- <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
- "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
- <html>
- <head>
- <title>UTas ePrints - Lewis Ponds, a hybrid carbonate and volcanic-hosted polymetallic massive sulphide deposit, New South Wales, Australia</title>
- <script type="text/javascript" src="http://eprints.utas.edu.au/javascript/auto.js"><!-- padder --></script>
- <style type="text/css" media="screen">@import url(http://eprints.utas.edu.au/style/auto.css);</style>
- <style type="text/css" media="print">@import url(http://eprints.utas.edu.au/style/print.css);</style>
- <link rel="icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
- <link rel="shortcut icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
- <link rel="Top" href="http://eprints.utas.edu.au/" />
- <link rel="Search" href="http://eprints.utas.edu.au/cgi/search" />
- <meta content="Agnew, M.W." name="eprints.creators_name" />
- <meta content="Large, R.R." name="eprints.creators_name" />
- <meta content="Bull, S.W." name="eprints.creators_name" />
- <meta name="eprints.creators_id" />
- <meta content="Ross.Large@utas.edu.au" name="eprints.creators_id" />
- <meta content="S.Bull@utas.edu.au" name="eprints.creators_id" />
- <meta content="article" name="eprints.type" />
- <meta content="2007-09-12" name="eprints.datestamp" />
- <meta content="2008-01-23T04:58:39Z" name="eprints.lastmod" />
- <meta content="show" name="eprints.metadata_visibility" />
- <meta content="Lewis Ponds, a hybrid carbonate and volcanic-hosted polymetallic massive sulphide deposit, New South Wales, Australia" name="eprints.title" />
- <meta content="pub" name="eprints.ispublished" />
- <meta content="260100" name="eprints.subjects" />
- <meta content="restricted" name="eprints.full_text_status" />
- <meta content="Volcanic-hosted massive sulphide, Carbonate-hosted replacement, Sulphide textures, Limestone, Lachlan Fold Belt, Hill End Trough, Australia" name="eprints.keywords" />
- <meta content="Abstract The Lewis Ponds Zn-Pb-Cu-Ag-Au deposit,
- located in the eastern Lachlan Fold Belt, central
- western New South Wales, exhibits the characteristics
- of both volcanic-hosted massive sulphide and carbonate-
- hosted replacement deposits. Two stratabound
- massive to disseminated sulphide zones, Main and
- Toms, occur in a tightly folded Upper Silurian
- sequence of marine felsic volcanic and sedimentary
- rocks. They have a combined indicated resource of
- 5.7 Mt grading 3.5% Zn, 2.0% Pb, 0.19% Cu, 97 g/t
- Ag and 1.9 g/t Au. Main Zone is hosted by a thick
- unit of poorly sorted mixed provenance breccia,
- limestone-clast breccia and quartz crystal-rich sandstone,
- whereas Toms Zone occurs in the overlying
- siltstone. Pretectonic carbonate-chalcopyrite-pyrite
- and quartz-pyrite stringer veins occur in the footwall
- porphyritic dacite, south of Toms Zone. Strongly
- sheared dolomite-chalcopyrite-pyrrhotite veins directly
- underlie the Toms massive sulphide lens. The mineralized
- zones consist predominantly of pyrite, sphalerite
- and galena. Paragenetically early framboidal, dendritic
- and botryoidal pyrite aggregates and tabular pyrrhotite
- pseudomorphs of sulphate occur throughout the
- breccia and sandstone beds that host Main Zone, but
- are rarely preserved in the annealed massive sulphide
- in Toms Zone. Main and Toms zones are associated
- with a semi-conformable hydrothermal alteration
- envelope, characterized by texturally destructive chlorite-,
- dolomite- and quartz-rich assemblages. Dolomite,
- chlorite, quartz, calcite and sulphides have
- selectively replaced breccia and sandstone beds in the
- Main Zone host sequence, whereas the underlying
- porphyritic dacite is weakly sericite altered. Vuggy and
- botryoidal textures resulted from partial dissolution of
- the dolomite-altered sedimentary rocks and unimpeded
- growth of base metal sulphides, carbonate and quartz
- into open cavities. The intense chlorite-rich alteration
- assemblage, underlying Toms Zone, grades outward
- into a weak pervasive sericite-quartz assemblage with
- distance from the massive sulphide lens. Limestone
- clasts and hydrothermal dolomite at Lewis Ponds are
- enriched in light carbon and oxygen isotopes. The
- dolomite yielded delta 13 CVPDB values of -11 to +1 per mil and delta 18O VSMOW values of 6 to 16per mil. Liquid-vapour fluid inclusions in the dolomite have low salinities (1.4-7.7 equiv. wt% NaCl) and homogenization temperatures
- (166-232 degrees C for 1,000 m water depth). Dolomitization
- probably involved fluid mixing or fluid-rock interactions
- between evolved heated seawater and the limestone-bearing facies, prior to and during mineralization.
- delta 34 SVCDT values range from 2.0 per mil to 5.0 per mil in the massive sulphide and 3.9 per mil to 7.4 per mil in the footwall carbonate-chalcopyrite-pyrite stringer veins, indicating that the hydrothermal fluid may have contained mamgatic sulphur and a component of partially reduced seawater. The sulphide mineral assemblages at
- Lewis Ponds are consistent with moderate to strongly
- reduced conditions during diagenesis and mineralization.
- Low temperature dolomitization of limestonebearing
- facies in the Main Zone host sequence created
- secondary porosity and provided a reactive host for
- fluid-rock interactions. Main Zone formed by lateral
- fluid flow and sub-seafloor replacement of the poorly
- sorted breccia and sandstone beds. Base metal
- sulphide deposition probably resulted from dissolution
- of dolomite, fluid mixing and increased fluid pH.
- Pyrite, sphalerite and galena precipitated from a relatively
- low temperature, 150-250C hydrothermal fluid.
