBMr0PNVTNKbsd0eAADAaHu3XUJUjrh6T7/mD5rnZYv2Z3VgXe+cPmGo5u6sggkRAYnB8ZhqrOtFBQIShgAAeHMZE6rayoiO3t6JjsHLq7+Yr5lYQ9PX1JLxTUwNSr9kFTQgsaL/v8rF+olzAYqWAAA46th2yX9H9zVx8D94/9q4akZU1T89q916vjDkNhjTLtazuTUJJFbg6YypQIG1KQAA3kAn05KHbZfo6D4m1l8/dQt9cWtR3pT/mJLtg/BNUy/0nEtpr0RjreTUA26nk1gB54UEAACAoy48LrVr2yX89lgqlPOqCvf2D6XkCJ1dy8qbpYmIbKfSS/fykrreSb9nqJm8GoQGB88vzZtCkBMr8I/bpoIFb+avrgIA4H3bJTq6j4mVZb1QyecfKvVRzJn76VVTnpR//axednRUr7T6PKYdzpTh6zkhwIkVGEu/CWcBAACA+KSqcotCJ6w8vpiUrefUorx5fONjNed6QLn8nRyJvuEThmq6LwVsxxWQWJH7VVWxgdNR2bq//q4oAACAo27SkGTNqjNQ+Vs9snpOrLr/7Iohl1JmxNB+8vmVnZu6nwfsyypIrMirKv9kPvUvhqrCl66aCjxEQwIA4Cjzt+0SHd3/xMoNJ3f2RYvyqPA/J8YM7bL561p8RFWl8v43dc+OKLhfVhERsPI/nQtlPV9eU0AgXzb0KtaaAAA4kpxtl7bm5Bkd3f9ER2E5rarw+4vyqjI/f2z8nahhl3i+cffRgeb8/nxKkvMcMoKYWIHKz99GVJUYyCpIEDqeFQAAbxZn26UFUz7Q0X1OdBKr+vQ61n9Vg4ShqpKp/S2eTMo2njEVNIgIeLlzW2j6moIBRUsN3F3D2hQAAEeRMaGqjacJ7RJWTd+2pMqmXOjovia2uEPrX0K2rF6hspCULdqfFQKZWIHH99NBvMmKvv26RqksAACOomhIVX1XtFfogmx3Z9UCHd3vxHreHfjzEqv1QK/y9FlS4vGwICdW4PaQEaSbrLDWk65G42pTpgAAeDO9N2dqBx3dx8S2MFKt7+mqUkjWEzYCmliBrbWk5Gz5FgSon/e7I6YaheOyZQUAAN6uju5/oltW/mkwoqqNol4pLwQ7sQL1twPCk7MKBORl6zZMNQodk21DAADgrevo/ic6oiH9aYYOEn5BYgVWzYgUrOdo6G87u9K7r3NWHgoAgCPIeS7s1RZMudDR/U50Sxj1WOtf/aHgB3q1hOoVEdTECpT/mJIC9zNXXKLYs95DspXKAgDgSKr8pL2MbyOSrJ+yaoGO7muia1Dlofwbiagq32LpwnHZrDUhsIkVWJ406qetIEB5JS3tfXPZSMn2yBQAAHi7Orr/ia5BpbJ8i0/KltGr9RyXzdoUAptYgcJyoH7gBs56hydnm1znrNwWAAB4qzp6z8WEtDmT8zaxuenITqz1x7hsqGoro1ebNGTbYI9QEis434WGswoCvHgW6HbRfZ2TdgAAwFvX0Y1v7GG9X39X9P9VIJ1WPdb6Ff5LRFXW3029YHy7djMnl5Np1WRkA4kVnO8CAPU3l8OXrpp6oce5zmnNCgAAvFUdfTAiydlpyctE49vK9ZwajU+pJlOUTz1fxWS7l9VL0dDg5aezm9ot/qlqtjICiRWc75wTWTsg3Ku6PtXEulVT2dThW5qIqKrn37xsROlpo942AnEAOlUfAIAOdPTE600cjOjy9sKSuTdlamvOa1dNf7x5J7NrxtkR9yfVvfuvN39d2ztOC6YQ5MQK1PdeGs+YagfY+xo2CH+tutw1Hbryr5/J1n25tPikrNjAmOFuG508AAGoDwBAGzq6/4ldH364/c+V9bIU7hs6YchR+avptasOqvfChe1/ZgplVaulY00/ydH7tTbv5zal8MAHCdXdXRQCnViB+t5L0f6s2gGDEe2nO2Lq0D2+n65XO3NGO0p/NQNyADpQHwCADnR0/xO7TpxQo9L1oveu2vSjSj8UtUvRkqP3jBo9nRUCnliB9u69hIT21W2YOnw3zBE53G0jGAegQ/UBAOhAR8+rxlrzNjFfNtTM1lXzT+qqq7+Y2uG8p9bUXQIriRWo77303pypNkBe+yqV1Q6/F84YavR0xgzMAehQfQAAOtDR61/zrE1vEwuz04b2sObvvE5XXU7LbXvhjlwWNj+KaY/S9ZwCAyRWLJ+I2icIuZV/vRCVrCem2gGrz2PaxyNTbfGPh+dS2mVzJheAA9CG+u0FALDuj0h6llNQte7o5WufJez/XvQ48f791JlE05Tpvas+nnFl0dJcRnutrPScS2nPwAABiRWP/3eL/9EWKH+njtuaCZ8ceieuqkLp7rLZ5gPAAvwpAACV339XAPjq6IUfXnPiyoqODQxHo4Yk6/nG8rL52l11ZSU8mH7HiLo/yW1rRl0nRp2S29sbd1dNBRRIrAAqKysKDgAA6OjeJ66vL+nPUXnyRAey/fChABIrAAAAAIDECgAAAAAAiRUAAAAAQGIFAAAAAIDECgAAAAAgsQIAAAAAQGIFAAAAAIDECgAAAAAgsQIAAAAAQGIFAAAAAJBYAQAAAAAgsQIAAAAASKwAAAAAAJBYAQAAAADwk1gBAAAAACCxAgAAAABAYgUAAAAAkFgBAAAAACCxIiSwFNTnALAALAAL0AwHABw+WPIDJFYAAAAAAEisAAAAAAASKwAAAAAAJFZYwhEQ6uhSUJ8FYAFYABaABQCHDyCxAgAAAABAYgUAAAAAkFgBAAAAACCxAgAAAABAYgUAAAAAkFgBAAAAACCxAgAAAABIrAAAAAAAkFgBAAAAACCxAgAAAABIrAAAAAAAkFgBAAAAACRWAAAAAABIrAAAAAAAEisAAAAAACRWAAAAAABIrAAAAAAAEisAAAAAACRWAAAAAACJFQAAAAAAEisAAAAAACRWAAAAAACJFQAAAAAAEiu86xoejsYlWYXVe2tqPyB8cvhYXFWFwoNlk/ptAACgoXqdeCyV6o5K2i49Xto82LdLFUrZTM7HKIDEiq4zpww5Qr29p7U6t6ZOQM+5lKT1n8zA1XdKO+LxwQurN3PUBwC0Er9iqAnrp6wCxn9DaTXRNaara3S0NJfRfsITY8bO5x0ftZbmTa+jWF4HSKwInx1Ro8GvS9dzajukpw1VJQwzaPX3/BEOXlq8Rf1XAwCEPzbUTGj6moKnRUPxPzH1UUwNui9M7feNceyMoQah0fCsh1EsL0iscKUUt+7LmZum2go9X8WCWj98MSmX0Ni7P5rUBwDgUBqK94nhT1Lao/vST9mDfqcYeK1RAIkV41Nq6tTxa+oobnUHp77TJt36v7xGfQAADqWheJ94PqUmQl/sjazNn+Z9vVEAiRXnRvTC5upT6Xiy31BN//SsOotb3UGpfz6pmu37D8oKD4zHfP0JUh8AkFEgtWwoPiYaKTm2/7myrdRgVI7Qp1fNplHU+bgNUwonBj5ISK8ziuUFiRXjI3KUfl6TbXnnpfoBoT2C+0CwYzwtmzV/R7b1pRf/nNMPstQHALSydVMulUcKotYNxffE7YUlU1XLejFEPacW1cC4bMj2cl+myvr6klJjs95HsbwgseLklHafoRxbM05mRbvs7JNXiAewvjEhqWHjv63vLyalA+2sQH0AQGlZaN1QfE601pP1dOnY+u7jtGrGM6Z2m47Ilmt8fXZlRZ5HsbwgscL4RDXunYG3Ztr4jCiMb2KqKc2tXjGCV38kItutrF6q/PxtRFV90aKoDwCA/4bid2KlMDB/R7v9Fk/KFu3PapeTadly1+TmeRRAYkX96lblh6Jc7j/9KpYV2mIkJtv2wh3FA1jfmJAtt6hdyn9MqSo8OSvqAwDgv6H4nnjjhhpVbjgXukPHs9oRHpdt60c15x4FkFjR+uqWdb2oPba+H8wKbZFQlfOL2UGsPxhRlTWrBksTEVW9N2dSHwCAw2soPiZurSVl69Mu7yZVZf3dlJvnUQCJFUOquZdVE5UnQttYqzNmUOsPyZbPSk0u7Ub7s9QHAODwGoqPiZXHSdkG3J/W/Nul11EAiRXxIdkqt9VRyGv1Zi6w9Y2UbBm55CU5DxpRHwAA/w2lPZ3I+bTKbfkfBZBYMWTIlimqo7CwEOT6zqNIlYdyWTWdHR+oDwDAoTQU/50oL7f6Lk4bRbl4HwWQWGFMcIu185CQrVSWi72JftUA9QEAOISG4mOia6qye/5TRk14HAWQWBENictbRwUN1pRLpZBUVXfElH/UBwDQUNvRieqP+z70PQogsWLnoWB1DhCOy5bVHnnZug2T+gAAHEJD8d+JEqrZcN8QKZXVhMdRAIkVCdmsNXUOEDrm6nWuPhnqLVIfAIBDaCi+O1E4vufLZMJw37B1c48CSKxocZIp5uQRAAAA0HN8z5fJhGxZNeNtFEBiReiYuLzVcYiG9rvVny8bar2pPvUBAP3fRlVTsFbvrckDGqqvTjRpyPbIdGfRDVV1nRiNxiVZzzeWM3J4GiWWFyRWkgIAAMCbLypHXL2n2/Yj4zBSslkP9FI4Lkd4YsyQIxSPn7jgrIqXUSwvSKxIGLJl1UFAwqA+AODPNHh59ReThtqGTjQSkS2flYtlnhtxr8ql+TveR7G8ILECOLqKFvUBAK9j8D/8lJU/NNTWE+OTslmz2uG8dBa6oD1CH8ZmPYxieUFihWs/8o4CrE3qewcAqBSSaiL0xa1FGuohTwx/bMh2L6uD+UCzHkexvCCxAgAA4E3222OpUM6rKtzbP5SSI3R2LSscqtGkbFtz2sfmQjYvKdE/FVPN6QdZj6NYXpBYARwNr/Wro9QHAFSW9UIln3+o1Ecx2UKfXjVpqIc3ceeZ4L+bamZ74Y4c1WVJTxu1GtPXPI5ieUFiBQAAwFtk5fHFpGw9pxaFw2NcftUzwVbjBkr3n10xVNUXLR58FMsLEivyqukTAADAW6Lyt3qmIdIcqumIbLlZNeN+z7Rwe0pV4fcXvY9ieUFiBXA0RUPU9wwAULnR8k4dDdX3xPG0bFs/6mCWJiItc6ZrFMsLEivyZUNVA+o88He4L2uN+l4AAArL6VZ36mioPieOT8lW+aupg7HWk6rqjpjeRrG8ILHCOSl0GBA6nqU+AODP4UQa9dFQD2tieko263pRB1R57GRRwzzwKJYXJFYULblOCp0B/g6bSxiqsjapDwB/Ku420lB9Tjz5sWpuZfe7S9onN++jWF6QWOGcLDr/sxpA86aVkK1Upj4A4HWy24Cao6H6nHjyU9XcXNTB5T2PYnlBYkX9wYvQcFadBq6cDOzbJ03qAwBwWA3F+8T4p4Zsdxe1V6Ww34d5HwWQWJFXzXtzpjoFqBT22WQhHJctS30AwGvJai8aqu+J8Sv1wDqrZvJyf9hrj2J5QWLFqhlRVbQ/q44B6k3LMNUodEy2Dep7AwCIhtQcDdX/xJ7LrsDalPvDdp4w9jCK5QWJFeWVtKpC09cEdLjB7t2kfjCiqspD6nsDAEgYzSMaDdX/ROObyKsD6/KkIWeblKZZ1PQyiuUFiRXLadkSA1l1CrBqNv+18CHZSmXqewMAGFLziEZD9T0x/JeIbE9ntY+iJTXZJsVIyZb1NIrlBYkVT585ey99etVUE8esnNAm3OvvixabNa1HJvU9AQAYqeYRjYbqe2L4YlK23N+0H2cfp/o2Ke77tdYDT6NYXpBYUVlIytbz5TXtET47snXVFNqDe/3hyVntNuI8inSb+t4AAKYjr4xoNNSeiwlpcybnYaIrsP6ofdV/i6Kn8Y5teFy2Ys7TKLG8ILHi8f20bP2XfzTVqOermPM+PHCodh5Gul3UjvikbBtF6nsCAEin9aprfjRU51XU3q+/K3qcqPNJ2bZ+NLU/5xVVjWdM7RhN1mOmt1FieUFixWwqIlv/v7mec91gFdAe5T+mVBW+tOuefn0nQmuW+gCAfRnfVq7n1Gh8SjWZopqhoTqP3jo7LXmb+HFathbP4BWW05LrCb70lDtmthzF8oLECkf5189U03159WZOdV1nThkSbwi0T7hXdX2qiXWrprIZhPpLExFV9excN0lPG7Ldy1IfALCvwYguby8smapznhGr2ZpToHhoKInXnHgyLZt1+4T2qKyaeuH2kKGq/oszputGyFxRXkaxvCCxwvZ4bkqOwctWYfWpdDzZb8hRMoV2ML6NqEH4a9XlrgWg/osLJ92XS4tPyooNjBkH60fUBwB0ffjh9j9X1stSuG/ohCFH5a+mgqd1Q/EzcUg1ofNq4u6s+/ap3v2Pqw+zUv9QSo7couRhFMsLEiscC8WPVRfq7T2tXbZ+VLtwiXg/3RHzra+/80K1us+c0Y7SAfoR9QEAXSdOqFHpelFB1LKh+JgYjmtfjbv+/hZPqmZwcO8XSw+jWF6QWOG4/+yLmJp5OmMKbZHQvroN8+2u77hhjmiP0g9F7Y/6AIB82VAzAfi1Ax8NJa8aa+2wOlHl529irb9Yth7F8oLEirrC92dPGXJz9jxHW+S1r1I5APWrfi+cMbxdMqE+AKAwO21oD2v+jgLHQ0Op7wxsbXqbWCkktb+SqR3l7z9JtV6UFqNYXpBYsaPy+62JMUO7WM9u5oS2WX0e0z4emQGob/vHw3Mpb5dMqA8AuH8/dSahBtsLdxQAPhpK+dpnCfu/Fz1OdPZK2kdGu1VmUh/FtMNamjfl8DCK5QWJFTsq8/Ndw8PRuKoK1uNMTmin8neBru/YmgmfHHrH+Rss3V02qX8AAICVFR0bGI5GDUnW841lTqCtG0rhh9eaWPjvntalayzVHZW0XVpdynkfxfK6gcSK7aUldRJQWVmhvmcAgPX1JbnQUDvfibbn572OYnlBYgUAAAAAkFgBAAAAACCxAgAAAABIrAAAAAAAkFgBAAAAACCxAgAAAABIrAAAAAAAkFgBAAAAACRWAAAAAABIrAAAAAAAEisAAAAAACRWAAAAAABIrAAAAAAAEisAAAAAACRWAAAAAACJFQAAAAAAEisAAAAAABEBAAAAAEBixWEICSwF9TkALAALwAI0wwEAhw+W/ACJFQAAAAAAEisAAAAAgMQKAAAAAACJFZZwBIQ6uhTUZwFYABaABWAB3jy0cAAkVgAAAAAAiRUAAAAAABIrAAAAAIDECgAAAAAAiRUAAAAAABIrAAAAAIDECgAAAAAAiRUAAAAAQGIFAAAAAIDECgAAAAAgsQIAAAAAQGIFAAAAAIDECgAAAAAgsQIAAAAAQGIFAAAAAJBYAQAAAAAgsQIAAAAAQGIFAAAAAJBYAQAAAAAgsQIAAAAASKwAAAAAAJBYAQAAAAAkVgAAAAAASKwAED45fCyuqkLhwbIZqPosgH8A0DU8HHXOYqVsJqc6GmpnGsGxVKo7Kmm79HhpU/vq+cAZpkLp0aKp5o69f7L+WatLOYHEikAJf5LSbtvbW/cfmuoc9JxLSVr/yQxcfae0Ix4fvLB6MxeU+iyAfwAQnhgzds5ix0etpXlTwdT6fO5vYot+5fqkrq7R0dJc5iCLdqbpuGP/ktj5rN7TAVtYkFgxmlKDrq74wPnthTvqEKSnDVUlDDNo9cNnR9Rg8NLirWDUZwH8A4CxM4YahEbDswqi1udz/xNb9KvURzE16L4wdT3XetGccS0+KzQ6/EtWILEiMBJqouvDsc6cCdDzVSyo9cMXk3IJjb37oxmM+iwAgENAAx1QELU+n/ud2KJfOU/wuXVf+inrHnc+3WqcO0U7ur+4tSiQWBFw3V/+vzvqOC6KBqi+u006+r+8FoD6LIBfABC/Ygg+zufeJrboV+dTaiL0hTuynk+3HjfatFLo7Br3VkiswIflRaG90tNGcOufT6pm+/6DssID4zHV9E/PBqI+C+AfAAKrcxLbMKVwYuCDhALAx/ncx8QW/cpIybH9z5VtpQajcoQ+vWpql/H0i4L38pIS748Ze8aFT6rGevYwK8UGRwy5x4DEimDI/EOOWO/LE/zUw6LQNgF9INjdtaz5O7KtL73455x+kA1AfRbADwAwLhuyvdy2p7K+vqTU2KwCw//5vPVEb/1qe2HJVNXyzoSeU4vaYUw0FFR+fn58yj3OsfnrmjPkyZyTlp0xILEiSCp5OfJaerG3W3hyVmibnb3yCvEA1Xd3rZ3ngLa+dx5OCk1fe6vrswD+AcB0RLZc4yuXKysKCP/n89YTPfQraz2p3Xv+bn33cVo14xlTL41EZNv9RupC/jPZGtPo5kxOL91/dsVwjwGJFUGzNVO/wPXenCm0ifFNTDWludUrRnDqu7tWVi9Vfv42oqq+aPEtrs8C+AcAJ9Oy5a4JHs7n3iZ66FeVwsD8He32WzwpW7Q/K8fL531zi9rl8f10Y8VKIeH6vZvC7SnRnkisCLzFk8mdswraYiQmm/27QvEA1jcmmnSt8h9T9Zv9b299FsA/AAiPy7b1o9DqfO5jood+deOGGlVuOOk2dDyrF3qOq8qaVYPldG1cb1F1N+S2NBFxjQGJFcFTWUjunFXQFglVOb+IHcT6g5G9XctpSc7N/re2PgvgHwC8m1SV9XdTaHU+9zHRV7/aWkvK1qeXEoaqrE01WDUjaqG8kmahSaxAvmw4ZxW0kbU6Ywa1/pBs+azkvrTr3Ox/y+uzAADg/xx2Lyu0PJ/7mOirX1UeJ2UbkEupLM/y4s4KiRUoWkJ75bV6MxfY+kZKtoyPltTh+iwAAHT4HFa5LbQ+n/ubeAj9qtsw9XqsNYHECqB9FhaCXN95FKnyUC71R4P63tr6LIB/AOBsGbRRFFqez31M9Nmv8mrO/TZqNKQqa1MHARIrsCGgHRKyuR8McrbHrxp4y+uzAP4BoIlk1BoNtXONIKGarDsMh4az2m3IaH39ISFSLYkVqF/fWhPQxgZryqVSSKqqO2K+nfVZAP8AwEjt3B1siYba+UbgCsOnbhe1w5iQLdNixbmrTmIFhgyuXaF9wnHZstojL1u3Yb7N9VkAAPB/mb1U1kHQUDvVCBKq2dBL9Z+mCF+6auql6YiqtjJ6hZEId9VJrMCL61tFAW0QOubqYq4+Geotvs31WQAA8CNh7NwdbImG6mOi7yzten7v6bOkqnq+2Yms59JSqx8qik+qnmpBYkWATUeko7/pHgAAQEK2rI4y9ByXrZjTjsqNK4aqev7NL1nZwmdHJLX4oaKey4ZsC6ZAYkVghc+mZZsrCmiH/d+bzpcNOZvqv8X1WQAA/pFYN1TVdWI0GpdkPd9YzqgZGmqHGsGkIdsjU7sUbk/J1v3l0xlT6vkqJtvdWe0rPDFmOIMWhUCKCAgnJk5wJngzAACAcNydZaRQPH7igvtnQ9FBRko264EaLGhKNe/+h6U/JkfUIrB2vXP6hOEeBBIrguKDD9So9EtWQHskjEDXZwEAwDfLPDeiRoOX5u9wPj8ijWAkIls+q0YLxWlDttDo6P7fQI1vYnxNdSOxAqu/mAI6rmgFoD4LAAA+OHsGhS5oj9CHsVk5ULQ62Qjik7JZs3K7//RcSrvUHg92G4xpF+vZ3JpAYgUG/2NpLiOgjazNANVnAQCgDT7QLOfzI9AIwh8bkprvqLQ1k/oophfuzpnaK6HdQsmpBxmBxAqo+8Iw91nfHAAAYHMhm5eU6J+Kqeb0g6zQcaNJ2bbm1MoH7y/c0R55NQgNDp5fmjcFEisw+G9+KApol1BvMcj1WQAA8Gf7ZdbJ5x+mpw1VhaavcT7veCNwnglu/iurzgbBO7o+HLuek8vq85gahUaHnWEgsSI4dnZcC/cOjsdU033pqim03f9n7y54G/eyKICf2Ck3HShtmUGDy8y8+31X8MdhxtJwytxmu0mTiTOOvTJkntJXt66suiP7/MSaeG6lK73r60dERER0Qmb1MUvLu85Vn811Gs4WqX/0XhOsTIzBZv73nFp5/UzPolr5azhSzb0dn392N4MYoiSIYORy8/XuJvj6397Al46IiIhoNo0q7lWfSk8aZ4uuJWHJTkFSOQTYnH+tKz2VY4NHWh7rOFQut47KttfEr7/WEFvsWImKj0cvwZK6mAHR2alLxDg+E0BEFMD8eBIA+tMgaTwPsxCM9sFSvANJ/Z+TsNhX5xrLq5Ubddt/e0eHl/XNy0OwKPFeC8iOleh9qg8IZ/sHUa6s4ijmXgTiMwGhIiIy/9cKALVJHQILauiFwJ0EMW7KeVDthlUs6DZeL7ibWluOWuVnTH+8BEs9P0fEu2MlmupKAiFu/yBKnM/EID4TEA4iImPT6VhVneP5GRaCvkuwmPc0HKT80mlY74qgxW/d+dOW4TS8pTtbYRld0kHx7ViJym8vAaGcHkqkmfCQUgHAzEc6PhNARMFxLrUZfrCghlwIOn8E22wGkuFW6Z/E/OmRzajx3nm0riUDinHHSpQLedaFqBmSFCylcgTiMwHhIiLKQcaCGm4h6PwpbDNpSNRxWBbSqGJvTDtuxe/2bitfU9mxElU2NDSDKKTv4xc966Qe6fhMABFRAEZBGsK8saCGWggaf6pWulLZUNJO3xsc8Kbbfqg/fXzS0Qxix0pEFN7bhnw6htIISyba8ZkAIqIgcpCHMA8sqKEWgsY/uQ3rFODVCu9rOKCw1nd8QnMgdqxEFD6+bag6qiXOwbIf8fhMABFRQPIQ5rGcleN5eIWg/o9ywyq3wr7/FCJ2rORhH0QhFVj5mvc2Z8XQasTjMwFERAGsTaiQz4r0WM7K8Ty0QqD+OSk1rMFbYZFcvqayYyXqVgHew0jh2NEPv+a9W3wfj3J8JoCIKADNBIBEbwZV1C55Do8FNbxC4N5dg+0pHKUZsuNDKo3gayo7ViJ1HABvtaBwlNf7APn6X/dtY0OPeHwmgIgoAPfQoB/M6fLkIMwVSDieh1AIlF+1wpK9j5NK4Vj15/mayo6VyD3ADfsaiE6fc8qCMjEFQRwjGPX4TAARUQDGZisgXYeijMKiZXEYjuf1v0oB+cfZ0ykEomG94+dDw4mb5AmVr6nsWIlGL8FiToEoBJXFSG80CI0Toh5FOz4TQEQUgLORFaNLOoThVu++h+O5u8m06fdfa6dTCK63wlK8o/v80CBPmsCm/mNvJosDOvtgWwKxY6XYqr/aBVsuA6IQlN9eAgDlD9/pqHDPGDSnoh+fCSAiCsC9DqX+tzfwWd8leE8Ocjx31kzbJy2dSiH4UR8sRfF/yXKwXd7LVHejE86jS7DVJdr+uD2VhwA0/hTiN8SOlWJDSaFCuTjaAIdxHxQWpQmuZtgaamEz8nGIPz+eBID6v97LwtF3TYVlMROD+ExAAEREb5zjIlt+9ViHTbk8BNuchjjxP56nTvqg/3ol5kDNNx2QGDs6bNu7rQCQ+M38ax0VysQYbO91fNb+l/zTPQAiueI38UHsWKm/HzLjloaQkPqPJKoov4creyMG8ctPfwFL7R9L6a0yGi6OqLAV54Dox2cCgiMiTrKi/d87qxmgpbsLjmwaMeB7PA/4oP961Q1b4jok4rYb4/mf7ACJ4aHddC4PoObCQId6aOaafo/8cjYPKBcHU3AtpBF37FiJSveyCAu1JeGlNqlHPz42l/vccJOTEEo3dQARjs8EBEdE9LKxFba2Nggo3kEMeY/nwR70X6+URngTZy0V3lyCLSHSJmVOM+FomkS17SnEHDtWIlOs0QgBpeCpVtWjHx94rg9BUvpegxDF+ExAcERExoM/N0Cy/VhHvPgfz3OwmXt+HjytevVe+xEOJfa/OttrPaZq44LYsVKO/eqXmQehVI5yfGG6MKl6vGzEID4TEAARUfnbn3Shmvn6HeLG/3jungxs5v0/6L9eGYVWeCvpqFje/l0DJGZ6FsL7/BXpNzFbCEjsWCl9oQvVCqWN1TzCRTsfG+BhQ490fOHD6tUuCOKauBjEZwICISIyHnddaeCnd9/jefnGL+z7WDX/D/qvV/ZRWJ6WIBS/Fmnzytz6unuHhVCaW0KsEDtWDvGgL0D569jGF4qPlc7uC43Od5OFNT0u8ZmA4IiI1tdrRrpq6wB8Ku3MZxEHAcbzwve+Hzx5vSr85wRpQ0dfi503fPpUXN7JH/ZHoaZjuK5OtX+zv7DD+vR/9u7GN6rr3Bfw69kG2wMmBDsQSJzEwLE5ScNJ1CulUT/yoSNF9/7DR1LVlHPUpFVpVNUhCBKOSRzAkDgu2NhhzHjmzng7gLEdrU6JF9P9PPq0tJffJa81757fnj3bEiuQC635+dz1LUCfArh/6VLQez/PdSL45puEtb1+PeCfSawAAAAgsQIAACCxAgAAgMQKAAAAEisAAAASKwAAAEisAAAASKwAAAAgsQIAAIDECgAAgMQKAAAAEisAAAASKwAAAEisAAAASKwAAAAgsQIAAIDECgAAgMQKAAAAEisDgaVQ3x/AAlgAC+APgD8fO2kHEisAAABIrAAAAEisAAAAILHyz2hHfsRA1qVQ3wJYAAtgASwA/nwgsQIAAIDECgAAgMQKAAAAEisAAABIrAAAAEisAAAAILECAAAgsQIAAIDECgAAABIrAAAAEisAAABIrAAAAEisAAAAILECAAAgsQIAwI8BkFgBAABAYgUAAEBiBQAAAIkVAAAAiRUAAAAkVgAAACRWAAAAkFgBasdefKYeHaur1240s9fHBuifCQBHJ54dKiLi/srN2WYk0E8TBu5Rt9r34otD5e9bW5xbCpBY2U1t6uWh6Fid/yxyYfj14xFx56Nm5eqXpUv1+vgbCxeWKlA/YQEqMgEbIGECQMLrZ9/hw2dWzi9FdSW0k/SBvR+VfFKpTZ0qHv6+wyfbVy81o1R7eyx2t/bxUiCxUjEnp2JD/eT8YuTBxNkiOkaLZtXq116bjC3G35n9rAL1ExagEhOwAXqfAFCb/rfY4sC7cxeaUVUp7SR9YI9HpZ9UTp0pYouBk7WZKD03Fj9i/yszUS1IrNSng8yGfz1S1fo7XEYdOPXcH5q561dmAXqfgA2QeQJA8f721vXS0Q+bUU3p7SRxYNpRCSeV5EOOxI5AYmW6CHJfFK1s/Z3v+zn0q3O561dlAXqfgA2QeQJA8cFgbDdc1ddPejtJHZh2VG8nlfp7RaQCiZVjE0FWE2eL6tb/j7HYcP/ra+tRO3J6JDYcOjuTu35FFqD3CdgAeScA1H4xGBvWLn63EjH6wqmi0q+f9HaSPDDtqF5OKmVgLX/d3WZEbfTIK6Px0PJ6ET/iblQKEivFz6Pjfq0IsqjqDcGl0xPR1b70RXTdufrDdF6+tliF+tH/NwTbAJkmAJwci6723+aia/nS55sf7b10uRHV01s7SRiYflT6SaV4t9i82DAXG1p37lyN46dmYtPq747ETsY2lrh9OyoFiZXJweiYPRXk8PA5eav1CtYvpqKr/dFibLr3u/K2o4Gz53LXr8IC9D4BGyDzBIDNp3C0/mcpNrU+/f7V6Ki9fS4qp8d2kjAw/aj0k8rZweha2vot2Pn5eODejdjJsehqLEXVMBho+EtXTgUZPHhoxNrFhfeK6tUvr5fEZ4vxQOtP5feSDg41ctevwAL0PgEbIPMEgOkiui4uxUOzx8aq+vrprZ0kDEw/Kv2ksvmFtKVz8Q+qn4iuK82oECRWam8WEdH6Y5DFZNnZ71/5IuoVrL95yXZpNh6x/nl5iXx6Jnf9CmyA3idgA+SdAFAc3+H107oyVtHXT8/tJG1gylHpJ5Xa6ei694ceL1PcmwskVqqk/H9Xc40iyGE0Osr/mF3F+uODG/VnYourU4PR8fzFZv76+Rcg/wRsgPwTAFJfP99+N1bN10/P7SRtYMpR6SeV8s1n+y/NHi9T3GwGEisVUj526d7FIJv2wvlmVeufiK7lxYgdLtoOHVrMX78CG6D3CdgAuScALvlu+0Jj69ZYdOwvmlEtPbeThIEJRyWcVLbV/Gox/lHlvcmty4HESpVMDm5e5CKP5Vi4sFTZ+pvXSue2z6pr4PBi7vr9uwAZJmADZJgASKxrzdjqxnQREbUXZqNSem4naQNTjko/qRTHe8ydxVR03W0EEisVUp/evGRGJleuVLn+eHmt9Ho8ZqFZPsshd/0KbIDeJ2ADZJ0AUKtH12I8ptGOKr5+em4naQNTjko/qUwO9pg7y4HtmUBipTKejscu4QL5ejymfWcsOo70RX1sgAwTAAaeia678Zj1+Yn0149+mjIw4aheJjsX/6jasajeBy1IrJTffL/YCMhhl1u6orVafg1psNnP9bEBMkwAWI70149+mjjwiXarzZuCr/f4tjXmAomVCtl87NJcQAbbbuna9n6jaPZrfWyAPpgAoJ+mDXyy3WpoYNsHtklqp8P7VomV6jmb87FLsNstXQ8e5XCg0T/1sQEyTAA42HuG0k+TBz7ZbjVabPvANsnw4ei60gwkVqqjfiKifLZ43wAA8H3vPja67QPbNNNFdLSuBxIr1bH52KXLAXmU9wW1b8c2y+tFbDwuvw/qYwNkmACw8zcoy9dP8qd++mnawCfbrUYffmC77+jJoXpEtL+/e2Mu6YOWmGsEEivVcbI/H7sEALAcXUOHFqOvUKtHqTZ1qojSQL1+9I2FC0sJH7FeDiRWqqOYivD1dXIaLfq/PjZAzgmAxDpw9lwEo0XvA/N0q3bz9cnYavydS1/Erorj0XW3EUisVMXT/NglaLSrWB8bIH0CwEJzMDoOnZ2JRw3/sgh6byfpA3v99eVjnAbeiG0G/n1kJnYzubHc7ZlAYqU6jk1ERP7HLkF7par1sQF6nwCw/vmr0fVK7UIzfjD8+nH9tPeB2bvVKzETOyumoquxFEisVEbtdIQvA/QpAODq1GB0vTRx9avliNj37MTzRfQTVq4sLkfE6KFXR2LDy9cWY0fj5WJfaQYSKxXx9Dx2CQYONKpaHxug9wkA65+8FRsGTp4Mem4n5cAM3er+lS+itLx8feJsEVF+L3nXT1qq9fgVJFbq09GxNBv9CADg1l/fjJ253/7p1976mKWvv3uviI6DQ43YwXNj0XWzGZWBxMp0Eb69DgD0sTLlbLU2N1kET7/PZmOL1cuvRkfthdndPmL1bbZqkVjx2CWebkMDVa6PDZA2AWD1v8p/6fnAyie365PRsbYePdNPy4F73K02v5f80mxsN3w4uuYaURVIrJRXqu5dDMhpeb2IH9O+3T/1sQEyTABoXbr0zOlnh4qIaH9/98ubkUY/TR+4Z92qfWcsOvYPNmOb6WLjiGtRGUislI9dutIMyG/g8GL/18cGyDQB4M4nscVoER1rTf20h4E5u1XrVplYi+1LVz8RXcuLURVIrBRT0XH329F4RC02HLwfEa2V+OlBox27KN9vtFf6uj42QIYJAKPRtRgJ9NPEgem/Pv2z1IOR7kRZZSYqA4mV8jsHB9+L7QbeiK4vZwL2ysHd3m+srfd7fWyADBMAiTXh/lH9NHXg3nWr5R//qCUaS4HECg88f7EZTwCkXGY9susZsNnP9bEBMkwAKI4nfuinn6YPfKLdqrW6+cuSTQ5G15VmILEC7KnW6i4PWajVo2uxr+tjA2SYADA+GB13G5FAP00c+GS71XI8/GUpiqlyEtcDiRVgjy1H1/aHLAw8E113+7o+NkCGCQAnkiOUfpo+8Ml3q22/bNc7jMuLEBX71zZIrNy7PRY/zn0Xe0hgqb0wu+PJqXW9n+tjA2SYALB5U/C1SKCfJg98ot3qxnQREQMHGrHFbncY105HV+tyVAgSK62PYrvig8GIaH+0GLBXFpo7/7fwE5uXWfu5PjZAhgkA5VcelxcjgX6aPPCJdqvyycMDLy7udLEhti3dc2MRkeVGbyRWgPX5ieg4ONTY6aR1s9nH9bEBMkwAqE9H11wk0E/TBz7JblU+x2n7Yz7HB3f+ePxEOWgmkFgB9t6NieioTc/scIW8dbmP62MDZJgAULxbRMe9udiFfjr89mjEyvml9IFPvFu1bo1tzGTrJ7abN/82lmKr+onI9LE5EivAw9uMLje2XyG/2+jf+tgAGSYA1H5Rfkz3l2bsTD8t3u8eduA3v22kD3zi3ar8ImucnmvGQyfHdv68tjw25gKJFSCD9c9fjY7aOx824wfD5RXy9kz/1scGyDABYPjXI9H11WLsTD8tb70tn6GUPvBJd6vV8hPb4V+diwcmXo0dP6+tn4i8H5sjsQK1A7HpYGwY2R8bWitVqH91ajA6hv/z46UoTZwt0t9w5K+ffwHyT8AGyDIBYOLNlS/m4oHaa5Ox4d7FqKK0djLay8D0oxJPKpdPbAw99Pb55mOLd7ERW5VH+mI/EivkUj6jeYvab2LT0rkK1F//5K3o2v/u2uw36zFy5FSR/oYjf/38C5B/AjZApgkA43HgjTfu/31udT1i5MjESJRa/92MKkpvJ+kD049KPKls/ZA1nvt/C9cXIw6dOB6lpdnYqph6+NErEiuQxfhg7Gb/YPNfv37c+npis9yZM/HQWvobjvz18y9A/gnYAHkmAOw7ejS2WPt9Iyql93aSPjD9qMSTyt/qY5vHj8cj7v0hHjNZ/r65RiCxApmMxq72F82+r5/gr83JKGV4w5GhfqYFyDABGyDDBICFPzejqlLayXJsaN9OH5h+VPpJpfWn90dim2/PN2Or2rFyuteCXCRWYDl2tbZegfodn66eKXY+Z1Whfu8LkH8CNkDWCQA3JuJx9698ERWW0E42n/nbXkkbmHBUbyeV9d/9/Hhs1b60ffGeG4uu5cVAYg2I9teTEfHdUrCnFr4fiV3cbFagftf/Xn/9eDz08N/EVaF+7wuQfwI2QNYJALfO/2xrA1u7OBeVltBO1s+9tfH/WBtpAxOO6vGk0jp/fMvyta9easY2yxu/buHPAYMB0fr002Dvrf+20vVL987Xjp14th4dq2tf3mhWqX7vC5B/AjZA3gkA8/O18Ylni6GIaH9/94YXT0o7Wf192sDUo3o/qczP7zt1fP9QRNxfW7i6FDtZ/W2AxAo8DVrz8xWtjw3Q+wSA1jffBAntJG3gXner+5cuxU8MiRUAAAAkVgAAACRWAAAAkFgBAABAYgUAAEBiBQAAAIkVAAAAiRUAAAAkVgAAAJBYAQAAkFgBAABAYgUAAEBiBQAAAIkVAAAAiRUAAAAkVgAAAJBYAQAAkFgBAABAYmUgsBTq+wNYAAtgAXbiD4A/H+34ZyCxAgAAgMQKAACAxAoAAAASK+0gvxjIuhTqWwALYAEsgAXAnw8kVgAAAJBYAQAAkFgBAABAYgUAAACJFQAAAIkVAAAAJFYAAAAkVgAAAJBYAQAAQGIFAABAYgUAAACJFQAAAIkVAAAAJFYAAAAkVgAAAJBYAQAAQGIFAABAYgUAAACJFQAAAImVf0GnzhQRax8vbf8BAABAYiWj2vNFROwfX9r2AwAAgMQKAAAACYkV2rcDAABAYiW31upYGVIf/gAZ1Y69+Ew9OlZXr91oVq4+NkDvgKMTzw4VEXF/5eZsM3qgnyYM1C6RWIHh149HxJ2PmpWrX5Yu1evjbyxcWKpA/YQFqMAEbICEBQASX8D7Dh8+s3J+KaosvZ+lD0w/KrWn1d8rYgftjxZjN7Wpl4eiY3X+s0BiBfKYOFtEx2jRrFr92muTscX4O7OfVaB+wgJUYgI2QO8LANSm/y22OPDu3IVmVFV6P0sfmH5Uck+rvVnETgbOnovdnJyKDfWT84tRIUistFe2/0Aew78eqWr92ttj8ZiBU8/9oVmB+gkLUIEJ2AA9LwBQvD8Sj3vp6IfNqKbEfpY+MO2ovehp9emoHCRWlrf9QN6LohWon3aaLB361blq1M+/ALknYAP0vABA8cFgbDdcvoCrJ72fpQ5MO2ovetp0ERkhsQITZ4vq1v+Psdhw/+tr61E7cnokNhw6O1OJ+vkXIPcEbIBeFwCo/WIwNqxd/G4lYvSFU0XyCzi//P0sYWDaUU+sp83FLo5NBBIrRKytRwZU94bg0umJ6Gpf+iK67lz9YTovX1usQv3o0xuCbYD8CwCcHIuu9t/momv50uebH+29dLkR1ZHez3oYmHpUDz3t3oV4TOtm7Kz4eXTcrxVRJUisLD8aUpcjG2pTp4rYsFqvYP1iKiK2PB7w3u/K244Gzp6rQP3sC5B7AjZAzwsAbH61sfU/S7Gp9en3r0ZH7e1zUR3p/ayHgalH9dDT1m5EqsnB6Jg9FXsOiRV4+NCItYsL7xXVq1+ehOKzxXig9afye0kHhxq561dgATJPwAbofQGA6SK6Li7FQ7PHxlJfwPnl72cJA9OOSu9pvV+bWLqSI7EisQKTZWe/f+WLqFew/uYl26XZeMT65+Ul8umZ3PUrsAEyT8AG6HkBgOL4Di/g1pWx1Bdwfvn7WcLAtKN+0p5W/jOc1h+jYpBYWV4vItaa237YY4xGR/vqpWY1648PbtSfiS2uTg1Gx/MXm/nr51+A3BOwAfIvAJD+Av72u7HUF3B++ftZwsC0o37KnvbcxpLONYrIA4kVaC+cb1a1/onoWl6M2OGi7dChxfz1K7ABck7ABuh5AYDR6GosxRatW2PRsb9oRnWk97MeBqYd9RP2tPKxS/cuRhZIrMByLFxYqmz94nh0zW2fVdfA4cW+qZ9/ATJMwAbIvwAgsa41Y6sb00VE1F6YjepI72c9DEw76qfraeU3aNt/aUbVILHSaEfE4tYfMuDKlSrXL28yal2Pxyw0y2c55K5fgQ2QdwI2QM8LANTq0bW44xuciINRHen9rIeBaUf9hD2tPr356W7lILHSvjMW7cVtP0CGC+TrO23PjiN9UB8bIAtg4JnouhuPWZ+fSH0B66cJA3O3S49dosKJldZHW3/IAHa5pStaq+XXkAabfVUfGyA/YDnSX8D6acLAvO2yfOzSxUbsNSRWgG23dG1/v1E0+7U+NgBAH/TThIFZ2+XmY5fmIgMkVoDdbul68CiHA40+qI8NkA9wsPcMpZ+mDczaLs967BL9llgBAKAaXzinfiI6vloMyJFYAYYGoqN9O7ZZXi9i43H5fVAfGyADYOdvUJYv4ORP/fTThIE/Vbs89MFQbFhtL3x1O3ay+dilywF9lVgBAGA5uoYOLQb9aShK9Tjw8s7/xvWkxy6RNbECjBb9Xx8bAMiZWAfOngsS+lnCwKztcvzdhT83Y6tiKsJjl3gqEytAo13h+tgAQIKF5mB0HDo7E48a/mURJPSzhIF72y7H/+9Hi7GFxy7xVCRWgPZKVetjA/QOWP/81eh6pXahGT8Yfv24ftrLwD1tl+V3kLcZ+OVns/GIYxMRHrtEXyZWAAC4OjUYXS9NXP1qOSL2PTvxfBH0gb/dilhdX46O2oFDJ45HaeC124vxQO10hMcukT2xApTPc6xofWyA3gHrn7wVGwZOngx67mflwD1tl60b8YPW8vL1OP6zkbLC//mwGSWPXaKvEysAANz665uxMzf895f5W2+PRdfwS7OxqT4dHUuzAf2YWAEA4Ovv3iviMWtzk0XQZ1p/3IysDxPrdBER7ZmApzGxAgwNVLo+NgCQZPW/pk4V8YiVT27XJ6NjbT3ouZ+VA/eyXbb+Wl58ODjUiA0eu0T+xAoQy+tF/Jj27T6ojw2QD9C6dOmZ088OFRHR/v7ulzcjnX6aNnCP2uXqjYnoqL0wG13lY5fuXQzInlgBBg4v9ml9bID8gDufxBajRXSsNfXTHgZmbJdlYo2DsaF87NKVZkDGxArQaMcuyvcb7ZX+qo8NkB8wGl2LkUA/TRiYftQT/Ji4mIqOu9+OxiNqseHg/YhorcReQWIFOLjb+4219f6vjw0AZEis7WuRTj9NHJj+63sP3Ueia2hgo957sd3AG9H15UwgsQL81Np3xqLjyK5nwGZf1ccGyA8ojqd/6KefJg58Ctvl8xd/8ppIrACt1bHo2D/YjK1q9eha7K/62AD5AeOD0XG3EQn004SBe9wuFwOensQKsBxd+4tmbDXwTHTd7a/62AD5ASfSc49+mjBwz9rl0EDA05lYAYGlfJT99ivkret9VR8bID9g86bga5FAP00YuGftcrR4JPzeuz0WP2ZvHiOMxAqw0ByMjpdmd7xCvrbeV/WxAfIDJgejY3kxEuinCQP3rF2eiEfCb+uj2K74oDuJ9keLsUeQWAHW5yei4+BQY4cr5HGz2U/1sQHyA+rT0TUXKfTThIF71S6L40/htUIkVoDy/4XXpmd2uELeutxP9bEB8gOKd4vouDcXu9BPh98ejVg5v5Q4cM/a5dnBp+5aIRIrwMPbjC43tl8hv9voo/rYAPkBtV8MRkf7L83YmX5avN897MBvfttIG7hX7XJiIp7Ca4VIrADrn78aHbV3PmzGD4bLK+TtmT6qjw2QHzD865Ho+moxdqaflo9KKp+hlDbwybfL4oPWx0ux1elXY8NcI+BpS6xA7UBsOhgbRvbHhtZKFepfnRqMjuH/fHD2mjhbpL/hyF8//wJkmYANkH8BgIk3V76Yiwdqr03GhnsXo2rS+9loDwMTjkruaWVofvf+lavN7Zcanr6lQ2IFygffbVH7TWxaOleB+uufvBVd+99dm/1mPUaOnCrSz1r56+dfgEwTsAHyLwAwHgfeeOP+3+dW1yNGjkyMRKn1382omvR+1sPA9KPSe9q+f//3+3+fv7MeUTt44mjxFC8dEiswPhi72T/Y/NevH7e+ntgsd+ZMPLSWftbKXz//AuSZgA2QfwGAfUePxhZrv29EBaX3sx4Gph+V3tO2r1ysfdwIeOoSKzAau9pfNPu+foK/NiejlOENR4b6GRYgwwRsgEwLACz8uRnVk97PlmND+3bawPSj0nva8noRO7n3YTPg6UuswHLsam29AvU7Pl09U8RW355vRilz/QosQN4J2AC9LwBwYyIed//KF1FF6f1s85m/7ZW0gelHpfe01ZmzRWzTvvR0Lh0SK7Dw/Ujs4mazAvW7/vf668fjoYf/Jq4C9fMvQN4J2AC9LwBw6/zPRuJRaxfnoprS+9n6ubc2/h9rI3Fg+lHpPe3rr4+fGe3hUkP768mI+G4p9hISK7D+20rXL907Xzt24tl6dKyufXmjWaH6+RegxwnYAPkXAJifr41PPFsMRUT7+7s3brjKk9DPVn+fNrCHo9J72vx8PHPkxaGh4h9autann0YeSKwArfn5itbHBugd0PrmmyCtnyUM3Mt2eefO1QCJFQAAAIkVAAAAJFYAAAAkVgAAAJBYAQAAQGIFAABAYgUAAACJFQAAAIkVAAAAJFYAAAAkVgAAAJBYAQAAQGIFAABAYgUAAACJFQAAAIkVAAAAJFYAAADYg8QKAAAAEisDgaVQ3x/AAlgAC7ATfwD8+WjHPwOJFQAAACRWAAAAJFYAAACQWGlHfsRA1qVQ3wJYAAtgASwA/nwgsQIAAIDECgAAgMQKAAAAEisAAAD8w4kVAAAAJFYAAACQWAEAAJBYAQAAQGIFAABAYgUAAACJFQAAACRWAAAAJFYAAACQWAEAAJBYAQAAQGIFAABAYgUAAACJFQAAACRWAAAAJFYAAACQWAEAAJBYAQAAQGIFAAAAiZV9L744VI+O1bXFuaXYe1A79uIz5SZcvXajWbn69L4A/gDA0Ylnh4qIuL9yc7YZ6bSThIH5uxVIrNSmThWxqV4/fLJ99VIzcmD49eMRceejZvXql6U3N+H4GwsXlipQP2EBKjCBhAXwCgASXz/7Dh8+s3J+KaosvZ2kD0w/qqemWpt6eSg6Vuc/i4dqb4/F7tY+XorKQGLl1Jkithg4WZuJDJg4W0THaNGsWv3aa5Oxxfg7s59VoH7aAlRgAj0vgFcAUJv+t9jiwLtzF5pRVentJH1g+lE9NtWTU7GhfnJ+MR54bix+xP5XZqIikFgZ/vVIbHMksrAUlay/82XUgVPP/aFZgfoJC1CBCfS8AF4BQPH+SDzupaMfNqOa0ttJ+sD0o3psqvXpAImV3dXfK4Kn5KJoZevvfN/PoV+dq0b9/AuQewI9L4BXAFB8MBjbDVf19ZPeTtIHph/Va1OdLgIqm1j/P3v34dRGlu1x/Ku+bYKMnIQD+MkzhIJ5E3hvc855/+DNYXKOeIYCm4WxnHew1hbBtGiptxpU2CJM3XbJuvTc36fihtOn6x76uE8nZaCBdev6jbUYgtKZZ0tI71VmjL/5/6+8+1fYJDgzOci2EzOz+c/vqAAOdkAFcLAAIhJ8N2RbY+7eOpQuThivjx/7dmIfmH3zGZvq+QoHWm0avsQaXhBNrGJ+atp9vsq21oMHy4xMzNJT4u8DwanJCqlk/iqpB8vt3eGZGzUf8pP/B4JVAEcLICLjZVLJJ1VSq/NX2rf2Li1E+Me+nWQPtN98xqZqvgGwFRj22Pj7GQ5SHgNI7iOaWMULMyGpeucLCLdvI7306GPNG0UP85spUskbNdo2/77z2FFh5uX853dSAAc7oAI4WAARKU6Tar1ap611+eHzAMH3XsY79u0ke6D95rM21bEQYGmCfTZvcZDzpKI6oolVfHC+Qqr+Mg7J7kcjGnMrPzP+5R8LSX1WY1fr7Z33kob6ozzmd1AABzugArhfABGZNqTm6jyydL7s6/GTvZ3YB9pvPltTbV91qC9OYKk4SmoxRjSxigeCSVKbr+OSjA2S2lq8StHD/GaKVH2JxzSv7Fwin57NYX4HBXCwAyqA+wUQETNywPHTWix7evxkbyf2gfabz9hUg68ZoPVW1ssUm1VEE6v44GwZIHk/xiUpASTL87Gf+YdDgGSWDstTIcCFudh9fvcFcL0DKoD7BRAR++Pni3tlP4+f7O3EPtB+89maavtktBqZjJcp7sSIJlbxwSipazXEtWTlvdjX/KOkVmtwwEXb/hM11/lzUQAHO6ACuF8AESkB+19obN0tA/SZGL/Yt5OMgZk3b99UzTcANuewNhYCtBYQTaziAzOiQ/5IWGXl07q3+c0Iqer+vUoVTtVc589RARzsgArgfgFENLE2YjrdmjZAcHEJr9i3k+yB9pvP2FTHQrI97memSK1FiCZW8cFYqEP+SFhc9Dn/cAjQuskeK3EIMOQ6fy4K4GAHVAD3CyAiQZFUjT2iBB+PH/t2kj3QfvPZmmpxGmC1lvXsNZlFNLGKR1cmq4i4v0DeZI/kQRngTC7yi4MCaAFEpHCS1Bp7NG9XLI8ftRP7wKfRrbJ/dik4T3vGFU2s4oP2Q8E3EXHm0Ee6aG2UAfrC2Hl+yVcBtAAisorl8aN2Yh/4NLrV2e3QuShrBFVEE6t4ob/QvlYm4sy+R7r2nW+YOAf5JY8F0AKIiNqJfWD3u9XuZ5eqWAsmaYeIJlbxQsm0r5WJuHL4I127n3I4HuUnvzgogBZARIayz1BqJ5kDn0a3msn62SUGTpFajBFNrOKFEqka+SMiIiKS7/e9pTgKGX9lcdqAXmnTxOodTaxrAMfOjfcXgeTh2q0qvSPSXwBI7rPPatNg9eMe7vOLgwJoAUTk8DcoV5vG6q6f2ol9YPe7VfuzSwuZZ1yqEaKJVbwQFNkRTE0YdhSKxXP/b/EjWq6JiIiIrJLqP1Ejf2S8/dml7LdYF/CJaGKVJH5pjE7DP5m/Sm+IlEye84v7AmgBRDSxFmZeRiiZJw500q3MFGT8hpIZIbUW4QXRxCrtN+gL/88+hf8dnMUxkSjxMb/YF0ALICIrcQhwYmaWxw38wGBP7cQ+sJubz/7ZJcZCgGQW0cQqwrPM0jsiyXre8ov7AmgBRKR55XlSzwafxrQx8NKI2smTBPa2W52vAFyrZb4rS1THQ6KJVdYXa6tA6cTzg2x75kaNo0xERERkeSokdamyfG0VOHa6csFw9EkwCVnfSB0OSS3G+EY0scrW4lV2rK7erMwY0CshPSaF41He8ov7AmgBRKT5wXfYVhgfx4LaiUVgT7pV9s8utYdcNqt4RjSxStL5maXr935mAIb6I44yERERkbsffY3DJOscUVKcBqgvkcHZMqk7MZ4RTazy2RIdNhaeBwguLnGUiYiIiLQvtXdqVMcMR5lMGyCZJfstVv20jSZWkd1XQi4t4ZJIf8HX/GJfAC2AiGz8cWrC8Jj1D+4XxwAaTSRzO8kemH3zT/LZJQZOkapGeE8Tq0jyoAzQF8Y8dSKrTcOXSe7nIL+4K4AWQERa8/MnJ0/3GyB5uPb5HeypndgG2m/e/nbp5lz227IkNxBNrCKtuzsTq4npEZHCqVpO84v7AmgBROTBB3QoGYBGrHaSKbBn3Wq8DFm/+VscJbVawzuiiVX3UodwSCRKOETJACTr+cov7gugBRCREqkaNtRO7AK72K3MFMDaFyUeE7BtaAtorbPP6E6WWUQTqwis0msiQ4edbzSa+cov7gugBRCREtg/P6p2Yh/YnW7VXwAY+hn7Ff6f1OezB0+5RHU8IppYpbVRBjiDe6J7/WcO/RcwzlV+cV8ALYCImBH7m35qJxaBPe9WF+ZiOo2FpBZjfCKaWGUV0BeW3NOVk4P/DoMiqVq+8ov7AmgBRGQ4BFiLsKB2YhHovluZKVKtm3hHNLHK/i8s6VG03pLVQ/4OCydJreUrv7gvgBZAREbtRyi1E5tA991qOCRVjfCKaGKVW9MGKByP6KBH0RzQwBJcXDrwH6fWzVzlF/cF0AKIiBkB+9dY1U4sA7vXrTbvl/lyizEdgklSrQX8IppYJUoACv9TO6jPU6MXRFbiEODS0oFXyBvNXOUX9wXQAojIWAj2P4OidmIZ2L1u1XqD/cxvQiB5o8YBzpYB7x70Fk2s0n6Ffv/L7cNhD69MijRvVwCG+qODrpzcifOUX9wXQAsgIsVpUlVsqJ1YBLrvVqOAftpGCPGOtO6WAQY6L5YFk0Dvvh4ucqsCEEzPHnCFvLWQp/zivgBaABExPzUAm1UOoXYy8L0SrL9Xtw903K2Ko/h521w0sUr7RVYmqzGPjJd7eWFfZPcxo4Vo/xXytShH+UUFcL8AIhJ8NwRI3o85mNqJ+XkIHP/xXyP7QLfdatqQqiKaWMU7GzsXywZ++DK7Ks/T0wv7Is0rzwMEP/lHDG0DO1fIk9kc5RcVwP0CiMjAjwZJXatxCLWT4ZBUcHHJPtBptyqO4uttc0QTqyyMGoAT33svZlvwwhjb5iJ6R4LjtA2xbbCPba11H/IvT4UAA798s86OyoyxP+Fwn99JAdzvgArgfgFEpPK19atVUp3nMZtz+MiunZSyBWbuVl1vqqOGlJ7/kxDx9yYrZ3+/crMGJ0ZH2FFfonck/Txeh+DHtNVf9iB/84PvkOr7aWPp300Gz0wY+xMO9/kdFcD9DqgA7hdARIY5/v//v/Wf6kYTBs9UBtnReiXGR9nbiX2g/ea73VTNFCk9/4eEiI8+KZbZNjzMYzZfp4dkOOQwfWH81c/P3euVdrrnnuORhv0Jh/v8bgrgfgdUAPcLICLHzp2jQ+OfER7K3k7sA+3/X91vqmMhqWqEaGIVH7Xe/vkg+3zxXkwPSYlD9Zn4q58fPorHSDk44XCQ30EBHOyACuBsAURk5d0YX9m0k1W2JfdtArNuvvtNNTgPePy7i6KJVZp//8YInZL5q/SUrHKoRtOD/MDljedM9gsn7vM7LID7HVAB3C+AiNyqsNfW4lU8ZtFO2t/8TdYtAjNvvvtN9WyZ1GoN8ZQmVmm9N/LiII8ky/MxvSUrDwc5xJ3Yg/ypf918aYRdHT8Tl4f8DgrgfgdUAPcLICJ33+s4i4HGXBWvWbST5svfKaX/fWQRaLP57jTV5PoYcG9/ztXtza28i0iI+Or27WMTI339wFZjZblOz0nzrz7nb9t8Lzg/eroIsNH4/FbsUf60APoLeMIC6AgQ0VlMMFw5bfqB5OHaLR08Nu1k459WgXab71ZTbV2+/F/27vA5iuvMG/Y904AkgTBGMljYsi1gwSFr1q68VY4rSWy7tsr17v/71H5IxWG37GwqxJUnsk2BYUUsAzKOPAEJZEaMZh7N9AAaNIKTsUyP0tf10e7T9xR31zn6dfecib5WfxMgsXL/4sWAojUXF0tcHw1wBcJgmt9+G6RPJ4MPNFshsQIAAIDECgAAgMQKAAAAEisAAAASKwAAAEisAAAASKwAAAAgsQIAAIDECgAAgMQKAAAAEisAAAASKwAAAEisAAAAILECAAAgsQIAAIDECgAAgMQKAAAAEisAAAAS625FJdAK9f0DaIAGaEA//gHwz0crfggkVgAAAJBYAQAAkFgBAABAYqUVDIFKoa1QXwM0QAM0QAPwzwcSKwAAAEisAAAASKwAAAAgsQIAAIDECgAAgMQKAAAAEisAAAASKwAAAEisAAAAILECAAAgsQIAAIDECgAAgMQKAAAAEisAAAASKwAAAEisAAAAILECAAAgsQIAAIDEyg8x9XYWsfB/AwAAQGJluGRZRMws1AIAAEBiZagsNfZEVM6eCwAAAImVobL+5ZmImDhcCwAAAImVoXL1VPsh68u1gGFQPfryc+OxYXX12o1G6eozeAMAjsw8P5JFxP2738w3IpH5NH1g8dP13pdfHsmrrtUWlqMckFhZX5yJiFcu1YNhMfrGdETc/qRRuvp56dz4+NSbS58vl6N+QgOK/wDD3wANAItnbu+hQ6/fPb8cZZY+n6YPTD9qoDmteurVkU4YXfxiuwNOZI+qHjreunqxEWWAxMqNmYiovjQfDImZs1lsmMgaZatf/els9Jh6d/6LEtRPakAJPsDgDdAAoHr6X6LH/vcWPm9EWaXPp+kDE48afE47fio6xo8v1qKPE69n0aNyvDoXSKyUwd++m4yIkwuNYBiM/mqsrPWr70zGYyonXvi4UYL6CQ0owQcYuAEaAGQfjMXjXjnyUSPKKX0+TR+YeNTgc9r46X98cjwcSKyUQvPmZESMHKwFQ3FTtAT105bJ3MFfniu+fjkaMOAHKL4BGgBkH+6JrUbzCaR80ufT9IGpRw0+p53O4gnG388CJNbyunE6s/fSkJg5m5W3/r9NRsf9r6+tR/XwybHoOHh2rhz1uw0o6xU4eAM0AKj+fE90rF347m7ExEsnst4JpGTS59P0gYlHDT6nHZ1JCKydoncaEdWJw69NBBIrpXHv1mQUv/cS5X0hOHcyX6paFy9H2+2rDz7Oq9dqZagfJX8fdfAGaABwPI9Qrb8sRNvKxS/zR3vl++Nm8Pk0YWDCUYPPadnPOnm0mkU/2XtZ95bEQnQ0b9++GtMn5gKJlTLIXwsueu8lNu+AtzpewvrZqWhrfVKLrnu/zV87qpw9V3j9EjRgwA9QfAM0AOh+AbL538vR1fzs+zOxofrOuSiVwefThIEJRw0+p812Ysj8iejrbB5Slnu/K7u4GEislMVKtL0yH4Vh06YRaxeW3s/KVz9fquKLWjzU/EP+vaQDI/Wi65egAYN/gIIboAFA9wuQF5bjkfmjk+kTSPGKn09TBiYcNeiclt91WL5yIvrpvjG8fC7KComVpUa79fv2NKI4zOYz+/0rl2O8hPW7t2yX52OT9S/zW+Sn54a/fvENKP4DFNIADQCy6T4TSPPKZPoEUrzi59OUgQlHDTinVd/K2k37n+irejLa7n0cpYXEyvriTBS9WzATsSH/Lewy1p/a06k/Fz2unur85xcvNIqvX3wDiv8ABTdAA4D0CST/8b58AimVwefThIEJRw02p73QadZCPXvC/239qRHlhcTKSsQQ7BZMa+l8o6z1j0XbSi1i603b/G7K8NcvvgGFf4ACGqABwES01ZejR75LR+zLGlEqg8+nCQMTjhpoTsu3Xbp34Ymf7Ct/pyKxSqxF34bUhKXPl0tbv/tK10L/S7NyqDb89YtvQPEfoLgGaABIrGuN6JH/eF/pNpYcfD5NGZhw1EBz2uyeJz1DzWs2L0WZIbGy1NhT9G1Irlwpc/38JaPm9f6XZhwY/vrFN6D4D1BEAzQAqI5HWy0eU29FPoGUyuDzacLAhKMGmtPGT+fPbZ+UZ+NOPcoMiZXW7WH4fRvcIF/vf2nG4eGvTzENAKg8F2134jHrizPpE4j5NHHgzk/XT9p2aXPNhSg1JFaaq5NDcBsSgaXR99LMN7LexfUpoAEAK5E+gZhPEwf+GNN1vrHShXr0l00/fKwLEqtJ/XAUALa+0rXl742s8c9cn4IbAGA+TRu489P1w22XFmIbI5XuY92CILHiNiRs/0rXw60c9teHvz4FNgDgwOAZynyaPPDHmK7PbrvtUm4i6z7WLTckVlbWs102qQMA7PYvvDN+LOKJP10zEW21KDkkVuqtAp9jQP7GT+tW/5sp+Xb5w1+fAhoA0P8blPkEkvzHjfk0beDOT9fdbZcuxbYmHj3W3Xvk+Mh4RLS+v3NjIcoIiZVd9lchAMBKnrgO1mL34fj22y7lquORq546kUWuMj5+5M2S/YY1Eiut2wVuFgwTWYnrswMNACTWytlzQUxkAw8sZLrOTkXk2y49Wavxxmz0mnr34uUoCyRW8jdqhhDUWyWuT0IDAJYae2LDwbNzsdnoL7IYnPk0feDgp3/6tksPNnuqvBlbVH4yNhdlg8TK4SgOtO6Wuj4DNQBg/csz0fZa9fNGPDD6xrT5dJCBz3a6PjoTkW+7NJDXYi6GGRIrAABcPbUn2l6ZufrVSkTsfX7mxSyGH9WTEfm2S2nuXqm1Gzxx8MxYdLx6rRZlgcRK8T/ICpX99TLXZ7AGAKx/+nZ0VI4fj4GZT/OBz266Tth2abP7Vy5HbmXl+szZLGL4v72MxAoAADf//Fb0N8xfOGD8dGxYno8Erd5tlr7+7v0sNhwYqQcSKwAADLM8v/RaW5jNgmF2OouI1lyk+GI+eqxeOhMbqi/NR4GQWAFGKqWuT1IDAFb/M/+xzofufnprfLYTXNdjcObTxIEDnP6HbrvU/fbyK88gsSKxAqysZ/EkrVvDX58CGwDQvHjxuZPPj3Qe2n1/56/fRDrzafrAnZyu822X7l2IwbRuT0Y8yz1YkFgBKodqJanPzjcA4Pan0WMiiw1rDfPpAAOfwXSdb7t0ZdD+NG/miTX78RuMxApQb8U28r83Wnd3dX0KaADARLTVIoX5NG3gDk7X2anYcOdvE7FJNToO3I+I5t3Nz1IPBEisZvXC70PCgW2vzPUS1GfnGwD426Z1LdKZTxMH7sR0nX/x9cD7sVXlzWj761w8yUo8K0isAN0bqIfT76UMf30KbQBANp3+0M98mjDwmU/XL15on6252i0JJU+sVMejrRZFgObq1u0TBr8yi69P4Q0AmNoTG+7UI4H5NGFgUdP1SvSULAISK0B3Ocoa0avyXLTd2dX1KaABAMfSI5T5NGFgodP11pKl+9oIEivF/1mIwJL/Dni/O+TN67u5PgU0AKD7UvC1SGM+TRu4c9P1vVuT8WTdbYRvnM4iorK/Hj3K+LURJFaK+81DWGr0/x3wY4PfQC2+PsU1AGC2M62s1CKN+TRt4M5N181PYqvsw/bpW59sblu+P3Hl5Vq/WxJRmgYjsTJSiShudwJYX5yJDQdG6v2Wo28au7g+BTQAYPx0tC1ECvNpwsDCput8t6d8H6aep7rleoiOxMpEVuiDDLjRWQGrp+f63CFvXtrF9SmgAQDZe1lsuLcQ2zCfjr4zEXH3/HLiwOKm6+bNyc7n7X2uWz0ZbfXlQGKlJAr+KgA8eM3oUn3rHfI79d1bnwIaAFD9ef4A7k+N6M98mn3QPmz/r39TTxtY4HSdf5E1Ti5s7ubxyZ6nukislCWx1qIgsP7lmdhQffejRjwwmt8hb83t3voU0ACA0V+NRdtXtejPfJq/VJvvoZQysMjpejV/rjv6y3Px0EznU5ToJRwkVqrj0XYnCkR1f3QdiI6xfdHRvFuG+ldPdSag0X///XLkZs5m3T84ylC/4AYU/wEGboAGADNv3b28EA9VfzobHfcuRNmkz6cTgwxMP2pH57RLxzoFDr5zvvFYiy/UA4mVkhg9FFHoVsHk2+P1qP46upbPlaD++qdvR9u+99bmv12PscMnsvQ/OIqvX3wDiv8ABTVAA4Cp2P/mm/f/vrC6HjF2eGYscs3/akQZpc+n6QNTjxp8Tkt4yBov/MfS9VrEwWPTkVueDyRWymIiiyj4y+tM7Ynt7NvT+OevHze/numWe/31eGSt8wdHCeoP3oDiP0DxDdAAYO+RI9Fj7Xf1KKPB59OEgelH7eic9pfxye5Zp2KTex8HEiulYeOlYWlCf/uyxj93/dyfG7ORK+APjgLqF9CAgj5AAQ3QAGDpj40on/T5dCU6WrfSB6YftdNzWvMPH4zFFn87X54WI7FSPRptC1EgVmJba+slqL/hs9XXsyJWo4T6JWhA8R9gwAZoAHBjJh53/8rlKKP0+bS752/rbvrA9KN2fE5b/+3PpqNX62KZWozESuW52NC8HgVi6fux2MY3jRLUb/vf629MxyM9PxNXbP0SNKD4DzBgAzQAuHn+X8dis7ULC1FO6fPp+rm3O7/HWk8emH7U4HNa6+vZiPhua83m+emeJreuXmwEEiulkX/VoOjfPGT9N6Wun7t3vnr02PPjsWF17a83GqWpnzfAFaABAwEWF6tTM89nIxHR+v7OjRuyTMJ8uvq7tIEDHDX4nNb87LPtm7z3xPS+do/vry1dXQ4kVsrlWLQtROGgubhY5voM1ACA5rffxuDMpwkDi5+u71+8GFDSxEo2HTF8LwUDAABIrIxUIobvpWAAAACJlWNZbFgIAAAAiZWhkp2KGL6XggEAACRW8p2CF+oBAAAgsTJUjsWG1rUAAACQWBkq453EulILAAAAiZVhku+71JoLAAAAiZWhkp0axkesAAAAEitTe4byESsAAIDEynoWrflaAAAASKwMl5v/JwAAACRWAAAAkFgBAACQWAEAAEBiBQAAQGIFAAAAiRUAAAD+2RMrlUAr1PcPoAEaoAH9+AfAPx+t+CGQWAEAAEBiBQAAQGIFAAAAiZVWMAQqhbZCfQ3QAA3QAA3YfSzhgMQKAACAxAoAAAASKwAAABIrAAAASKwAAAAgsQIAACCxAgAAgMQKAACAxAoAAAASKwAAABIrAAAASKwAAAAgsQIAACCxAgAAgMQKAACAxAoAAAASKwAAAEisAAAASKwAAAAgsQIAACCxAgAAgMQKAACAxAoAAAASK0D16MvPjceG1dVrNxrlql88ACyoaQN3cr08MvP8SBYR9+9+M9+IJ9n78ssjedW12sJyILFSPqNvTEfE7U8aQZn7UFz9vHRufHzqzaXPl8tUf4AGuAIBqu9MxvbWfr8c5ZO+oCUMHOio8fez6KP1Se0Jp9p76NDrd88vb9vpUyeyR1UPHW9dvdgIJFbKZeZsFhsmskZQ4j4UV7/609noMfXu/Bclqj9AA1yBAC9MxhPse20uyid9QUsZOMBR1bey6Kdy9lz0qJ7+l+ix/72FzxvRz4nXs+hROV4tV3ORWBn91VigD3n9YblLXjnxwseNMtTvaYArEIBCFrS0gTu4XmYfbJ3zXznyUSNxdTgcSKyU7GYc+lBk/f6vdR385bky1O9tgCsQgAIWtLSBO7heZh/uia1Gt5wqf8u4zJBYyV/DQx8Krf9vk9Fx/+tr61E9fHIsOg6enStB/UEb4AoEWFnP4gnuROmkL2jpA3dqvVyITao/3xMdaxe+uxsx8dKJbJtT5YE1L3qnEVGdOPzaRJQIEitew9OH4uufnIm21sXL0Xb76oOP8+q1WgnqD9gAVyDA6m8PRz+Ts7GhdSvKYvAFLWHgQKe/93k8pvlNbHJ8Mj/VX/Icu3Lxy+6LNq9cqsdm2XtZN9kuREfz9u2rMX1iLkoBiZVNO6+tjkc56UPx9bNTEdGzieC93+avHVXOnitB/UEb4AoEuHcj+jkabfXlKIvBF7SEgQOdfu1GPMn46Tx9/vdydDU/+/5MbKi+03uqs3lIWe79ruziYpQBEiubvvO+dmGprN8R0Ifi68/m888XtXio+Yf86y0HRuq7un4BDXAFAowfi7YrjSiXwRe0tIE7uF6ezqLtwnI8Mn90cuupjs7kgfVclBMSK7Nj0Xb/yuUYj3LSh+Lrd2/ZLs/HJutf5ndaT8/t6voFNMAVCJDHoXsLUS6DL2hpA3dwvcym+5yqeWVyy6mqJ6Pt3sdRUkisTMSGcv8Gsz4UX39qT6f+XPS4eqrzn1+80Ci+ftENcAUCDBCHvmlEuQy+oCUMHPz06QX/9t3k46fKf3G39adGlBcSK62l8yYBfSi0/rFoW6lF9LlpO3KwtovrF9AAVyBA/vJq81KUzOALWtrAtKOS71Ru/aJx82Ynn+7LGo99sq9qUVZIrKzE0ufLUXb6kNcv+Fb4wtZP1VY5VNu99QtogCsQoPvy6p16lMvgC1rawNTTpyfWtUb0utF5n7v60nzvJ2teitJCYuXKlUAfCq6fvxnUvB6PWWrkezns4voFNMAVCDDb88ZpeQy+oKUN3MH1sjoebbV4TL0VbQd6e1nozQckVoDufdb1eEzr9mRsOFx4/d0EgOrRaFupRSILatrAHVwvK89F2514zPriTO+p8poLURwkVoCtbwblmqv5t1n2NAqvv3sA8MJkesqxoCYOfFbr5Ur0nCqb7j7WLQgSK8CWN4O2LltZo/D6uwYAD34OZSESWVDTBhaxXo5Uuo91C4PECtD7ZtDWFbCyv154/V0DgNFD0XalEYksqGkDf4T18sDTwu9E1vNYd3dDYgUAgNNZhBdJh1zqV18noq0WxUFiBcjf+Gndii1W1rNI3y6/+PrFA2D8WLQt1COVBTVt4D94+oMfjkTHamvpq95B2331NT/V5se1E48e6+49cnxkPCJa39+5sRC7FxIrAAAesV6KgjESufHY/+qWX91eyQ85WIsnqY5HrnrqRBa5yvj4kTfz0yGxAjwLE1lJ6+88ALLpaLtTt6Du9MD8qAFNvbf0x8aWxFo5ey6ertV4YzZ6Tb178XIUDIkVoN4qc30ABjC7p5Nx5oKdWNDqrR07aur//6QWDy01Oo06eLa3U6O/yGKTfLOnypuxReUnY8+yx0isAK27Zau/8wDITuURatmCuvMDU4/Kv6S6ReUXX8zHA+tfnom216qfN+KB0TemI9lrMRe7CBIrAABM7Ym2K40oDn+5GbG6vhIbqvsPHpuOXOWnt2rxwNVTeatembn6VfvIvc/PvJjFE9y9UmsfN3HwzFh0vHqtFkisAM9KZX+9XPV3HgDVk9F2b8GCuvMD049q3ogHmisr12P6X8fysf/fR43oWv/07eioHD8eT3X/yuXIbZxv5mwWkX8JdtdAYgUAgBcmo+2bRjBEFm++kzdm9JX5eODmn9+K/ra8etzq3Wbp6+/ez2LDgZF67CZIrAAAeMQ6fD9tQ/N/upH1lfktwbPH2sJsFlt8MR89Vi+d6bT7pfkoEBIrwEiltPUBGMDooWhbqAeDL2jpA9OPav65z2PR1f/Mf2X1obuf3hqf7QTX9XiC/Euwef790SGxAqysZ/EkrVuF198VADidxYbWtUhnQU0bOPjpc6s3ZrY+Fm1evPjcyedHsvbg7+/89ZtI1bo9GRv27WkEEivAs1E5VCtT/Z0HwPixPH/VLKg7MHCHT58n1jgQvW5/Gj0mstiw1ognat7ME2vWiB8bEitAvRXbyJet1t3C6+8GABzLp+25SGdBTR+YdtSgD4C7JqKt1vss9UAUDokV4MB2y9baevH1ARh+2ak8fi1HOgtq8sCEoxLi9OGExJrwXvdKILECPCvdG6iHt10BG8XXB2D4ze6JtiuNSGdBTRv4rNbLbLrnaW1ztVuyOEisAM3VbbZPqI5HW63w+rsHgEeszeuRzoKaPHAH1suEg6Y6geROvedZal6yKEisAN3lKGtEr8pz0Xan+PoADL887KT/tI0FNX3gDqyXab+Tc6xfrN1SsoDv7SCxAhJrvuH91r89mteLrw/A0KuejLbmpUhnQU0cuAPr5USWEGu7LwVfiwdunG4Pq+yvR49n+b0dJFaApUb/3wE/lnYDtfj6xQPghck8EdUjgQV1gIGDnz4/KCHWznYKrNSiq7tfU+XlWr9kG7VAYgV4BtYXZ2LDgZF6v+Xom0bx9QEYcnkiGvCnbSyoKQMHP31+UEKsHT8dbQvxUHe3pxcvNPo81W1dCyRWgGch/1Xx6um5Pjdam5eKrw/A0Bs/Ft3Hc09nQR19ZyLi7vnlxIE7sF6e3fP0WJu9l8WGewvxUPPmZOfz9jzXzd8Af2a/Y4TECvDgNaNL9a03Wu/Ui68PwNA7nUXbQjydBTX7oH3Y/l//pp4+8IetlzMz8dRYW/15/uT0T4145Ebe2JMLjXjk+OSD+IvECvAsrH95JjZU3/2oEQ+M5jdaW3MlqL9DADxivZeSWC2o+Uu1+R5K6QMTj8o+bP5+OXqd7Ix78kbOo78ai7avarHJav5cd/SX5+KhmTMP4m8pILFS3R9dB6JjbF90NO9GSehD8fWvnupMQKP//nCNmzmbddet4a9feANcgQDHMk/d0he0icEGJhyVx+H37l+52tiaRePehXho5q27lxfioepPZ7cc03Epb+3Bd843HjvyQj3KAImV7MPHGl/9dXQtn4ty0Ifi669/+na07Xtvbf7b9Rg7fCLrXbeGv36BDXAFAmSnPHUbfEFLH5h6+r0/+cn9vy/eXo+oHjh2JItc878a8dBU7H/zzft/X1hdj43zzIxtOab3IWu88B9L12sRB49NR255PkoBiZWp7fu+b08jSkEfiq8fN7+e6ZZ7/fV4ZC1ft4a/fqENcAUCzOazyIKnbgMvaGkD00+/98iR6LX2+/pTD1r73ZZj/jI+GR1TU7HJvY+jHJBYmYht7csaURL6UPx18OfGbOS2rlvDX7/QBrgCAapHo82vnSQuaCvR0bqVPjD9qJX1LPq591Ejnmbpj1uPaf7hg7HY4m/nG1EOSKysxLbW1qME9KH4+rnPVl/PBl+Niq9fXANcgQAvTOZzSS1IWdC6e/627qYPTD9qde5sFlu0Ll6OHjdm4nH3r1yOPtZ/+7PpPmcrCyRWlr4fi75Ks3mBPhRfP/e/19+Yjkd6fiZu+OsX2ABXIMBKZxJZ+mOQtKCtn3u783us9UgfmH7U119Pvz7x1Cx68/y/jsVmaxcWor/m+emeY1tXLzaiNJBYWf9NoA95/aLdO189euz58diwuvbXG40S1N+RBrgCAVZNIv/Ygrb6uwEHph21uBjPHX55ZCSLiNb3d25sOSY/qDo183w2suWYvsfuPTG9r33o/bWlq8tRCCRWgObiYvH1AaC0C2o+cAeOun376tNP8+23ker+xYsBEisAAAASKwAAAEisAAAASKwAAAAgsQIAACCxAgAAgMQKAAAAEisAAAASKwAAAEisAAAASKwAAAAgsQIAACCxAgAAgMQKAAAAEisAAAASKwAAAEisAAAASKwAAAAgsTKwSqAV6vsH0AAN0AD/APjno59W/BBIrAAAACCxAgAAILECAACAxEorGAKVQluhvgZogAZogAbgnw8kVgAAAJBYAQAAkFgBAABAYgUAAACJFQAAAIkVAAAAJFYAAIBN/h/7dSAAAAAAIMjfeoQFyiKMFQAAAIwVAFgAYKwAAABgrAAAAGCsAAAAGCsAAAAYKwAAAMYKAAAAxgoAAICxAgAAgLECAACAsQIAAGCsAAAAYKwAAAAYKwAAABgrAAAAGGvs3YdTG9fexvFHWoGQjGy/CBeK3IeWxOW9Nb23vzm99+Y2tCsSCGDHWBcQKJJYre6uSkyTNfh4V7b3+5ma2L85Hn6aeXgWcYSu4eF4UtLW5q3FTQGdEj0xfCQpV6Hw+5ItcwAAEKiPdxIDNFZEhybiqus6enRsa3bOFjqn55kBSWtf2OE73zu6IZnsv7xyfT1sCzAEAIiOnI7LVVi+obAxD9T2g8lXLe2j+kXOMFVbL46EBo0VyecT2q5rfGxyRuiUzEVLrpRlh+386FNntUP/y9kboVqAMQDAuRHVJM8t5xQu5oHafjB6xdJ+Ihc/NkzVlosjoUFjxYUJ7RYZT1xVR6DnxURYz48+m9YukfPHPrfDtQAAgJHkqELAIFDNBw1S1WBxJDRorBTWXU5NldRJPBQNwfltY9Jz+IWPw7QAAIChUUshYBCo5oMGqWqwOBJaoLHyKLKc/aOiaN+ZlDoGmYtWeM+/lFbN1sLv3ivxQqIRlBevhmcBAABDJzIKOYNANUriebNUbbU4Eho0VjR/G6H85bo8a3PRkfOWELwwvyHYcyEjT3VypvFKbP5zTv+eC8kCAACmrL/JtRW1FAIGgWo6WLyuXZxbRqnacnEkNGisOJaWp/ihrQZncpq3XXTCvUcFhWQIz7dG5Nl21WDxg2fTUv0uhzAswBwA4GxMrux5hYBBoBoPlpcOkqomiyOhQWPFoDzOJ7buca7NvBipCIGyXkuopnxz5VUrfOfXo0o3cvqL8/XbMbl646UQfAHMAQCSo3Ktz55XCJgHqvmgeaq2WRwJDRorrAF55kvaofieELCzCXm2ZmeUDOH51og861ltU5mekCs6ejUECzAGAKj/rpPzlULBPFDNB81Ttc3iSGjQWBGPyLOhTkNKrurcpB3O8/tjclWvaoe5kZhcJ2/aT/4CjAEAjqXrz+EthYN5oJoPmqdqm8WR0B7QWFFdFR4B1ZXv7LCePyhPPift82g3fjgXggUYAgDUb+8p3lQIGASqwaBBqpotrvMJDRorgLxWrq+H9vzm29O1S16eyNHcE78AYwCAszFJ1e9thYBBoBoMGqSqweJIaNBYEUwhQBuzs2E+vz8ml7OoXVbsmFy9IViAIQBAcrTxQ8IQMAhUg0GDVDVYHAntAY0Vp7LqICAlT7miXaprabn6dD8AAHDtkkGgGgz6vTiAxopSVZ5UX04dBwLW1i5OIS1Xd8wWAACtNW/vuVlSewSq+SCLA40VAaksZ+SKPPdeSZ0CRJPy5LRHXp5uyxYAAK01b++ZV3sEqvkgiwONFYFZysgTfeuLnDoEiByRZ6NVTkYOlXQfAABc5Nqlgwaq+SCLQwBorLhzNy1P5PnH9GOuAAAAkoNy/ZYTnqzFATRWOD+9askTOZeZnVEnAPGItP/nAucrltrcZg0AQOP2nim1R6CaD+rw23HVFKorv636ujiAxorC9/9SXdf42OScLQAAgMfLOW7vCVZcdUkdOu19XKqPiwNorLh9c0INkfGxDrw3GEhZemAAAFgjchXnRaB2Ion7X1n51vZvcQCNFbOli5YaIufOPkKdFShV1QYAAOa39xCoRoP9736R829xAI0VC3eeGdC2ztqR9wYD1U0BAHBwJzKSwe09BOoBBp1CWvuIPH8j69/iABorit8NPJ1QU2T8/JfrAgAAeBxEL0jc3hOUX25LhUperuihw4MDqos8tZrzcXEAjRXLy5mJuJq6X56cERCwg3/WGwAAJrf3EKgHH3SW1OTk84tq/tQj8vcPbT8XB9BYsbCw7eeskfHEVT3yAAAAkqNyrWfVCVi+/Wxanp5TWX8XB9BYsbzc82xKDWc2snrUAQAAjFqSqlfVGXC+alTWU1m/FwfQWFH8qOfFhOomFkvqNCAeEQAArZnf3kOgGg46P71qydUbL/m+OIDGiuJ7mYuWPNHRqwKCka9Yup/qqgAA2E/0glzFm4JJoBolcWEpI1d0KOv74oCYgIW7r1rynJoqCQhQ5GhOAAAcSP32nllbMAxUg8F6Y1VvIIsDjRUofPSq1XxQBgSiVFULKUvik1oBAK1YI3Jt3Elpm6hqerckOZtqj0A1S+J8xQpwcaCxAoWpCXl6BQSqV3uk5ClXBADAPuIRuXpf1V6Ry/L8elXtEahGg42+2xfQ4kBjBZZGLbn6BASjupaWq69lTtp6IAAAnLxpazcC1XyQxaGDjRUoVQUEySmk5eqO2dopmpQnJwAAYB6oviZxTgCNFYE+nwMCk5en27K1U+SIPBvyEQAABKpBEvNZdAhJYwVAwO697as/JpezKAAA9lNcTev+Zm21R6AaJXHKkmfD/8UBMQH3nqblBARkxY7JdSqrnQblKVcEAMB+nC+0l/V2TFL1i5x2IVD9SeJB1WttQIsDjRXoj8mzISAgleWMXL3xkrazBuS5ZctHAAAQqCZJbA0E+oAZNFYgeqH5oAwIylJGrujoVW13NiaXM6WHCQAAArXn2ZS0+d36w0jiizG/HjADNFZYbzs357XLUFqejZKAoDTfjDRV0j3JUR9eigAAEKjWazFJh156r2SexJmM/HrADNBY0R/T5YmvV7Vd5oo81asCAlOZnpAr+vKHtpp6XrF8eCkCAECg9sfkiQ5lDzRove18ua6dLkyoZr4kXwA0VnS/tLUwaauh58WEavI5IVDRQ2roVU2iWzXOZhjOnxuJydXzxl9JmLloyfNbLhwLAAAgsEBNPdhgf0yvbM3O2dKe7xyLN31LVRIaNFZ0nTtXXSvPS4ePHbZU53ylQMG7Hm+H6EtqWP84BOdXfviXPN2vlLN/VJToO281EzAcCwAAIIBANR/sGh/f+u/yWkWK9g4et1TnfGL7laoktAc0VkSO6ri2cd4rKVDoj6mV7pj95J+v2wuZxnFjY7qn/IkdjgUAABBMoJoPdh0/rp3KX5b8SFUSGjRW3Lmb1n6KH9oKFlJqqduyn/TzPT/ZZ7VH+aNSSBYAAEBwgZpXTXX1YIP5itX6O0cfUpWEBo0Vzlcj5y3tVp2btBUw5NVSuRKC813XCmOWdrrznR2WBQAAEFygNm4Grm4ebLBw9aKlPaqTM36lKgkNGiucyekTTycegb6KlT8TauGWHYLzPf9ZfGZA22x+tx6eBQAAHprqwllJd9cVVu0DtfLxv1Le/y8dcHBhYWAspR22ZmcMUrXt4kho0FjhLC/ryMCAlZSrUL61uCl0QuW9UJ9fV/wuemLw/xqvxV+X7NB9AQAAD4Nz7ZpCwChQCx894KD3jWPfcDxuSar+ubG0ZJukavvFkdAe0FixtjYp4FF5ggIAAMwD1bfBtbU5/Y/9OrAAAIaBKHrZf+jrAgWKtry3QMiBD4oVAAAAFCsAAACKFQAAABQrAAAAihUAAAAUKwAAAIoVAAAAFCsAAAAoVgAAABQrAAAAKFYAAAAUKwAAAChWAAAAUKwAAAAoVgAAAFCsAAAAKFYAAABQrAAAAChWPjPBFO57gAEMYAAPwPvYaVCsAAAAoFgBAABQrAAAAKBYOdE8gLk6hfsGMIABDGAAvA8UKwAAAChWAAAAFCsAAAAoVgAAAFCsAAAAKFYAAABQrAAAAChWAAAAUKwAAACgWAEAAFCsAAAAoFgBAABQrAAAAKBYAQAAUKwAAACgWAEAAECxAgAAoFgBAABAsQIAAKBYAQAAQLECAACAYgUAAECxAgAAgGIFAGCxdx/eSWb7GscfeDGUhFjAgopzEr3GY/f0M1XnFtf9f28/bXrzuFyT0dhyiYMlOkYmgYCBvPDetVfCMmxA74tYWPv7WX3cv2fvwZbH/UJcsf3A3rG4pPXG0kJZzovuPbg9JUm12r0H/tAH9+R3xj1J69WHBV99bM/lNn9KHi1UpcGyABoror/OqafG3+rCm5A4lZO08qXv5P7hDwAAwPZfpbVp27bxd4KFGz5fS2xIpbJnl66WhzRoL9q2Y8ex6qUXLdo2Pd2YK0oDZaUueOoh+LIkN4DGiumcehs7UNAbgPxpT5LSnu/g/uEPAABA7mRSHSLTB78ryVnRE1PqkP2ocG1og9GZf1CH8fPFq/6LfkrGzh7/qqwBsqLnPPUSOf2J3AAaK9J6myDxQdLd/YdwAAAA/cwYe+9aQY6K/jEjS+Tw7i/84Qx6HydlO7Tnrx2Lej7BN/aRuRUNkQWMQGMF+EvXrf3DHwAAgOkp9RA5sVyisD4z+f4nQxn0LsbULdG56ExOPUTeM5U1bBbQt7ECwbJeM+RPey7vH/4AAABE90pG8OR+SUpmpzzJiPzG0bu6MxnJWL97r6noriNJyZg8PTuEwegfYpLRmHtSldIHDnvdi7ycNqz/vLiuXDYu66ckRFZ/RYHGCqeUL8v21NdrBR4IHvAAAABULy/LqPw01/7nz8Shghx0JC8juHFbxspC+6/Xd+6VXn5wOiMj+L4oo3Lj1okpGYdu1tVpfX7Bl6QHMkH2T0m4LK1dlaX1UKCxwi0V4c2KHj3sSUYt5eL+Ax8AAICOT5i9++SCJ8PJxuodldTxSbprf/ljRrI+qmjAwdSMjNZnZW1q/fD0uCRF//gsPVjJaOtnA6/96Vxeho4UfYXKams80BsEGiuALZ890JhbuuC5tf/gBwAAoFVLW984pXbzuIyJeF3OmYrJuFZSm1rfXIxZr8eggzOejLmyninszVjprdquG7e11fepjIz4ZEkKkfXWAI0VwFRSxvr8baWc23/wAwAAcEW2haMxSYqM1129Yi0XtEXz1sbV5czsSw56uR6LWvMZO/3KFXVqXbngSVJkR0kKkfXWAI0VQFqSzDc8d2v/4R8AAIDmYl6OysYkKZjtWeH3zfmDD/Zf9PhJ5kXpWlvOyJiQMXAWENObAyBYuuQ7t//wDwAAQEXWhZ4z9suolKTuu9L2M7mDD6Zl1Mvq0HqUkaQxz5fNXqNdMgbOAmJ6QwBUtHS17Oz+wz8AAADBslzj5WQUw1T4EINpGQ1fnR7MeJKiBwoKYaAsIKY3BMD8vFP7D/8AAAAgG5Ok1n1ZlnzzA5p4ucFoSkZJlnqgrnRbRZ0GywJiGnEAAABAWkZQdfR/vNGUJVjJSNKulxuMbJexKktzMd8v3dpAJRkDZwExjTYAAADAy8lYrbvaWH1ZWrWMJI3F/KEM2iqyFoUQKguIabQBAAAAUzEZRTnGftS2uwd6/jAHw3dprQpwubECAAAAqRkZa0W5xn7U1i6ekfH6EAYnQtRaqxIHyzIGzgJiAgAAAEZZ4rwnY94Xhsp+N2wIiR0y6uXuLMCVxgoAAABEjx72ZNwpyDnxSPsi01ZperK/vU3oQftNrfai8br6mfFkPPRlhM+avBiXoVqw9OOyQGOFi9Lq0KoKAABgpGzb+c4eT4buzArDVpERnywpJC8nI7g3cFZcG1Iaf4dv4U5jhZMmL6htpP6cBwAA8D5OqkPju5IclPZe7WBFRuT0JwppKiajUhosy5Y9v/SdLzjeWIFdAgAAGAnZpLYInswtCx3qwTAGl/yYJE2entVWifc8PVdqRkYwO3CWLfuvX5YEGisAAAAwAtLaKpI5fq8odwXVVzXYvHVcxi+iV321JU7l9HzRc56MH0vhs9pveLVF3rtW0NsPNFYAAACgog6RbPbMwg1fGLaFozEZh/ILP1YkbduZ3+fpRaYzMtbmBsr6/pFUa5oVio5P7s9pQ+TEcklwubECRQEAAIyEpadJdYpMH/yqLDdFxuuvarB5+fft13da/1/tZ4L/7g+U1Xqgtlalcl+5k0kZkd/81RdorHBH+RMBAACMpOaftCE9cXCPJ0NjHw3/nY54dOWc+gmq6sU7bz8THC7LtvjojxkZiUMFgcYKAAAAjIxKZfHZHdy7f6oLQ3b3yQVPlkZxylNfp2MyyrODZtlaX29W1lFrrKCxAgAAAIuPTkzJiH7UfmwU8ciwBmv/efSwpy2ql5dTU5LUaKqHI3kZa1/IEiLL0rqy0XQn4nWBxgoAAACMlNYPT49LcvCx0UrT0/MEy0MYbN24sf3IzrgZCJ6u3nmo5zpyXEbrU1+WEFm22oO8JEUPFAQaKwAAADBiCnszMo4UfbknsqP0igdXLqtD2pOkhq8u+eMygq/qL5Vl22ismhBorAAAAMCoac1nZMQnS3JJPZCtowcG1eEM2tIySuqy95wMXbN+bJAs+04YNFYAAABgND1+krEvDR0y0a8HNppDHLQXBfdk2/sbGbpakC1kVu+GvUugsQIAAAAjp1XLyJiQU4KVjFXkrOLpD2XQ5uV638OmfuPJuFOQLWQW0BYTAAAAMPIqLhf1sZivTtGUjNJwBm3ZmCSt1tUpdWGzsM7KFjqrt5JAYwUAAAAwUkV9zPPVKbJdxurwB439Petj4nzowmpl9RePCDRWAAAAYFSlZWjVycYaPVDoeXPZuj/8Qan9IO89dfA+joUurFZWf2lvVH96QWMFAAAAoikZwbLcsuTHJOlQoefNZaM59EFjyoyqUtJW0T/EZDyelS10Vrf9sos0aKwAAADAqEjskBFU5ZbmYl6SJuL1HjeXeugPf1BKzcgoaqvoHzMyyl8rDCvLZh2r0RRorBg5AAAAmPFkrNblmAd5SYrOzPa4uWzdlNoSf0xL1UvlsIPdvPOeJK0VexbWLxSGndXP6ZhdpEFjBQAAAN5C3sXlq2VZ9uYloyjXtJ/uvVnvuLm0+/vGm0zHP/xTPeSgrf30b/B3X1ucychY+8JXCHZWP/m87CINGisAAADwFopHsucfz1a1Veo3kn1X54jmreOSFP3or742tT+0N5iV2rIxGdEDhZCDtsQHSRk/lrTFubyMNZNlC5flXWx9VVanI8clo1gXaKxwSVq2VlWvEaLj2jQhGcmx9k+EA/sPfgAAAHb/Y/XystqiJ6a0Yd6XcxaOxiQp8U/toqf8aa+rCKYHHMyfq94uqvulXpvrccUd3NyjLq0lP0xWNqbz6/MLvt1rrXWgscIBkxfU5WpBrw28izF1iH6oTeVPHNj/JQ4AAMD4h6reLVel6K5fpLXpTkHuaV7+vYyx843CT00ldx322gVvCINZjZ89u/5zsdaUkrvySW1ofepri/2SETmjHu7Mhskytv3yl+s/L640pejE/j2etQ4uN1bgUEGvDbIx9TMW80dg/zdxAAAA6oE2jB9Tp8ezctGju3nJGDt2TM80PvWHNbhtzx51aPytri2iKT3Hvjk/RFa/ZWp8VddrBBorgLT6GvP8Edj/DRwAAID2+y973+U56Yo/JZtdBCuSESyHG+xt6Ttfw2JnVZqeejFvkQWNFa6oCG/5z0Oj6cD+gx0AAID56smkujS+KstVP9SOeer0+JKvLdqfDBxUQw4+yMu2Pn9bnVq1jPpr+GGyarOnPXUJbtwWaKxwR2FnTj0FRb0+WHqaVB8PfQf2H/AAAAAsLiZO5dShMVeUw/73fucLUr1UVqfmJ79Pm/9eDzn46NLJ5Itf6Zv7PfVVDJd1927uWLq714LGCpe0LglvgeafnN5/8AMAALB2Sdv2TMfjnqT19dU7S77zL0h07/6dKUmqNe488NWl9rfBBhcXo9n8Ti8uKXi6+qBXtFT7d/URPsss0/ZdB83Prr0ONFYAAABgJKzfvy8801pcfEWDrZ9+UghDyVpZWfg/9uuYAAAQCALQJTTsJTSBi5s+tCDjYay3AAAAMFYAAACMFQAAAIwVAAAAjBUAAABjBQAAAGMFAADAWAEAAMBYAQAAwFgBAAAwVgAAADBWAAAAjBUAAACMFQAAAGMFAAAAYwUAAABjBQAAwFgBAADAWFkBAADOGv4eKwAAABgrAAAAGCsAAADGCgAAAMYKAACAsQIAAICxAgAAYKwAAABgrAAAAGCsAAAAGCsAAAAYKw0AAICxAgAAgLECAACAsQIAAGCsAAAAYKwAAAAYKwAAABgrAAAAxgoAAADGCgAAAMYKAACAsQIAAICxAgAAYKwAAABgrAAAABgrAAAAGCsAAAAYKwAAAMYKAAAAxgoAAICxAgAAgLECAACAsQIAAGCsAAAAYKwAAAAYKwAAABgrAAAAxgoAAADGCgAAAMYKAACAsQIAAICxAgAAYKwAAABgrAAAAGCsAAAAGCsAAAAYKwAAAMYKAAAAxgoAAICxAgAAgLECAACAsQIAAGCsAAAAYKwAAAAYKwAAABgrAAAAGCsAAADGCgAAAMYKAACAsQIAAICxAgAAYKwAAABgrAAAAGCsAAAAGCsAAAAYKwAAAMYKAAAAxgoAAICxAgAAgLECAACAsQIAAGCsAAAAYKwAAAAYKwAAABgrAAAAGCsAAADGCgAAAMYKAACAsQIAAICxAgAAYKwAAABgrAAAAGCsAAAAvD9WAADY7dexAAAAAMAgf+tB7C2LAIwVAAAAjBUAAABjBQAAAGMFAADAWAEAAMBYAQAAwFgBAAAwVgAAADBWAAAAjBUAAACMFQAAAGMFAAAAYwUAAABjBQAAwFgBAADAWAEAADBWAAAAMFYAAAAwVgAAAIwVAAAAjBUAAABjBQAAAGMFAADAWAEAAMBYAQAAwFgBAAAwVgAAADBWAAAAjBUAAACMFQAAAGMFAAAAYwUAAIAzVgAAADBWAAAAMFYAAACMFQAAAIwVAAAAYwUAAABjBQAAwFgBAADAWAEAAMBYAQAAMFYAAAAwVgAAAIwVAAAAjBUAAACMFQAAAGMFAAAAYwUAAMBYAQAAwFgBAAAwVgAAADBWAAAAMFYAAACMFQAAAIwVAAAAYwUAAABjBQAAAGMFAADAWAEAAMBYAQAAMFYAAAAwVgAAAIwVAAAAjBUAAACMFQAAAGMFAAAAYwUAAMBYAQAAwFgBAADAWAEAADBWAAAAMFYAAACMFQAAAIwVAAAAYwUAAABjBQAAAGMFAADAWAEAAMBYAQAAMFYAAAAwVgAAAIwVAAAAjBUAAACMFQAAAGMFAAAAYwUAAMBYAQAAwFgBAADAWAEAADBWAAAAMFYAAACMFQAAAIwVAAAAYwUAAABjBQAAAGMFAADAWAEAAMBYAQAAMFYAAAAwVgAAADBWAAAAjBUAAACMFQAAAGMFAAAAYwUAAMBYAQAAwFgBAADAWAEAADBWAAAAMFYAAACMFQAAAIwVAAAAAgUFWWZZGHp7AAAAAElFTkSuQmCC","type":"image/png","revision":"0","bag":"default"}, - {"title":"C:\\Users\\burga12p\\COMP101\\Labs\\labs_git\\tiddlers\\content\\labs\\lab01\\Images\\drawing3.svg","text":"\u003C?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?>\n\u003Csvg\n xmlns:dc=\"http://purl.org/dc/elements/1.1/\"\n xmlns:cc=\"http://creativecommons.org/ns#\"\n xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\"\n xmlns:svg=\"http://www.w3.org/2000/svg\"\n xmlns=\"http://www.w3.org/2000/svg\"\n xmlns:sodipodi=\"http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd\"\n xmlns:inkscape=\"http://www.inkscape.org/namespaces/inkscape\"\n width=\"341.18021mm\"\n height=\"153.65096mm\"\n viewBox=\"0 0 341.18021 153.65096\"\n version=\"1.1\"\n id=\"svg8\"\n inkscape:version=\"1.0.1 (3bc2e813f5, 2020-09-07)\"\n sodipodi:docname=\"drawing3.svg\">\n \u003Cdefs\n id=\"defs2\" />\n \u003Csodipodi:namedview\n id=\"base\"\n pagecolor=\"#ffffff\"\n bordercolor=\"#666666\"\n borderopacity=\"1.0\"\n inkscape:pageopacity=\"0.0\"\n inkscape:pageshadow=\"2\"\n inkscape:zoom=\"0.35\"\n inkscape:cx=\"644.74999\"\n inkscape:cy=\"290.364\"\n inkscape:document-units=\"mm\"\n inkscape:current-layer=\"layer1\"\n inkscape:document-rotation=\"0\"\n showgrid=\"false\"\n inkscape:window-width=\"1920\"\n inkscape:window-height=\"1017\"\n inkscape:window-x=\"-8\"\n inkscape:window-y=\"-8\"\n inkscape:window-maximized=\"1\" />\n \u003Cmetadata\n id=\"metadata5\">\n \u003Crdf:RDF>\n \u003Ccc:Work\n rdf:about=\"\">\n \u003Cdc:format>image/svg+xml\u003C/dc:format>\n \u003Cdc:type\n rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\" />\n \u003Cdc:title>\u003C/dc:title>\n \u003C/cc:Work>\n \u003C/rdf:RDF>\n \u003C/metadata>\n \u003Cg\n inkscape:label=\"Layer 1\"\n inkscape:groupmode=\"layer\"\n id=\"layer1\"\n transform=\"translate(64.756769,-71.341192)\">\n \u003Cg\n id=\"graph0\"\n transform=\"matrix(0.26458333,0,0,0.26458333,-64.756769,224.99214)\">\n \u003Cpath\n d=\"M 0,0 V -580.728 H 1289.5 V 0 Z\"\n fill=\"#ffffff\"\n id=\"path833\" />\n \u003Cg\n id=\"node1\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n x=\"0\"\n y=\"-4.1999998\"\n id=\"text835\">⎵\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node2\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"37.835899\"\n y=\"-4.1999998\"\n id=\"text838\">Y\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge1\" />\n \u003Cg\n id=\"node3\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"63.835899\"\n y=\"-4.1999998\"\n id=\"text842\">(\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge2\" />\n \u003Cg\n id=\"node4\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"88.835899\"\n y=\"-4.1999998\"\n id=\"text846\">7\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge3\" />\n \u003Cg\n id=\"node5\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"114.836\"\n y=\"-4.1999998\"\n id=\"text850\">9\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge4\" />\n \u003Cg\n id=\"node6\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"143.836\"\n y=\"-4.1999998\"\n id=\"text854\">K\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge5\" />\n \u003Cg\n id=\"node7\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"181.836\"\n y=\"-4.1999998\"\n id=\"text858\">U\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge6\" />\n \u003Cg\n id=\"node8\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"212.836\"\n y=\"-4.1999998\"\n id=\"text862\">M\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge7\" />\n \u003Cg\n id=\"node9\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"239.836\"\n y=\"-4.1999998\"\n id=\"text866\">,\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge8\" />\n \u003Cg\n id=\"node10\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"264.836\"\n y=\"-4.1999998\"\n id=\"text870\">.\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge9\" />\n \u003Cg\n id=\"node11\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"291.836\"\n y=\"-4.1999998\"\n id=\"text874\">H\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge10\" />\n \u003Cg\n id=\"node12\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"320.836\"\n y=\"-4.1999998\"\n id=\"text878\">F\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge11\" />\n \u003Cg\n id=\"node13\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"346.836\"\n y=\"-4.1999998\"\n id=\"text882\">-\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge12\" />\n \u003Cg\n id=\"node14\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"371.836\"\n y=\"-4.1999998\"\n id=\"text886\">'\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge13\" />\n \u003Cg\n id=\"node15\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"397.836\"\n y=\"-4.1999998\"\n id=\"text890\">Z\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge14\" />\n \u003Cg\n id=\"node16\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"423.836\"\n y=\"-4.1999998\"\n id=\"text894\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge15\" />\n \u003Cg\n id=\"node17\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"450.836\"\n y=\"-4.1999998\"\n id=\"text898\">V\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge16\" />\n \u003Cg\n id=\"node18\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"477.836\"\n y=\"-4.1999998\"\n id=\"text902\">A\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge17\" />\n \u003Cg\n id=\"node19\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"504.836\"\n y=\"-4.1999998\"\n id=\"text906\">T\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge18\" />\n \u003Cg\n id=\"node20\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"530.836\"\n y=\"-4.1999998\"\n id=\"text910\">L\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge19\" />\n \u003Cg\n id=\"node21\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"557.836\"\n y=\"-4.1999998\"\n id=\"text914\">P\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge20\" />\n \u003Cg\n id=\"node22\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"585.836\"\n y=\"-4.1999998\"\n id=\"text918\">G\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge21\" />\n \u003Cg\n id=\"node23\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"612.836\"\n y=\"-4.1999998\"\n id=\"text922\">I\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge22\" />\n \u003Cg\n id=\"node24\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"639.836\"\n y=\"-4.1999998\"\n id=\"text926\">D\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge23\" />\n \u003Cg\n id=\"node25\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"670.836\"\n y=\"-4.1999998\"\n id=\"text930\">:\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge24\" />\n \u003Cg\n id=\"node26\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"696.836\"\n y=\"-4.1999998\"\n id=\"text934\">;\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge25\" />\n \u003Cg\n id=\"node27\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"721.836\"\n y=\"-4.1999998\"\n id=\"text938\">!\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge26\" />\n \u003Cg\n id=\"node28\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"746.836\"\n y=\"-4.1999998\"\n id=\"text942\">?\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge27\" />\n \u003Cg\n id=\"node29\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"773.836\"\n y=\"-4.1999998\"\n id=\"text946\">Q\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge28\" />\n \u003Cg\n id=\"node30\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"800.836\"\n y=\"-4.1999998\"\n id=\"text950\">J\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge29\" />\n \u003Cg\n id=\"node31\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"825.836\"\n y=\"-4.1999998\"\n id=\"text954\">2\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge30\" />\n \u003Cg\n id=\"node32\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"851.836\"\n y=\"-4.1999998\"\n id=\"text958\">3\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge31\" />\n \u003Cg\n id=\"node33\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"877.836\"\n y=\"-4.1999998\"\n id=\"text962\">8\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge32\" />\n \u003Cg\n id=\"node34\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"904.836\"\n y=\"-4.1999998\"\n id=\"text966\">X\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge33\" />\n \u003Cg\n id=\"node35\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"931.836\"\n y=\"-4.1999998\"\n id=\"text970\">5\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge34\" />\n \u003Cg\n id=\"node36\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"959.836\"\n y=\"-4.1999998\"\n id=\"text974\">W\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge35\" />\n \u003Cg\n id=\"node37\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"989.836\"\n y=\"-4.1999998\"\n id=\"text978\">N\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge36\" />\n \u003Cg\n id=\"node38\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"1017.84\"\n y=\"-4.1999998\"\n id=\"text982\">O\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge37\" />\n \u003Cg\n id=\"node39\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"1045.84\"\n y=\"-4.1999998\"\n id=\"text986\">R\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge38\" />\n \u003Cg\n id=\"node40\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"1073.84\"\n y=\"-4.1999998\"\n id=\"text990\">C\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge39\" />\n \u003Cg\n id=\"node41\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"1101.84\"\n y=\"-4.1999998\"\n id=\"text994\">B\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge40\" />\n \u003Cg\n id=\"node42\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"1128.84\"\n y=\"-4.1999998\"\n id=\"text998\">4\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge41\" />\n \u003Cg\n id=\"node43\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"1153.84\"\n y=\"-4.1999998\"\n id=\"text1002\">"\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge42\" />\n \u003Cg\n id=\"node44\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"1178.84\"\n