<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html> <head> <title>UTas ePrints - Hardly a Relict: Freezing and the Evolution of Vesselless Wood in Winteraceae</title> <script type="text/javascript" src="http://eprints.utas.edu.au/javascript/auto.js"><!-- padder --></script> <style type="text/css" media="screen">@import url(http://eprints.utas.edu.au/style/auto.css);</style> <style type="text/css" media="print">@import url(http://eprints.utas.edu.au/style/print.css);</style> <link rel="icon" href="/images/eprints/favicon.ico" type="image/x-icon" /> <link rel="shortcut icon" href="/images/eprints/favicon.ico" type="image/x-icon" /> <link rel="Top" href="http://eprints.utas.edu.au/" /> <link rel="Search" href="http://eprints.utas.edu.au/cgi/search" /> <meta content="Feild, Taylor S." name="eprints.creators_name" /> <meta content="Brodribb, Tim J." name="eprints.creators_name" /> <meta content="Holbrook, N. M." name="eprints.creators_name" /> <meta content="" name="eprints.creators_id" /> <meta content="Timothy.Brodribb@utas.edu.au" name="eprints.creators_id" /> <meta content="" name="eprints.creators_id" /> <meta content="article" name="eprints.type" /> <meta content="2007-12-03 02:03:36" name="eprints.datestamp" /> <meta content="2008-01-08 15:30:00" name="eprints.lastmod" /> <meta content="show" name="eprints.metadata_visibility" /> <meta content="Hardly a Relict: Freezing and the Evolution of Vesselless Wood in Winteraceae" name="eprints.title" /> <meta content="pub" name="eprints.ispublished" /> <meta content="270402" name="eprints.subjects" /> <meta content="270400" name="eprints.subjects" /> <meta content="restricted" name="eprints.full_text_status" /> <meta content="Angiosperm evolution, Canellaceae, Drimys, freezing stress, Winteraceae, xylem evolution." name="eprints.keywords" /> <meta content=""The definitive version is available at www.blackwell-synergy.com" " name="eprints.note" /> <meta content="The Winteraceae are traditionally regarded as the least-specialized descendents of the first flowering plants, based largely on their lack of xylem vessels. Since vessels have been viewed as a key innovation for angiosperm diversification, Winteraceae have been portrayed as declining relicts, limited to wet forest habitats where their tracheidbased wood does not impose a significant hydraulic constraints. In contrast, phylogenetic analyses place Winteraceae among angiosperm clades with vessels, indicating that their vesselless wood is derived rather than primitive, whereas extension of the Winteraceae fossil record into the Early Cretaceous suggests a more complex ecological history than has been deduced from their current distribution. However, the selective regime and ecological events underlying the possible loss of vessels in Winteraceae have remained enigmatic. Here we examine the hypothesis that vessels were lost as an adaptation to freezing-prone environments in Winteraceae by measuring the responses of xylem water transport to freezing for a diverse group of Winteraceae taxa as compared to Canella winterana (Canellaceae, a close relative with vessels) and sympatric conifer taxa. We found that mean percent loss of xylem water transport capacity following freeze-thaw varied from 0% to 6% for Winteraceae species from freezing-prone temperate climates and approximately 20% in those taxa from tropical (nonfreezing) climates. Similarly, conifers exhibit almost no decrease in xylem hydraulic conductivity following freezing. In contrast, water transport in Canella stems is nearly 85% blocked after freeze-thaw. Although vessel-bearing wood of Canella possesses considerably greaterhydraulic capacity than Winteraceae, nearly 20% of xylem hydraulic conductance remains, a value that is comparable to the hydraulic capacity of vesselless Winteraceae xylem, if the proportion of hydraulic flow through vessels (modeled as ideal capillaries) is removed. Thus, the evolutionary removal of vessels may not necessarily require a deleterious shift to an ineffective vascular system. By integrating Winteraceae’s phylogenetic relationships and fossil history with physiological and ecological observations, we suggest that, as ancestors of modern Winteraceae passed through temperate conditions present in Southern Gondwana during the Early Cretaceous, they were exposed to selective pressures against vesselpossession and returned to a vascular system relying on tracheids. These results suggest that the vesselless condition is advantageous in freezing-prone areas, which is supported by the strong bias in the ecological abundance of Winteraceae to wet temperate and tropical alpine habitats, rather than a retained feature from the first vesselless angiosperms. We believe that vesselless wood plays an important role in the ecological abundance of Winteraceae in Southern Hemisphere temperate environments by enabling the retention of leaves and photosynthesis in the face of frequent freeze-thaw events." name="eprints.abstract" /> <meta content="2002" name="eprints.date" /> <meta content="published" name="eprints.date_type" /> <meta content="Evolution" name="eprints.publication" /> <meta content="56" name="eprints.volume" /> <meta content="3" name="eprints.number" /> <meta content="464-478" name="eprints.pagerange" /> <meta content="10.1111/j.0014-3820.2002.tb01359.x" name="eprints.id_number" /> <meta content="TRUE" name="eprints.refereed" /> <meta content="0014-3820" name="eprints.issn" /> <meta content="http://dx.doi.org/10.1111/j.0014-3820.2002.tb01359.x" name="eprints.official_url" /> <meta content="Alberdi, M., M. Romero, D. Rios, and H. Wenzel. 1985. Altitudinal gradients of seasonal frost resistance on Nothofagus communities of southern Chile. Acta Oecol. 6:21–30. Askin, R. A., and R. A. Spicer. 