Newer
Older
Digital_Repository / Misc / Mass downloads / UTas / 1899.html
  1. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  2. "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
  3. <html>
  4. <head>
  5. <title>UTas ePrints - Lewis Ponds, a hybrid carbonate and volcanic-hosted polymetallic massive sulphide deposit, New South Wales, Australia</title>
  6. <script type="text/javascript" src="http://eprints.utas.edu.au/javascript/auto.js"><!-- padder --></script>
  7. <style type="text/css" media="screen">@import url(http://eprints.utas.edu.au/style/auto.css);</style>
  8. <style type="text/css" media="print">@import url(http://eprints.utas.edu.au/style/print.css);</style>
  9. <link rel="icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
  10. <link rel="shortcut icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
  11. <link rel="Top" href="http://eprints.utas.edu.au/" />
  12. <link rel="Search" href="http://eprints.utas.edu.au/cgi/search" />
  13. <meta content="Agnew, M.W." name="eprints.creators_name" />
  14. <meta content="Large, R.R." name="eprints.creators_name" />
  15. <meta content="Bull, S.W." name="eprints.creators_name" />
  16. <meta name="eprints.creators_id" />
  17. <meta content="Ross.Large@utas.edu.au" name="eprints.creators_id" />
  18. <meta content="S.Bull@utas.edu.au" name="eprints.creators_id" />
  19. <meta content="article" name="eprints.type" />
  20. <meta content="2007-09-12" name="eprints.datestamp" />
  21. <meta content="2008-01-23T04:58:39Z" name="eprints.lastmod" />
  22. <meta content="show" name="eprints.metadata_visibility" />
  23. <meta content="Lewis Ponds, a hybrid carbonate and volcanic-hosted polymetallic massive sulphide deposit, New South Wales, Australia" name="eprints.title" />
  24. <meta content="pub" name="eprints.ispublished" />
  25. <meta content="260100" name="eprints.subjects" />
  26. <meta content="restricted" name="eprints.full_text_status" />
  27. <meta content="Volcanic-hosted massive sulphide, Carbonate-hosted replacement, Sulphide textures, Limestone, Lachlan Fold Belt, Hill End Trough, Australia" name="eprints.keywords" />
  28. <meta content="Abstract The Lewis Ponds Zn-Pb-Cu-Ag-Au deposit,
  29. located in the eastern Lachlan Fold Belt, central
  30. western New South Wales, exhibits the characteristics
  31. of both volcanic-hosted massive sulphide and carbonate-
  32. hosted replacement deposits. Two stratabound
  33. massive to disseminated sulphide zones, Main and
  34. Toms, occur in a tightly folded Upper Silurian
  35. sequence of marine felsic volcanic and sedimentary
  36. rocks. They have a combined indicated resource of
  37. 5.7 Mt grading 3.5% Zn, 2.0% Pb, 0.19% Cu, 97 g/t
  38. Ag and 1.9 g/t Au. Main Zone is hosted by a thick
  39. unit of poorly sorted mixed provenance breccia,
  40. limestone-clast breccia and quartz crystal-rich sandstone,
  41. whereas Toms Zone occurs in the overlying
  42. siltstone. Pretectonic carbonate-chalcopyrite-pyrite
  43. and quartz-pyrite stringer veins occur in the footwall
  44. porphyritic dacite, south of Toms Zone. Strongly
  45. sheared dolomite-chalcopyrite-pyrrhotite veins directly
  46. underlie the Toms massive sulphide lens. The mineralized
  47. zones consist predominantly of pyrite, sphalerite
  48. and galena. Paragenetically early framboidal, dendritic
  49. and botryoidal pyrite aggregates and tabular pyrrhotite
  50. pseudomorphs of sulphate occur throughout the
  51. breccia and sandstone beds that host Main Zone, but
  52. are rarely preserved in the annealed massive sulphide
  53. in Toms Zone. Main and Toms zones are associated
  54. with a semi-conformable hydrothermal alteration
  55. envelope, characterized by texturally destructive chlorite-,
  56. dolomite- and quartz-rich assemblages. Dolomite,
  57. chlorite, quartz, calcite and sulphides have
  58. selectively replaced breccia and sandstone beds in the
  59. Main Zone host sequence, whereas the underlying
  60. porphyritic dacite is weakly sericite altered. Vuggy and
  61. botryoidal textures resulted from partial dissolution of
  62. the dolomite-altered sedimentary rocks and unimpeded
  63. growth of base metal sulphides, carbonate and quartz
  64. into open cavities. The intense chlorite-rich alteration
  65. assemblage, underlying Toms Zone, grades outward
  66. into a weak pervasive sericite-quartz assemblage with
  67. distance from the massive sulphide lens. Limestone
  68. clasts and hydrothermal dolomite at Lewis Ponds are
  69. enriched in light carbon and oxygen isotopes. The
  70. dolomite yielded delta 13 CVPDB values of -11 to +1 per mil and delta 18O VSMOW values of 6 to 16per mil. Liquid-vapour fluid inclusions in the dolomite have low salinities (1.4-7.7 equiv. wt% NaCl) and homogenization temperatures
  71. (166-232 degrees C for 1,000 m water depth). Dolomitization
  72. probably involved fluid mixing or fluid-rock interactions
  73. between evolved heated seawater and the limestone-bearing facies, prior to and during mineralization.
  74. delta 34 SVCDT values range from 2.0 per mil to 5.0 per mil in the massive sulphide and 3.9 per mil to 7.4 per mil in the footwall carbonate-chalcopyrite-pyrite stringer veins, indicating that the hydrothermal fluid may have contained mamgatic sulphur and a component of partially reduced seawater. The sulphide mineral assemblages at
  75. Lewis Ponds are consistent with moderate to strongly
  76. reduced conditions during diagenesis and mineralization.
  77. Low temperature dolomitization of limestonebearing
  78. facies in the Main Zone host sequence created
  79. secondary porosity and provided a reactive host for
  80. fluid-rock interactions. Main Zone formed by lateral
  81. fluid flow and sub-seafloor replacement of the poorly
  82. sorted breccia and sandstone beds. Base metal
  83. sulphide deposition probably resulted from dissolution
  84. of dolomite, fluid mixing and increased fluid pH.
  85. Pyrite, sphalerite and galena precipitated from a relatively
  86. low temperature, 150-250C hydrothermal fluid.