- In contrast, Toms Zone was emplaced into finegrained
- sediment at or near the seafloor, above a zone
- of focused up-flowing hydrothermal fluids. Copperrich
- assemblages were deposited in the Toms Zone
- footwall and massive sulphide lenses in Main and
- Toms zones as the hydrothermal system intensified.During the D1 deformation, fracture-controlled fluids
- within the Lewis Ponds fault zone and adjacent
- footwall volcanic succession remobilized sulphides
- into syntectonic quartz veins. Lewis Ponds is a rare
- example of a synvolcanic sub-seafloor hydrothermal
- system developed within fossiliferous limestone-bearing
- facies. The close spatial association between limestone,
- hydrothermal dolomite, massive sulphide and dacite
- provides a basis for new exploration targets elsewhere
- in New South Wales." name="eprints.abstract" />
- <meta content="2005-03" name="eprints.date" />
- <meta content="published" name="eprints.date_type" />
- <meta content="Mineralium Deposita" name="eprints.publication" />
- <meta content="39" name="eprints.volume" />
- <meta content="8" name="eprints.number" />
- <meta content="822-844" name="eprints.pagerange" />
- <meta content="10.1007/s00126-004-0456-6" name="eprints.id_number" />
- <meta content="UNSPECIFIED" name="eprints.thesis_type" />
- <meta content="TRUE" name="eprints.refereed" />
- <meta content="0026-4598" name="eprints.issn" />
- <meta content="http://dx.doi.org/10.1007/s00126-004-0456-6" name="eprints.official_url" />
- <meta content="Agnew MW (2003) Geology and genesis of the Lewis Ponds carbonate and volcanic-hosted massive sulfide deposits, New
- South Wales Australia. PhD Thesis, University of Tasmania
- Agnew MW, Bull SW, Large RR (2004) Facies architecture of the Lewis Ponds carbonate and volcanic-hosted massive sulphide deposits, central western New South Wales. Aust J Earth Sci 51:349-368
- Allen RL (1992) Reconstruction of the tectonic, volcanic, and sedimentary setting of strongly deformed Zn-Cu massive sulphide deposits at Benambra, Victoria. Econ Geol 87:825-854
- Allen RL, Lundstrom I, Ripa M, Christofferson H, Stephens MB, Halenius U, Widenfalk L (1996) Facies analysis of a 1.9 Ga, continental margin, back-arc, felsic caldera province with diverse Zn-Pb-Ag-(Cu-Au) sulfide and Fe oxide deposits, Bergslagen region, Sweden. Econ Geol 91:979-1008
- Ayres DE, Burns MS, Smith JW (1979) Sulphur-isotope study of
- the massive sulphide orebody at Woodlawn, New South Wales.
- J Geol Soc Aust 26:197-201
- Belkin HE, Cavarretta G, De Vivo B, Tecce F (1988) Hydrothermal phlogopite and anhydrite from the SH2 well, Sabatini volcanic district, Latium, Italy; fluid inclusions and mineral chemistry. Amer Mineral 73:775-797
- Bodon SB, Valenta RK (1995) Primary and tectonic features of the Currawong Zn-Cu-Pb(-Au) massive sulfide deposit, Benambra, Victoria: implications for ore genesis. Econ Geol 90:1694-1721
- Botros NS (2003) On the relationship between auriferous talc
- deposits hosted in volcanic rocks and massive sulphide deposits in Egypt. Ore Geol Rev 23:223-257
- Callaghan T (2001) Geology and host-rock alteration of the Henty and Mount Julia gold deposits, western Tasmania. Econ Geol 96:1073-1088
- de Carlo EH, Lackschewitz KK, Carmody R (2002) Data report:
- trace element and isotopic composition of interstitial water and sediments from the Woodlark Rise, ODP Leg 180. In: Huchon P, Taylor B, Klaus A (eds) Proceedings of the ocean drilling program, scientific results, Leg 180, vol 180
- Carne JE (1899) The copper-mining industry and the distribution of copper ores in New South Wales, vol 6. William Applegate Gullick, Government Printer, Sydney
- Chisholm JM (1976) Geochemical zoning in a volcanogenic Cu-Pb-Zn-Ag sulphide deposit at Mt Bulga, N.S.W., Australia. PhD Thesis, University of New South Wales
- Claypool GE, Holser WT, Kaplan IR, Sakai H, Zak I (1980) The
- age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem Geol 28:199-260
- Colquhoun GP, Meakin NS, Morgan EJ, Raymond OL, Scott
- MM, Watkins JJ, Barron LM, Cameron RG, Henderson
- GAM, Jagodzinski EA, Krynen JP, Pogson DJ, Warren AYE,
- Wyborn D, Yoo EK (1997) Dubbo 1:250 000 geological sheet
- SI55-4, preliminary second edition. Geological Survey of New
- South Wales. Sydney and Australian Geological Survey Organisation, Canberra
- Corbett KD (2001) New mapping and interpretations of the Mount Lyell mining district, Tasmania: a large hybrid Cu-Au system with an exhalative top. Econ Geol 96:1089-1122
- Costa UR, Barnett RL, Kerrich R (1983) The Mattagami Lake
- Mine Archean Zn-Cu sulfide deposit, Quebec; hydrothermal
- coprecipitation of talc and sulfides in a sea-floor brine pool; evidence from geochemistry, d18O/d16O, and mineral chemistry. Econ Geol 78:1144-1203
- Davis LW (1990) Silver-lead-zinc-copper mineralisation in the Captains Flat-Goulburn synclinorial zone and the Hill End synclinorial zone. In: Hughes FE (ed) Geology of the mineral deposits of Australia and Papua New Guinea, vol 2. The Australasian Institute of Mining and Metallurgy, Melbourne, pp 1375-1384
- Davis EE, Goodfellow WD, Bornhold BD, Adshead J, Blaise B,
- Villinger H, Le CGM (1987) Massive sulfides in a sedimented
- rift valley, northern Juan de Fuca Ridge. Earth Planet Sci Lett 82:49-61
- Downes PM, Seccombe PK (2004) Sulfur isotope distribution in
- Late Silurian volcanic-hosted massive sulfide deposits, eastern Lachlan Fold Belt, NSW. Aust J Earth Sci 51:123-139
- Doyle MG, Allen RL (2003) Subsea-floor replacement in volcanichosted massive sulfide deposits. Ore Geol Rev23:183-222
- Duckworth RC, Fallick AE, Rickard D (1994) Mineralogy and
- sulfur isotopic composition of the Middle Valley massive sulfide deposit, northern Juan De Fuca Ridge. In: Mottl MJ, Davis EE, Fisher AT, Slack JF (eds) Proceedings of the ocean drilling program, scientific results, vol 139, pp 373-385