1995. The Late Cretaceous and Cenozoic history of vegetation and climate at northern and southern high latitudes: a comparison. Pp 156–173 in Effects of past global climate on life. National Research Council. National Academy Press, Washington, DC. Axelrod, D. I. 1966. Origin of deciduous and evergreen habits in temperate forests. Evolution 20:1–15. Bailey, I. W. 1953. Evolution of the tracheary tissue of land plants. Am. J. Bot. 40:4–8. Bailey, I. W., and C. G. Nast. 1944. The comparative morphology of the Winteraceae. V. Foliar epidermis and sclerencyma. J. Arnold Arboretum 26:37–47. Bailey, I. W., and W. P. Thompson. 1918. Additional nodes upon the angiosperms Tetracentron, Trochodendron, and Drimys, in which vessels are absent from the wood. Ann. Bot. 32:503–512. Baldoni, A. M. 1987. Nuevas descripciones palinolo´gicas en el a´rea de Collo´n Cura´ (Terciario inferior) Provincia del Neuque´n, Argentina. IV. Congreso Latinoamericano de Paleontologı´a, Bolivia (1987)1:399–414. Baranova, M. 1972. Systematic anatomy of the leaf epidermis in the Magnoliaceae and some related families. Taxon 21:447–469. Barreda, V. 1997. Palymorph assemblage of the Cheque Formation, late Oligocene?-Miocene from Golfo San Jorge basin, Patagonia, Argentina. Part 4. Polycolporate and porate pollen. Ameghiniana 34:145–154 Barnes, R. W., G. J. Jordan, R. S. Hill, and C. J. McCoull. 2000. A common boundary between distinct northern and southern morphotypes in two unrelated Tasmanian rainforest species. Aust. J. Bot. 48:481–491. Barry, J. B. 1980. Mountain climates of New Guinea. Pp. 75–109 in P. van Royen, ed. Alpine flora of New Guinea. Gantner Verlag, Germany. Becker, P. M., M. T. Tyree, and M. Tsuda. 1999. Hydraulic conductances of angiosperms versus conifers: similar transport sufficiency at the whole plant level. Tree Physiol. 19:445–452. Bond, W. J. 1989. The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Bot. J. Linn. Soc. 36: 227–249. Brenner, G. J. 1976. Middle Cretaceous floral provinces and early migrations of angiosperms. Pp. 23–47 in C. B. Beck, ed. Origin and early evolution of angiosperms. Columbia Unviersity Press, New York. ———. 1996. Evidence for the earliest stage of angiosperm pollen evolution: A paleoequatorial section from Israel. Pp. 91–115 in D. W. Taylor and L. J. Hickey, eds. Flowering plant origin, evolution, and phylogeny. Chapman and Hall, New York. Brodribb, T. J., and R. S. Hill. 1998. Imbricacy and stomatal wax plugs reduce maximum leaf conductance in Southern Hemisphere conifers. Aust. J. Bot. 45:657–668. Brodribb, T. J., and T. S. Feild. 2000. Stem hydraulic supply is linked to leaf photosynthetic capacity: evidence from New Caledonian and Tasmanian rainforests. Plant Cell Environ. 23: 1381–1388. Canny, M. J. 1997. Vessel contents during transpiration- embolisms and refilling. Am. J. Bot. 84:1223–1230. Carlquist, S. 1975. Ecological strategies of xylem evolution. Univ. of California Press, Berkeley, CA. ———. 1981. Wood anatomy of Zygogynum (Winteraceae): field observations. Bull. Mus. Nat. Hist. (Paris) 3:281–292. ———. 1983a. Wood anatomy of Bubbia (Winteraceae), with comments on origin of vessels in dicotyledons. Am. J. Bot. 70: 578–590. ———. 1983b. Wood anatomy of Belliolum (Winteraceae) and a note on flowering. J. Arnold Arboretum 64:161–169. ———. 1988a. Comparative wood anatomy. Springer-Verlag, Berlin. ———. 1988b. Near-vessellessness in Ephedra and its significance. Am. J. Bot. 75:598–601. ———. 2000. Wood and bark anatomy of Takhtajania (Winteraceae): phylogenetic and ecological implications. Ann. MO. Bot. Gard. 87:317–322. Chabot, B. F., and D. J. Hicks. 1982. The ecology of leaf life spans. Annu. Rev. Ecol. Syst. 13:229–259. Coetzee, J. A., and J. Muller. 1984. The phytogeographic significance of some extinct Gondwana pollen types from the Tertiary of the southwestern cape (South Africa). Ann. MO. Bot. Gard. 71:1088–1099. Coetzee, J. A., and J. Praglowski. 1988. Winteraceae pollen from the Miocene of the Southwestern Cape (South-Africa). Grana 27:27–37. Crane, P. R., S. R. Manchester, and D. L. Dilcher. 1991. Reproductive and vegetative structure of Nordenskioldia (Trochodendraceae), a vesselless dicotyledon from the early Tertiary of the Northern Hemisphere. Am. J. Bot. 78:1311–1334. Cronquist, A. 1981. An integrated system of classification of flowering plants. Columbia University Press, New York. ———. 1988. The evolution and classification of flowering plants. The New York Botanical Garden, New York. Daubenmire, R. 1954. Alpine timberlines in the Americas and their interpretation. Butler Univ. Bot. Stud. 11:119–136. Davis, S. D., J. S. Sperry, and U. G. Hacke. 1999. The relationship between xylem conduit diameter and cavitation caused by freezing. Am. J. Bot. 86:1367–1372. Dettmann, M. E. 1994. Cretaceous vegetation: the microfossil record. Pp. 143–188 in R. S. Hill, ed. History of the Australian vegetation. Cambridge Univ. Press, New York. Dettmann, M. E., and D. M. Jarzen. 1990. The Antarctic Australian rift-valley—Late Cretaceous cradle of northeastern Australasian relicts. Rev. of Palaeobot. Palyno. 65:131–144. Dingle, R. V., and Lavelle. 1998. Late Cretaceous–Cenozoic climatic variations of the northern Antarctic Peninsula: new geochemical evidence and review. Palaeogeogr. Palaeocl. 141: 215–232. Ditchfield, P. W., J. D. Marshall, and D. Pirrie. 1994. High-latitude paleotemperature variation—new data from the Tithonian to Eocene of James Ross Island, Antarctica. Palaeogeogr. Palaeocl. 107:79–101. Donoghue, M. J. 1989. Phylogenies and the analysis of evolutionary sequences, with examples from seed plants. Evolution 43: 1137–1156. Donoghue, M. J., and J. A. Doyle. 1989. Phylogenetic analysis of angiosperms and the relationships of Hamamelidae. Pp. 14–45 in P. R. Crane and S. Blackmore, eds. Evolution, systematics, and fossil history of the Hamamelidae. Clarendon, Oxford, U.K. Doyle, J. A. 2000. Paleobotany, relationships, and geographic history of Winteraceae. Ann. Mo. Bot. Gard. 87:303–316. Doyle, J. A., and M. J. Donoghue. 1986. Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. Bot. Rev. 52:321–431. Doyle, J. A., and P. K. Endress. 2000. Morphological phylogenetic WINTERACEAE analysis of basal angiosperms: Comparison and combination with molecular data. Int. J. Plant Sci. 161:S121–S153. Doyle, J. A., P. Biens, A. Doerenkamp, and S. Jardine. 