Newer
Older
Digital_Repository / Misc / Mass downloads / UTas / 2606.html
  1. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  2. "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
  3. <html>
  4. <head>
  5. <title>UTas ePrints - Hardly a Relict: Freezing and the Evolution of Vesselless Wood in Winteraceae</title>
  6. <script type="text/javascript" src="http://eprints.utas.edu.au/javascript/auto.js"><!-- padder --></script>
  7. <style type="text/css" media="screen">@import url(http://eprints.utas.edu.au/style/auto.css);</style>
  8. <style type="text/css" media="print">@import url(http://eprints.utas.edu.au/style/print.css);</style>
  9. <link rel="icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
  10. <link rel="shortcut icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
  11. <link rel="Top" href="http://eprints.utas.edu.au/" />
  12. <link rel="Search" href="http://eprints.utas.edu.au/cgi/search" />
  13. <meta content="Feild, Taylor S." name="eprints.creators_name" />
  14. <meta content="Brodribb, Tim J." name="eprints.creators_name" />
  15. <meta content="Holbrook, N. M." name="eprints.creators_name" />
  16. <meta content="" name="eprints.creators_id" />
  17. <meta content="Timothy.Brodribb@utas.edu.au" name="eprints.creators_id" />
  18. <meta content="" name="eprints.creators_id" />
  19. <meta content="article" name="eprints.type" />
  20. <meta content="2007-12-03 02:03:36" name="eprints.datestamp" />
  21. <meta content="2008-01-08 15:30:00" name="eprints.lastmod" />
  22. <meta content="show" name="eprints.metadata_visibility" />
  23. <meta content="Hardly a Relict: Freezing and the Evolution of Vesselless Wood in Winteraceae" name="eprints.title" />
  24. <meta content="pub" name="eprints.ispublished" />
  25. <meta content="270402" name="eprints.subjects" />
  26. <meta content="270400" name="eprints.subjects" />
  27. <meta content="restricted" name="eprints.full_text_status" />
  28. <meta content="Angiosperm evolution, Canellaceae, Drimys, freezing stress, Winteraceae, xylem evolution." name="eprints.keywords" />
  29. <meta content="&quot;The definitive version is available at www.blackwell-synergy.com&quot;
  30. " name="eprints.note" />
  31. <meta content="The Winteraceae are traditionally regarded as the least-specialized descendents of the first flowering plants,
  32. based largely on their lack of xylem vessels. Since vessels have been viewed as a key innovation for angiosperm
  33. diversification, Winteraceae have been portrayed as declining relicts, limited to wet forest habitats where their tracheidbased
  34. wood does not impose a significant hydraulic constraints. In contrast, phylogenetic analyses place Winteraceae
  35. among angiosperm clades with vessels, indicating that their vesselless wood is derived rather than primitive, whereas
  36. extension of the Winteraceae fossil record into the Early Cretaceous suggests a more complex ecological history than
  37. has been deduced from their current distribution. However, the selective regime and ecological events underlying the
  38. possible loss of vessels in Winteraceae have remained enigmatic. Here we examine the hypothesis that vessels were
  39. lost as an adaptation to freezing-prone environments in Winteraceae by measuring the responses of xylem water
  40. transport to freezing for a diverse group of Winteraceae taxa as compared to Canella winterana (Canellaceae, a close
  41. relative with vessels) and sympatric conifer taxa. We found that mean percent loss of xylem water transport capacity
  42. following freeze-thaw varied from 0% to 6% for Winteraceae species from freezing-prone temperate climates and
  43. approximately 20% in those taxa from tropical (nonfreezing) climates. Similarly, conifers exhibit almost no decrease
  44. in xylem hydraulic conductivity following freezing. In contrast, water transport in Canella stems is nearly 85% blocked
  45. after freeze-thaw. Although vessel-bearing wood of Canella possesses considerably greaterhydraulic capacity than
  46. Winteraceae, nearly 20% of xylem hydraulic conductance remains, a value that is comparable to the hydraulic capacity
  47. of vesselless Winteraceae xylem, if the proportion of hydraulic flow through vessels (modeled as ideal capillaries) is
  48. removed. Thus, the evolutionary removal of vessels may not necessarily require a deleterious shift to an ineffective
  49. vascular system. By integrating Winteraceae’s phylogenetic relationships and fossil history with physiological and
  50. ecological observations, we suggest that, as ancestors of modern Winteraceae passed through temperate conditions
  51. present in Southern Gondwana during the Early Cretaceous, they were exposed to selective pressures against vesselpossession
  52. and returned to a vascular system relying on tracheids. These results suggest that the vesselless condition
  53. is advantageous in freezing-prone areas, which is supported by the strong bias in the ecological abundance of Winteraceae
  54. to wet temperate and tropical alpine habitats, rather than a retained feature from the first vesselless angiosperms.