  87. In contrast, Toms Zone was emplaced into finegrained
  88. sediment at or near the seafloor, above a zone
  89. of focused up-flowing hydrothermal fluids. Copperrich
  90. assemblages were deposited in the Toms Zone
  91. footwall and massive sulphide lenses in Main and
  92. Toms zones as the hydrothermal system intensified.During the D1 deformation, fracture-controlled fluids
  93. within the Lewis Ponds fault zone and adjacent
  94. footwall volcanic succession remobilized sulphides
  95. into syntectonic quartz veins. Lewis Ponds is a rare
  96. example of a synvolcanic sub-seafloor hydrothermal
  97. system developed within fossiliferous limestone-bearing
  98. facies. The close spatial association between limestone,
  99. hydrothermal dolomite, massive sulphide and dacite
  100. provides a basis for new exploration targets elsewhere
  101. in New South Wales." name="eprints.abstract" />
  102. <meta content="2005-03" name="eprints.date" />
  103. <meta content="published" name="eprints.date_type" />
  104. <meta content="Mineralium Deposita" name="eprints.publication" />
  105. <meta content="39" name="eprints.volume" />
  106. <meta content="8" name="eprints.number" />
  107. <meta content="822-844" name="eprints.pagerange" />
  108. <meta content="10.1007/s00126-004-0456-6" name="eprints.id_number" />
  109. <meta content="UNSPECIFIED" name="eprints.thesis_type" />
  110. <meta content="TRUE" name="eprints.refereed" />
  111. <meta content="0026-4598" name="eprints.issn" />
  112. <meta content="http://dx.doi.org/10.1007/s00126-004-0456-6" name="eprints.official_url" />
  113. <meta content="Agnew MW (2003) Geology and genesis of the Lewis Ponds carbonate and volcanic-hosted massive sulfide deposits, New
  114. South Wales Australia. PhD Thesis, University of Tasmania
  115. Agnew MW, Bull SW, Large RR (2004) Facies architecture of the Lewis Ponds carbonate and volcanic-hosted massive sulphide deposits, central western New South Wales. Aust J Earth Sci 51:349-368
  116. Allen RL (1992) Reconstruction of the tectonic, volcanic, and sedimentary setting of strongly deformed Zn-Cu massive sulphide deposits at Benambra, Victoria. Econ Geol 87:825-854
  117. Allen RL, Lundstrom I, Ripa M, Christofferson H, Stephens MB, Halenius U, Widenfalk L (1996) Facies analysis of a 1.9 Ga, continental margin, back-arc, felsic caldera province with diverse Zn-Pb-Ag-(Cu-Au) sulfide and Fe oxide deposits, Bergslagen region, Sweden. Econ Geol 91:979-1008
  118. Ayres DE, Burns MS, Smith JW (1979) Sulphur-isotope study of
  119. the massive sulphide orebody at Woodlawn, New South Wales.
  120. J Geol Soc Aust 26:197-201
  121. Belkin HE, Cavarretta G, De Vivo B, Tecce F (1988) Hydrothermal phlogopite and anhydrite from the SH2 well, Sabatini volcanic district, Latium, Italy; fluid inclusions and mineral chemistry. Amer Mineral 73:775-797
  122. Bodon SB, Valenta RK (1995) Primary and tectonic features of the Currawong Zn-Cu-Pb(-Au) massive sulfide deposit, Benambra, Victoria: implications for ore genesis. Econ Geol 90:1694-1721
  123. Botros NS (2003) On the relationship between auriferous talc
  124. deposits hosted in volcanic rocks and massive sulphide deposits in Egypt. Ore Geol Rev 23:223-257
  125. Callaghan T (2001) Geology and host-rock alteration of the Henty and Mount Julia gold deposits, western Tasmania. Econ Geol 96:1073-1088
  126. de Carlo EH, Lackschewitz KK, Carmody R (2002) Data report:
  127. trace element and isotopic composition of interstitial water and sediments from the Woodlark Rise, ODP Leg 180. In: Huchon P, Taylor B, Klaus A (eds) Proceedings of the ocean drilling program, scientific results, Leg 180, vol 180
  128. Carne JE (1899) The copper-mining industry and the distribution of copper ores in New South Wales, vol 6. William Applegate Gullick, Government Printer, Sydney
  129. Chisholm JM (1976) Geochemical zoning in a volcanogenic Cu-Pb-Zn-Ag sulphide deposit at Mt Bulga, N.S.W., Australia. PhD Thesis, University of New South Wales
  130. Claypool GE, Holser WT, Kaplan IR, Sakai H, Zak I (1980) The
  131. age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem Geol 28:199-260
  132. Colquhoun GP, Meakin NS, Morgan EJ, Raymond OL, Scott
  133. MM, Watkins JJ, Barron LM, Cameron RG, Henderson
  134. GAM, Jagodzinski EA, Krynen JP, Pogson DJ, Warren AYE,
  135. Wyborn D, Yoo EK (1997) Dubbo 1:250 000 geological sheet
  136. SI55-4, preliminary second edition. Geological Survey of New
  137. South Wales. Sydney and Australian Geological Survey Organisation, Canberra
  138. Corbett KD (2001) New mapping and interpretations of the Mount Lyell mining district, Tasmania: a large hybrid Cu-Au system with an exhalative top. Econ Geol 96:1089-1122
  139. Costa UR, Barnett RL, Kerrich R (1983) The Mattagami Lake
  140. Mine Archean Zn-Cu sulfide deposit, Quebec; hydrothermal
  141. coprecipitation of talc and sulfides in a sea-floor brine pool; evidence from geochemistry, d18O/d16O, and mineral chemistry. Econ Geol 78:1144-1203
  142. Davis LW (1990) Silver-lead-zinc-copper mineralisation in the Captains Flat-Goulburn synclinorial zone and the Hill End synclinorial zone. In: Hughes FE (ed) Geology of the mineral deposits of Australia and Papua New Guinea, vol 2. The Australasian Institute of Mining and Metallurgy, Melbourne, pp 1375-1384
  143. Davis EE, Goodfellow WD, Bornhold BD, Adshead J, Blaise B,
  144. Villinger H, Le CGM (1987) Massive sulfides in a sedimented
  145. rift valley, northern Juan de Fuca Ridge. Earth Planet Sci Lett 82:49-61
  146. Downes PM, Seccombe PK (2004) Sulfur isotope distribution in
  147. Late Silurian volcanic-hosted massive sulfide deposits, eastern Lachlan Fold Belt, NSW. Aust J Earth Sci 51:123-139
  148. Doyle MG, Allen RL (2003) Subsea-floor replacement in volcanichosted massive sulfide deposits. Ore Geol Rev23:183-222
  149. Duckworth RC, Fallick AE, Rickard D (1994) Mineralogy and
  150. sulfur isotopic composition of the Middle Valley massive sulfide deposit, northern Juan De Fuca Ridge. In: Mottl MJ, Davis EE, Fisher AT, Slack JF (eds) Proceedings of the ocean drilling program, scientific results, vol 139, pp 373-385
  151. Eldridge CS, Barton PB Jr, Ohmoto H (1983) Mineral textures and their bearing on formation of the Kuroko orebodies. Econ Geol Monogr 5:241-281
  152. Foster DA, Gray DR (2000) Evolution and structure of the
  153. Lachlan Fold Belt (orogen) of eastern Australia. Annu Rev
  154. Earth Planet Sci 28:47-80
  155. Glen RA (1992) Thrust, extensional and strike-slip tectonics in an evolving Palaeozoic orogen-a structural synthesis of the Lachlan Orogen of southeastern Australia. Tectonophysics 214:341-380
  156. Glen RA, Watkins JJ (1994) The Orange 1:100 000 sheet: a preliminary account of stratigraphy, structure and tectonics, and implications for mineralisation. Geological Survey of New South Wales, Quarterly Notes 95:1-17
  157. Glen RA, Lennox PG, Foster DA (1999) 40Ar39Ar dating of
  158. deformations west of the Hill End Trough, Lachlan Orogen,
  159. New South Wales. Geological Survey of New South Wales
  160. Quarterly Notes 110:13-22
  161. Goodfellow WD, Franklin JM (1993) Geology, mineralogy, and
  162. chemistry of sediment-hosted clastic massive sulfides in shallow cores, Middle Valley, northern Juan de Fuca Ridge. Econ Geol 88:2033-2064
  163. Grandia F, Cardellach E, Canals A, Banks DA (2003) Geochemistry of the fluids related to epigenetic carbon-hosted Zn-Pb deposits in the Maestrat Basin, eastern Spain; fluid inclusion and isotope (Cl, C, O, S, Sr) evidence. Econ Geol 98:933-954
  164. Gregg JM, Sibley DF (1984) Epigenetic dolomitization and the
  165. origin of xenotopic dolomite texture. J Sediment Petrol 54:908-931
  166. Halbach P, Pracejus B, Maerten A (1993) Geology and mineralogy of massive sulfide ores from the central Okinawa Trough, Japan. Econ Geol 88:2206-2221
  167. Hannington MD, Bleeker W, Kjarsgaard I (1999) Sulfide mineralogy, geochemistry, and ore genesis of the Kidd Creek deposit; part I, North, Central and South orebodies. Econ Geol Monogr 10:163-224
  168. Herrmann W, Hill AP (2001) The origin of chlorite-tremolite-carbonate rocks associated with the Thalanga Volcanic-hosted
  169. massive sulfide deposit, North Queensland, Australia. Econ
  170. Geol 96:1149-1173
  171. Herzig PM, Hannington MD (1995) Polymetallic massive sulfides at the modern seafloor; a review. Ore Geol Rev 10:95-115