1977. Angiosperm pollen from the pre-Albian Lower Cretaceous of equatorial Africa. Bull. Cent. Rech. Explor. -Prod. Elf-Aquitaine 1: 451–473. Doyle, J. A., S. Jardine, and A. Doerenkamp. 1982. Afropollis, a new genus of early angiosperm pollen, with notes on the Cretaceous palynostratigraphy and paleoenvironments of Northern Gondwana. Soc. Nat. Elf Aquitaine 6:39–117. Doyle, J. A., C. L. Hotton, and J. V. Ward. 1990. Early Cretaceous tetrads, zonasulcate pollen, and Winteraceae. II. Cladistic analysis and implications. Am. J. Bot. 77:1558–1568. Ehrendorfer, F., I. Silberbauer, Gottsberger, H. I. and G. Gottsberger. 1979. Variation on the population, racial, and species level in the primitive relic angiosperm genus Drimys (Winteraceae) in South America. Plant Syst. Evol. 132:53–83. Feild, T. S., and T. Brodribb. 2001. Stem water transport and freezethaw xylem embolism in conifers and angiosperms in a Tasmanian treeline heath. Oecologia 127:314–320. Feild, T. S., and N. M. Holbrook. 2000. Xylem sap flow and stem hydraulics of the vesselless angiosperm Drimys granadensis (Winteraceae) in a Costa Rican elfin forest. Plant Cell Environ. 23:1067–1077. Feild, T. S., M. A. Zwieniecki, M. J. Donoghue, and N. M. Holbrook. 1998. Stomatal plugs of Drimys winteri (Winteraceae) protect leaves from mist but not drought. Proc. Natl. Acad. Sci. USA 95:14256–14259. Feild, T. S., M. A. Zwieniecki, and N. M. Holbrook. 2000. Winteraceae evolution: an ecophysiological perspective. Ann. Mo. Bot. Gard. 87:323–334. Frakes, L. A., and J. E. Francis. 1988. A guide to Phanerozoic cold polar climates from high-latitude ice-rafting in the Cretaceous. Nature 333:547–549. Francis, J. E. 1986. Growth rings in Cretaceous and Tertiary wood from Antarctica and their palaeoclimatic implications. Palaeonotology 29:665–684. Frost, F. H. 1930. Specialization in secondary xylem of dicotyledons. I. Origin of vessel. Bot. Gaz. 89:67–100. Givnish, T. J. 1984. Leaf and canopy adaptations in tropical forests. Pp. 51–84 in E. Medina, H. A. Mooney, and C. Vasquez-Yanes eds. Physiological ecology of plants of the wet tropics. Dr. Junk, The Hague, The Netherlands. ———. 1995. Plant stems: biomechanical adaptation for energy capture and influence on species distributions. Pp 3–49 in B. L. Gartner ed. Plant stems: physiology and functional morphology. Chapman and Hall, New York. Goldblatt, P. 1993. Biological relationships between Africa and South America. Yale University Press, New Haven, CT. Gottsburger, G., I. Silberbauer-Gottsburger, and F. Ehrendorfer. 1980. Reproductive biology in the primitive relic angiosperm Drimys brasiliensis (Winteraceae). Plant Syst. Evol. 135:11–39. Graham, A., and D. M. Jarzen. 1969. Studies in neotropical paleobotany. I. The Oligocene plant communities of Puerto Rico. Ann. MO. Gard. 56:308–357. Greig, N. 1993. Regeneration mode in Neotropical Piper—habitat and species comparisons. Ecology 74:2125–2135. Groom, P. 1910. Remarks on the oecology of Coniferae. Ann. Bot. 24:241–269. Hammel, H. T. 1967. Freezing of xylem sap without cavitation. Plant Physiol. 42:55–66. Herngreen, G. F. W., A. Randrianasolo, and J. W. Verbeek. 1981. Micropaleontology of Albian to Danian strata in Madagascar. Micropaleontology 28:97–107. Holbrook, N. M., and M. A. Zwieniecki. 1999. Embolism refilling and xylem tension: do we need a miracle? Plant Physiol. 120: 7–10. Hnatiuk, R. J., J.M. B. Smith, and D. N. McVean. 1976. Mt.Wilhem studies. 2. The climate of Mt. Wilhem. Australia National Univ. Press, Canberra, Australia. Karol, K. G., Y. B. Suh, G. E. Schatz, and E. A. Zimmer. 2000. Molecular evidence for the phylogenetic position of Takhtajania in the Winteraceae: Inference from nuclear ribosomal and chloroplast gene spacer sequences. Ann. Mo. Bot. Gard. 87:414–432. Keating, R. C. 2000. Anatomy of the young vegetative shoot of Takhtajania perrieri (Winteraceae). Ann. Mo. Bot. Gard. 87: 335–346. Kirkpatrick, J. B., and K. L. Bridle. 1999. Environment and floristics of ten Australian alpine vegetation formations. Aus. J. Bot. 47: 1–21. Krutzsch, W. 1970. Zur Kenntnis fossiler disperser Tetradenpollen. Pala¨ontol. Abh. B 3:399–433. Kubitzki, K. 1993. Canellaceae. In K. Kubitzki, J. G. Rohwer, and V. Bittrich, eds. Flowering plants—Dicotyledons. Vol. 2. Magnoliid, Hamamelid, and Caryophyllid Familes. Springer-Verlag, Berlin. Lusk, C. H. 1993. Stand dynamics of the shade-tolerant conifers Podocarpus nubigena and Saxegothea conspicua in Chilean temperate rainforest. J. Veg. Sci. 7:549–558. Maddison, W. P., and D. R. Maddison. 1992. MacClade: analysis of phylogeny and character evolution. Sinauer Associates, Inc., Sunderland, MA. Manchester, S. R. 1999. Biogeographical relationships of North American Tertiary flora. Ann. Mo. Bot. Gard. 86:472–522. Manchester, S. R., P. R. Crane, and D. L. Dilcher. 1991. Nordenskioldia and Trochodendron fruits (Trochodendraceae) from the Miocene of northwestern North America. Bot. Gaz. 152: 357–368. Markgraf, V., M. McGlone, and G. Hope. 1995. Neogene paleoenvironmental and paleoclimatic change in southern temperate ecosystems—a southern perspective. Trends Ecol. Evol. 10: 143–147. Martin, H. A. 1978. Evolution of the Australian flora and vegetation through the Tertiary: evidence from pollen. Alchevinga 2: 181–202. Mathews, S., and M. J. Donoghue. 1999. The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science 286:947–950. Melcher, P. J., F. C. Meinzer, D. E. Yount, G. Goldstein, and U. Zimmermann. 1998. Comparative measurements of xylem pressure in transpiring and non-transpiring leaves by means of the pressure chamber and the xylem pressure probe. J. Exp. Bot. 49:1757–1760. Melcher, P. J., S. Cordell, T. Jones, T. Giambelluca, P. Scowcroft, and G. Goldstein. 2000. Supercooling capacity increases from sea level to tree line in the Hawaiian tree species Metrosideros polymorpha. Int. J. Plant Sci. 161:369–379. Mildenhall, D. C. 1980. New Zealand Late Cretaceous and Cenozoic plant biogeography: a contribution. Palaeogeogr. Palaeocl. 31: 197–233. Mildenhall, D. C., and Y. M. Crosbie. 