- Eldridge CS, Barton PB Jr, Ohmoto H (1983) Mineral textures and their bearing on formation of the Kuroko orebodies. Econ Geol Monogr 5:241-281
- Foster DA, Gray DR (2000) Evolution and structure of the
- Lachlan Fold Belt (orogen) of eastern Australia. Annu Rev
- Earth Planet Sci 28:47-80
- Glen RA (1992) Thrust, extensional and strike-slip tectonics in an evolving Palaeozoic orogen-a structural synthesis of the Lachlan Orogen of southeastern Australia. Tectonophysics 214:341-380
- Glen RA, Watkins JJ (1994) The Orange 1:100 000 sheet: a preliminary account of stratigraphy, structure and tectonics, and implications for mineralisation. Geological Survey of New South Wales, Quarterly Notes 95:1-17
- Glen RA, Lennox PG, Foster DA (1999) 40Ar39Ar dating of
- deformations west of the Hill End Trough, Lachlan Orogen,
- New South Wales. Geological Survey of New South Wales
- Quarterly Notes 110:13-22
- Goodfellow WD, Franklin JM (1993) Geology, mineralogy, and
- chemistry of sediment-hosted clastic massive sulfides in shallow cores, Middle Valley, northern Juan de Fuca Ridge. Econ Geol 88:2033-2064
- Grandia F, Cardellach E, Canals A, Banks DA (2003) Geochemistry of the fluids related to epigenetic carbon-hosted Zn-Pb deposits in the Maestrat Basin, eastern Spain; fluid inclusion and isotope (Cl, C, O, S, Sr) evidence. Econ Geol 98:933-954
- Gregg JM, Sibley DF (1984) Epigenetic dolomitization and the
- origin of xenotopic dolomite texture. J Sediment Petrol 54:908-931
- Halbach P, Pracejus B, Maerten A (1993) Geology and mineralogy of massive sulfide ores from the central Okinawa Trough, Japan. Econ Geol 88:2206-2221
- Hannington MD, Bleeker W, Kjarsgaard I (1999) Sulfide mineralogy, geochemistry, and ore genesis of the Kidd Creek deposit; part I, North, Central and South orebodies. Econ Geol Monogr 10:163-224
- Herrmann W, Hill AP (2001) The origin of chlorite-tremolite-carbonate rocks associated with the Thalanga Volcanic-hosted
- massive sulfide deposit, North Queensland, Australia. Econ
- Geol 96:1149-1173
- Herzig PM, Hannington MD (1995) Polymetallic massive sulfides at the modern seafloor; a review. Ore Geol Rev 10:95-115
- Hitzman MW, Beaty DW (1997) The Irish Zn-Pb-(Ba) orefield.
- Special publication-Society of Economic Geologists 4:112-143
- Hitzman MW, Redmond PB, Beaty DW (2002) The carbonatehosted
- Lisheen Zn-Pb-Ag deposit, County Tipperary, Ireland.
- Econ Geol 97:1627-1655
- Hou Z, Zaw K, Qu X, Ye Q, Yu J, Xu M, Fu D, Yin X (2001)
- Origin of the Gacun volcanic-hosted massive sulfide deposit in Sichuan, China; fluid inclusion and oxygen isotope evidence. Econ Geol 96:1491-1512
- Huston DL, Large RR (1989) A chemical model for the concentration of gold in volcanogenic massive sulphide deposits. Ore Geol Rev 4:171-200
- Huston DL, Barrie CT, Hannington MD (1999) Stable isotopes
- and their significance for understanding the genesis of volcanichosted massive sulfide deposits; a review. Rev Econ Geol 8:157-179
- Jago JB, Reid KO, Quilty PG, Green GR, Daily B (1972)
- Fossiliferous Cambrian limestone from within the Mt Read
- Volcanics, Mt Lyell mine area, Tasmania. J Geol Soc Aust
- 19:379-382
- Kajiwara Y (1972) Sulfur isotope study of the Kuroko-ores of the Shakanai No. 1 deposits, Akita Prefecture, Japan. Geochem J 4:157-181
- Kontak DJ, Hebert R (1998) Geology of the Stirling Zn-Pb-Cu-Ag-Au VMS deposit, Southeast Cape Breton, Nova Scotia; reinterpretation of the quartz-talc-carbonate (QTC) rock with implications for mineral exploration. In: Program with
- Abstracts-Geological Association of Canada; Mineralogical
- Association of Canada; Canadian Geophysical Union, Joint
- Annual Meeting, vol 23. Geological Association of Canada,
- Waterloo, pp 94-95
- Large RR (1977) Chemical evolution and zonation of massive
- sulfide deposits in volcanic terrains. Econ Geol 72:549-572
- Large RR (1992) Australian volcanic-hosted massive sulphide
- deposits: features, styles, and genetic models. Econ Geol
- 87:471-510
- Large RR, Both RA (1980) The volcanogenic sulfide ores at Mount Chalmers, eastern Queensland. Econ Geol 75:992-1009
- Large RR, Allen RL, Blake MD, Herrmann W (2001a) Hydrothermal alteration and volatile element halos for the Rosebery K lens volcanic-hosted massive sulfide deposit, western Tasmania. Econ Geol 96:1055-1072
- Large RR, Bull SW, Winefield PR (2001b) Carbon and oxygen
- isotope halo in carbonates related to the McArthur River
- (HYC) Zn-Pb-Ag deposit, north Australia: implications for
- sedimentation, ore genesis, and mineral exploration. Econ Geol 96:1567-1593
- McKay WJ, Hazeldene RK (1987) Woodlawn Zn-Pb-Cu sulfide
- deposit, New South Wales, Australia: an interpretation of ore formation from field observations and metal zoning. Econ Geol 82:141-164
- McLeod RL, Stanton RL (1984) Phyllosilicates and associated
- minerals in some Paleozoic stratiform sulfide deposits of
- southeastern Australia. Econ Geol 79:1-22
- Meakin S, Spackman J, Scott MM, Watkins JJ, Warren AYE,
- Moffit RS, Krynen JP (1997) Orange 1:100 000 geological map
- 8731, 1st edn. Geological Survey of New South Wales, Sydney
- and Australian Geological Survey Organisation, Canberra
- Misra KC, Gratz JF, Lu C (1997) Carbonate-hosted Mississippi
- Valley-type mineralization in the Elmwood-Gordonsville
- deposits, central Tennessee zinc district; a synthesis. Special Publication Society of Economic Geologists 4:58-73
- Moore JG, Clague DA (1992) Volcano growth and evolution of the Island of Hawaii. Geol Soc Am Bull 104:1471-1484
- Mullin JW (1993) Crystallization. Butterworth and Heinemann,
- Oxford Northrop DA, Clayton RN (1966) Oxygen-isotope fractionations in systems containing dolomite. J Geol 74:174-196
- Ohmoto H, Goldhaber MB (1997) Sulfur and carbon isotopes. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Wiley, New York, pp 517-612
- Ohmoto H, Rye RO (1979) Isotopes of sulfur and carbon. In:
- Barnes HL (ed) Geochemistry of hydrothermal ore deposits.