  172. Hitzman MW, Beaty DW (1997) The Irish Zn-Pb-(Ba) orefield.
  173. Special publication-Society of Economic Geologists 4:112-143
  174. Hitzman MW, Redmond PB, Beaty DW (2002) The carbonatehosted
  175. Lisheen Zn-Pb-Ag deposit, County Tipperary, Ireland.
  176. Econ Geol 97:1627-1655
  177. Hou Z, Zaw K, Qu X, Ye Q, Yu J, Xu M, Fu D, Yin X (2001)
  178. Origin of the Gacun volcanic-hosted massive sulfide deposit in Sichuan, China; fluid inclusion and oxygen isotope evidence. Econ Geol 96:1491-1512
  179. Huston DL, Large RR (1989) A chemical model for the concentration of gold in volcanogenic massive sulphide deposits. Ore Geol Rev 4:171-200
  180. Huston DL, Barrie CT, Hannington MD (1999) Stable isotopes
  181. and their significance for understanding the genesis of volcanichosted massive sulfide deposits; a review. Rev Econ Geol 8:157-179
  182. Jago JB, Reid KO, Quilty PG, Green GR, Daily B (1972)
  183. Fossiliferous Cambrian limestone from within the Mt Read
  184. Volcanics, Mt Lyell mine area, Tasmania. J Geol Soc Aust
  185. 19:379-382
  186. Kajiwara Y (1972) Sulfur isotope study of the Kuroko-ores of the Shakanai No. 1 deposits, Akita Prefecture, Japan. Geochem J 4:157-181
  187. Kontak DJ, Hebert R (1998) Geology of the Stirling Zn-Pb-Cu-Ag-Au VMS deposit, Southeast Cape Breton, Nova Scotia; reinterpretation of the quartz-talc-carbonate (QTC) rock with implications for mineral exploration. In: Program with
  188. Abstracts-Geological Association of Canada; Mineralogical
  189. Association of Canada; Canadian Geophysical Union, Joint
  190. Annual Meeting, vol 23. Geological Association of Canada,
  191. Waterloo, pp 94-95
  192. Large RR (1977) Chemical evolution and zonation of massive
  193. sulfide deposits in volcanic terrains. Econ Geol 72:549-572
  194. Large RR (1992) Australian volcanic-hosted massive sulphide
  195. deposits: features, styles, and genetic models. Econ Geol
  196. 87:471-510
  197. Large RR, Both RA (1980) The volcanogenic sulfide ores at Mount Chalmers, eastern Queensland. Econ Geol 75:992-1009
  198. Large RR, Allen RL, Blake MD, Herrmann W (2001a) Hydrothermal alteration and volatile element halos for the Rosebery K lens volcanic-hosted massive sulfide deposit, western Tasmania. Econ Geol 96:1055-1072
  199. Large RR, Bull SW, Winefield PR (2001b) Carbon and oxygen
  200. isotope halo in carbonates related to the McArthur River
  201. (HYC) Zn-Pb-Ag deposit, north Australia: implications for
  202. sedimentation, ore genesis, and mineral exploration. Econ Geol 96:1567-1593
  203. McKay WJ, Hazeldene RK (1987) Woodlawn Zn-Pb-Cu sulfide
  204. deposit, New South Wales, Australia: an interpretation of ore formation from field observations and metal zoning. Econ Geol 82:141-164
  205. McLeod RL, Stanton RL (1984) Phyllosilicates and associated
  206. minerals in some Paleozoic stratiform sulfide deposits of
  207. southeastern Australia. Econ Geol 79:1-22
  208. Meakin S, Spackman J, Scott MM, Watkins JJ, Warren AYE,
  209. Moffit RS, Krynen JP (1997) Orange 1:100 000 geological map
  210. 8731, 1st edn. Geological Survey of New South Wales, Sydney
  211. and Australian Geological Survey Organisation, Canberra
  212. Misra KC, Gratz JF, Lu C (1997) Carbonate-hosted Mississippi
  213. Valley-type mineralization in the Elmwood-Gordonsville
  214. deposits, central Tennessee zinc district; a synthesis. Special Publication Society of Economic Geologists 4:58-73
  215. Moore JG, Clague DA (1992) Volcano growth and evolution of the Island of Hawaii. Geol Soc Am Bull 104:1471-1484
  216. Mullin JW (1993) Crystallization. Butterworth and Heinemann,
  217. Oxford Northrop DA, Clayton RN (1966) Oxygen-isotope fractionations in systems containing dolomite. J Geol 74:174-196
  218. Ohmoto H, Goldhaber MB (1997) Sulfur and carbon isotopes. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Wiley, New York, pp 517-612
  219. Ohmoto H, Rye RO (1979) Isotopes of sulfur and carbon. In:
  220. Barnes HL (ed) Geochemistry of hydrothermal ore deposits.
  221. Wiley, New York, pp 509-567
  222. Orth K (2002) Setting of the Palaeoproterozoic Koongie Park
  223. Formation and carbonate-associated base metal mineralisation, at Koongie Park, northwestern Australia. PhD Thesis, University of Tasmania
  224. Paradis S, Jonasson IR, Le Cheminant GM, Watkinson DH (1988)
  225. Two zinc-rich chimneys from the Plume Site, southern Juan de
  226. Fuca Ridge. Can Mineral 26:637-654
  227. Paulick H, Herrmann W, Gemmell JB (2001) Alteration of felsic volcanics hosting the Thalanga massive sulfide deposit (Northern Queensland, Australia) and geochemical proximity indicators to ore. Econ Geol 96:1175-1200
  228. Peace WM, Wallace MW, Holdstock MP, Ashton JH (2003) Ore
  229. textures within the U lens of the Navan Zn-Pb deposit, Ireland. Mineral Deposit 38:568-584
  230. Pittman EF (1901) The mineral resources of New South Wales.
  231. Geological Survey of New South Wales, Sydney
  232. Pogson DJ, Watkins JJ (1998) Bathurst 1:250 000 Geological Sheet, Explanatory Notes. Geological Survey of New South Wales, Sydney
  233. Radke BM, Mathis RL (1980) On the formation and occurrence of saddle dolomite. J Sediment Petrol 50:1149-1168
  234. Randell RN, Anderson GM (1997) Geology of the Polaris Zn-Pb
  235. deposit and surrounding area, Canadian Arctic Archipelago.