  55. We believe that vesselless wood plays an important role in the ecological abundance of Winteraceae in Southern
  56. Hemisphere temperate environments by enabling the retention of leaves and photosynthesis in the face of frequent
  57. freeze-thaw events." name="eprints.abstract" />
  58. <meta content="2002" name="eprints.date" />
  59. <meta content="published" name="eprints.date_type" />
  60. <meta content="Evolution" name="eprints.publication" />
  61. <meta content="56" name="eprints.volume" />
  62. <meta content="3" name="eprints.number" />
  63. <meta content="464-478" name="eprints.pagerange" />
  64. <meta content="10.1111/j.0014-3820.2002.tb01359.x" name="eprints.id_number" />
  65. <meta content="TRUE" name="eprints.refereed" />
  66. <meta content="0014-3820" name="eprints.issn" />
  67. <meta content="http://dx.doi.org/10.1111/j.0014-3820.2002.tb01359.x" name="eprints.official_url" />
  68. <meta content="Alberdi, M., M. Romero, D. Rios, and H. Wenzel. 1985. Altitudinal
  69. gradients of seasonal frost resistance on Nothofagus communities
  70. of southern Chile. Acta Oecol. 6:21–30.
  71. Askin, R. A., and R. A. Spicer. 1995. The Late Cretaceous and
  72. Cenozoic history of vegetation and climate at northern and
  73. southern high latitudes: a comparison. Pp 156–173 in Effects of
  74. past global climate on life. National Research Council. National
  75. Academy Press, Washington, DC.
  76. Axelrod, D. I. 1966. Origin of deciduous and evergreen habits in
  77. temperate forests. Evolution 20:1–15.
  78. Bailey, I. W. 1953. Evolution of the tracheary tissue of land plants.
  79. Am. J. Bot. 40:4–8.
  80. Bailey, I. W., and C. G. Nast. 1944. The comparative morphology
  81. of the Winteraceae. V. Foliar epidermis and sclerencyma. J.
  82. Arnold Arboretum 26:37–47.
  83. Bailey, I. W., and W. P. Thompson. 1918. Additional nodes upon
  84. the angiosperms Tetracentron, Trochodendron, and Drimys, in
  85. which vessels are absent from the wood. Ann. Bot. 32:503–512.
  86. Baldoni, A. M. 1987. Nuevas descripciones palinolo´gicas en el a´rea
  87. de Collo´n Cura´ (Terciario inferior) Provincia del Neuque´n, Argentina.
  88. IV. Congreso Latinoamericano de Paleontologı´a, Bolivia
  89. (1987)1:399–414.
  90. Baranova, M. 1972. Systematic anatomy of the leaf epidermis in
  91. the Magnoliaceae and some related families. Taxon 21:447–469.
  92. Barreda, V. 1997. Palymorph assemblage of the Cheque Formation,
  93. late Oligocene?-Miocene from Golfo San Jorge basin, Patagonia,
  94. Argentina. Part 4. Polycolporate and porate pollen. Ameghiniana
  95. 34:145–154
  96. Barnes, R. W., G. J. Jordan, R. S. Hill, and C. J. McCoull. 2000.
  97. A common boundary between distinct northern and southern
  98. morphotypes in two unrelated Tasmanian rainforest species.