- Wiley, New York, pp 509-567
- Orth K (2002) Setting of the Palaeoproterozoic Koongie Park
- Formation and carbonate-associated base metal mineralisation, at Koongie Park, northwestern Australia. PhD Thesis, University of Tasmania
- Paradis S, Jonasson IR, Le Cheminant GM, Watkinson DH (1988)
- Two zinc-rich chimneys from the Plume Site, southern Juan de
- Fuca Ridge. Can Mineral 26:637-654
- Paulick H, Herrmann W, Gemmell JB (2001) Alteration of felsic volcanics hosting the Thalanga massive sulfide deposit (Northern Queensland, Australia) and geochemical proximity indicators to ore. Econ Geol 96:1175-1200
- Peace WM, Wallace MW, Holdstock MP, Ashton JH (2003) Ore
- textures within the U lens of the Navan Zn-Pb deposit, Ireland. Mineral Deposit 38:568-584
- Pittman EF (1901) The mineral resources of New South Wales.
- Geological Survey of New South Wales, Sydney
- Pogson DJ, Watkins JJ (1998) Bathurst 1:250 000 Geological Sheet, Explanatory Notes. Geological Survey of New South Wales, Sydney
- Radke BM, Mathis RL (1980) On the formation and occurrence of saddle dolomite. J Sediment Petrol 50:1149-1168
- Randell RN, Anderson GM (1997) Geology of the Polaris Zn-Pb
- deposit and surrounding area, Canadian Arctic Archipelago.
- Special Publication-Soc Econ Geol 4:307-319
- Raymond OL, Pogson DJ (1998) Bathurst 1:250 000 geological
- map SI55-8, 2nd edn. Geological Survey of New South Wales,
- Sydney and Australian Geological Survey Organisation,
- Canberra
- Rice JM (1977) Progressive metamorphism of impure dolomitic
- limestone in the Marysville aureole, Montana.AmJ Sci 277:1-24
- Rimstidt JD (1997) Gangue mineral transport and deposition. In: Barnes HL (ed) Geochemistry of hydrothermal deposits. Wiley, New York, pp 487-515
- Rollinson HR (1993) Using geochemical data: evaluation, presentation, interpretation. Longman, London
- de Ronde CEJ (1995) Fluid chemistry and isotopic characteristics of seafloor hydrothermal systems and associated VMS deposits: potential for magmatic contributions. In: Thompson JFH (ed) Magmas, fluids and ore deposits, Mineralogical Association of Canada Short Course Series 23:479-509
- Sato T (1973) A chloride complex model for Kuroko mineralization. Geochem J 7:245-270
- Saunders JA (1990) Colloidal transport of gold and silica in epithermal precious-metal systems. Geology 18:757-760
- Schardt C, Cooke DR, Gemmell JB, Large RR (2001) Geochemical
- modeling of the zoned footwall alteration pipe, Hellyer volcanic-hosted massive sulfide deposit, Tasmania, Australia. Econ Geol 96:1037-1054
- Scheibner E (1998) Geology of New South Wales-synthesis vol 2, geological evolution, vol 2. Geological Survey of New South Wales, Sydney
- Scheibner E, Veevers JJ (2000) Tasman Fold Belt System. In:
- Veevers JJ (ed) Billion-year earth history of Australia and
- neighbours in Gondwanaland. GEMOC Press, Department of
- Earth and Planetary Sciences, Macquarie University, Sydney,
- pp 154-234
- Shanks WC III (2001) Stable isotopes in seafloor hydrothermal systems; vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes. Rev Mineral Geochem 43:469-525
- Slaughter J, Kerrick DM, Wall VJ (1975) Experimental and thermodynamic study of equilibria in the system CaO-MgO-SiO
- (sub 2) -H (sub 2) O-CO (sub 2). Am J Sci 275:143-162
- Solomon M, Gaspar OC (2001) Textures of the Hellyer volcanichosted massive sulfide deposit, Tasmania -the aging of a sulfide sediment on the sea floor. Econ Geol 96:1513-1534
- Spear FS (1993) Metamorphic phase equilibria and pressure-temperature-time paths. Mineralogical Society of America Monograph Stanton RL (1955a) The genetic relationship between limestone, volcanic rocks, and certain ore deposits. Aust J Sci 17:173-175
- Stanton RL (1955b) Lower Palaeozoic mineralization near Bathurst, New South Wales. Econ Geol 50:681-714
- Stevens BPJ (1974) Hill End synclinorial zone. In: Markham NL, Basden H (eds) The mineral deposits of New South Wales.
- Geological Survey of New South Wales, Department of Mines,
- Sydney, pp 276-293
- Swart PK, Burns SJ, Leader JJ (1991) Fractionation of the stable isotopes of oxygen and carbon in carbon dioxide during the reaction of calcite with phosphoric acid as a function of temperature and technique. Chem Geol 86:89-96
- Urabe T, Scott SD, Hattori K (1983) A comparison of footwallrock alteration and geothermal systems beneath some Japanese and Canadian volcanogenic massive sulfide deposits. Econ Geol Monogr 5:345-364
- Valliant RI, Meares RMD (1998) Lewis Ponds gold-silver-copperlead-zinc deposits. In: Berkman DA, Mackenzie DH (eds)
- Geology of Australian and Papua New Guinean deposits. The
- Australasian Institute of Mining and Metallurgy, Melbourne,
- pp 635-640
- Veizer J, Hoefs J (1976) The nature of O18/O16 and C13/C12
- secular trends in sedimentary carbonate rocks. Geochim Cosmochim Acta 40:1387-1395.