y=\"-4.1999998\"\n id=\"text1006\">6\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge43\" />\n \u003Cg\n id=\"node45\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"1203.84\"\n y=\"-4.1999998\"\n id=\"text1010\">)\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge44\" />\n \u003Cg\n id=\"node46\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"1228.84\"\n y=\"-4.1999998\"\n id=\"text1014\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge45\" />\n \u003Cg\n id=\"node47\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"1255.84\"\n y=\"-4.1999998\"\n id=\"text1018\">S\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge46\" />\n \u003Cg\n id=\"node48\">\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"14px\"\n text-anchor=\"middle\"\n x=\"1284.84\"\n y=\"-4.1999998\"\n id=\"text1022\">E\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge47\" />\n \u003Cg\n id=\"node49\">\n \u003Ccircle\n cx=\"773.836\"\n cy=\"-572.29999\"\n stroke=\"#000000\"\n id=\"ellipse1026\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"node50\">\n \u003Ccircle\n cx=\"531.836\"\n cy=\"-400.29999\"\n stroke=\"#000000\"\n id=\"ellipse1029\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge48\">\n \u003Cpath\n d=\"m 770.776,-570.125 c -25.433,18.076 -201.638,143.313 -233.88,166.229\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1032\" />\n \u003Cpath\n d=\"m 537.372,-403.161 -2.545,0.735 1.531,-2.162 z\"\n stroke=\"#000000\"\n id=\"path1034\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"760.94098\"\n y=\"-565.02002\"\n id=\"text1036\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node72\">\n \u003Ccircle\n cx=\"1005.84\"\n cy=\"-529.29999\"\n stroke=\"#000000\"\n id=\"ellipse1039\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge93\">\n \u003Cpath\n d=\"m 777.48,-571.625 c 26.465,4.906 189.07,35.044 222.393,41.22\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1042\" />\n \u003Cpath\n d=\"m 1000.07,-531.258 2.3,1.316 -2.617,0.404 z\"\n stroke=\"#000000\"\n id=\"path1044\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"787.16199\"\n y=\"-570.828\"\n id=\"text1046\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node51\">\n \u003Ccircle\n cx=\"258.836\"\n cy=\"-357.29999\"\n stroke=\"#000000\"\n id=\"ellipse1049\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge49\">\n \u003Cpath\n d=\"m 527.977,-399.692 c -29.879,4.706 -224.179,35.31 -262.561,41.356\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1052\" />\n \u003Cpath\n d=\"m 265.161,-357.411 -2.605,-0.475 2.333,-1.253 z\"\n stroke=\"#000000\"\n id=\"path1054\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"518.36603\"\n y=\"-399.15701\"\n id=\"text1056\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node67\">\n \u003Ccircle\n cx=\"531.836\"\n cy=\"-185.3\"\n stroke=\"#000000\"\n id=\"ellipse1059\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge82\">\n \u003Cpath\n d=\"m 531.836,-396.695 c 0,11.815 0,50.444 0,82.395 0,0 0,0 0,43 0,29.954 0,65.778 0,79.874\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1062\" />\n \u003Cpath\n d=\"m 532.711,-191.405 -0.875,2.5 -0.875,-2.5 z\"\n stroke=\"#000000\"\n id=\"path1064\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"536.06201\"\n y=\"-384.332\"\n id=\"text1066\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge50\">\n \u003Cpath\n d=\"m 255.231,-356.909 c -30.994,3.459 -251.3951,30.011 -251.3951,85.609 0,0 0,0 0,172 0,28.6499 1.0053,62.3668 1.5904,79.5648\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1069\" />\n \u003Cpath\n d=\"m 6.3116,-19.4492 -0.7882,2.5287 -0.9607,-2.4683 z\"\n stroke=\"#000000\"\n id=\"path1071\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"245.73199\"\n y=\"-356.733\"\n id=\"text1073\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node52\">\n \u003Ccircle\n cx=\"258.836\"\n cy=\"-314.29999\"\n stroke=\"#000000\"\n id=\"ellipse1076\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge51\">\n \u003Cpath\n d=\"m 258.836,-353.634 c 0,7.362 0,24.017 0,33.115\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1079\" />\n \u003Cpath\n d=\"m 259.711,-320.457 -0.875,2.5 -0.875,-2.5 z\"\n stroke=\"#000000\"\n id=\"path1081\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"263.06201\"\n y=\"-341.271\"\n id=\"text1083\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node53\">\n \u003Ccircle\n cx=\"232.836\"\n cy=\"-271.29999\"\n stroke=\"#000000\"\n id=\"ellipse1086\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge52\">\n \u003Cpath\n d=\"m 256.966,-311.207 c -4.305,7.12 -14.977,24.769 -20.574,34.026\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1089\" />\n \u003Cpath\n d=\"m 236.873,-276.285 -2.043,1.687 0.545,-2.592 z\"\n stroke=\"#000000\"\n id=\"path1091\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"248.66\"\n y=\"-302.33899\"\n id=\"text1093\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node61\">\n \u003Ccircle\n cx=\"283.836\"\n cy=\"-271.29999\"\n stroke=\"#000000\"\n id=\"ellipse1096\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge69\">\n \u003Cpath\n d=\"m 260.634,-311.207 c 4.139,7.12 14.401,24.769 19.783,34.026\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1099\" />\n \u003Cpath\n d=\"m 281.418,-277.199 0.5,2.601 -2.013,-1.722 z\"\n stroke=\"#000000\"\n id=\"path1101\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"268.84299\"\n y=\"-302.19699\"\n id=\"text1103\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node54\">\n \u003Ccircle\n cx=\"181.836\"\n cy=\"-228.3\"\n stroke=\"#000000\"\n id=\"ellipse1106\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge53\">\n \u003Cpath\n d=\"m 230.094,-268.988 c -8.224,6.934 -32.766,27.626 -43.331,36.534\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1109\" />\n \u003Cpath\n d=\"m 187.32,-231.78 -2.475,0.943 1.348,-2.281 z\"\n stroke=\"#000000\"\n id=\"path1111\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"220.44099\"\n y=\"-263.077\"\n id=\"text1113\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node59\">\n \u003Ccircle\n cx=\"232.836\"\n cy=\"-99.300003\"\n stroke=\"#000000\"\n id=\"ellipse1116\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge64\">\n \u003Cpath\n d=\"m 232.836,-267.707 c 0,21.597 0,134.182 0,162.125\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1119\" />\n \u003Cpath\n d=\"m 233.711,-105.373 -0.875,2.5 -0.875,-2.5 z\"\n stroke=\"#000000\"\n id=\"path1121\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"237.062\"\n y=\"-255.345\"\n id=\"text1123\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge63\">\n \u003Cpath\n d=\"m 181.836,-224.695 c 0,11.815 0,50.444 0,82.395 0,0 0,0 0,43 0,28.643 0,62.3628 0,79.563\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1126\" />\n \u003Cpath\n d=\"m 182.711,-19.4218 -0.875,2.4999 -0.875,-2.5 z\"\n stroke=\"#000000\"\n id=\"path1128\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"186.062\"\n y=\"-212.332\"\n id=\"text1130\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node55\">\n \u003Ccircle\n cx=\"124.836\"\n cy=\"-185.3\"\n stroke=\"#000000\"\n id=\"ellipse1133\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge54\">\n \u003Cpath\n d=\"m 178.771,-225.988 c -9.365,7.065 -37.662,28.412 -49.08,37.025\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1136\" />\n \u003Cpath\n d=\"m 130.166,-188.225 -2.523,0.807 1.469,-2.204 z\"\n stroke=\"#000000\"\n id=\"path1138\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"168.991\"\n y=\"-220.604\"\n id=\"text1140\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge55\">\n \u003Cpath\n d=\"m 122.989,-181.839 c -7.801,14.651 -38.7237,73.058 -62.1531,122.039 -6.6113,13.8214 -13.7476,29.9834 -18.2884,40.4405\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1143\" />\n \u003Cpath\n d=\"m 43.2478,-18.7748 -1.7969,1.946 0.1911,-2.6418 z\"\n stroke=\"#000000\"\n id=\"path1145\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"115.005\"\n y=\"-172.517\"\n id=\"text1147\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node56\">\n \u003Ccircle\n cx=\"124.836\"\n cy=\"-142.3\"\n stroke=\"#000000\"\n id=\"ellipse1150\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge56\">\n \u003Cpath\n d=\"m 124.836,-181.634 c 0,7.362 0,24.017 0,33.115\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1153\" />\n \u003Cpath\n d=\"m 125.711,-148.457 -0.875,2.5 -0.875,-2.5 z\"\n stroke=\"#000000\"\n id=\"path1155\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"129.062\"\n y=\"-169.271\"\n id=\"text1157\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge62\">\n \u003Cpath\n d=\"m 125.344,-138.719 c 2.424,17.083 12.86,90.6298 16.893,119.0499\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1160\" />\n \u003Cpath\n d=\"m 143.122,-19.6613 -0.515,2.5982 -1.218,-2.3522 z\"\n stroke=\"#000000\"\n id=\"path1162\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"130.802\"\n y=\"-127.039\"\n id=\"text1164\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node57\">\n \u003Ccircle\n cx=\"105.836\"\n cy=\"-99.300003\"\n stroke=\"#000000\"\n id=\"ellipse1167\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge57\">\n \u003Cpath\n d=\"m 123.345,-138.926 c -3.235,7.321 -10.929,24.734 -14.954,33.845\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1170\" />\n \u003Cpath\n d=\"m 109.079,-104.474 -1.811,1.933 0.21,-2.64 z\"\n stroke=\"#000000\"\n id=\"path1172\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"115.816\"\n y=\"-129.04401\"\n id=\"text1174\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge61\">\n \u003Cpath\n d=\"m 106.223,-95.3941 c 1.289,13.0204 5.472,55.2725 7.496,75.7133\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1177\" />\n \u003Cpath\n d=\"m 114.626,-19.4034 -0.625,2.5741 -1.117,-2.4016 z\"\n stroke=\"#000000\"\n id=\"path1179\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"111.321\"\n y=\"-83.4916\"\n id=\"text1181\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node58\">\n \u003Ccircle\n cx=\"73.835899\"\n cy=\"-56.299999\"\n stroke=\"#000000\"\n id=\"ellipse1184\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge58\">\n \u003Cpath\n d=\"m 103.736,-96.4786 c -5.3321,7.1654 -19.4515,26.1383 -26.2029,35.2105\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1187\" />\n \u003Cpath\n d=\"m 78.1797,-60.6713 -2.1945,1.4832 0.7906,-2.528 z\"\n stroke=\"#000000\"\n id=\"path1189\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"94.935204\"\n y=\"-88.431\"\n id=\"text1191\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge59\">\n \u003Cpath\n d=\"M 73.1167,-52.8552 C 71.68,-45.9733 68.4,-30.262 66.1507,-19.488\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1194\" />\n \u003Cpath\n d=\"m 66.9703,-19.132 -1.3675,2.2684 -0.3455,-2.6261 z\"\n stroke=\"#000000\"\n id=\"path1196\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"67.127602\"\n y=\"-41.547001\"\n id=\"text1198\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge60\">\n \u003Cpath\n d=\"m 74.9147,-52.8552 c 2.155,6.8819 7.0751,22.5932 10.449,33.3672\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1201\" />\n \u003Cpath\n d=\"m 86.2733,-19.5109 -0.0878,2.6473 -1.5822,-2.1243 z\"\n stroke=\"#000000\"\n id=\"path1203\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"81.656097\"\n y=\"-42.169201\"\n id=\"text1205\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge65\">\n \u003Cpath\n d=\"m 232.076,-95.8476 c -2.745,12.4765 -12.228,55.5784 -16.773,76.2361\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1208\" />\n \u003Cpath\n d=\"m 216.113,-19.2231 -1.392,2.2535 -0.317,-2.6296 z\"\n stroke=\"#000000\"\n id=\"path1210\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"226.00101\"\n y=\"-84.604401\"\n id=\"text1212\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node60\">\n \u003Ccircle\n cx=\"251.836\"\n cy=\"-56.299999\"\n stroke=\"#000000\"\n id=\"ellipse1215\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge66\">\n \u003Cpath\n d=\"m 234.327,-95.9259 c 3.234,7.3205 10.929,24.7337 14.954,33.8445\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1218\" />\n \u003Cpath\n d=\"m 250.194,-62.1812 0.21,2.6404 -1.811,-1.9331 z\"\n stroke=\"#000000\"\n id=\"path1220\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"241.855\"\n y=\"-86.044098\"\n id=\"text1222\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge67\">\n \u003Cpath\n d=\"m 250.973,-52.8552 c -1.724,6.8819 -5.66,22.5932 -8.359,33.3672\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1225\" />\n \u003Cpath\n d=\"m 243.413,-19.076 -1.457,2.2124 -0.241,-2.6377 z\"\n stroke=\"#000000\"\n id=\"path1227\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"244.67101\"\n y=\"-41.790798\"\n id=\"text1229\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge68\">\n \u003Cpath\n d=\"m 252.771,-52.8552 c 1.868,6.8819 6.132,22.5932 9.056,33.3672\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1232\" />\n \u003Cpath\n d=\"m 262.728,-19.5055 -0.189,2.6419 -1.499,-2.1835 z\"\n stroke=\"#000000\"\n id=\"path1234\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"259.22299\"\n y=\"-41.915401\"\n id=\"text1236\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge70\">\n \u003Cpath\n d=\"m 283.836,-267.695 c 0,11.815 0,50.444 0,82.395 0,0 0,0 0,86 0,28.7537 4.021,62.4272 6.362,79.5911\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1239\" />\n \u003Cpath\n d=\"m 291.11,-19.4962 -0.524,2.5963 -1.209,-2.3567 z\"\n stroke=\"#000000\"\n id=\"path1241\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"279.60999\"\n y=\"-255.332\"\n id=\"text1243\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node62\">\n \u003Ccircle\n cx=\"321.836\"\n cy=\"-228.3\"\n stroke=\"#000000\"\n id=\"ellipse1246\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge71\">\n \u003Cpath\n d=\"m 286.329,-268.479 c 6.332,7.166 23.099,26.139 31.116,35.211\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1249\" />\n \u003Cpath\n d=\"m 318.284,-233.641 1,2.453 -2.312,-1.294 z\"\n stroke=\"#000000\"\n id=\"path1251\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"295.49799\"\n y=\"-261.186\"\n id=\"text1253\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge72\">\n \u003Cpath\n d=\"m 321.836,-224.695 c 0,11.815 0,50.444 0,82.395 0,0 0,0 0,43 0,28.6447 -0.503,62.3638 -0.795,79.5634\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1256\" />\n \u003Cpath\n d=\"m 321.91,-19.406 -0.918,2.4845 -0.832,-2.5148 z\"\n stroke=\"#000000\"\n id=\"path1258\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"317.60999\"\n y=\"-212.332\"\n id=\"text1260\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node63\">\n \u003Ccircle\n cx=\"407.836\"\n cy=\"-185.3\"\n stroke=\"#000000\"\n id=\"ellipse1263\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge73\">\n \u003Cpath\n d=\"m 325.102,-226.667 c 12.878,6.439 60.24,30.12 76.895,38.448\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1266\" />\n \u003Cpath\n d=\"m 402.722,-188.835 1.844,1.9 -2.627,-0.335 z\"\n stroke=\"#000000\"\n id=\"path1268\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"335.099\"\n y=\"-223.09399\"\n id=\"text1270\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge81\">\n \u003Cpath\n d=\"m 409.183,-181.635 c 2.515,6.93 8.003,22.463 11.653,35.835 12.665,46.4005 23.602,102.7494 27.972,126.2609\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1273\" />\n \u003Cpath\n d=\"m 449.713,-19.455 -0.405,2.6175 -1.316,-2.299 z\"\n stroke=\"#000000\"\n id=\"path1275\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"416.233\"\n y=\"-171.244\"\n id=\"text1277\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node64\">\n \u003Ccircle\n cx=\"407.836\"\n cy=\"-142.3\"\n stroke=\"#000000\"\n id=\"ellipse1280\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge74\">\n \u003Cpath\n d=\"m 407.836,-181.634 c 0,7.362 0,24.017 0,33.115\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1283\" />\n \u003Cpath\n d=\"m 408.711,-148.457 -0.875,2.5 -0.875,-2.5 z\"\n stroke=\"#000000\"\n id=\"path1285\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"403.60999\"\n y=\"-169.271\"\n id=\"text1287\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge80\">\n \u003Cpath\n d=\"m 408.264,-138.719 c 2.041,17.083 10.829,90.6298 14.225,119.0499\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1290\" />\n \u003Cpath\n d=\"m 423.373,-19.6493 -0.572,2.5862 -1.166,-2.3785 z\"\n stroke=\"#000000\"\n id=\"path1292\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"413.53601\"\n y=\"-126.921\"\n id=\"text1294\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node65\">\n \u003Ccircle\n cx=\"391.836\"\n cy=\"-99.300003\"\n stroke=\"#000000\"\n id=\"ellipse1297\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge75\">\n \u003Cpath\n d=\"m 406.58,-138.926 c -2.67,7.177 -8.95,24.055 -12.39,33.299\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1300\" />\n \u003Cpath\n d=\"m 394.913,-105.06 -1.692,2.038 0.052,-2.648 z\"\n stroke=\"#000000\"\n id=\"path1302\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"399.45901\"\n y=\"-128.606\"\n id=\"text1304\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge76\">\n \u003Cpath\n d=\"m 390.127,-95.8476 c -6.356,12.8391 -28.767,58.1093 -38.604,77.9788\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1307\" />\n \u003Cpath\n d=\"m 352.281,-17.4277 -1.893,1.8522 0.325,-2.6287 z\"\n stroke=\"#000000\"\n id=\"path1309\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"382.31799\"\n y=\"-86.300301\"\n id=\"text1311\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node66\">\n \u003Ccircle\n cx=\"391.836\"\n cy=\"-56.299999\"\n stroke=\"#000000\"\n id=\"ellipse1314\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge77\">\n \u003Cpath\n d=\"m 391.836,-95.6338 c 0,7.3622 0,24.0165 0,33.1146\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1317\" />\n \u003Cpath\n d=\"m 392.711,-62.4568 -0.875,2.4999 -0.875,-2.5 z\"\n stroke=\"#000000\"\n id=\"path1319\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"396.06201\"\n y=\"-83.270798\"\n id=\"text1321\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge78\">\n \u003Cpath\n d=\"m 390.397,-52.8552 c -2.897,6.9402 -9.544,22.8601 -14.045,33.64\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1324\" />\n \u003Cpath\n d=\"m 377.141,-18.8334 -1.771,1.9698 0.156,-2.6442 z\"\n stroke=\"#000000\"\n id=\"path1326\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"383.00601\"\n y=\"-42.820202\"\n id=\"text1328\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge79\">\n \u003Cpath\n d=\"m 392.307,-52.5414 c 0.886,7.0754 2.832,22.6145 4.163,33.2329\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1331\" />\n \u003Cpath\n d=\"m 397.351,-19.3124 -0.558,2.5894 -1.179,-2.3719 z\"\n stroke=\"#000000\"\n id=\"path1333\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"397.62701\"\n y=\"-40.7738\"\n id=\"text1335\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node68\">\n \u003Ccircle\n cx=\"498.836\"\n cy=\"-56.299999\"\n stroke=\"#000000\"\n id=\"ellipse1338\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge83\">\n \u003Cpath\n d=\"m 530.953,-181.85 c -4.491,17.558 -24.819,97.0219 -30.587,119.569\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1341\" />\n \u003Cpath\n d=\"m 501.204,-62.0267 -1.467,2.2052 -0.228,-2.6389 z\"\n stroke=\"#000000\"\n id=\"path1343\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"524.61298\"\n y=\"-170.817\"\n id=\"text1345\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node69\">\n \u003Ccircle\n cx=\"554.836\"\n cy=\"-142.3\"\n stroke=\"#000000\"\n id=\"ellipse1348\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge86\">\n \u003Cpath\n d=\"m 533.49,-182.208 c 3.809,7.121 13.249,24.77 18.2,34.027\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1351\" />\n \u003Cpath\n d=\"m 552.664,-148.215 0.408,2.617 -1.951,-1.792 z\"\n stroke=\"#000000\"\n id=\"path1353\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"541.49103\"\n y=\"-172.909\"\n id=\"text1355\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge84\">\n \u003Cpath\n d=\"m 497.326,-52.8552 c -3.043,6.9402 -10.023,22.8601 -14.749,33.64\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1358\" />\n \u003Cpath\n d=\"m 483.352,-18.8019 -1.805,1.9383 0.202,-2.641 z\"\n stroke=\"#000000\"\n id=\"path1360\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"489.81601\"\n y=\"-42.951599\"\n id=\"text1362\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge85\">\n \u003Cpath\n d=\"m 499.307,-52.5414 c 0.886,7.0754 2.832,22.6145 4.163,33.2329\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1365\" />\n \u003Cpath\n d=\"m 504.351,-19.3124 -0.558,2.5894 -1.179,-2.3719 z\"\n stroke=\"#000000\"\n id=\"path1367\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"504.62701\"\n y=\"-40.7738\"\n id=\"text1369\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge92\">\n \u003Cpath\n d=\"m 556.27,-138.99 c 7.199,16.62 39.543,91.2898 51.819,119.632\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1372\" />\n \u003Cpath\n d=\"m 609.022,-19.4052 0.191,2.6418 -1.796,-1.9462 z\"\n stroke=\"#000000\"\n id=\"path1374\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"563.75\"\n y=\"-129.054\"\n id=\"text1376\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node70\">\n \u003Ccircle\n cx=\"554.836\"\n cy=\"-99.300003\"\n stroke=\"#000000\"\n id=\"ellipse1379\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge87\">\n \u003Cpath\n d=\"m 554.836,-138.634 c 0,7.362 0,24.017 0,33.115\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1382\" />\n \u003Cpath\n d=\"m 555.711,-105.457 -0.875,2.5 -0.875,-2.5 z\"\n stroke=\"#000000\"\n id=\"path1384\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"550.60999\"\n y=\"-126.271\"\n id=\"text1386\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge88\">\n \u003Cpath\n d=\"m 553.924,-95.8476 c -3.294,12.4765 -14.674,55.5784 -20.128,76.2361\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1389\" />\n \u003Cpath\n d=\"m 534.583,-19.1633 -1.484,2.1937 -0.208,-2.6405 z\"\n stroke=\"#000000\"\n id=\"path1391\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"547.52502\"\n y=\"-84.863701\"\n id=\"text1393\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node71\">\n \u003Ccircle\n cx=\"562.836\"\n cy=\"-56.299999\"\n stroke=\"#000000\"\n id=\"ellipse1396\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge89\">\n \u003Cpath\n d=\"m 555.518,-95.6338 c 1.37,7.3622 4.468,24.0165 6.161,33.1146\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1399\" />\n \u003Cpath\n d=\"m 562.558,-62.5748 -0.402,2.6179 -1.318,-2.2977 z\"\n stroke=\"#000000\"\n id=\"path1401\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"561.33099\"\n y=\"-84.196701\"\n id=\"text1403\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge90\">\n \u003Cpath\n d=\"m 562.444,-52.5414 c -0.739,7.0754 -2.361,22.6145 -3.469,33.2329\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1406\" />\n \u003Cpath\n d=\"m 559.835,-19.1186 -1.13,2.3956 -0.611,-2.5774 z\"\n stroke=\"#000000\"\n id=\"path1408\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"557.29901\"\n y=\"-40.666\"\n id=\"text1410\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge91\">\n \u003Cpath\n d=\"m 564.49,-52.8552 c 3.332,6.9402 10.977,22.8601 16.153,33.64\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1413\" />\n \u003Cpath\n d=\"m 581.479,-19.496 0.293,2.6324 -1.871,-1.8749 z\"\n stroke=\"#000000\"\n id=\"path1415\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"572.22302\"\n y=\"-43.214401\"\n id=\"text1417\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node73\">\n \u003Ccircle\n cx=\"1005.84\"\n cy=\"-486.29999\"\n stroke=\"#000000\"\n id=\"ellipse1420\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge94\">\n \u003Cpath\n d=\"m 1005.84,-525.634 c 0,7.362 0,24.017 0,33.115\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1423\" />\n \u003Cpath\n d=\"m 1006.71,-492.457 -0.87,2.5 -0.88,-2.5 z\"\n stroke=\"#000000\"\n id=\"path1425\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"1001.61\"\n y=\"-513.271\"\n id=\"text1427\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node88\">\n \u003Ccircle\n cx=\"1193.84\"\n cy=\"-314.29999\"\n stroke=\"#000000\"\n id=\"ellipse1430\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge125\">\n \u003Cpath\n d=\"m 1009.41,-528.093 c 17.17,6.052 90.43,34.804 90.43,84.793 0,0 0,0 0,43 0,47.841 67.1,76.231 87.91,83.887\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1433\" />\n \u003Cpath\n d=\"m 1188.21,-317.178 2.06,1.671 -2.65,-0.024 z\"\n stroke=\"#000000\"\n id=\"path1435\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"1019.37\"\n y=\"-525.59302\"\n id=\"text1437\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node74\">\n \u003Ccircle\n cx=\"986.836\"\n cy=\"-443.29999\"\n stroke=\"#000000\"\n id=\"ellipse1440\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge95\">\n \u003Cpath\n d=\"m 1004.34,-482.926 c -3.23,7.321 -10.924,24.734 -14.949,33.845\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1443\" />\n \u003Cpath\n d=\"m 990.079,-448.474 -1.811,1.933 0.21,-2.64 z\"\n stroke=\"#000000\"\n id=\"path1445\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"996.81598\"\n y=\"-473.04401\"\n id=\"text1447\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node87\">\n \u003Ccircle\n cx=\"1024.84\"\n cy=\"-56.299999\"\n stroke=\"#000000\"\n id=\"ellipse1450\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge122\">\n \u003Cpath\n d=\"m 1007.2,-482.757 c 4.36,11.624 17.64,49.735 17.64,82.457 0,0 0,0 0,258 0,29.954 0,65.7776 0,79.8738\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1453\" />\n \u003Cpath\n d=\"m 1025.71,-62.4048 -0.87,2.5 -0.88,-2.5001 z\"\n stroke=\"#000000\"\n id=\"path1455\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"1014.28\"\n y=\"-472.39401\"\n id=\"text1457\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge121\">\n \u003Cpath\n d=\"m 986.836,-439.695 c 0,11.815 0,50.444 0,82.395 0,0 0,0 0,258 0,28.6586 1.508,62.3719 2.386,79.567\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1460\" />\n \u003Cpath\n d=\"m 990.112,-19.4607 -0.745,2.5419 -1.003,-2.4514 z\"\n stroke=\"#000000\"\n id=\"path1462\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"991.06201\"\n y=\"-427.332\"\n id=\"text1464\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node75\">\n \u003Ccircle\n cx=\"919.836\"\n cy=\"-400.29999\"\n stroke=\"#000000\"\n id=\"ellipse1467\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge96\">\n \u003Cpath\n d=\"m 983.604,-441.226 c -10.684,6.857 -44.952,28.85 -58.338,37.441\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1470\" />\n \u003Cpath\n d=\"m 925.457,-402.868 -2.576,0.614 1.631,-2.087 z\"\n stroke=\"#000000\"\n id=\"path1472\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"973.69397\"\n y=\"-436.58701\"\n id=\"text1474\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge97\">\n \u003Cpath\n d=\"m 916.207,-400.035 c -33.223,2.522 -283.371,23.577 -283.371,85.735 0,0 0,0 0,215 0,28.7278 3.518,62.4122 5.567,79.5846\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1477\" />\n \u003Cpath\n d=\"m 639.311,-19.492 -0.569,2.5869 -1.169,-2.3769 z\"\n stroke=\"#000000\"\n