  99. Aust. J. Bot. 48:481–491.
  100. Barry, J. B. 1980. Mountain climates of New Guinea. Pp. 75–109
  101. in P. van Royen, ed. Alpine flora of New Guinea. Gantner Verlag,
  102. Germany.
  103. Becker, P. M., M. T. Tyree, and M. Tsuda. 1999. Hydraulic conductances
  104. of angiosperms versus conifers: similar transport sufficiency
  105. at the whole plant level. Tree Physiol. 19:445–452.
  106. Bond, W. J. 1989. The tortoise and the hare: ecology of angiosperm
  107. dominance and gymnosperm persistence. Bot. J. Linn. Soc. 36:
  108. 227–249.
  109. Brenner, G. J. 1976. Middle Cretaceous floral provinces and early
  110. migrations of angiosperms. Pp. 23–47 in C. B. Beck, ed. Origin
  111. and early evolution of angiosperms. Columbia Unviersity Press,
  112. New York.
  113. ———. 1996. Evidence for the earliest stage of angiosperm pollen
  114. evolution: A paleoequatorial section from Israel. Pp. 91–115 in
  115. D. W. Taylor and L. J. Hickey, eds. Flowering plant origin,
  116. evolution, and phylogeny. Chapman and Hall, New York.
  117. Brodribb, T. J., and R. S. Hill. 1998. Imbricacy and stomatal wax
  118. plugs reduce maximum leaf conductance in Southern Hemisphere
  119. conifers. Aust. J. Bot. 45:657–668.
  120. Brodribb, T. J., and T. S. Feild. 2000. Stem hydraulic supply is
  121. linked to leaf photosynthetic capacity: evidence from New Caledonian
  122. and Tasmanian rainforests. Plant Cell Environ. 23:
  123. 1381–1388.
  124. Canny, M. J. 1997. Vessel contents during transpiration- embolisms
  125. and refilling. Am. J. Bot. 84:1223–1230.
  126. Carlquist, S. 1975. Ecological strategies of xylem evolution. Univ.
  127. of California Press, Berkeley, CA.
  128. ———. 1981. Wood anatomy of Zygogynum (Winteraceae): field
  129. observations. Bull. Mus. Nat. Hist. (Paris) 3:281–292.
  130. ———. 1983a. Wood anatomy of Bubbia (Winteraceae), with comments
  131. on origin of vessels in dicotyledons. Am. J. Bot. 70:
  132. 578–590.
  133. ———. 1983b. Wood anatomy of Belliolum (Winteraceae) and a
  134. note on flowering. J. Arnold Arboretum 64:161–169.
  135. ———. 1988a. Comparative wood anatomy. Springer-Verlag, Berlin.
  136. ———. 1988b. Near-vessellessness in Ephedra and its significance.
  137. Am. J. Bot. 75:598–601.
  138. ———. 2000. Wood and bark anatomy of Takhtajania (Winteraceae):
  139. phylogenetic and ecological implications. Ann. MO. Bot.
  140. Gard. 87:317–322.
  141. Chabot, B. F., and D. J. Hicks. 1982. The ecology of leaf life spans.
  142. Annu. Rev. Ecol. Syst. 13:229–259.
  143. Coetzee, J. A., and J. Muller. 1984. The phytogeographic significance
  144. of some extinct Gondwana pollen types from the Tertiary
  145. of the southwestern cape (South Africa). Ann. MO. Bot. Gard.
  146. 71:1088–1099.
  147. Coetzee, J. A., and J. Praglowski. 1988. Winteraceae pollen from
  148. the Miocene of the Southwestern Cape (South-Africa). Grana
  149. 27:27–37.
  150. Crane, P. R., S. R. Manchester, and D. L. Dilcher. 1991. Reproductive
  151. and vegetative structure of Nordenskioldia (Trochodendraceae),
  152. a vesselless dicotyledon from the early Tertiary of
  153. the Northern Hemisphere. Am. J. Bot. 78:1311–1334.
  154. Cronquist, A. 1981. An integrated system of classification of flowering
  155. plants. Columbia University Press, New York.
  156. ———. 1988. The evolution and classification of flowering plants.
  157. The New York Botanical Garden, New York.
  158. Daubenmire, R. 1954. Alpine timberlines in the Americas and their
  159. interpretation. Butler Univ. Bot. Stud. 11:119–136.