1979. Some porate pollen from the upper Tertiary of New Zealand. N. Z. J. Geol. Geophys. 22:449–508. Niklas, K. J. 1992. Plant biomechanics. University of Chicago Press, Chicago, IL. Nobel, P. S. 1988. Physiochemical and environmental plant physiology. Academic Press, San Diego, CA. Pearce, R. S. 2001. Plant freezing and damage. Ann. Bot. 87: 417–424. Pigg, K. B., W. C. Wehr, and S. M. Ikert-Bond. 2001. Trochodendron and Nordenskioldia (Trochodendraceae) from the middle Eocene of Washington State, USA. Int. J. Plant Sci. 161: 1187–1198. Pockman, W. T., and J. S. Sperry. 1997. Freezing-induced xylem cavitation and the northern limit of Larrea tridentata. Oecologia 109:19–27. Pole, M. 1994. The New Zealand flora: entirely long-distance dispersal? J. Biogeogr. 21:625–635. Poole, I., and J. E. Francis. 2000. The first record of fossil wood of Winteraceae from the Upper Cretaceous of Antarctica. Ann. Bot. 85:307–315. Qiu, Y. L., J. H. Lee, F. Bernasconi-Quadroni, D. E. Soltis, P. S. Soltis, M. Zanis, E. A. Zimmer, Z. D. Chen, V. Savolainen, and M. W. Chase. 1999. The earliest angiosperms: evidence mitochondrial, plastid and nuclear genomes. Nature 402: 404–407. ———. 2000. Phylogeny of basal angiosperms: analyses of five genes from three genomes. Int. J. Plant Sci. 161:S3–S27. Quilty, P. G. 1994. The background: 144 million years of Australian palaeoclimate and palaeogeography. Pp. 14–43 in R. S. Hill, ed. History of the Australian Vegetation. Cambridge Univ. Press, New York. Rabinowitz, P. D., M. F. Coffin, and D. Falvey. 1983. The separation of Madagascar and Africa. Science 220:67–69. Raleigh, R. E., P. Y. Ladige, T. J. Entswisle, and A. N. Drinnan. 1994. Morphometric studies of the genus Tasmannia (Winteraceae) in Victoria, Australia. Mulleria 38:235–256. Raven, P. H., and D. I. Axelrod. 1974. Angiosperm biogeography and past continental movements. Ann. Mo. Bot. Gard. 61: 539–673. Rebertus, A. J., and T. T. Veblen. 1993. Structure and tree-fall gap dynamics in old growth Nothofagus forests in Tierra del Fuego, Argentina. J. Veg. Sci. 4:641–654. Rich, P. V., T. H. Rich, B. E. Wagstaff, J. M. Mason, C. B. Douthitt, R. T. Gregory, and E. A. Felton. 1988. Evidence for low temperatures and biologic diversity in Cretaceous high-latitudes of Australia. Science 242:1403–1406 Sakai, A. D., D. M. Patton, and P. Wardle. 1981. Freezing resistance of trees of the south temperate zone, especially sub-alpine species of Australasia. Ecology 62:563–570. Sampson, F. B. 1980. Natural hybridism in Pseudowintera (Winteraceae). NZ J. Bot. 18:43–51. ———. 1983. A new species of Zygogynum (Winteraceae). Blumea 28:353–360. Sampson, F. B., J. B. Williams, and P. S. Woodland. 1988. The morphology and taxonomic position of Tasmannia glaucifolia (Winteraceae), a new Australian species. Aus. J. Bot. 36: 395–413. Schatz, G. E. 2000. The rediscovery of a Malagasy endemic: Takhtajania perrieri (Winteraceae). Ann. Mo. Bot. Gard. 87:297–302. Smith, A. C. 1943a. The American species of Drimys. J. Arnold Arbor. Harv. Univ. 24:1–24. ———. 1943b. Taxonomic notes on the Old World species of Winteraceae. J. Arnold Arbor. Harv. Univ. 24:119–164. ———. 1945a. A taxonomic review of Trochodendron and Tetracentron. J. Arnold Arbor. Harv. Univ. 26:123–142. ———. 1945b. Geographic distribution of the Winteraceae. J. Arnold Arbor. Harv. Univ. 26:48–59. Soltis, P. S., D. E. Soltis, and M. W. Chase. 1999. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402:402–404. Sperry, J. S. 1995. Limitations on stem water transport and their consequences. Pp. 105–124 in B. L. Gartner, ed. Plant stems: physiology and functional morphology. Academic Press, San Diego, CA. Sperry, J. S., and J. E. M. Sullivan. 1992. Xylem embolism in response to freeze-thaw cycles and water-stress in ring-porous, diffuse-porous, and conifer species. Plant Physiol. 100:605–613. Sperry, J. S., J. R. Donnelly, and M. T. Tyree. 1988. A method for measuring hydraulic conductivity and embolism in xylem. Plant Cell Environ. 11:35–40. Sperry, J. S., K. L. Nichols, J. E. M. Sullivan, and S. E. Eastlack. 1994. Xylem embolism in ring-porous, diffuse-porous, and coniferous trees of northern Utah and interior Alaska. Ecology 75: 1736–1752. Spicer, R., and B. L. Gartner. 1998. Hydraulic properties of Douglas fir (Pseudotsuga menziesii) branches and branch halves with reference to compression wood. Tree Physiol. 18:777–784. Sprugel, D. G. 1989. The relationship of evergreenness, crown architecture, and leaf size. Am. Nat. 133:465–479. Srivastava, S. K. 1994. Evolution of Cretaceous phytogeoprovinces, continents and climates. Rev. Palaeobot. Palynol. 82:197–224. Stebbins, G. L. 1974. Flowering plants: evolution above the species level. Harvard Univ. Press, Cambridge, MA. Stover, L. E., and A. D. Partridge. 1973. Tertiary and Late Cretaceous spores and pollen from the Gippsland Basin, southeastern Australia. Proc. R. Soc. Victoria 85:237–286. Sucoff, E. 1969. Freezing of conifer xylem sap and the cohesiontension theory. Physiol. Plant. 22:424–431. Suh, Y. B., L. B. Thien, H. E. Reeve, and E. A. Zimmer. 1993. Molecular evolution and phylogenetic implications of internal transcribed spacer sequences of ribosomal DNA in Winteraceae. Am. J. Bot. 80:1042–1055. Takhtajan, A. L. 1969. Flowering plants: origin and dispersal. Smithsonian Institution Press, Washington, DC. Taylor, D.W., and L. J. Hickey. 1996. Evidence for and implications of an herbaceous origin for angiosperms. Pp. 232–266 in D. Taylor and L. Hickey, eds. Flowering plant origin, evolution, and phylogeny. Chapman and Hall, New York. Thorne, R. F. 1974. A phylogenetic classification of the Annoniflorae. Aliso 8:147–209. ———. 1986. Antarctic elements in Australian rainforests. Telopea 2:611–617. Tobe, H., and B. Sampson. 2000. Embryology of Takhtajania (Winteraceae) and a summary statement of embryological features for the family. Ann. Mo. Bot. Gard. 87:389–397. Turner, I. M. 2001. The ecology of trees in the tropical rainforest. Cambridge Univ. Press, Cambridge, U.K. Tyree, M. T., and F. W. Ewers. 1991. The hydraulic architecture of trees and other woody plants. New Phytol. 