  236. Special Publication-Soc Econ Geol 4:307-319
  237. Raymond OL, Pogson DJ (1998) Bathurst 1:250 000 geological
  238. map SI55-8, 2nd edn. Geological Survey of New South Wales,
  239. Sydney and Australian Geological Survey Organisation,
  240. Canberra
  241. Rice JM (1977) Progressive metamorphism of impure dolomitic
  242. limestone in the Marysville aureole, Montana.AmJ Sci 277:1-24
  243. Rimstidt JD (1997) Gangue mineral transport and deposition. In: Barnes HL (ed) Geochemistry of hydrothermal deposits. Wiley, New York, pp 487-515
  244. Rollinson HR (1993) Using geochemical data: evaluation, presentation, interpretation. Longman, London
  245. de Ronde CEJ (1995) Fluid chemistry and isotopic characteristics of seafloor hydrothermal systems and associated VMS deposits: potential for magmatic contributions. In: Thompson JFH (ed) Magmas, fluids and ore deposits, Mineralogical Association of Canada Short Course Series 23:479-509
  246. Sato T (1973) A chloride complex model for Kuroko mineralization. Geochem J 7:245-270
  247. Saunders JA (1990) Colloidal transport of gold and silica in epithermal precious-metal systems. Geology 18:757-760
  248. Schardt C, Cooke DR, Gemmell JB, Large RR (2001) Geochemical
  249. modeling of the zoned footwall alteration pipe, Hellyer volcanic-hosted massive sulfide deposit, Tasmania, Australia. Econ Geol 96:1037-1054
  250. Scheibner E (1998) Geology of New South Wales-synthesis vol 2, geological evolution, vol 2. Geological Survey of New South Wales, Sydney
  251. Scheibner E, Veevers JJ (2000) Tasman Fold Belt System. In:
  252. Veevers JJ (ed) Billion-year earth history of Australia and
  253. neighbours in Gondwanaland. GEMOC Press, Department of
  254. Earth and Planetary Sciences, Macquarie University, Sydney,
  255. pp 154-234
  256. Shanks WC III (2001) Stable isotopes in seafloor hydrothermal systems; vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes. Rev Mineral Geochem 43:469-525
  257. Slaughter J, Kerrick DM, Wall VJ (1975) Experimental and thermodynamic study of equilibria in the system CaO-MgO-SiO
  258. (sub 2) -H (sub 2) O-CO (sub 2). Am J Sci 275:143-162
  259. Solomon M, Gaspar OC (2001) Textures of the Hellyer volcanichosted massive sulfide deposit, Tasmania -the aging of a sulfide sediment on the sea floor. Econ Geol 96:1513-1534
  260. Spear FS (1993) Metamorphic phase equilibria and pressure-temperature-time paths. Mineralogical Society of America Monograph Stanton RL (1955a) The genetic relationship between limestone, volcanic rocks, and certain ore deposits. Aust J Sci 17:173-175
  261. Stanton RL (1955b) Lower Palaeozoic mineralization near Bathurst, New South Wales. Econ Geol 50:681-714
  262. Stevens BPJ (1974) Hill End synclinorial zone. In: Markham NL, Basden H (eds) The mineral deposits of New South Wales.
  263. Geological Survey of New South Wales, Department of Mines,
  264. Sydney, pp 276-293
  265. Swart PK, Burns SJ, Leader JJ (1991) Fractionation of the stable isotopes of oxygen and carbon in carbon dioxide during the reaction of calcite with phosphoric acid as a function of temperature and technique. Chem Geol 86:89-96
  266. Urabe T, Scott SD, Hattori K (1983) A comparison of footwallrock alteration and geothermal systems beneath some Japanese and Canadian volcanogenic massive sulfide deposits. Econ Geol Monogr 5:345-364
  267. Valliant RI, Meares RMD (1998) Lewis Ponds gold-silver-copperlead-zinc deposits. In: Berkman DA, Mackenzie DH (eds)
  268. Geology of Australian and Papua New Guinean deposits. The
  269. Australasian Institute of Mining and Metallurgy, Melbourne,
  270. pp 635-640
  271. Veizer J, Hoefs J (1976) The nature of O18/O16 and C13/C12
  272. secular trends in sedimentary carbonate rocks. Geochim Cosmochim Acta 40:1387-1395.
  273. Walshe JL, Solomon M (1981) An investigation into the environment of formation of the volcanic-hosted Mt. Lyell copper deposits using geology, mineralogy, stable isotopes, and a sixcomponent chlorite solid solution model. Econ Geol 76:246-284
  274. Wilkin RT, Barnes HL (1997) Formation processes of framboidal pyrite. Geochim Cosmochim Acta 61:323-339
  275. Zierenberg RA, Koski RA, Morton JL, Bouse RM (1993) Genesis
  276. of massive sulfide deposits on a sediment-covered spreading
  277. center, Escanaba Trough, southern Gorda Ridge. Econ Geol
  278. 88:2065-2094" name="eprints.referencetext" />
  279. <meta content="Agnew, M.W. and Large, R.R. and Bull, S.W. (2005) Lewis Ponds, a hybrid carbonate and volcanic-hosted polymetallic massive sulphide deposit, New South Wales, Australia. Mineralium Deposita, 39 (8). pp. 822-844. ISSN 0026-4598" name="eprints.citation" />
  280. <meta content="http://eprints.utas.edu.au/1899/1/Agnew%2C_Large%2C_Bull_2005_MINERAL_DEPOS.pdf" name="eprints.document_url" />
  281. <link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" />
  282. <meta content="Lewis Ponds, a hybrid carbonate and volcanic-hosted polymetallic massive sulphide deposit, New South Wales, Australia" name="DC.title" />
  283. <meta content="Agnew, M.W." name="DC.creator" />
  284. <meta content="Large, R.R." name="DC.creator" />
  285. <meta content="Bull, S.W." name="DC.creator" />
  286. <meta content="260100 Geology" name="DC.subject" />
  287. <meta content="Abstract The Lewis Ponds Zn-Pb-Cu-Ag-Au deposit,
  288. located in the eastern Lachlan Fold Belt, central
  289. western New South Wales, exhibits the characteristics
  290. of both volcanic-hosted massive sulphide and carbonate-
  291. hosted replacement deposits. Two stratabound
  292. massive to disseminated sulphide zones, Main and
  293. Toms, occur in a tightly folded Upper Silurian
  294. sequence of marine felsic volcanic and sedimentary
  295. rocks. They have a combined indicated resource of
  296. 5.7 Mt grading 3.5% Zn, 2.0% Pb, 0.19% Cu, 97 g/t
  297. Ag and 1.9 g/t Au. Main Zone is hosted by a thick
  298. unit of poorly sorted mixed provenance breccia,
  299. limestone-clast breccia and quartz crystal-rich sandstone,
  300. whereas Toms Zone occurs in the overlying
  301. siltstone. Pretectonic carbonate-chalcopyrite-pyrite
  302. and quartz-pyrite stringer veins occur in the footwall
  303. porphyritic dacite, south of Toms Zone. Strongly
  304. sheared dolomite-chalcopyrite-pyrrhotite veins directly
  305. underlie the Toms massive sulphide lens. The mineralized
  306. zones consist predominantly of pyrite, sphalerite
  307. and galena. Paragenetically early framboidal, dendritic