id=\"path1479\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"906.82397\"\n y=\"-400.19299\"\n id=\"text1481\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node76\">\n \u003Ccircle\n cx=\"919.836\"\n cy=\"-357.29999\"\n stroke=\"#000000\"\n id=\"ellipse1484\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge98\">\n \u003Cpath\n d=\"m 919.836,-396.634 c 0,7.362 0,24.017 0,33.115\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1487\" />\n \u003Cpath\n d=\"m 920.711,-363.457 -0.875,2.5 -0.875,-2.5 z\"\n stroke=\"#000000\"\n id=\"path1489\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"924.06201\"\n y=\"-384.271\"\n id=\"text1491\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge120\">\n \u003Cpath\n d=\"m 921.476,-354.117 c 5.562,11.097 23.36,49.232 23.36,82.817 0,0 0,0 0,172 0,29.0303 7.54,62.5882 11.928,79.6614\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1494\" />\n \u003Cpath\n d=\"m 957.708,-19.4849 -0.216,2.6399 -1.477,-2.1986 z\"\n stroke=\"#000000\"\n id=\"path1496\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"929.25\"\n y=\"-344.526\"\n id=\"text1498\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node77\">\n \u003Ccircle\n cx=\"895.836\"\n cy=\"-314.29999\"\n stroke=\"#000000\"\n id=\"ellipse1501\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge99\">\n \u003Cpath\n d=\"m 918.11,-354.207 c -3.974,7.12 -13.825,24.769 -18.992,34.026\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1504\" />\n \u003Cpath\n d=\"m 899.659,-319.355 -1.982,1.757 0.454,-2.61 z\"\n stroke=\"#000000\"\n id=\"path1506\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"910.00299\"\n y=\"-345.05301\"\n id=\"text1508\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node78\">\n \u003Ccircle\n cx=\"848.836\"\n cy=\"-271.29999\"\n stroke=\"#000000\"\n id=\"ellipse1511\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge100\">\n \u003Cpath\n d=\"m 893.037,-311.739 c -7.79,7.127 -29.785,27.25 -39.495,36.133\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1514\" />\n \u003Cpath\n d=\"m 853.997,-274.836 -2.435,1.042 1.254,-2.333 z\"\n stroke=\"#000000\"\n id=\"path1516\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"883.49701\"\n y=\"-305.439\"\n id=\"text1518\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node84\">\n \u003Ccircle\n cx=\"895.836\"\n cy=\"-99.300003\"\n stroke=\"#000000\"\n id=\"ellipse1521\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge113\">\n \u003Cpath\n d=\"m 895.836,-310.695 c 0,11.815 0,50.444 0,82.395 0,0 0,0 0,43 0,29.954 0,65.778 0,79.874\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1524\" />\n \u003Cpath\n d=\"m 896.711,-105.405 -0.875,2.5 -0.875,-2.5 z\"\n stroke=\"#000000\"\n id=\"path1526\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"900.06201\"\n y=\"-298.332\"\n id=\"text1528\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge112\">\n \u003Cpath\n d=\"m 848.836,-267.695 c 0,11.815 0,50.444 0,82.395 0,0 0,0 0,86 0,29.7898 -11.753,63.4395 -18.456,80.2081\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1531\" />\n \u003Cpath\n d=\"m 831.178,-18.7322 -1.748,1.9894 0.126,-2.6457 z\"\n stroke=\"#000000\"\n id=\"path1533\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"853.06201\"\n y=\"-255.332\"\n id=\"text1535\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node79\">\n \u003Ccircle\n cx=\"810.836\"\n cy=\"-228.3\"\n stroke=\"#000000\"\n id=\"ellipse1538\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge101\">\n \u003Cpath\n d=\"m 846.343,-268.479 c -6.333,7.166 -23.099,26.139 -31.117,35.211\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1541\" />\n \u003Cpath\n d=\"m 815.699,-232.482 -2.311,1.294 1,-2.453 z\"\n stroke=\"#000000\"\n id=\"path1543\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"837.17401\"\n y=\"-261.186\"\n id=\"text1545\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge111\">\n \u003Cpath\n d=\"m 810.836,-224.695 c 0,11.815 0,50.444 0,82.395 0,0 0,0 0,43 0,28.8158 -5.027,62.4634 -7.952,79.6069\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1548\" />\n \u003Cpath\n d=\"m 803.687,-19.2019 -1.289,2.3143 -0.436,-2.6126 z\"\n stroke=\"#000000\"\n id=\"path1550\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"815.06201\"\n y=\"-212.332\"\n id=\"text1552\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node80\">\n \u003Ccircle\n cx=\"772.836\"\n cy=\"-185.3\"\n stroke=\"#000000\"\n id=\"ellipse1555\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge102\">\n \u003Cpath\n d=\"m 808.343,-225.479 c -6.333,7.166 -23.099,26.139 -31.117,35.211\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1558\" />\n \u003Cpath\n d=\"m 777.699,-189.482 -2.311,1.294 1,-2.453 z\"\n stroke=\"#000000\"\n id=\"path1560\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"799.17401\"\n y=\"-218.186\"\n id=\"text1562\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge110\">\n \u003Cpath\n d=\"m 772.857,-181.605 c 0.119,21.137 0.718,127.0178 0.916,161.9812\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1565\" />\n \u003Cpath\n d=\"m 774.649,-19.3516 -0.861,2.505 -0.889,-2.495 z\"\n stroke=\"#000000\"\n id=\"path1567\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"777.13397\"\n y=\"-169.26601\"\n id=\"text1569\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node81\">\n \u003Ccircle\n cx=\"724.836\"\n cy=\"-142.3\"\n stroke=\"#000000\"\n id=\"ellipse1572\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge103\">\n \u003Cpath\n d=\"m 769.977,-182.739 c -7.956,7.127 -30.418,27.25 -40.334,36.133\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1575\" />\n \u003Cpath\n d=\"m 730.066,-145.81 -2.446,1.016 1.278,-2.32 z\"\n stroke=\"#000000\"\n id=\"path1577\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"760.40698\"\n y=\"-176.539\"\n id=\"text1579\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge104\">\n \u003Cpath\n d=\"m 723.501,-138.99 c -6.702,16.62 -36.816,91.2898 -48.246,119.632\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1582\" />\n \u003Cpath\n d=\"m 675.955,-18.7547 -1.746,1.9913 0.123,-2.6458 z\"\n stroke=\"#000000\"\n id=\"path1584\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"716.19202\"\n y=\"-128.86501\"\n id=\"text1586\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node82\">\n \u003Ccircle\n cx=\"724.836\"\n cy=\"-99.300003\"\n stroke=\"#000000\"\n id=\"ellipse1589\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge105\">\n \u003Cpath\n d=\"m 724.836,-138.634 c 0,7.362 0,24.017 0,33.115\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1592\" />\n \u003Cpath\n d=\"m 725.711,-105.457 -0.875,2.5 -0.875,-2.5 z\"\n stroke=\"#000000\"\n id=\"path1594\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"729.06201\"\n y=\"-126.271\"\n id=\"text1596\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge106\">\n \u003Cpath\n d=\"m 723.773,-95.8476 c -3.859,12.5275 -17.229,55.9308 -23.561,76.4879\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1599\" />\n \u003Cpath\n d=\"m 701.048,-19.1012 -1.572,2.1316 -0.101,-2.6468 z\"\n stroke=\"#000000\"\n id=\"path1601\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"717.06598\"\n y=\"-85.130203\"\n id=\"text1603\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node83\">\n \u003Ccircle\n cx=\"740.836\"\n cy=\"-56.299999\"\n stroke=\"#000000\"\n id=\"ellipse1606\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge107\">\n \u003Cpath\n d=\"m 726.091,-95.9259 c 2.671,7.177 8.951,24.0547 12.391,33.2992\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1609\" />\n \u003Cpath\n d=\"m 739.399,-62.6703 0.052,2.6483 -1.692,-2.0379 z\"\n stroke=\"#000000\"\n id=\"path1611\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"733.21301\"\n y=\"-85.605598\"\n id=\"text1613\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge108\">\n \u003Cpath\n d=\"m 739.469,-52.8552 c -2.752,6.9402 -9.067,22.8601 -13.343,33.64\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1616\" />\n \u003Cpath\n d=\"m 726.928,-18.8648 -1.735,2.0012 0.109,-2.6465 z\"\n stroke=\"#000000\"\n id=\"path1618\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"732.19897\"\n y=\"-42.6889\"\n id=\"text1620\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge109\">\n \u003Cpath\n d=\"m 741.307,-52.5414 c 0.886,7.0754 2.832,22.6145 4.162,33.2329\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1623\" />\n \u003Cpath\n d=\"m 746.351,-19.3124 -0.558,2.5894 -1.179,-2.3719 z\"\n stroke=\"#000000\"\n id=\"path1625\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"746.62701\"\n y=\"-40.7738\"\n id=\"text1627\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node85\">\n \u003Ccircle\n cx=\"880.836\"\n cy=\"-56.299999\"\n stroke=\"#000000\"\n id=\"ellipse1630\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge114\">\n \u003Cpath\n d=\"m 894.659,-95.9259 c -2.504,7.177 -8.391,24.0547 -11.616,33.2992\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1633\" />\n \u003Cpath\n d=\"m 883.784,-62.0943 -1.65,2.0723 -0.002,-2.6488 z\"\n stroke=\"#000000\"\n id=\"path1635\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"887.68298\"\n y=\"-85.460503\"\n id=\"text1637\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node86\">\n \u003Ccircle\n cx=\"905.836\"\n cy=\"-56.299999\"\n stroke=\"#000000\"\n id=\"ellipse1640\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge117\">\n \u003Cpath\n d=\"m 896.688,-95.6338 c 1.713,7.3622 5.586,24.0165 7.702,33.1146\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1643\" />\n \u003Cpath\n d=\"m 905.271,-62.5901 -0.286,2.6332 -1.418,-2.2368 z\"\n stroke=\"#000000\"\n id=\"path1645\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"902.85797\"\n y=\"-84.4636\"\n id=\"text1647\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge115\">\n \u003Cpath\n d=\"m 878.933,-53.1571 c -4.358,7.1981 -15.192,25.0932 -21.765,35.9498\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1650\" />\n \u003Cpath\n d=\"m 857.798,-16.5579 -2.043,1.6854 0.546,-2.5917 z\"\n stroke=\"#000000\"\n id=\"path1652\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"870.62402\"\n y=\"-44.292999\"\n id=\"text1654\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge116\">\n \u003Cpath\n d=\"m 880.601,-52.5414 c -0.444,7.0754 -1.417,22.6145 -2.082,33.2329\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1657\" />\n \u003Cpath\n d=\"m 879.387,-19.1634 -1.03,2.4404 -0.717,-2.5499 z\"\n stroke=\"#000000\"\n id=\"path1659\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"884.25201\"\n y=\"-39.931801\"\n id=\"text1661\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge118\">\n \u003Cpath\n d=\"m 905.757,-52.5414 c -0.147,7.0754 -0.472,22.6145 -0.693,33.2329\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1664\" />\n \u003Cpath\n d=\"m 905.937,-19.2042 -0.927,2.4812 -0.823,-2.5178 z\"\n stroke=\"#000000\"\n id=\"path1666\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"901.34302\"\n y=\"-40.268501\"\n id=\"text1668\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge119\">\n \u003Cpath\n d=\"m 907.542,-53.1571 c 3.823,7.0433 13.205,24.3284 19.128,35.2398\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1671\" />\n \u003Cpath\n d=\"m 927.527,-18.1728 0.424,2.6146 -1.962,-1.7797 z\"\n stroke=\"#000000\"\n id=\"path1673\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"915.58002\"\n y=\"-43.907902\"\n id=\"text1675\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge123\">\n \u003Cpath\n d=\"m 1024.29,-52.5414 c -1.04,7.0754 -3.31,22.6145 -4.86,33.2329\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1678\" />\n \u003Cpath\n d=\"m 1020.28,-19.0702 -1.23,2.3472 -0.5,-2.6003 z\"\n stroke=\"#000000\"\n id=\"path1680\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"1018.79\"\n y=\"-40.884701\"\n id=\"text1682\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge124\">\n \u003Cpath\n d=\"m 1026.35,-52.8552 c 3.04,6.9402 10.02,22.8601 14.74,33.64\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1685\" />\n \u003Cpath\n d=\"m 1041.92,-19.5046 0.21,2.641 -1.81,-1.9383 z\"\n stroke=\"#000000\"\n id=\"path1687\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"1033.86\"\n y=\"-42.951599\"\n id=\"text1689\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge141\">\n \u003Cpath\n d=\"m 1197.33,-313.069 c 16.81,6.163 88.51,35.356 88.51,84.769 0,0 0,0 0,129 0,28.6447 -0.51,62.3638 -0.8,79.5634\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1692\" />\n \u003Cpath\n d=\"m 1285.91,-19.406 -0.92,2.4845 -0.83,-2.5148 z\"\n stroke=\"#000000\"\n id=\"path1694\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"1207.3101\"\n y=\"-310.44299\"\n id=\"text1696\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node89\">\n \u003Ccircle\n cx=\"1193.84\"\n cy=\"-271.29999\"\n stroke=\"#000000\"\n id=\"ellipse1699\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge126\">\n \u003Cpath\n d=\"m 1193.84,-310.634 c 0,7.362 0,24.017 0,33.115\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1702\" />\n \u003Cpath\n d=\"m 1194.71,-277.457 -0.87,2.5 -0.88,-2.5 z\"\n stroke=\"#000000\"\n id=\"path1704\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"1189.61\"\n y=\"-298.271\"\n id=\"text1706\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge140\">\n \u003Cpath\n d=\"m 1196.74,-268.977 c 11.22,9.255 51.1,44.891 51.1,83.677 0,0 0,0 0,86 0,28.7537 4.02,62.4272 6.36,79.5911\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1709\" />\n \u003Cpath\n d=\"m 1255.11,-19.4962 -0.52,2.5963 -1.21,-2.3567 z\"\n stroke=\"#000000\"\n id=\"path1711\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"1206.38\"\n y=\"-263.01199\"\n id=\"text1713\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node90\">\n \u003Ccircle\n cx=\"1140.84\"\n cy=\"-228.3\"\n stroke=\"#000000\"\n id=\"ellipse1716\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge127\">\n \u003Cpath\n d=\"m 1190.99,-268.988 c -8.63,6.999 -34.54,28.017 -45.34,36.783\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1719\" />\n \u003Cpath\n d=\"m 1146.19,-231.519 -2.49,0.896 1.39,-2.255 z\"\n stroke=\"#000000\"\n id=\"path1721\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"1181.29\"\n y=\"-263.26001\"\n id=\"text1723\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge128\">\n \u003Cpath\n d=\"m 1137.8,-226.326 c -12.59,8.439 -59.96,42.938 -59.96,84.026 0,0 0,0 0,43 0,28.6707 -2.01,62.3789 -3.18,79.57\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1726\" />\n \u003Cpath\n d=\"m 1075.51,-19.3502 -1.05,2.4338 -0.7,-2.5543 z\"\n stroke=\"#000000\"\n id=\"path1728\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"1127.9399\"\n y=\"-221.32201\"\n id=\"text1730\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node91\">\n \u003Ccircle\n cx=\"1140.84\"\n cy=\"-185.3\"\n stroke=\"#000000\"\n id=\"ellipse1733\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge129\">\n \u003Cpath\n d=\"m 1140.84,-224.634 c 0,7.362 0,24.017 0,33.115\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1736\" />\n \u003Cpath\n d=\"m 1141.71,-191.457 -0.87,2.5 -0.88,-2.5 z\"\n stroke=\"#000000\"\n id=\"path1738\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"1145.0601\"\n y=\"-212.271\"\n id=\"text1740\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge130\">\n \u003Cpath\n d=\"m 1140.02,-181.605 c -4.66,21.137 -28,127.0178 -35.71,161.9812\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1743\" />\n \u003Cpath\n d=\"m 1105.09,-19.0996 -1.39,2.253 -0.32,-2.6298 z\"\n stroke=\"#000000\"\n id=\"path1745\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"1133.9399\"\n y=\"-170.364\"\n id=\"text1747\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node92\">\n \u003Ccircle\n cx=\"1164.84\"\n cy=\"-142.3\"\n stroke=\"#000000\"\n id=\"ellipse1750\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge131\">\n \u003Cpath\n d=\"m 1142.56,-182.208 c 3.98,7.121 13.83,24.77 18.99,34.027\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1753\" />\n \u003Cpath\n d=\"m 1162.54,-148.208 0.45,2.61 -1.98,-1.757 z\"\n stroke=\"#000000\"\n id=\"path1755\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"1150.67\"\n y=\"-173.05299\"\n id=\"text1757\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge139\">\n \u003Cpath\n d=\"m 1166.42,-138.99 c 7.98,16.698 43.97,91.9922 57.37,120.0281\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1760\" />\n \u003Cpath\n d=\"m 1224.72,-19.0328 0.29,2.6329 -1.87,-1.8782 z\"\n stroke=\"#000000\"\n id=\"path1762\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"1174.14\"\n y=\"-129.336\"\n id=\"text1764\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node93\">\n \u003Ccircle\n cx=\"1164.84\"\n cy=\"-99.300003\"\n stroke=\"#000000\"\n id=\"ellipse1767\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge132\">\n \u003Cpath\n d=\"m 1164.84,-138.634 c 0,7.362 0,24.017 0,33.115\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1770\" />\n \u003Cpath\n d=\"m 1165.71,-105.457 -0.87,2.5 -0.88,-2.5 z\"\n stroke=\"#000000\"\n id=\"path1772\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"1160.61\"\n y=\"-126.271\"\n id=\"text1774\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node94\">\n \u003Ccircle\n cx=\"1152.84\"\n cy=\"-56.299999\"\n stroke=\"#000000\"\n id=\"ellipse1777\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge133\">\n \u003Cpath\n d=\"m 1163.89,-95.9259 c -2,7.177 -6.71,24.0547 -9.29,33.2992\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1780\" />\n \u003Cpath\n d=\"m 1155.39,-62.1948 -1.52,2.1728 -0.17,-2.6433 z\"\n stroke=\"#000000\"\n id=\"path1782\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"1157.39\"\n y=\"-85.032303\"\n id=\"text1784\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"node95\">\n \u003Ccircle\n cx=\"1177.84\"\n cy=\"-56.299999\"\n stroke=\"#000000\"\n id=\"ellipse1787\"\n r=\"3.5\" />\n \u003C/g>\n \u003Cg\n id=\"edge136\">\n \u003Cpath\n d=\"m 1165.86,-95.9259 c 2.17,7.177 7.27,24.0547 10.06,33.2992\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1790\" />\n \u003Cpath\n d=\"m 1176.82,-62.6683 -0.11,2.6463 -1.56,-2.1398 z\"\n stroke=\"#000000\"\n id=\"path1792\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"1172.52\"\n y=\"-85.173599\"\n id=\"text1794\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge134\">\n \u003Cpath\n d=\"m 1151.26,-53.1571 c -3.45,6.8885 -11.81,23.5736 -17.29,34.5113\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1797\" />\n \u003Cpath\n d=\"m 1134.68,-18.1126 -1.9,1.8431 0.34,-2.6271 z\"\n stroke=\"#000000\"\n id=\"path1799\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"1143.42\"\n y=\"-43.6474\"\n id=\"text1801\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge135\">\n \u003Cpath\n d=\"m 1152.91,-52.5414 c 0.15,7.0754 0.48,22.6145 0.7,33.2329\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1804\" />\n \u003Cpath\n d=\"m 1154.48,-19.2408 -0.82,2.5178 -0.92,-2.4812 z\"\n stroke=\"#000000\"\n id=\"path1806\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"1157.33\"\n y=\"-40.268501\"\n id=\"text1808\">1\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge137\">\n \u003Cpath\n d=\"m 1177.91,-52.5414 c 0.15,7.0754 0.48,22.6145 0.7,33.2329\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1811\" />\n \u003Cpath\n d=\"m 1179.48,-19.2408 -0.82,2.5178 -0.92,-2.4812 z\"\n stroke=\"#000000\"\n id=\"path1813\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"1173.88\"\n y=\"-40.092098\"\n id=\"text1815\">0\u003C/text>\n \u003C/g>\n \u003Cg\n id=\"edge138\">\n \u003Cpath\n d=\"m 1179.54,-53.1571 c 3.91,7.1981 13.62,25.0932 19.52,35.9498\"\n stroke=\"#000000\"\n fill=\"none\"\n id=\"path1818\" />\n \u003Cpath\n d=\"m 1199.9,-17.4871 0.42,2.6146 -1.96,-1.7797 z\"\n stroke=\"#000000\"\n id=\"path1820\" />\n \u003Ctext\n font-family=\"Helvetica, Arial\"\n font-size=\"11px\"\n text-anchor=\"middle\"\n x=\"1187.58\"\n y=\"-43.907902\"\n id=\"text1822\">1\u003C/text>\n \u003C/g>\n \u003C/g>\n \u003C/g>\n\u003C/svg>\n","type":"image/svg+xml","revision":"0","bag":"default"}, {"title":"C:\\Users\\burga12p\\COMP101\\Labs\\labs_git\\tiddlers\\content\\labs\\lab01\\Images\\Entropy.svg","text":"\u003C?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?>\n\u003Csvg\n xmlns:dc=\"http://purl.org/dc/elements/1.1/\"\n xmlns:cc=\"http://creativecommons.org/ns#\"\n xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\"\n xmlns:svg=\"http://www.w3.org/2000/svg\"\n xmlns=\"http://www.w3.org/2000/svg\"\n xmlns:xlink=\"http://www.w3.org/1999/xlink\"\n xmlns:sodipodi=\"http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd\"\n xmlns:inkscape=\"http://www.inkscape.org/namespaces/inkscape\"\n width=\"78.316666mm\"\n height=\"31.220833mm\"\n viewBox=\"0 0 78.316666 31.220833\"\n version=\"1.1\"\n id=\"svg973\"\n inkscape:version=\"1.0.1 (3bc2e813f5, 2020-09-07)\"\n sodipodi:docname=\"Entropy.svg\">\n \u003Cdefs\n id=\"defs967\" />\n \u003Csodipodi:namedview\n id=\"base\"\n pagecolor=\"#ffffff\"\n bordercolor=\"#666666\"\n borderopacity=\"1.0\"\n inkscape:pageopacity=\"0.0\"\n inkscape:pageshadow=\"2\"\n inkscape:zoom=\"0.35\"\n inkscape:cx=\"108.00004\"\n inkscape:cy=\"413.28572\"\n inkscape:document-units=\"mm\"\n inkscape:current-layer=\"layer1\"\n inkscape:document-rotation=\"0\"\n showgrid=\"false\"\n inkscape:window-width=\"1920\"\n inkscape:window-height=\"1017\"\n inkscape:window-x=\"-8\"\n inkscape:window-y=\"-8\"\n inkscape:window-maximized=\"1\" />\n \u003Cmetadata\n id=\"metadata970\">\n \u003Crdf:RDF>\n \u003Ccc:Work\n rdf:about=\"\">\n \u003Cdc:format>image/svg+xml\u003C/dc:format>\n \u003Cdc:type\n rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\" />\n \u003Cdc:title>\u003C/dc:title>\n \u003C/cc:Work>\n \u003C/rdf:RDF>\n \u003C/metadata>\n \u003Cg\n inkscape:label=\"Layer 1\"\n inkscape:groupmode=\"layer\"\n id=\"layer1\"\n transform=\"translate(-77.258324,-38.818153)\">\n \u003Cimage\n width=\"78.316666\"\n height=\"31.220833\"\n preserveAspectRatio=\"none\"\n xlink:href=\"\neJzt3c1vG0UDBvDHr94rRBtfEYdsekBVlYpsWkStSu2htqiUSyrZpRw4IIIN4oBEIpz2gKARtpA4\nkQ8ULqjFiVouVWLFOVCpa1ApAcUHxKGshThwsmWp/QPmPUSz79hef3s/7Dw/yVLq9XbHH/vs7OzM\nbEgIIUBEFED/8bsAREStMKCIKLAYUEQUWAwoIgosBhQRBRYDiogCiwFFRIHFgCKiwGJAEVFgMaCI\nKLAYUEQUWAwoIgosBhQRBRYDaoxMT08jFAohFAphcnKyaXkikbCXh0IhlEolH0pJ1D0G1Bj55Zdf\n7L9rtRry+Xzd8u3tbRiGAQAwTRMzMzOelo+oVwyoMRIOhwEAyWQSAPDdd985vsYwDEQiEU/LRtQP\nBtQYkadsi4uL0DQNOzs7KJfLda/566+/cOXKFT+KR9QzBtQYefz4MQBgZmYGiUQCAHD//n17eblc\nhmVZuHDhgi/lI+oVA2qMlEolRKNRAMCbb74JAPjmm2/s5U+ePAEAnD9/3vvCEfWBATVGDg4OcPny\nZQBAJBKBruuwLMtuLH/06BEMw7DbqoiCjgE1JuTp2+uvv24/9+677wIAdnd3ARwH2NzcnC/lI+oH\nA2pMyNM39erctWvXAADr6+t2gF28eNGX8hH1gwE1Jh49emS3P0lTU1OIx+MAgC+//BIAcO7cOc/L\nRtQvBtSYODg4wOzsbNPzH3zwAYDjWpSu65iamvK6aER9Y0CNgXw+D8uyUKvVmpbJxnIA7P9EI4cB\nNeKKxSKuXr0K4LiWlM1mm17z8ccfAwCHttDICfHW50QUVKxBEVFgMaCIKLAYUEQUWAwoIgosBhQR\nBRYDiogCiwFFRIHFgAoo9eYGfj6KxaLfHwWdYAyogNI0ze8iEPmOARVQDx48aHpO0zRUKhUIIVx5\n5HI5BiMFCgMqoCKRCDKZTN1ztVoNN27ccG2biUTCMRiJ/MKACrClpaWmOZ4KhYLjgOBhiUQiTdsk\n8gsDKuDu3r3bdNq1vLzsauP122+/7dr/TdQLBlTAhcNhx9Ou+fl5VKtVV7bJWTcpKBhQI6BVe9T7\n77/vyvampqbYWE6BwIAaEU7tUTs7O9jc3HRle6xFURBwwroRUq1WcerUqaapfY+OjjhbJo0l1qBG\nSDgcxsOHD5ueX1hYcK09ishPDKgRMzMzg42NjbrnLMtyrT2KyE8MqBG0uLho3+9OcrM9isgvbIMa\nUdVqFefPn4dlWXXPsz2KxglrUCMqHA7jhx9+aHqe7VE0ThhQI4ztUTTuGFAjju1R3tre3q6bLysW\ni/ldpLHmSUBVq1Vks1nEYrG6L3dychKxWAwrKysol8teFGUsff311/btzaX33nsPpVLJpxKNr0Qi\ngUql4ncxTgzXA6pYLOLUqVP44osvMDs7C9M0YZomNjY2MDk5iUKhgNXVVfz7779uF2VsyfaoxuEp\nbI9yRzgc5owPXhEusixLaJomAAjTNJuWVyoVoet6y+XUm1wuJwDUPeLxuN/FGkvRaFQAENFo1O+i\njDVXa1DffvstarUadF1HJBJpWh4Oh/H555+7WYQTJZFIIJlM1j13ktqjUqkUtre3XV+HPORm+smj\njGEYbm6GFJVKRRiG0VSTOjo68rtorjJN036vuVyuq3WSyWTfv0/WoLzhSSP54eEh20I8Eg6HsbW1\n5Ut71ObmJiYnJxEKhepqJdVqFSsrK/ayRCIx9LJEIhHkcjkAwPXr1zvWilKpFNbX16FpGra2toZa\nFtXm5mbdxaHJyUkkEomOEw7Kz2x6errjnXfcUi6X7bLPzc3VfWfFYhFzc3MIhUKYnp52rxbqZvpt\nbGzYR7VoNCoqlYqbmyOF1+1RmUymaXtCtK7RuVXzUN93q5qUrDlpmtZ3zbJTDUp939FoVOzt7QnT\nNEU6nbbLl0wmHdc9Ojqy227j8bgwTVPs7e2JeDxe9/llMhmRyWT6Kn8nlUrFLoN8yG05/bbgUjuy\nqwGlNoIDELquD+1NOH1AvT7c+nKDQu6I6qPb059e5HI5oWmaME1THB0d2duSO2k8HheWZYlKpVK3\nk7l12tkupIYRTkJ0DigZTk4HBfXA7fR9tFtXblfX9b7L3on83pLJZN13lslk7O9alls9tXbjAOhq\nQAlxfDRoPIJGo9GBg4oB1ZlT7cWN95xOp8Xe3p69TbmtdDrdVEvop62oH04hNaxwEqJ9QKnbbrUd\neeBuDBo14OVn2ur/duvKt2VZde9L1vqSyaTQdb3pPbkZmq4HlBDHP9pMJtNUZYxGo8KyLC+KcGKp\npwutfvTDJANI0zTHxmc1wNw+QKg7s9yJhhFOQrQPKFnjaLfDqqd6annUAHcKoE7L3aB+dk6/H/W9\nDJsnjeThcBhLS0t4+vQpMpmM3YBbKBRgGMZI9Xhu7A3fz8PL4RHPnz+3Z+BMJpN44403XN3eH3/8\nAeB4zvSvvvqq7WsnJiZcLUsikbAbzguFAgDgzp07rs/2cHBwAACYnp5u+ZozZ87Yfz9//tzxNc+e\nPWv73AsvvNBvEXvy5MkTAMfTQLf7/bgxj72nY/FkUB0eHtrjx2q1GhYWFrwsxolRrVYxPz8PANB1\nHZ999pnr25QzfkajUce+b3/++af99+nTp5uWr6ysIBQKDe3ef//880/dv512+mFrnJLZyUsvvWT/\n/fPPP9t/RyIRe0ff3d1tWk8+p+u6J9PqlEol+/3cvHnT8TW//fYbAOd57KvV6mBXG4deJ+uB2mDq\n9qnHSSSr5nCxQbqRPJ1s1b6knnY5XdWVbWbDOH1Rt6VeMBhG21e7Uzwop5WtqKdqGxsbLcu9sbFh\nf05q43qr/aVSqYhcLifi8XjdBSrDMPp633Kb7U5X5XbS6XTTsr29vY6fRTu+BpT6JfXaHiHXG+Qx\nzo3k6o+5cQdwi2VZHQNRBoXbQ3DaNZIPIwAHDSi547Yqi1O3DRk07cou1zMMw27fNU3TPnD0+pvv\n9H11850PwteAEkL0HRYMqNbUK0FejsVTQ8GJ2rfGzRqz390M1EblVtQAarxQtLe3Z5fPsixhmqYw\nTbOrfoTyYlTja+UBq9eajKwdtdpX1EB0g6sBJavWrfhxRWLcqX3PdF33tHNsp6Ej8sfstJOopyNO\npwrdCkJHTbX22up3rXbiVMkQH3ZHVrmv9fL/qrUjpwOKesBpfJ+NnTn7/R26HlDtqn7dXI6l3njR\nEbIVudM5fZ+yVqdpWsuuJXL9fmtX3YSTNGhItQsodcft1E+qcceWQaLr+lC74MiuAL2cNainoU6f\np/yttTqgyPUHqV15ElCapol0Om1XVdVu+8Pql0L1R26vT1/V/k1qu5dstNU0zbGTn0ru9P3smIMM\nFnY6JWpHfa+taqlq/zN1qIt6audUTnWKolYPTdNEPB7ver+RZen1dF/t36S2aR0dHXUMJyH+/520\nO4vqxPWxeMlksu5qktqAqF6hoMGo7U5+jLBvvOCh9mA3DENkMpmO3/WgtelkMtnzlape15Fh2xgY\nTmFhWZbd+1oNtGQy2TaE1ZpLp6DqFObylN8wjJ73NbnfxuNxEY/H7fctw65Ts4wM40GumvreSE6D\nU9udeq0NDEu79qVuyIA76RPsydpOu0DptqYshzr1O1B/0PZhGXCDnCHxpglj4NatW/b98R48eIBw\nOOx5GX788UcAwOzsbF/ry86Kly5dGlqZRtHCwgJqtRo+/fTTlt/j4uKiPeXw77//7viaarWKWCyG\nubk57O/v9/ybUKeDeeWVV3paVyoUCtA0baAOpQyoEbe9vY319XUAQCaTcey97QU5lOTChQt9rS8D\n7rXXXhtamUaRPNC8+OKLXb3+1VdfbXpODae1tbW+yiEPGIZh9HXAkwF35cqVvrYvMaBGWKlUQiqV\nAnA8tGRpacm3ckjd7liNZMDJo+1JneBQDnNRh780KpVKdu3k2rVrTctv3boFAE3hlM/nux5yImtm\n/dbGZfllgPb7ff63r7XId9VqFe+88w5qtRo0TcPdu3d9K8vjx4/tv4cx1m1zcxMPHz48kXOFr62t\n4fr161heXsbff/+Nixcv2uP2nj17ht3dXXsm0Dt37mBqaqpu/Xw+b9eoB5ltUw54HsaBolwuI5VK\n4ebNm73X8PtuvSJfqcM2/B7HqPa90jStry4OspFd1/Wx7eHfLcuyRDqd7uvqt9M66qObPknqFWG5\nTq9dPyzLsi/c9NIlolFICCEGjkjyVD6fx9WrVwEA6XQat2/f9rlERO5gQI2YcrkMwzBQq9VgGAZ+\n/fVXv4tE5Bo2ko+YeDxutzvt7Oz4XRwiVzGgRsjKygoODw8BwLGBdJiKxaJ9SyEivzCgRkQ+n8fq\n6iqA43Ynt6fulZeJGVDkJwbUCCiXy3jrrbcAHHec++ijj1zfZqseykReYkCNgFQqZbc7bW1teTKU\nRfaDIfITAyrgstms3ct6bW3Nk4nyNzc37YnyL1++7Pr2iFphT/IAKxaLWF5eBnB8y6hEIuHq9qrV\nKu7fv49PPvnE1e0QdYsBFVDqLaMAYH193R7CQHRS8BQvoG7cuNHV/dXc9vLLL/tdBDrBGFABpLY7\n+U29wSSR1xhQASTnRiI66TgWj4gCizUoIgosBhQRBRYDiogCiwE1IuR80rFYzO+iEHmGATUifvrp\nJwDuDj0pFouIxWLIZrOubYOoF7yKRyiXy0in0/YEeJlMxrc7xBCpWIM64VZWVmAYBnRdt28GSRQU\nDKiAS6VSCIVCCIVCmJuba1oei8Xs5d08Gk1MTODp06e4ffs2Zy6gwOFg4YBbW1uDpmlYXV0d+C6t\nTngqR0HGgBoBExMTAIAzZ840Ldvf3/e6OESe4SneCJBj886dO+dzSYi8xYAaAYVCAZqmuXoXF6Ig\nYkAFXLFYBICW7U+DNpITBRkDKuDk7Z8uXbrkc0mIvMeACjjZ/nT69GkAx1MBq/b39yGE6PpBNEoY\nUCNEDkVpDKlhKJVKuHfvHgDg3r17KJVKQ98GUa8YUAH34YcfQtM0zM/P4/vvv8f+/v5Q74uXzWYR\nCoVw9uxZ+7bqh4eHOHv2LEKhEMflka84Fo+IAos1KCIKLAYUEQUWA4qIAosBRUSBxYAiosBiQBFR\nYDGgiCiwGFBEFFgMKCIKrP8Br9WWvA6JFXAAAAAASUVORK5CYII=\n\"\n id=\"image1546\"\n x=\"77.258324\"\n y=\"38.818153\" />\n \u003C/g>\n\u003C/svg>\n","type":"image/svg+xml","revision":"0","bag":"default"},