119:345–360. ———. 1996. Hydraulic architecture of woody tropical plants. Pp. 217–243 in S. S. Mulkey, R. L. Chazdon and A. P. Smith, eds. Tropical forest ecophysiology. Chapman and Hall, New York. Tyree, M. T., S. D. Davis, and H. Cochard. 1994. Biophysical perspectives of xylem evolution: Is there a tradeoff hydraulic efficiency for vulnerability to dysfunction? IAWA Bull. 15: 335–360. Van Boskirk, M. C. 1997. The paleofloristics and systematic character of the Cretaceous (Lower Campanian) eagle formation, Wyoming and Montana, USA. (Abstract). Am. J. Bot. 84:144. van Stennis, C. G. G. J. 1968. Frost in the tropics. Proc. Symp. Rec. Adv. Trop. Ecol. Varanasi 21:154–167. Van Tieghem, P. 1900. Sur les dicotyle´dones du groupe des Homoxyle ´es. J. Bot. (Morot) 14:259–297. Vink, W. 1970. The Winteraceae of the Old World. I. Pseudowintera and Drimys—morphology and taxonomy. Blumea 16:225–354 ———. 1977. The Winteraceae of the Old World. II. Zygogynum– morphology and taxonomy. Blumea 23:219–250. ———. 1983. The Winteraceae of the Old-World . 4. the Australian Species of Bubbia. Blumea 28:311–328. ———. 1993. Winte´race´es. Flore de la Nouvelle-Cale´donie 19: 90–171. Vogelmann, T. C. 1993. Plant tissue optics. Annu. Rev. Plant Phys. 44:231–251. Walker, J. W., G. J. Brenner, and A. G. Walker. 1983. Winteraceous pollen in the Lower Cretaceous of Israel—early evidence of a Magnolialean angiosperm family. Science 220:1273–1275. Wang, J., N. E. Ives, and M. J. Lechowicz. 1992. The relation of foliar phenology to xylem embolism in trees. Funct. Ecol. 6: 469–475. Wardle, P. 1971. An explanation for alpine timberlines. NZ J. Bot. 9:371–402. ———. 1985. New Zealand timberlines. Vol. 3. A synthesis. NZ J. Bot. 23:263–271. Wilson, T. K. 1960. The comparative morphology of the Canellaceae. I. Synopsis of genera and wood anatomy. Trop. Woods 112:1–27. Young, D. A. 1981. Are the angiosperms primitively vesselless? Syst. Bot. 6:313–330. Young, S. B. 1972. Subantarctic rain forest of Magellanic Chile: distribution, composition, and age and growth rate studies of common forest trees. Antarctic Res. Ser. 20:307–322. Zimmermann, M. H. 1983. Xylem structure and the ascent of sap. Springer-Verlag, Berlin. Zwieniecki, M. A., P. J. Melcher, and N. M. Holbrook. 2001. Hydrogel control of xylem hydraulic resistance in plants. Science 291:1059–1062." name="eprints.referencetext" /> <meta content="Feild, Taylor S. and Brodribb, Tim J. and Holbrook, N. M. (2002) Hardly a Relict: Freezing and the Evolution of Vesselless Wood in Winteraceae. Evolution, 56 (3). pp. 464-478. ISSN 0014-3820" name="eprints.citation" /> <meta content="http://eprints.utas.edu.au/2606/1/FeildBrod_Evolution.pdf" name="eprints.document_url" /> <link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" /> <meta content="Hardly a Relict: Freezing and the Evolution of Vesselless Wood in Winteraceae" name="DC.title" /> <meta content="Feild, Taylor S." name="DC.creator" /> <meta content="Brodribb, Tim J." name="DC.creator" /> <meta content="Holbrook, N. M." name="DC.creator" /> <meta content="270402 Plant Physiology" name="DC.subject" /> <meta content="270400 Botany" name="DC.subject" /> <meta content="The Winteraceae are traditionally regarded as the least-specialized descendents of the first flowering plants, based largely on their lack of xylem vessels. Since vessels have been viewed as a key innovation for angiosperm diversification, Winteraceae have been portrayed as declining relicts, limited to wet forest habitats where their tracheidbased wood does not impose a significant hydraulic constraints. In contrast, phylogenetic analyses place Winteraceae among angiosperm clades with vessels, indicating that their vesselless wood is derived rather than primitive, whereas extension of the Winteraceae fossil record into the Early Cretaceous suggests a more complex ecological history than has been deduced from their current distribution. However, the selective regime and ecological events underlying the possible loss of vessels in Winteraceae have remained enigmatic. Here we examine the hypothesis that vessels were lost as an adaptation to freezing-prone environments in Winteraceae by measuring the responses of xylem water transport to freezing for a diverse group of Winteraceae taxa as compared to Canella winterana (Canellaceae, a close relative with vessels) and sympatric conifer taxa. We found that mean percent loss of xylem water transport capacity following freeze-thaw varied from 0% to 6% for Winteraceae species from freezing-prone temperate climates and approximately 20% in those taxa from tropical (nonfreezing) climates. Similarly, conifers exhibit almost no decrease in xylem hydraulic conductivity following freezing. In contrast, water transport in Canella stems is nearly 85% blocked after freeze-thaw. Although vessel-bearing wood of Canella possesses considerably greaterhydraulic capacity than Winteraceae, nearly 20% of xylem hydraulic conductance remains, a value that is comparable to the hydraulic capacity of vesselless Winteraceae xylem, if the proportion of hydraulic flow through vessels (modeled as ideal capillaries) is removed. Thus, the evolutionary removal of vessels may not necessarily require a deleterious shift to an ineffective vascular system. By integrating Winteraceae’s phylogenetic relationships and fossil history with physiological and ecological observations, we suggest that, as ancestors of modern Winteraceae passed through temperate conditions present in Southern Gondwana during the Early Cretaceous, they were exposed to selective pressures against vesselpossession and returned to a vascular system relying on tracheids. These results suggest that the vesselless condition is advantageous in freezing-prone areas, which is supported by the strong bias in the ecological abundance of Winteraceae to wet temperate and tropical alpine habitats, rather than a retained feature from the first vesselless angiosperms. We believe that vesselless wood plays an important role in the ecological abundance