  308. and botryoidal pyrite aggregates and tabular pyrrhotite
  309. pseudomorphs of sulphate occur throughout the
  310. breccia and sandstone beds that host Main Zone, but
  311. are rarely preserved in the annealed massive sulphide
  312. in Toms Zone. Main and Toms zones are associated
  313. with a semi-conformable hydrothermal alteration
  314. envelope, characterized by texturally destructive chlorite-,
  315. dolomite- and quartz-rich assemblages. Dolomite,
  316. chlorite, quartz, calcite and sulphides have
  317. selectively replaced breccia and sandstone beds in the
  318. Main Zone host sequence, whereas the underlying
  319. porphyritic dacite is weakly sericite altered. Vuggy and
  320. botryoidal textures resulted from partial dissolution of
  321. the dolomite-altered sedimentary rocks and unimpeded
  322. growth of base metal sulphides, carbonate and quartz
  323. into open cavities. The intense chlorite-rich alteration
  324. assemblage, underlying Toms Zone, grades outward
  325. into a weak pervasive sericite-quartz assemblage with
  326. distance from the massive sulphide lens. Limestone
  327. clasts and hydrothermal dolomite at Lewis Ponds are
  328. enriched in light carbon and oxygen isotopes. The
  329. dolomite yielded delta 13 CVPDB values of -11 to +1 per mil and delta 18O VSMOW values of 6 to 16per mil. Liquid-vapour fluid inclusions in the dolomite have low salinities (1.4-7.7 equiv. wt% NaCl) and homogenization temperatures
  330. (166-232 degrees C for 1,000 m water depth). Dolomitization
  331. probably involved fluid mixing or fluid-rock interactions
  332. between evolved heated seawater and the limestone-bearing facies, prior to and during mineralization.
  333. delta 34 SVCDT values range from 2.0 per mil to 5.0 per mil in the massive sulphide and 3.9 per mil to 7.4 per mil in the footwall carbonate-chalcopyrite-pyrite stringer veins, indicating that the hydrothermal fluid may have contained mamgatic sulphur and a component of partially reduced seawater. The sulphide mineral assemblages at
  334. Lewis Ponds are consistent with moderate to strongly
  335. reduced conditions during diagenesis and mineralization.
  336. Low temperature dolomitization of limestonebearing
  337. facies in the Main Zone host sequence created
  338. secondary porosity and provided a reactive host for
  339. fluid-rock interactions. Main Zone formed by lateral
  340. fluid flow and sub-seafloor replacement of the poorly
  341. sorted breccia and sandstone beds. Base metal
  342. sulphide deposition probably resulted from dissolution
  343. of dolomite, fluid mixing and increased fluid pH.
  344. Pyrite, sphalerite and galena precipitated from a relatively
  345. low temperature, 150-250C hydrothermal fluid.
  346. In contrast, Toms Zone was emplaced into finegrained
  347. sediment at or near the seafloor, above a zone
  348. of focused up-flowing hydrothermal fluids. Copperrich
  349. assemblages were deposited in the Toms Zone
  350. footwall and massive sulphide lenses in Main and
  351. Toms zones as the hydrothermal system intensified.During the D1 deformation, fracture-controlled fluids
  352. within the Lewis Ponds fault zone and adjacent
  353. footwall volcanic succession remobilized sulphides
  354. into syntectonic quartz veins. Lewis Ponds is a rare
  355. example of a synvolcanic sub-seafloor hydrothermal
  356. system developed within fossiliferous limestone-bearing
  357. facies. The close spatial association between limestone,
  358. hydrothermal dolomite, massive sulphide and dacite
  359. provides a basis for new exploration targets elsewhere
  360. in New South Wales." name="DC.description" />
  361. <meta content="2005-03" name="DC.date" />
  362. <meta content="Article" name="DC.type" />
  363. <meta content="PeerReviewed" name="DC.type" />
  364. <meta content="application/pdf" name="DC.format" />
  365. <meta content="http://eprints.utas.edu.au/1899/1/Agnew%2C_Large%2C_Bull_2005_MINERAL_DEPOS.pdf" name="DC.identifier" />
  366. <meta content="http://dx.doi.org/10.1007/s00126-004-0456-6" name="DC.relation" />
  367. <meta content="Agnew, M.W. and Large, R.R. and Bull, S.W. (2005) Lewis Ponds, a hybrid carbonate and volcanic-hosted polymetallic massive sulphide deposit, New South Wales, Australia. Mineralium Deposita, 39 (8). pp. 822-844. ISSN 0026-4598" name="DC.identifier" />
  368. <meta content="http://eprints.utas.edu.au/1899/" name="DC.relation" />
  369. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/BibTeX/epprod-eprint-1899.bib" title="BibTeX" type="text/plain" />
  370. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/ContextObject/epprod-eprint-1899.xml" title="OpenURL ContextObject" type="text/xml" />
  371. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/ContextObject::Dissertation/epprod-eprint-1899.xml" title="OpenURL Dissertation" type="text/xml" />
  372. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/ContextObject::Journal/epprod-eprint-1899.xml" title="OpenURL Journal" type="text/xml" />
  373. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/DC/epprod-eprint-1899.txt" title="Dublin Core" type="text/plain" />
  374. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/DIDL/epprod-eprint-1899.xml" title="DIDL" type="text/xml" />
  375. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/EndNote/epprod-eprint-1899.enw" title="EndNote" type="text/plain" />
  376. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/HTML/epprod-eprint-1899.html" title="HTML Citation" type="text/html; charset=utf-8" />
  377. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/METS/epprod-eprint-1899.xml" title="METS" type="text/xml" />
  378. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/MODS/epprod-eprint-1899.xml" title="MODS" type="text/xml" />
  379. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/RIS/epprod-eprint-1899.ris" title="Reference Manager" type="text/plain" />
  380. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/Refer/epprod-eprint-1899.refer" title="Refer" type="text/plain" />
  381. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/Simple/epprod-eprint-1899text" title="Simple Metadata" type="text/plain" />
  382. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/Text/epprod-eprint-1899.txt" title="ASCII Citation" type="text/plain; charset=utf-8" />
  383. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/XML/epprod-eprint-1899.xml" title="EP3 XML" type="text/xml" />
  384.  