- Walshe JL, Solomon M (1981) An investigation into the environment of formation of the volcanic-hosted Mt. Lyell copper deposits using geology, mineralogy, stable isotopes, and a sixcomponent chlorite solid solution model. Econ Geol 76:246-284
- Wilkin RT, Barnes HL (1997) Formation processes of framboidal pyrite. Geochim Cosmochim Acta 61:323-339
- Zierenberg RA, Koski RA, Morton JL, Bouse RM (1993) Genesis
- of massive sulfide deposits on a sediment-covered spreading
- center, Escanaba Trough, southern Gorda Ridge. Econ Geol
- 88:2065-2094" name="eprints.referencetext" />
- <meta content="Agnew, M.W. and Large, R.R. and Bull, S.W. (2005) Lewis Ponds, a hybrid carbonate and volcanic-hosted polymetallic massive sulphide deposit, New South Wales, Australia. Mineralium Deposita, 39 (8). pp. 822-844. ISSN 0026-4598" name="eprints.citation" />
- <meta content="http://eprints.utas.edu.au/1899/1/Agnew%2C_Large%2C_Bull_2005_MINERAL_DEPOS.pdf" name="eprints.document_url" />
- <link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" />
- <meta content="Lewis Ponds, a hybrid carbonate and volcanic-hosted polymetallic massive sulphide deposit, New South Wales, Australia" name="DC.title" />
- <meta content="Agnew, M.W." name="DC.creator" />
- <meta content="Large, R.R." name="DC.creator" />
- <meta content="Bull, S.W." name="DC.creator" />
- <meta content="260100 Geology" name="DC.subject" />
- <meta content="Abstract The Lewis Ponds Zn-Pb-Cu-Ag-Au deposit,
- located in the eastern Lachlan Fold Belt, central
- western New South Wales, exhibits the characteristics
- of both volcanic-hosted massive sulphide and carbonate-
- hosted replacement deposits. Two stratabound
- massive to disseminated sulphide zones, Main and
- Toms, occur in a tightly folded Upper Silurian
- sequence of marine felsic volcanic and sedimentary
- rocks. They have a combined indicated resource of
- 5.7 Mt grading 3.5% Zn, 2.0% Pb, 0.19% Cu, 97 g/t
- Ag and 1.9 g/t Au. Main Zone is hosted by a thick
- unit of poorly sorted mixed provenance breccia,
- limestone-clast breccia and quartz crystal-rich sandstone,
- whereas Toms Zone occurs in the overlying
- siltstone. Pretectonic carbonate-chalcopyrite-pyrite
- and quartz-pyrite stringer veins occur in the footwall
- porphyritic dacite, south of Toms Zone. Strongly
- sheared dolomite-chalcopyrite-pyrrhotite veins directly
- underlie the Toms massive sulphide lens. The mineralized
- zones consist predominantly of pyrite, sphalerite
- and galena. Paragenetically early framboidal, dendritic
- and botryoidal pyrite aggregates and tabular pyrrhotite
- pseudomorphs of sulphate occur throughout the
- breccia and sandstone beds that host Main Zone, but
- are rarely preserved in the annealed massive sulphide
- in Toms Zone. Main and Toms zones are associated
- with a semi-conformable hydrothermal alteration
- envelope, characterized by texturally destructive chlorite-,
- dolomite- and quartz-rich assemblages. Dolomite,
- chlorite, quartz, calcite and sulphides have
- selectively replaced breccia and sandstone beds in the
- Main Zone host sequence, whereas the underlying
- porphyritic dacite is weakly sericite altered. Vuggy and
- botryoidal textures resulted from partial dissolution of
- the dolomite-altered sedimentary rocks and unimpeded
- growth of base metal sulphides, carbonate and quartz
- into open cavities. The intense chlorite-rich alteration
- assemblage, underlying Toms Zone, grades outward
- into a weak pervasive sericite-quartz assemblage with
- distance from the massive sulphide lens. Limestone
- clasts and hydrothermal dolomite at Lewis Ponds are
- enriched in light carbon and oxygen isotopes. The
- dolomite yielded delta 13 CVPDB values of -11 to +1 per mil and delta 18O VSMOW values of 6 to 16per mil. Liquid-vapour fluid inclusions in the dolomite have low salinities (1.4-7.7 equiv. wt% NaCl) and homogenization temperatures
- (166-232 degrees C for 1,000 m water depth). Dolomitization
- probably involved fluid mixing or fluid-rock interactions
- between evolved heated seawater and the limestone-bearing facies, prior to and during mineralization.
- delta 34 SVCDT values range from 2.0 per mil to 5.0 per mil in the massive sulphide and 3.9 per mil to 7.4 per mil in the footwall carbonate-chalcopyrite-pyrite stringer veins, indicating that the hydrothermal fluid may have contained mamgatic sulphur and a component of partially reduced seawater. The sulphide mineral assemblages at
- Lewis Ponds are consistent with moderate to strongly
- reduced conditions during diagenesis and mineralization.
- Low temperature dolomitization of limestonebearing
- facies in the Main Zone host sequence created
- secondary porosity and provided a reactive host for
- fluid-rock interactions. Main Zone formed by lateral
- fluid flow and sub-seafloor replacement of the poorly
- sorted breccia and sandstone beds. Base metal
- sulphide deposition probably resulted from dissolution
- of dolomite, fluid mixing and increased fluid pH.
- Pyrite, sphalerite and galena precipitated from a relatively
- low temperature, 150-250C hydrothermal fluid.
- In contrast, Toms Zone was emplaced into finegrained
- sediment at or near the seafloor, above a zone
- of focused up-flowing hydrothermal fluids. Copperrich
- assemblages were deposited in the Toms Zone
- footwall and massive sulphide lenses in Main and
- Toms zones as the hydrothermal system intensified.During the D1 deformation, fracture-controlled fluids
- within the Lewis Ponds fault zone and adjacent
- footwall volcanic succession remobilized sulphides
- into syntectonic quartz veins. Lewis Ponds is a rare
- example of a synvolcanic sub-seafloor hydrothermal
- system developed within fossiliferous limestone-bearing
- facies. The close spatial association between limestone,
- hydrothermal dolomite, massive sulphide and dacite
- provides a basis for new exploration targets elsewhere
- in New South Wales." name="DC.description" />
- <meta content="2005-03" name="DC.date" />
- <meta content="Article" name="DC.type" />
- <meta content="PeerReviewed" name="DC.type" />
- <meta content="application/pdf" name="DC.format" />
- <meta content="http://eprints.utas.edu.au/1899/1/Agnew%2C_Large%2C_Bull_2005_MINERAL_DEPOS.pdf" name="DC.identifier" />
- <meta content="http://dx.doi.org/10.1007/s00126-004-0456-6" name="DC.relation" />
- <meta content="Agnew, M.W. and Large, R.R. and Bull, S.W. (2005) Lewis Ponds, a hybrid carbonate and volcanic-hosted polymetallic massive sulphide deposit, New South Wales, Australia. Mineralium Deposita, 39 (8). pp. 822-844. ISSN 0026-4598" name="DC.identifier" />