of Winteraceae in Southern Hemisphere temperate environments by enabling the retention of leaves and photosynthesis in the face of frequent freeze-thaw events." name="DC.description" /> <meta content="2002" name="DC.date" /> <meta content="Article" name="DC.type" /> <meta content="PeerReviewed" name="DC.type" /> <meta content="application/pdf" name="DC.format" /> <meta content="http://eprints.utas.edu.au/2606/1/FeildBrod_Evolution.pdf" name="DC.identifier" /> <meta content="http://dx.doi.org/10.1111/j.0014-3820.2002.tb01359.x" name="DC.relation" /> <meta content="Feild, Taylor S. and Brodribb, Tim J. and Holbrook, N. M. (2002) Hardly a Relict: Freezing and the Evolution of Vesselless Wood in Winteraceae. Evolution, 56 (3). pp. 464-478. ISSN 0014-3820" name="DC.identifier" /> <meta content="http://eprints.utas.edu.au/2606/" name="DC.relation" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2606/BibTeX/epprod-eprint-2606.bib" title="BibTeX" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2606/ContextObject/epprod-eprint-2606.xml" title="OpenURL ContextObject" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2606/ContextObject::Dissertation/epprod-eprint-2606.xml" title="OpenURL Dissertation" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2606/ContextObject::Journal/epprod-eprint-2606.xml" title="OpenURL Journal" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2606/DC/epprod-eprint-2606.txt" title="Dublin Core" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2606/DIDL/epprod-eprint-2606.xml" title="DIDL" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2606/EndNote/epprod-eprint-2606.enw" title="EndNote" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2606/HTML/epprod-eprint-2606.html" title="HTML Citation" type="text/html; charset=utf-8" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2606/METS/epprod-eprint-2606.xml" title="METS" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2606/MODS/epprod-eprint-2606.xml" title="MODS" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2606/RIS/epprod-eprint-2606.ris" title="Reference Manager" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2606/Refer/epprod-eprint-2606.refer" title="Refer" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2606/Simple/epprod-eprint-2606text" title="Simple Metadata" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2606/Text/epprod-eprint-2606.txt" title="ASCII Citation" type="text/plain; charset=utf-8" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2606/XML/epprod-eprint-2606.xml" title="EP3 XML" type="text/xml" /> </head> <body bgcolor="#ffffff" text="#000000" onLoad="loadRoutine(); MM_preloadImages('images/eprints/ePrints_banner_r5_c5_f2.gif','images/eprints/ePrints_banner_r5_c7_f2.gif','images/eprints/ePrints_banner_r5_c8_f2.gif','images/eprints/ePrints_banner_r5_c9_f2.gif','images/eprints/ePrints_banner_r5_c10_f2.gif','images/eprints/ePrints_banner_r5_c11_f2.gif','images/eprints/ePrints_banner_r6_c4_f2.gif')"> <div class="ep_noprint"><noscript><style type="text/css">@import url(http://eprints.utas.edu.au/style/nojs.css);</style></noscript></div> <table width="795" border="0" cellspacing="0" cellpadding="0"> <tr> <td><script language="JavaScript1.2">mmLoadMenus();</script> <table border="0" cellpadding="0" cellspacing="0" width="795"> <!-- fwtable fwsrc="eprints_banner_final2.png" fwbase="ePrints_banner.gif" fwstyle="Dreamweaver" fwdocid = "1249563342" fwnested="0" --> <tr> <td><img src="/images/eprints/spacer.gif" width="32" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="104" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="44" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="105" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="41" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="16" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="82" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="69" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="98" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td> </tr> <tr> <td colspan="12"><img name="ePrints_banner_r1_c1" src="/images/eprints/ePrints_banner_r1_c1.gif" width="795" height="10" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="10" border="0" alt="" /></td> </tr> <tr> <td rowspan="6"><img name="ePrints_banner_r2_c1" src="/images/eprints/ePrints_banner_r2_c1.gif" width="32" height="118" border="0" alt="" /></td> <td rowspan="5"><a href="http://www.utas.edu.au/"><img name="ePrints_banner_r2_c2" src="/images/eprints/ePrints_banner_r2_c2.gif" width="104" height="103" border="0" alt="" /></a></td> <td colspan="10"><img name="ePrints_banner_r2_c3" src="/images/eprints/ePrints_banner_r2_c3.gif" width="659" height="41" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="41" border="0" alt="" /></td> </tr> <tr> <td colspan="3"><a href="http://eprints.utas.edu.au/"><img name="ePrints_banner_r3_c3" src="/images/eprints/ePrints_banner_r3_c3.gif" width="190" height="31" border="0" alt="" /></a></td> <td rowspan="2" colspan="7"><img name="ePrints_banner_r3_c6" src="/images/eprints/ePrints_banner_r3_c6.gif" width="469" height="37" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="31" border="0" alt="" /></td> </tr> <tr> <td colspan="3"><img name="ePrints_banner_r4_c3" src="/images/eprints/ePrints_banner_r4_c3.gif" width="190" height="6" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="6" border="0" alt="" /></td> </tr> <tr> <td colspan="2"><img name="ePrints_banner_r5_c3" src="/images/eprints/ePrints_banner_r5_c3.gif" width="149" height="1" border="0" alt="" /></td> <td rowspan="2" colspan="2"><a href="/information.html" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821132634_0,0,25,null,'ePrints_banner_r5_c5');MM_swapImage('ePrints_banner_r5_c5','','/images/eprints/ePrints_banner_r5_c5_f2.gif',1);"><img name="ePrints_banner_r5_c5" src="/images/eprints/ePrints_banner_r5_c5.gif" width="57" height="25" border="0" alt="About" /></a></td> <td rowspan="2"><a href="/view/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133021_1,0,25,null,'ePrints_banner_r5_c7');MM_swapImage('ePrints_banner_r5_c7','','/images/eprints/ePrints_banner_r5_c7_f2.gif',1);"><img