  385. </head>
  386. <body bgcolor="#ffffff" text="#000000" onLoad="loadRoutine(); MM_preloadImages('images/eprints/ePrints_banner_r5_c5_f2.gif','images/eprints/ePrints_banner_r5_c7_f2.gif','images/eprints/ePrints_banner_r5_c8_f2.gif','images/eprints/ePrints_banner_r5_c9_f2.gif','images/eprints/ePrints_banner_r5_c10_f2.gif','images/eprints/ePrints_banner_r5_c11_f2.gif','images/eprints/ePrints_banner_r6_c4_f2.gif')">
  387. <div class="ep_noprint"><noscript><style type="text/css">@import url(http://eprints.utas.edu.au/style/nojs.css);</style></noscript></div>
  388.  
  389.  
  390.  
  391.  
  392. <table width="795" border="0" cellspacing="0" cellpadding="0">
  393. <tr>
  394. <td><script language="JavaScript1.2">mmLoadMenus();</script>
  395. <table border="0" cellpadding="0" cellspacing="0" width="795">
  396. <!-- fwtable fwsrc="eprints_banner_final2.png" fwbase="ePrints_banner.gif" fwstyle="Dreamweaver" fwdocid = "1249563342" fwnested="0" -->
  397. <tr>
  398. <td><img src="/images/eprints/spacer.gif" width="32" height="1" border="0" alt="" /></td>
  399. <td><img src="/images/eprints/spacer.gif" width="104" height="1" border="0" alt="" /></td>
  400. <td><img src="/images/eprints/spacer.gif" width="44" height="1" border="0" alt="" /></td>
  401. <td><img src="/images/eprints/spacer.gif" width="105" height="1" border="0" alt="" /></td>
  402. <td><img src="/images/eprints/spacer.gif" width="41" height="1" border="0" alt="" /></td>
  403. <td><img src="/images/eprints/spacer.gif" width="16" height="1" border="0" alt="" /></td>
  404. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  405. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  406. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  407. <td><img src="/images/eprints/spacer.gif" width="82" height="1" border="0" alt="" /></td>
  408. <td><img src="/images/eprints/spacer.gif" width="69" height="1" border="0" alt="" /></td>
  409. <td><img src="/images/eprints/spacer.gif" width="98" height="1" border="0" alt="" /></td>
  410. <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
  411. </tr>
  412. <tr>
  413. <td colspan="12"><img name="ePrints_banner_r1_c1" src="/images/eprints/ePrints_banner_r1_c1.gif" width="795" height="10" border="0" alt="" /></td>
  414. <td><img src="/images/eprints/spacer.gif" width="1" height="10" border="0" alt="" /></td>
  415. </tr>
  416. <tr>
  417. <td rowspan="6"><img name="ePrints_banner_r2_c1" src="/images/eprints/ePrints_banner_r2_c1.gif" width="32" height="118" border="0" alt="" /></td>
  418. <td rowspan="5"><a href="http://www.utas.edu.au/"><img name="ePrints_banner_r2_c2" src="/images/eprints/ePrints_banner_r2_c2.gif" width="104" height="103" border="0" alt="" /></a></td>
  419. <td colspan="10"><img name="ePrints_banner_r2_c3" src="/images/eprints/ePrints_banner_r2_c3.gif" width="659" height="41" border="0" alt="" /></td>
  420. <td><img src="/images/eprints/spacer.gif" width="1" height="41" border="0" alt="" /></td>
  421. </tr>
  422. <tr>
  423. <td colspan="3"><a href="http://eprints.utas.edu.au/"><img name="ePrints_banner_r3_c3" src="/images/eprints/ePrints_banner_r3_c3.gif" width="190" height="31" border="0" alt="" /></a></td>
  424. <td rowspan="2" colspan="7"><img name="ePrints_banner_r3_c6" src="/images/eprints/ePrints_banner_r3_c6.gif" width="469" height="37" border="0" alt="" /></td>
  425. <td><img src="/images/eprints/spacer.gif" width="1" height="31" border="0" alt="" /></td>
  426. </tr>
  427. <tr>
  428. <td colspan="3"><img name="ePrints_banner_r4_c3" src="/images/eprints/ePrints_banner_r4_c3.gif" width="190" height="6" border="0" alt="" /></td>
  429. <td><img src="/images/eprints/spacer.gif" width="1" height="6" border="0" alt="" /></td>
  430. </tr>
  431. <tr>
  432. <td colspan="2"><img name="ePrints_banner_r5_c3" src="/images/eprints/ePrints_banner_r5_c3.gif" width="149" height="1" border="0" alt="" /></td>
  433. <td rowspan="2" colspan="2"><a href="/information.html" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821132634_0,0,25,null,'ePrints_banner_r5_c5');MM_swapImage('ePrints_banner_r5_c5','','/images/eprints/ePrints_banner_r5_c5_f2.gif',1);"><img name="ePrints_banner_r5_c5" src="/images/eprints/ePrints_banner_r5_c5.gif" width="57" height="25" border="0" alt="About" /></a></td>
  434. <td rowspan="2"><a href="/view/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133021_1,0,25,null,'ePrints_banner_r5_c7');MM_swapImage('ePrints_banner_r5_c7','','/images/eprints/ePrints_banner_r5_c7_f2.gif',1);"><img name="ePrints_banner_r5_c7" src="/images/eprints/ePrints_banner_r5_c7.gif" width="68" height="25" border="0" alt="Browse" /></a></td>
  435. <td rowspan="2"><a href="/perl/search/simple" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133201_2,0,25,null,'ePrints_banner_r5_c8');MM_swapImage('ePrints_banner_r5_c8','','/images/eprints/ePrints_banner_r5_c8_f2.gif',1);"><img name="ePrints_banner_r5_c8" src="/images/eprints/ePrints_banner_r5_c8.gif" width="68" height="25" border="0" alt="Search" /></a></td>
  436. <td rowspan="2"><a href="/perl/register" onMouseOut="MM_swapImgRestore();MM_startTimeout();" onMouseOver="MM_showMenu(window.mm_menu_1018171924_3,0,25,null,'ePrints_banner_r5_c9');MM_swapImage('ePrints_banner_r5_c9','','/images/eprints/ePrints_banner_r5_c9_f2.gif',1);"><img name="ePrints_banner_r5_c9" src="/images/eprints/ePrints_banner_r5_c9.gif" width="68" height="25" border="0" alt="register" /></a></td>
  437. <td rowspan="2"><a href="/perl/users/home" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133422_4,0,25,null,'ePrints_banner_r5_c10');MM_swapImage('ePrints_banner_r5_c10','','/images/eprints/ePrints_banner_r5_c10_f2.gif',1);"><img name="ePrints_banner_r5_c10" src="/images/eprints/ePrints_banner_r5_c10.gif" width="82" height="25" border="0" alt="user area" /></a></td>
  438. <td rowspan="2"><a href="/help/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133514_5,0,25,null,'ePrints_banner_r5_c11');MM_swapImage('ePrints_banner_r5_c11','','/images/eprints/ePrints_banner_r5_c11_f2.gif',1);"><img name="ePrints_banner_r5_c11" src="/images/eprints/ePrints_banner_r5_c11.gif" width="69" height="25" border="0" alt="Help" /></a></td>
  439. <td rowspan="3" colspan="4"><img name="ePrints_banner_r5_c12" src="/images/eprints/ePrints_banner_r5_c12.gif" width="98" height="40" border="0" alt="" /></td>
  440. <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
  441. </tr>