- <meta content="http://eprints.utas.edu.au/1899/" name="DC.relation" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/BibTeX/epprod-eprint-1899.bib" title="BibTeX" type="text/plain" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/ContextObject/epprod-eprint-1899.xml" title="OpenURL ContextObject" type="text/xml" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/ContextObject::Dissertation/epprod-eprint-1899.xml" title="OpenURL Dissertation" type="text/xml" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/ContextObject::Journal/epprod-eprint-1899.xml" title="OpenURL Journal" type="text/xml" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/DC/epprod-eprint-1899.txt" title="Dublin Core" type="text/plain" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/DIDL/epprod-eprint-1899.xml" title="DIDL" type="text/xml" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/EndNote/epprod-eprint-1899.enw" title="EndNote" type="text/plain" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/HTML/epprod-eprint-1899.html" title="HTML Citation" type="text/html; charset=utf-8" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/METS/epprod-eprint-1899.xml" title="METS" type="text/xml" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/MODS/epprod-eprint-1899.xml" title="MODS" type="text/xml" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/RIS/epprod-eprint-1899.ris" title="Reference Manager" type="text/plain" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/Refer/epprod-eprint-1899.refer" title="Refer" type="text/plain" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/Simple/epprod-eprint-1899text" title="Simple Metadata" type="text/plain" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/Text/epprod-eprint-1899.txt" title="ASCII Citation" type="text/plain; charset=utf-8" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/XML/epprod-eprint-1899.xml" title="EP3 XML" type="text/xml" />
-
- </head>
- <body bgcolor="#ffffff" text="#000000" onLoad="loadRoutine(); MM_preloadImages('images/eprints/ePrints_banner_r5_c5_f2.gif','images/eprints/ePrints_banner_r5_c7_f2.gif','images/eprints/ePrints_banner_r5_c8_f2.gif','images/eprints/ePrints_banner_r5_c9_f2.gif','images/eprints/ePrints_banner_r5_c10_f2.gif','images/eprints/ePrints_banner_r5_c11_f2.gif','images/eprints/ePrints_banner_r6_c4_f2.gif')">
-
- <div class="ep_noprint"><noscript><style type="text/css">@import url(http://eprints.utas.edu.au/style/nojs.css);</style></noscript></div>
-
-
-
-
- <table width="795" border="0" cellspacing="0" cellpadding="0">
- <tr>
- <td><script language="JavaScript1.2">mmLoadMenus();</script>
- <table border="0" cellpadding="0" cellspacing="0" width="795">
- <!-- fwtable fwsrc="eprints_banner_final2.png" fwbase="ePrints_banner.gif" fwstyle="Dreamweaver" fwdocid = "1249563342" fwnested="0" -->
- <tr>
- <td><img src="/images/eprints/spacer.gif" width="32" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="104" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="44" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="105" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="41" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="16" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="82" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="69" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="98" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
- </tr>
- <tr>
- <td colspan="12"><img name="ePrints_banner_r1_c1" src="/images/eprints/ePrints_banner_r1_c1.gif" width="795" height="10" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="1" height="10" border="0" alt="" /></td>
- </tr>
- <tr>
- <td rowspan="6"><img name="ePrints_banner_r2_c1" src="/images/eprints/ePrints_banner_r2_c1.gif" width="32" height="118" border="0" alt="" /></td>
- <td rowspan="5"><a href="http://www.utas.edu.au/"><img name="ePrints_banner_r2_c2" src="/images/eprints/ePrints_banner_r2_c2.gif" width="104" height="103" border="0" alt="" /></a></td>
- <td colspan="10"><img name="ePrints_banner_r2_c3" src="/images/eprints/ePrints_banner_r2_c3.gif" width="659" height="41" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="1" height="41" border="0" alt="" /></td>
- </tr>
- <tr>
- <td colspan="3"><a href="http://eprints.utas.edu.au/"><img name="ePrints_banner_r3_c3" src="/images/eprints/ePrints_banner_r3_c3.gif" width="190" height="31" border="0" alt="" /></a></td>
- <td rowspan="2" colspan="7"><img name="ePrints_banner_r3_c6" src="/images/eprints/ePrints_banner_r3_c6.gif" width="469" height="37" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="1" height="31" border="0" alt="" /></td>
- </tr>
- <tr>
- <td colspan="3"><img name="ePrints_banner_r4_c3" src="/images/eprints/ePrints_banner_r4_c3.gif" width="190" height="6" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="1" height="6" border="0" alt="" /></td>
- </tr>
- <tr>
- <td colspan="2"><img name="ePrints_banner_r5_c3" src="/images/eprints/ePrints_banner_r5_c3.gif" width="149" height="1" border="0" alt="" /></td>
- <td rowspan="2" colspan="2"><a href="/information.html" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821132634_0,0,25,null,'ePrints_banner_r5_c5');MM_swapImage('ePrints_banner_r5_c5','','/images/eprints/ePrints_banner_r5_c5_f2.gif',1);"><img name="ePrints_banner_r5_c5" src="/images/eprints/ePrints_banner_r5_c5.gif" width="57" height="25" border="0" alt="About" /></a></td>
- <td rowspan="2"><a href="/view/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133021_1,0,25,null,'ePrints_banner_r5_c7');MM_swapImage('ePrints_banner_r5_c7','','/images/eprints/ePrints_banner_r5_c7_f2.gif',1);"><img name="ePrints_banner_r5_c7" src="/images/eprints/ePrints_banner_r5_c7.gif" width="68" height="25" border="0" alt="Browse" /></a></td>
- <td rowspan="2"><a href="/perl/search/simple" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133201_2,0,25,null,'ePrints_banner_r5_c8');MM_swapImage('ePrints_banner_r5_c8','','/images/eprints/ePrints_banner_r5_c8_f2.gif',1);"><img name="ePrints_banner_r5_c8" src="/images/eprints/ePrints_banner_r5_c8.gif" width="68" height="25" border="0" alt="Search" /></a></td>
- <td rowspan="2"><a href="/perl/register" onMouseOut="MM_swapImgRestore();MM_startTimeout();" onMouseOver="MM_showMenu(window.mm_menu_1018171924_3,0,25,null,'ePrints_banner_r5_c9');MM_swapImage('ePrints_banner_r5_c9','','/images/eprints/ePrints_banner_r5_c9_f2.gif',1);"><img name="ePrints_banner_r5_c9" src="/images/eprints/ePrints_banner_r5_c9.gif" width="68" height="25" border="0" alt="register" /></a></td>
- <td rowspan="2"><a href="/perl/users/home" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133422_4,0,25,null,'ePrints_banner_r5_c10');MM_swapImage('ePrints_banner_r5_c10','','/images/eprints/ePrints_banner_r5_c10_f2.gif',1);"><img name="ePrints_banner_r5_c10" src="/images/eprints/ePrints_banner_r5_c10.gif" width="82" height="25" border="0" alt="user area" /></a></td>