name="ePrints_banner_r5_c7" src="/images/eprints/ePrints_banner_r5_c7.gif" width="68" height="25" border="0" alt="Browse" /></a></td> <td rowspan="2"><a href="/perl/search/simple" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133201_2,0,25,null,'ePrints_banner_r5_c8');MM_swapImage('ePrints_banner_r5_c8','','/images/eprints/ePrints_banner_r5_c8_f2.gif',1);"><img name="ePrints_banner_r5_c8" src="/images/eprints/ePrints_banner_r5_c8.gif" width="68" height="25" border="0" alt="Search" /></a></td> <td rowspan="2"><a href="/perl/register" onMouseOut="MM_swapImgRestore();MM_startTimeout();" onMouseOver="MM_showMenu(window.mm_menu_1018171924_3,0,25,null,'ePrints_banner_r5_c9');MM_swapImage('ePrints_banner_r5_c9','','/images/eprints/ePrints_banner_r5_c9_f2.gif',1);"><img name="ePrints_banner_r5_c9" src="/images/eprints/ePrints_banner_r5_c9.gif" width="68" height="25" border="0" alt="register" /></a></td> <td rowspan="2"><a href="/perl/users/home" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133422_4,0,25,null,'ePrints_banner_r5_c10');MM_swapImage('ePrints_banner_r5_c10','','/images/eprints/ePrints_banner_r5_c10_f2.gif',1);"><img name="ePrints_banner_r5_c10" src="/images/eprints/ePrints_banner_r5_c10.gif" width="82" height="25" border="0" alt="user area" /></a></td> <td rowspan="2"><a href="/help/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133514_5,0,25,null,'ePrints_banner_r5_c11');MM_swapImage('ePrints_banner_r5_c11','','/images/eprints/ePrints_banner_r5_c11_f2.gif',1);"><img name="ePrints_banner_r5_c11" src="/images/eprints/ePrints_banner_r5_c11.gif" width="69" height="25" border="0" alt="Help" /></a></td> <td rowspan="3" colspan="4"><img name="ePrints_banner_r5_c12" src="/images/eprints/ePrints_banner_r5_c12.gif" width="98" height="40" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td> </tr> <tr> <td rowspan="2"><img name="ePrints_banner_r6_c3" src="/images/eprints/ePrints_banner_r6_c3.gif" width="44" height="39" border="0" alt="ePrints home" /></td> <td><a href="/" onMouseOut="MM_swapImgRestore()" onMouseOver="MM_swapImage('ePrints_banner_r6_c4','','/images/eprints/ePrints_banner_r6_c4_f2.gif',1);"><img name="ePrints_banner_r6_c4" src="/images/eprints/ePrints_banner_r6_c4.gif" width="105" height="24" border="0" alt="ePrints home" /></a></td> <td><img src="/images/eprints/spacer.gif" width="1" height="24" border="0" alt="" /></td> </tr> <tr> <td><img name="ePrints_banner_r7_c2" src="/images/eprints/ePrints_banner_r7_c2.gif" width="104" height="15" border="0" alt="" /></td> <td colspan="8"><img name="ePrints_banner_r7_c4" src="/images/eprints/ePrints_banner_r7_c4.gif" width="517" height="15" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="15" border="0" alt="" /></td> </tr> </table></td> </tr> <tr><td><table width="100%" style="font-size: 90%; border: solid 1px #ccc; padding: 3px"><tr> <td align="left"><a href="http://eprints.utas.edu.au/cgi/users/home">Login</a> | <a href="http://eprints.utas.edu.au/cgi/register">Create Account</a></td> <td align="right" style="white-space: nowrap"> <form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/search" style="display:inline"> <input class="ep_tm_searchbarbox" size="20" type="text" name="q" /> <input class="ep_tm_searchbarbutton" value="Search" type="submit" name="_action_search" /> <input type="hidden" name="_order" value="bytitle" /> <input type="hidden" name="basic_srchtype" value="ALL" /> <input type="hidden" name="_satisfyall" value="ALL" /> </form> </td> </tr></table></td></tr> <tr> <td class="toplinks"><!-- InstanceBeginEditable name="content" --> <div align="center"> <table width="720" class="ep_tm_main"><tr><td align="left"> <h1 class="ep_tm_pagetitle">Hardly a Relict: Freezing and the Evolution of Vesselless Wood in Winteraceae</h1> <p style="margin-bottom: 1em" class="not_ep_block"><span class="person_name">Feild, Taylor S.</span> and <span class="person_name">Brodribb, Tim J.</span> and <span class="person_name">Holbrook, N. M.</span> (2002) <xhtml:em>Hardly a Relict: Freezing and the Evolution of Vesselless Wood in Winteraceae.</xhtml:em> Evolution, 56 (3). pp. 464-478. ISSN 0014-3820</p><p style="margin-bottom: 1em" class="not_ep_block"></p><table style="margin-bottom: 1em" class="not_ep_block"><tr><td valign="top" style="text-align:center"><a href="http://eprints.utas.edu.au/2606/1/FeildBrod_Evolution.pdf"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" class="ep_doc_icon" border="0" /></a></td><td valign="top"><a href="http://eprints.utas.edu.au/2606/1/FeildBrod_Evolution.pdf"><span class="ep_document_citation">PDF</span></a> - Full text restricted - Requires a PDF viewer<br />324Kb</td><td><form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/request_doc"><input accept-charset="utf-8" value="3414" name="docid" type="hidden" /><div class=""><input value="Request a copy" name="_action_null" class="ep_form_action_button" onclick="return EPJS_button_pushed( '_action_null' )" type="submit" /> </div></form></td></tr></table><p style="margin-bottom: 1em" class="not_ep_block">Official URL: <a href="http://dx.doi.org/10.1111/j.0014-3820.2002.tb01359.x">http://dx.doi.org/10.1111/j.0014-3820.2002.tb01359.x</a></p><div class="not_ep_block"><h2>Abstract</h2><p style="padding-bottom: 16px; text-align: left; margin: 1em auto 0em auto">The Winteraceae are traditionally regarded as the least-specialized descendents of the first flowering plants, based largely on their lack of xylem vessels. Since vessels have been viewed as a key innovation for angiosperm diversification, Winteraceae have been portrayed as declining relicts, limited to wet forest habitats where their tracheidbased wood does not impose a significant hydraulic constraints. In contrast, phylogenetic analyses place Winteraceae among angiosperm clades with vessels, indicating that their vesselless wood is derived rather than primitive, whereas extension of the Winteraceae fossil record into the Early Cretaceous suggests a more complex