  442. <tr>
  443. <td rowspan="2"><img name="ePrints_banner_r6_c3" src="/images/eprints/ePrints_banner_r6_c3.gif" width="44" height="39" border="0" alt="ePrints home" /></td>
  444. <td><a href="/" onMouseOut="MM_swapImgRestore()" onMouseOver="MM_swapImage('ePrints_banner_r6_c4','','/images/eprints/ePrints_banner_r6_c4_f2.gif',1);"><img name="ePrints_banner_r6_c4" src="/images/eprints/ePrints_banner_r6_c4.gif" width="105" height="24" border="0" alt="ePrints home" /></a></td>
  445. <td><img src="/images/eprints/spacer.gif" width="1" height="24" border="0" alt="" /></td>
  446. </tr>
  447. <tr>
  448. <td><img name="ePrints_banner_r7_c2" src="/images/eprints/ePrints_banner_r7_c2.gif" width="104" height="15" border="0" alt="" /></td>
  449. <td colspan="8"><img name="ePrints_banner_r7_c4" src="/images/eprints/ePrints_banner_r7_c4.gif" width="517" height="15" border="0" alt="" /></td>
  450. <td><img src="/images/eprints/spacer.gif" width="1" height="15" border="0" alt="" /></td>
  451. </tr>
  452. </table></td>
  453. </tr>
  454. <tr><td><table width="100%" style="font-size: 90%; border: solid 1px #ccc; padding: 3px"><tr>
  455. <td align="left"><a href="http://eprints.utas.edu.au/cgi/users/home">Login</a> | <a href="http://eprints.utas.edu.au/cgi/register">Create Account</a></td>
  456. <td align="right" style="white-space: nowrap">
  457. <form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/search" style="display:inline">
  458. <input class="ep_tm_searchbarbox" size="20" type="text" name="q" />
  459. <input class="ep_tm_searchbarbutton" value="Search" type="submit" name="_action_search" />
  460. <input type="hidden" name="_order" value="bytitle" />
  461. <input type="hidden" name="basic_srchtype" value="ALL" />
  462. <input type="hidden" name="_satisfyall" value="ALL" />
  463. </form>
  464. </td>
  465. </tr></table></td></tr>
  466. <tr>
  467. <td class="toplinks"><!-- InstanceBeginEditable name="content" -->
  468.  
  469.  
  470. <div align="center">
  471. <table width="720" class="ep_tm_main"><tr><td align="left">
  472. <h1 class="ep_tm_pagetitle">Lewis Ponds, a hybrid carbonate and volcanic-hosted polymetallic massive sulphide deposit, New South Wales, Australia</h1>
  473. <p style="margin-bottom: 1em" class="not_ep_block"><span class="person_name">Agnew, M.W.</span> and <span class="person_name">Large, R.R.</span> and <span class="person_name">Bull, S.W.</span> (2005) <xhtml:em>Lewis Ponds, a hybrid carbonate and volcanic-hosted polymetallic massive sulphide deposit, New South Wales, Australia.</xhtml:em> Mineralium Deposita, 39 (8). pp. 822-844. ISSN 0026-4598</p><p style="margin-bottom: 1em" class="not_ep_block"></p><table style="margin-bottom: 1em" class="not_ep_block"><tr><td valign="top" style="text-align:center"><a href="http://eprints.utas.edu.au/1899/1/Agnew%2C_Large%2C_Bull_2005_MINERAL_DEPOS.pdf"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" border="0" class="ep_doc_icon" /></a></td><td valign="top"><a href="http://eprints.utas.edu.au/1899/1/Agnew%2C_Large%2C_Bull_2005_MINERAL_DEPOS.pdf"><span class="ep_document_citation">PDF</span></a> - Full text restricted - Requires a PDF viewer<br />2061Kb</td><td><form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/request_doc"><input value="2394" name="docid" accept-charset="utf-8" type="hidden" /><div class=""><input value="Request a copy" name="_action_null" class="ep_form_action_button" onclick="return EPJS_button_pushed( '_action_null' )" type="submit" /> </div></form></td></tr></table><p style="margin-bottom: 1em" class="not_ep_block">Official URL: <a href="http://dx.doi.org/10.1007/s00126-004-0456-6">http://dx.doi.org/10.1007/s00126-004-0456-6</a></p><div class="not_ep_block"><h2>Abstract</h2><p style="padding-bottom: 16px; text-align: left; margin: 1em auto 0em auto">Abstract The Lewis Ponds Zn-Pb-Cu-Ag-Au deposit,&#13;
  474. located in the eastern Lachlan Fold Belt, central&#13;
  475. western New South Wales, exhibits the characteristics&#13;
  476. of both volcanic-hosted massive sulphide and carbonate-&#13;
  477. hosted replacement deposits. Two stratabound&#13;
  478. massive to disseminated sulphide zones, Main and&#13;
  479. Toms, occur in a tightly folded Upper Silurian&#13;
  480. sequence of marine felsic volcanic and sedimentary&#13;
  481. rocks. They have a combined indicated resource of&#13;
  482. 5.7 Mt grading 3.5% Zn, 2.0% Pb, 0.19% Cu, 97 g/t&#13;
  483. Ag and 1.9 g/t Au. Main Zone is hosted by a thick&#13;
  484. unit of poorly sorted mixed provenance breccia,&#13;
  485. limestone-clast breccia and quartz crystal-rich sandstone,&#13;
  486. whereas Toms Zone occurs in the overlying&#13;
  487. siltstone. Pretectonic carbonate-chalcopyrite-pyrite&#13;
  488. and quartz-pyrite stringer veins occur in the footwall&#13;
  489. porphyritic dacite, south of Toms Zone. Strongly&#13;
  490. sheared dolomite-chalcopyrite-pyrrhotite veins directly&#13;
  491. underlie the Toms massive sulphide lens. The mineralized&#13;
  492. zones consist predominantly of pyrite, sphalerite&#13;
  493. and galena. Paragenetically early framboidal, dendritic&#13;
  494. and botryoidal pyrite aggregates and tabular pyrrhotite&#13;
  495. pseudomorphs of sulphate occur throughout the&#13;
  496. breccia and sandstone beds that host Main Zone, but&#13;
  497. are rarely preserved in the annealed massive sulphide&#13;
  498. in Toms Zone. Main and Toms zones are associated&#13;
  499. with a semi-conformable hydrothermal alteration&#13;
  500. envelope, characterized by texturally destructive chlorite-,&#13;
  501. dolomite- and quartz-rich assemblages. Dolomite,&#13;
  502. chlorite, quartz, calcite and sulphides have&#13;
  503. selectively replaced breccia and sandstone beds in the&#13;
  504. Main Zone host sequence, whereas the underlying&#13;
  505. porphyritic dacite is weakly sericite altered. Vuggy and&#13;
  506. botryoidal textures resulted from partial dissolution of&#13;
  507. the dolomite-altered sedimentary rocks and unimpeded&#13;
  508. growth of base metal sulphides, carbonate and quartz&#13;
  509. into open cavities. The intense chlorite-rich alteration&#13;
  510. assemblage, underlying Toms Zone, grades outward&#13;
  511. into a weak pervasive sericite-quartz assemblage with&#13;
  512. distance from the massive sulphide lens. Limestone&#13;
  513. clasts and hydrothermal dolomite at Lewis Ponds are&#13;