  160. Davis, S. D., J. S. Sperry, and U. G. Hacke. 1999. The relationship
  161. between xylem conduit diameter and cavitation caused by freezing.
  162. Am. J. Bot. 86:1367–1372.
  163. Dettmann, M. E. 1994. Cretaceous vegetation: the microfossil record.
  164. Pp. 143–188 in R. S. Hill, ed. History of the Australian
  165. vegetation. Cambridge Univ. Press, New York.
  166. Dettmann, M. E., and D. M. Jarzen. 1990. The Antarctic Australian
  167. rift-valley—Late Cretaceous cradle of northeastern Australasian
  168. relicts. Rev. of Palaeobot. Palyno. 65:131–144.
  169. Dingle, R. V., and Lavelle. 1998. Late Cretaceous–Cenozoic climatic
  170. variations of the northern Antarctic Peninsula: new geochemical
  171. evidence and review. Palaeogeogr. Palaeocl. 141:
  172. 215–232.
  173. Ditchfield, P. W., J. D. Marshall, and D. Pirrie. 1994. High-latitude
  174. paleotemperature variation—new data from the Tithonian to Eocene
  175. of James Ross Island, Antarctica. Palaeogeogr. Palaeocl.
  176. 107:79–101.
  177. Donoghue, M. J. 1989. Phylogenies and the analysis of evolutionary
  178. sequences, with examples from seed plants. Evolution 43:
  179. 1137–1156.
  180. Donoghue, M. J., and J. A. Doyle. 1989. Phylogenetic analysis of
  181. angiosperms and the relationships of Hamamelidae. Pp. 14–45
  182. in P. R. Crane and S. Blackmore, eds. Evolution, systematics,
  183. and fossil history of the Hamamelidae. Clarendon, Oxford, U.K.
  184. Doyle, J. A. 2000. Paleobotany, relationships, and geographic history
  185. of Winteraceae. Ann. Mo. Bot. Gard. 87:303–316.
  186. Doyle, J. A., and M. J. Donoghue. 1986. Seed plant phylogeny and
  187. the origin of angiosperms: an experimental cladistic approach.
  188. Bot. Rev. 52:321–431.
  189. Doyle, J. A., and P. K. Endress. 2000. Morphological phylogenetic
  190. WINTERACEAE
  191. analysis of basal angiosperms: Comparison and combination
  192. with molecular data. Int. J. Plant Sci. 161:S121–S153.
  193. Doyle, J. A., P. Biens, A. Doerenkamp, and S. Jardine. 1977. Angiosperm
  194. pollen from the pre-Albian Lower Cretaceous of equatorial
  195. Africa. Bull. Cent. Rech. Explor. -Prod. Elf-Aquitaine 1:
  196. 451–473.
  197. Doyle, J. A., S. Jardine, and A. Doerenkamp. 1982. Afropollis, a
  198. new genus of early angiosperm pollen, with notes on the Cretaceous
  199. palynostratigraphy and paleoenvironments of Northern
  200. Gondwana. Soc. Nat. Elf Aquitaine 6:39–117.
  201. Doyle, J. A., C. L. Hotton, and J. V. Ward. 1990. Early Cretaceous
  202. tetrads, zonasulcate pollen, and Winteraceae. II. Cladistic analysis
  203. and implications. Am. J. Bot. 77:1558–1568.
  204. Ehrendorfer, F., I. Silberbauer, Gottsberger, H. I. and G. Gottsberger.
  205. 1979. Variation on the population, racial, and species
  206. level in the primitive relic angiosperm genus Drimys (Winteraceae)
  207. in South America. Plant Syst. Evol. 132:53–83.
  208. Feild, T. S., and T. Brodribb. 2001. Stem water transport and freezethaw
  209. xylem embolism in conifers and angiosperms in a Tasmanian
  210. treeline heath. Oecologia 127:314–320.
  211. Feild, T. S., and N. M. Holbrook. 2000. Xylem sap flow and stem
  212. hydraulics of the vesselless angiosperm Drimys granadensis
  213. (Winteraceae) in a Costa Rican elfin forest. Plant Cell Environ.