- <td rowspan="2"><a href="/help/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133514_5,0,25,null,'ePrints_banner_r5_c11');MM_swapImage('ePrints_banner_r5_c11','','/images/eprints/ePrints_banner_r5_c11_f2.gif',1);"><img name="ePrints_banner_r5_c11" src="/images/eprints/ePrints_banner_r5_c11.gif" width="69" height="25" border="0" alt="Help" /></a></td>
- <td rowspan="3" colspan="4"><img name="ePrints_banner_r5_c12" src="/images/eprints/ePrints_banner_r5_c12.gif" width="98" height="40" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
- </tr>
- <tr>
- <td rowspan="2"><img name="ePrints_banner_r6_c3" src="/images/eprints/ePrints_banner_r6_c3.gif" width="44" height="39" border="0" alt="ePrints home" /></td>
- <td><a href="/" onMouseOut="MM_swapImgRestore()" onMouseOver="MM_swapImage('ePrints_banner_r6_c4','','/images/eprints/ePrints_banner_r6_c4_f2.gif',1);"><img name="ePrints_banner_r6_c4" src="/images/eprints/ePrints_banner_r6_c4.gif" width="105" height="24" border="0" alt="ePrints home" /></a></td>
- <td><img src="/images/eprints/spacer.gif" width="1" height="24" border="0" alt="" /></td>
- </tr>
- <tr>
- <td><img name="ePrints_banner_r7_c2" src="/images/eprints/ePrints_banner_r7_c2.gif" width="104" height="15" border="0" alt="" /></td>
- <td colspan="8"><img name="ePrints_banner_r7_c4" src="/images/eprints/ePrints_banner_r7_c4.gif" width="517" height="15" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="1" height="15" border="0" alt="" /></td>
- </tr>
- </table></td>
- </tr>
- <tr><td><table width="100%" style="font-size: 90%; border: solid 1px #ccc; padding: 3px"><tr>
- <td align="left"><a href="http://eprints.utas.edu.au/cgi/users/home">Login</a> | <a href="http://eprints.utas.edu.au/cgi/register">Create Account</a></td>
- <td align="right" style="white-space: nowrap">
- <form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/search" style="display:inline">
- <input class="ep_tm_searchbarbox" size="20" type="text" name="q" />
- <input class="ep_tm_searchbarbutton" value="Search" type="submit" name="_action_search" />
- <input type="hidden" name="_order" value="bytitle" />
- <input type="hidden" name="basic_srchtype" value="ALL" />
- <input type="hidden" name="_satisfyall" value="ALL" />
- </form>
- </td>
- </tr></table></td></tr>
- <tr>
- <td class="toplinks"><!-- InstanceBeginEditable name="content" -->
-
-
- <div align="center">
-
- <table width="720" class="ep_tm_main"><tr><td align="left">
- <h1 class="ep_tm_pagetitle">Lewis Ponds, a hybrid carbonate and volcanic-hosted polymetallic massive sulphide deposit, New South Wales, Australia</h1>
- <p style="margin-bottom: 1em" class="not_ep_block"><span class="person_name">Agnew, M.W.</span> and <span class="person_name">Large, R.R.</span> and <span class="person_name">Bull, S.W.</span> (2005) <xhtml:em>Lewis Ponds, a hybrid carbonate and volcanic-hosted polymetallic massive sulphide deposit, New South Wales, Australia.</xhtml:em> Mineralium Deposita, 39 (8). pp. 822-844. ISSN 0026-4598</p><p style="margin-bottom: 1em" class="not_ep_block"></p><table style="margin-bottom: 1em" class="not_ep_block"><tr><td valign="top" style="text-align:center"><a href="http://eprints.utas.edu.au/1899/1/Agnew%2C_Large%2C_Bull_2005_MINERAL_DEPOS.pdf"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" border="0" class="ep_doc_icon" /></a></td><td valign="top"><a href="http://eprints.utas.edu.au/1899/1/Agnew%2C_Large%2C_Bull_2005_MINERAL_DEPOS.pdf"><span class="ep_document_citation">PDF</span></a> - Full text restricted - Requires a PDF viewer<br />2061Kb</td><td><form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/request_doc"><input value="2394" name="docid" accept-charset="utf-8" type="hidden" /><div class=""><input value="Request a copy" name="_action_null" class="ep_form_action_button" onclick="return EPJS_button_pushed( '_action_null' )" type="submit" /> </div></form></td></tr></table><p style="margin-bottom: 1em" class="not_ep_block">Official URL: <a href="http://dx.doi.org/10.1007/s00126-004-0456-6">http://dx.doi.org/10.1007/s00126-004-0456-6</a></p><div class="not_ep_block"><h2>Abstract</h2><p style="padding-bottom: 16px; text-align: left; margin: 1em auto 0em auto">Abstract The Lewis Ponds Zn-Pb-Cu-Ag-Au deposit,
- located in the eastern Lachlan Fold Belt, central
- western New South Wales, exhibits the characteristics
- of both volcanic-hosted massive sulphide and carbonate-
- hosted replacement deposits. Two stratabound
- massive to disseminated sulphide zones, Main and
- Toms, occur in a tightly folded Upper Silurian
- sequence of marine felsic volcanic and sedimentary
- rocks. They have a combined indicated resource of
- 5.7 Mt grading 3.5% Zn, 2.0% Pb, 0.19% Cu, 97 g/t
- Ag and 1.9 g/t Au. Main Zone is hosted by a thick
- unit of poorly sorted mixed provenance breccia,
- limestone-clast breccia and quartz crystal-rich sandstone,
- whereas Toms Zone occurs in the overlying
- siltstone. Pretectonic carbonate-chalcopyrite-pyrite
- and quartz-pyrite stringer veins occur in the footwall
- porphyritic dacite, south of Toms Zone. Strongly
- sheared dolomite-chalcopyrite-pyrrhotite veins directly
- underlie the Toms massive sulphide lens. The mineralized
- zones consist predominantly of pyrite, sphalerite
- and galena. Paragenetically early framboidal, dendritic
- and botryoidal pyrite aggregates and tabular pyrrhotite
- pseudomorphs of sulphate occur throughout the
- breccia and sandstone beds that host Main Zone, but
- are rarely preserved in the annealed massive sulphide
- in Toms Zone. Main and Toms zones are associated
- with a semi-conformable hydrothermal alteration
- envelope, characterized by texturally destructive chlorite-,
- dolomite- and quartz-rich assemblages. Dolomite,
- chlorite, quartz, calcite and sulphides have
- selectively replaced breccia and sandstone beds in the
- Main Zone host sequence, whereas the underlying
- porphyritic dacite is weakly sericite altered. Vuggy and
- botryoidal textures resulted from partial dissolution of
- the dolomite-altered sedimentary rocks and unimpeded
- growth of base metal sulphides, carbonate and quartz
- into open cavities. The intense chlorite-rich alteration
- assemblage, underlying Toms Zone, grades outward
- into a weak pervasive sericite-quartz assemblage with
- distance from the massive sulphide lens. Limestone
- clasts and hydrothermal dolomite at Lewis Ponds are
- enriched in light carbon and oxygen isotopes. The
- dolomite yielded delta 13 CVPDB values of -11 to +1 per mil and delta 18O VSMOW values of 6 to 16per mil. Liquid-vapour fluid inclusions in the dolomite have low salinities (1.4-7.7 equiv. wt% NaCl) and homogenization temperatures
- (166-232 degrees C for 1,000 m water depth). Dolomitization
- probably involved fluid mixing or fluid-rock interactions
- between evolved heated seawater and the limestone-bearing facies, prior to and during mineralization.