  514. enriched in light carbon and oxygen isotopes. The&#13;
  515. dolomite yielded delta 13 CVPDB values of -11 to +1 per mil and delta 18O VSMOW values of 6 to 16per mil. Liquid-vapour fluid inclusions in the dolomite have low salinities (1.4-7.7 equiv. wt% NaCl) and homogenization temperatures&#13;
  516. (166-232 degrees C for 1,000 m water depth). Dolomitization&#13;
  517. probably involved fluid mixing or fluid-rock interactions&#13;
  518. between evolved heated seawater and the limestone-bearing facies, prior to and during mineralization.&#13;
  519. delta 34 SVCDT values range from 2.0 per mil to 5.0 per mil in the massive sulphide and 3.9 per mil to 7.4 per mil in the footwall carbonate-chalcopyrite-pyrite stringer veins, indicating that the hydrothermal fluid may have contained mamgatic sulphur and a component of partially reduced seawater. The sulphide mineral assemblages at&#13;
  520. Lewis Ponds are consistent with moderate to strongly&#13;
  521. reduced conditions during diagenesis and mineralization.&#13;
  522. Low temperature dolomitization of limestonebearing&#13;
  523. facies in the Main Zone host sequence created&#13;
  524. secondary porosity and provided a reactive host for&#13;
  525. fluid-rock interactions. Main Zone formed by lateral&#13;
  526. fluid flow and sub-seafloor replacement of the poorly&#13;
  527. sorted breccia and sandstone beds. Base metal&#13;
  528. sulphide deposition probably resulted from dissolution&#13;
  529. of dolomite, fluid mixing and increased fluid pH.&#13;
  530. Pyrite, sphalerite and galena precipitated from a relatively&#13;
  531. low temperature, 150-250C hydrothermal fluid.&#13;
  532. In contrast, Toms Zone was emplaced into finegrained&#13;
  533. sediment at or near the seafloor, above a zone&#13;
  534. of focused up-flowing hydrothermal fluids. Copperrich&#13;
  535. assemblages were deposited in the Toms Zone&#13;
  536. footwall and massive sulphide lenses in Main and&#13;
  537. Toms zones as the hydrothermal system intensified.During the D1 deformation, fracture-controlled fluids&#13;
  538. within the Lewis Ponds fault zone and adjacent&#13;
  539. footwall volcanic succession remobilized sulphides&#13;
  540. into syntectonic quartz veins. Lewis Ponds is a rare&#13;
  541. example of a synvolcanic sub-seafloor hydrothermal&#13;
  542. system developed within fossiliferous limestone-bearing&#13;
  543. facies. The close spatial association between limestone,&#13;
  544. hydrothermal dolomite, massive sulphide and dacite&#13;
  545. provides a basis for new exploration targets elsewhere&#13;
  546. in New South Wales.</p></div><table style="margin-bottom: 1em" border="0" cellpadding="3" class="not_ep_block"><tr><th valign="top" class="ep_row">Item Type:</th><td valign="top" class="ep_row">Article</td></tr><tr><th valign="top" class="ep_row">Keywords:</th><td valign="top" class="ep_row">Volcanic-hosted massive sulphide, Carbonate-hosted replacement, Sulphide textures, Limestone, Lachlan Fold Belt, Hill End Trough, Australia</td></tr><tr><th valign="top" class="ep_row">Subjects:</th><td valign="top" class="ep_row"><a href="http://eprints.utas.edu.au/view/subjects/260100.html">260000 Earth Sciences &gt; 260100 Geology</a></td></tr><tr><th valign="top" class="ep_row">Collections:</th><td valign="top" class="ep_row">UNSPECIFIED</td></tr><tr><th valign="top" class="ep_row">ID Code:</th><td valign="top" class="ep_row">1899</td></tr><tr><th valign="top" class="ep_row">Deposited By:</th><td valign="top" class="ep_row"><span class="ep_name_citation"><span class="person_name">Mrs Katrina Keep</span></span></td></tr><tr><th valign="top" class="ep_row">Deposited On:</th><td valign="top" class="ep_row">12 Sep 2007</td></tr><tr><th valign="top" class="ep_row">Last Modified:</th><td valign="top" class="ep_row">23 Jan 2008 15:58</td></tr><tr><th valign="top" class="ep_row">ePrint Statistics:</th><td valign="top" class="ep_row"><a target="ePrintStats" href="/es/index.php?action=show_detail_eprint;id=1899;">View statistics for this ePrint</a></td></tr></table><p align="right">Repository Staff Only: <a href="http://eprints.utas.edu.au/cgi/users/home?screen=EPrint::View&amp;eprintid=1899">item control page</a></p>
  547. </td></tr></table>
  548. </div>
  549.  
  550.  
  551.  
  552. <!-- InstanceEndEditable --></td>
  553. </tr>
  554. <tr>
  555. <td><!-- #BeginLibraryItem "/Library/footer_eprints.lbi" -->
  556. <table width="795" border="0" align="left" cellpadding="0" class="footer">
  557. <tr valign="top">
  558. <td colspan="2"><div align="center"><a href="http://www.utas.edu.au">UTAS home</a> | <a href="http://www.utas.edu.au/library/">Library home</a> | <a href="/">ePrints home</a> | <a href="/contact.html">contact</a> | <a href="/information.html">about</a> | <a href="/view/">browse</a> | <a href="/perl/search/simple">search</a> | <a href="/perl/register">register</a> | <a href="/perl/users/home">user area</a> | <a href="/help/">help</a></div><br /></td>
  559. </tr>
  560. <tr><td colspan="2"><p><img src="/images/eprints/footerline.gif" width="100%" height="4" /></p></td></tr>
  561. <tr valign="top">
  562. <td width="68%" class="footer">Authorised by the University Librarian<br />
  563. © University of Tasmania ABN 30 764 374 782<br />
  564. <a href="http://www.utas.edu.au/cricos/">CRICOS Provider Code 00586B</a> | <a href="http://www.utas.edu.au/copyright/copyright_disclaimers.html">Copyright &amp; Disclaimers</a> | <a href="http://www.utas.edu.au/accessibility/index.html">Accessibility</a> | <a href="http://eprints.utas.edu.au/feedback/">Site Feedback</a>  </td>
  565. <td width="32%"><div align="right">
  566. <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><img src="http://www.utas.edu.au/shared/logos/unioftasstrip.gif" alt="University of Tasmania Home Page" width="260" height="16" border="0" align="right" /></a></p>
  567. <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><br />
  568. </a></p>
  569. </div></td>
  570. </tr>
  571. <tr valign="top">
  572. <td><p>  </p></td>
  573. <td><div align="right"><span class="NoPrint"><a href="http://www.eprints.org/software/"><img src="/images/eprintslogo.gif" alt="ePrints logo" width="77" height="29" border="0" align="bottom" /></a></span></div></td>
  574. </tr>
  575. </table>
  576. <!-- #EndLibraryItem -->
  577. <div align="center"></div></td>
  578. </tr>
  579. </table>
  580.  
  581. </body>
  582. </html>