  214. 23:1067–1077.
  215. Feild, T. S., M. A. Zwieniecki, M. J. Donoghue, and N. M. Holbrook.
  216. 1998. Stomatal plugs of Drimys winteri (Winteraceae)
  217. protect leaves from mist but not drought. Proc. Natl. Acad. Sci.
  218. USA 95:14256–14259.
  219. Feild, T. S., M. A. Zwieniecki, and N. M. Holbrook. 2000. Winteraceae
  220. evolution: an ecophysiological perspective. Ann. Mo.
  221. Bot. Gard. 87:323–334.
  222. Frakes, L. A., and J. E. Francis. 1988. A guide to Phanerozoic cold
  223. polar climates from high-latitude ice-rafting in the Cretaceous.
  224. Nature 333:547–549.
  225. Francis, J. E. 1986. Growth rings in Cretaceous and Tertiary wood
  226. from Antarctica and their palaeoclimatic implications. Palaeonotology
  227. 29:665–684.
  228. Frost, F. H. 1930. Specialization in secondary xylem of dicotyledons.
  229. I. Origin of vessel. Bot. Gaz. 89:67–100.
  230. Givnish, T. J. 1984. Leaf and canopy adaptations in tropical forests.
  231. Pp. 51–84 in E. Medina, H. A. Mooney, and C. Vasquez-Yanes
  232. eds. Physiological ecology of plants of the wet tropics. Dr. Junk,
  233. The Hague, The Netherlands.
  234. ———. 1995. Plant stems: biomechanical adaptation for energy
  235. capture and influence on species distributions. Pp 3–49 in B. L.
  236. Gartner ed. Plant stems: physiology and functional morphology.
  237. Chapman and Hall, New York.
  238. Goldblatt, P. 1993. Biological relationships between Africa and
  239. South America. Yale University Press, New Haven, CT.
  240. Gottsburger, G., I. Silberbauer-Gottsburger, and F. Ehrendorfer.
  241. 1980. Reproductive biology in the primitive relic angiosperm
  242. Drimys brasiliensis (Winteraceae). Plant Syst. Evol. 135:11–39.
  243. Graham, A., and D. M. Jarzen. 1969. Studies in neotropical paleobotany.
  244. I. The Oligocene plant communities of Puerto Rico. Ann.
  245. MO. Gard. 56:308–357.
  246. Greig, N. 1993. Regeneration mode in Neotropical Piper—habitat
  247. and species comparisons. Ecology 74:2125–2135.
  248. Groom, P. 1910. Remarks on the oecology of Coniferae. Ann. Bot.
  249. 24:241–269.
  250. Hammel, H. T. 1967. Freezing of xylem sap without cavitation.
  251. Plant Physiol. 42:55–66.
  252. Herngreen, G. F. W., A. Randrianasolo, and J. W. Verbeek. 1981.
  253. Micropaleontology of Albian to Danian strata in Madagascar.
  254. Micropaleontology 28:97–107.
  255. Holbrook, N. M., and M. A. Zwieniecki. 1999. Embolism refilling
  256. and xylem tension: do we need a miracle? Plant Physiol. 120:
  257. 7–10.
  258. Hnatiuk, R. J., J.M. B. Smith, and D. N. McVean. 1976. Mt.Wilhem
  259. studies. 2. The climate of Mt. Wilhem. Australia National Univ.
  260. Press, Canberra, Australia.
  261. Karol, K. G., Y. B. Suh, G. E. Schatz, and E. A. Zimmer. 2000.
  262. Molecular evidence for the phylogenetic position of Takhtajania
  263. in the Winteraceae: Inference from nuclear ribosomal and chloroplast
  264. gene spacer sequences. Ann. Mo. Bot. Gard. 87:414–432.
  265. Keating, R. C. 2000. Anatomy of the young vegetative shoot of
  266. Takhtajania perrieri (Winteraceae). Ann. Mo. Bot. Gard. 87:
  267. 335–346.
  268. Kirkpatrick, J. B., and K. L. Bridle. 1999. Environment and floristics
  269. of ten Australian alpine vegetation formations. Aus. J. Bot. 47:
  270. 1–21.