- delta 34 SVCDT values range from 2.0 per mil to 5.0 per mil in the massive sulphide and 3.9 per mil to 7.4 per mil in the footwall carbonate-chalcopyrite-pyrite stringer veins, indicating that the hydrothermal fluid may have contained mamgatic sulphur and a component of partially reduced seawater. The sulphide mineral assemblages at
- Lewis Ponds are consistent with moderate to strongly
- reduced conditions during diagenesis and mineralization.
- Low temperature dolomitization of limestonebearing
- facies in the Main Zone host sequence created
- secondary porosity and provided a reactive host for
- fluid-rock interactions. Main Zone formed by lateral
- fluid flow and sub-seafloor replacement of the poorly
- sorted breccia and sandstone beds. Base metal
- sulphide deposition probably resulted from dissolution
- of dolomite, fluid mixing and increased fluid pH.
- Pyrite, sphalerite and galena precipitated from a relatively
- low temperature, 150-250C hydrothermal fluid.
- In contrast, Toms Zone was emplaced into finegrained
- sediment at or near the seafloor, above a zone
- of focused up-flowing hydrothermal fluids. Copperrich
- assemblages were deposited in the Toms Zone
- footwall and massive sulphide lenses in Main and
- Toms zones as the hydrothermal system intensified.During the D1 deformation, fracture-controlled fluids
- within the Lewis Ponds fault zone and adjacent
- footwall volcanic succession remobilized sulphides
- into syntectonic quartz veins. Lewis Ponds is a rare
- example of a synvolcanic sub-seafloor hydrothermal
- system developed within fossiliferous limestone-bearing
- facies. The close spatial association between limestone,
- hydrothermal dolomite, massive sulphide and dacite
- provides a basis for new exploration targets elsewhere
- in New South Wales.</p></div><table style="margin-bottom: 1em" border="0" cellpadding="3" class="not_ep_block"><tr><th valign="top" class="ep_row">Item Type:</th><td valign="top" class="ep_row">Article</td></tr><tr><th valign="top" class="ep_row">Keywords:</th><td valign="top" class="ep_row">Volcanic-hosted massive sulphide, Carbonate-hosted replacement, Sulphide textures, Limestone, Lachlan Fold Belt, Hill End Trough, Australia</td></tr><tr><th valign="top" class="ep_row">Subjects:</th><td valign="top" class="ep_row"><a href="http://eprints.utas.edu.au/view/subjects/260100.html">260000 Earth Sciences > 260100 Geology</a></td></tr><tr><th valign="top" class="ep_row">Collections:</th><td valign="top" class="ep_row">UNSPECIFIED</td></tr><tr><th valign="top" class="ep_row">ID Code:</th><td valign="top" class="ep_row">1899</td></tr><tr><th valign="top" class="ep_row">Deposited By:</th><td valign="top" class="ep_row"><span class="ep_name_citation"><span class="person_name">Mrs Katrina Keep</span></span></td></tr><tr><th valign="top" class="ep_row">Deposited On:</th><td valign="top" class="ep_row">12 Sep 2007</td></tr><tr><th valign="top" class="ep_row">Last Modified:</th><td valign="top" class="ep_row">23 Jan 2008 15:58</td></tr><tr><th valign="top" class="ep_row">ePrint Statistics:</th><td valign="top" class="ep_row"><a target="ePrintStats" href="/es/index.php?action=show_detail_eprint;id=1899;">View statistics for this ePrint</a></td></tr></table><p align="right">Repository Staff Only: <a href="http://eprints.utas.edu.au/cgi/users/home?screen=EPrint::View&eprintid=1899">item control page</a></p>
- </td></tr></table>
- </div>
-
-
-
- <!-- InstanceEndEditable --></td>
- </tr>
- <tr>
- <td><!-- #BeginLibraryItem "/Library/footer_eprints.lbi" -->
- <table width="795" border="0" align="left" cellpadding="0" class="footer">
- <tr valign="top">
- <td colspan="2"><div align="center"><a href="http://www.utas.edu.au">UTAS home</a> | <a href="http://www.utas.edu.au/library/">Library home</a> | <a href="/">ePrints home</a> | <a href="/contact.html">contact</a> | <a href="/information.html">about</a> | <a href="/view/">browse</a> | <a href="/perl/search/simple">search</a> | <a href="/perl/register">register</a> | <a href="/perl/users/home">user area</a> | <a href="/help/">help</a></div><br /></td>
- </tr>
- <tr><td colspan="2"><p><img src="/images/eprints/footerline.gif" width="100%" height="4" /></p></td></tr>
- <tr valign="top">
- <td width="68%" class="footer">Authorised by the University Librarian<br />
- © University of Tasmania ABN 30 764 374 782<br />
- <a href="http://www.utas.edu.au/cricos/">CRICOS Provider Code 00586B</a> | <a href="http://www.utas.edu.au/copyright/copyright_disclaimers.html">Copyright & Disclaimers</a> | <a href="http://www.utas.edu.au/accessibility/index.html">Accessibility</a> | <a href="http://eprints.utas.edu.au/feedback/">Site Feedback</a> </td>
- <td width="32%"><div align="right">
- <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><img src="http://www.utas.edu.au/shared/logos/unioftasstrip.gif" alt="University of Tasmania Home Page" width="260" height="16" border="0" align="right" /></a></p>
- <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><br />
- </a></p>
- </div></td>
- </tr>
- <tr valign="top">
- <td><p> </p></td>
- <td><div align="right"><span class="NoPrint"><a href="http://www.eprints.org/software/"><img src="/images/eprintslogo.gif" alt="ePrints logo" width="77" height="29" border="0" align="bottom" /></a></span></div></td>
- </tr>
- </table>
- <!-- #EndLibraryItem -->
- <div align="center"></div></td>
- </tr>
- </table>
-
- </body>
- </html>