ecological history than has been deduced from their current distribution. However, the selective regime and ecological events underlying the possible loss of vessels in Winteraceae have remained enigmatic. Here we examine the hypothesis that vessels were lost as an adaptation to freezing-prone environments in Winteraceae by measuring the responses of xylem water transport to freezing for a diverse group of Winteraceae taxa as compared to Canella winterana (Canellaceae, a close relative with vessels) and sympatric conifer taxa. We found that mean percent loss of xylem water transport capacity following freeze-thaw varied from 0% to 6% for Winteraceae species from freezing-prone temperate climates and approximately 20% in those taxa from tropical (nonfreezing) climates. Similarly, conifers exhibit almost no decrease in xylem hydraulic conductivity following freezing. In contrast, water transport in Canella stems is nearly 85% blocked after freeze-thaw. Although vessel-bearing wood of Canella possesses considerably greaterhydraulic capacity than Winteraceae, nearly 20% of xylem hydraulic conductance remains, a value that is comparable to the hydraulic capacity of vesselless Winteraceae xylem, if the proportion of hydraulic flow through vessels (modeled as ideal capillaries) is removed. Thus, the evolutionary removal of vessels may not necessarily require a deleterious shift to an ineffective vascular system. By integrating Winteraceae’s phylogenetic relationships and fossil history with physiological and ecological observations, we suggest that, as ancestors of modern Winteraceae passed through temperate conditions present in Southern Gondwana during the Early Cretaceous, they were exposed to selective pressures against vesselpossession and returned to a vascular system relying on tracheids. These results suggest that the vesselless condition is advantageous in freezing-prone areas, which is supported by the strong bias in the ecological abundance of Winteraceae to wet temperate and tropical alpine habitats, rather than a retained feature from the first vesselless angiosperms. We believe that vesselless wood plays an important role in the ecological abundance of Winteraceae in Southern Hemisphere temperate environments by enabling the retention of leaves and photosynthesis in the face of frequent freeze-thaw events.</p></div><table style="margin-bottom: 1em" cellpadding="3" class="not_ep_block" border="0"><tr><th valign="top" class="ep_row">Item Type:</th><td valign="top" class="ep_row">Article</td></tr><tr><th valign="top" class="ep_row">Additional Information:</th><td valign="top" class="ep_row">"The definitive version is available at www.blackwell-synergy.com" </td></tr><tr><th valign="top" class="ep_row">Keywords:</th><td valign="top" class="ep_row">Angiosperm evolution, Canellaceae, Drimys, freezing stress, Winteraceae, xylem evolution.</td></tr><tr><th valign="top" class="ep_row">Subjects:</th><td valign="top" class="ep_row"><a href="http://eprints.utas.edu.au/view/subjects/270402.html">270000 Biological Sciences > 270400 Botany > 270402 Plant Physiology</a><br /><a href="http://eprints.utas.edu.au/view/subjects/270400.html">270000 Biological Sciences > 270400 Botany</a></td></tr><tr><th valign="top" class="ep_row">ID Code:</th><td valign="top" class="ep_row">2606</td></tr><tr><th valign="top" class="ep_row">Deposited By:</th><td valign="top" class="ep_row"><span class="ep_name_citation"><span class="person_name">Scholarly Publications Librarian</span></span></td></tr><tr><th valign="top" class="ep_row">Deposited On:</th><td valign="top" class="ep_row">03 Dec 2007 13:03</td></tr><tr><th valign="top" class="ep_row">Last Modified:</th><td valign="top" class="ep_row">09 Jan 2008 02:30</td></tr><tr><th valign="top" class="ep_row">ePrint Statistics:</th><td valign="top" class="ep_row"><a target="ePrintStats" href="/es/index.php?action=show_detail_eprint;id=2606;">View statistics for this ePrint</a></td></tr></table><p align="right">Repository Staff Only: <a href="http://eprints.utas.edu.au/cgi/users/home?screen=EPrint::View&eprintid=2606">item control page</a></p> </td></tr></table> </div> <!-- InstanceEndEditable --></td> </tr> <tr> <td><!-- #BeginLibraryItem "/Library/footer_eprints.lbi" --> <table width="795" border="0" align="left" cellpadding="0" class="footer"> <tr valign="top"> <td colspan="2"><div align="center"><a href="http://www.utas.edu.au">UTAS home</a> | <a href="http://www.utas.edu.au/library/">Library home</a> | <a href="/">ePrints home</a> | <a href="/contact.html">contact</a> | <a href="/information.html">about</a> | <a href="/view/">browse</a> | <a href="/perl/search/simple">search</a> | <a href="/perl/register">register</a> | <a href="/perl/users/home">user area</a> | <a href="/help/">help</a></div><br /></td> </tr> <tr><td colspan="2"><p><img src="/images/eprints/footerline.gif" width="100%" height="4" /></p></td></tr> <tr valign="top"> <td width="68%" class="footer">Authorised by the University Librarian<br /> © University of Tasmania ABN 30 764 374 782<br /> <a href="http://www.utas.edu.au/cricos/">CRICOS Provider Code 00586B</a> | <a href="http://www.utas.edu.au/copyright/copyright_disclaimers.html">Copyright & Disclaimers</a> | <a href="http://www.utas.edu.au/accessibility/index.html">Accessibility</a> | <a href="http://eprints.utas.edu.au/feedback/">Site Feedback</a> </td> <td width="32%"><div align="right"> <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><img src="http://www.utas.edu.au/shared/logos/unioftasstrip.gif" alt="University of Tasmania Home Page" width="260" height="16" border="0" align="right" /></a></p> <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><br /> </a></p> </div></td> </tr> <tr valign="top"> <td><p> </p></td> <td><div align="right"><span class="NoPrint"><a href="http://www.eprints.org/software/"><img src="/images/eprintslogo.gif" alt="ePrints logo" width="77" height="29" border="0" align="bottom" /></a></span></div></td> </tr> </table> <!-- #EndLibraryItem --> <div align="center"></div></td> </tr> </table> </body> </html>