  271. Krutzsch, W. 1970. Zur Kenntnis fossiler disperser Tetradenpollen.
  272. Pala¨ontol. Abh. B 3:399–433.
  273. Kubitzki, K. 1993. Canellaceae. In K. Kubitzki, J. G. Rohwer, and
  274. V. Bittrich, eds. Flowering plants—Dicotyledons. Vol. 2. Magnoliid,
  275. Hamamelid, and Caryophyllid Familes. Springer-Verlag,
  276. Berlin.
  277. Lusk, C. H. 1993. Stand dynamics of the shade-tolerant conifers
  278. Podocarpus nubigena and Saxegothea conspicua in Chilean temperate
  279. rainforest. J. Veg. Sci. 7:549–558.
  280. Maddison, W. P., and D. R. Maddison. 1992. MacClade: analysis
  281. of phylogeny and character evolution. Sinauer Associates, Inc.,
  282. Sunderland, MA.
  283. Manchester, S. R. 1999. Biogeographical relationships of North
  284. American Tertiary flora. Ann. Mo. Bot. Gard. 86:472–522.
  285. Manchester, S. R., P. R. Crane, and D. L. Dilcher. 1991. Nordenskioldia
  286. and Trochodendron fruits (Trochodendraceae) from the
  287. Miocene of northwestern North America. Bot. Gaz. 152:
  288. 357–368.
  289. Markgraf, V., M. McGlone, and G. Hope. 1995. Neogene paleoenvironmental
  290. and paleoclimatic change in southern temperate
  291. ecosystems—a southern perspective. Trends Ecol. Evol. 10:
  292. 143–147.
  293. Martin, H. A. 1978. Evolution of the Australian flora and vegetation
  294. through the Tertiary: evidence from pollen. Alchevinga 2:
  295. 181–202.
  296. Mathews, S., and M. J. Donoghue. 1999. The root of angiosperm
  297. phylogeny inferred from duplicate phytochrome genes. Science
  298. 286:947–950.
  299. Melcher, P. J., F. C. Meinzer, D. E. Yount, G. Goldstein, and U.
  300. Zimmermann. 1998. Comparative measurements of xylem pressure
  301. in transpiring and non-transpiring leaves by means of the
  302. pressure chamber and the xylem pressure probe. J. Exp. Bot.
  303. 49:1757–1760.
  304. Melcher, P. J., S. Cordell, T. Jones, T. Giambelluca, P. Scowcroft,
  305. and G. Goldstein. 2000. Supercooling capacity increases from
  306. sea level to tree line in the Hawaiian tree species Metrosideros
  307. polymorpha. Int. J. Plant Sci. 161:369–379.
  308. Mildenhall, D. C. 1980. New Zealand Late Cretaceous and Cenozoic
  309. plant biogeography: a contribution. Palaeogeogr. Palaeocl. 31:
  310. 197–233.
  311. Mildenhall, D. C., and Y. M. Crosbie. 1979. Some porate pollen
  312. from the upper Tertiary of New Zealand. N. Z. J. Geol. Geophys.
  313. 22:449–508.
  314. Niklas, K. J. 1992. Plant biomechanics. University of Chicago Press,
  315. Chicago, IL.
  316. Nobel, P. S. 1988. Physiochemical and environmental plant physiology.
  317. Academic Press, San Diego, CA.
  318. Pearce, R. S. 2001. Plant freezing and damage. Ann. Bot. 87:
  319. 417–424.
  320. Pigg, K. B., W. C. Wehr, and S. M. Ikert-Bond. 2001. Trochodendron
  321. and Nordenskioldia (Trochodendraceae) from the middle
  322. Eocene of Washington State, USA. Int. J. Plant Sci. 161:
  323. 1187–1198.
  324. Pockman, W. T., and J. S. Sperry. 1997. Freezing-induced xylem
  325. cavitation and the northern limit of Larrea tridentata. Oecologia
  326. 109:19–27.
  327. Pole, M. 1994. The New Zealand flora: entirely long-distance dispersal?
  328. J. Biogeogr. 21:625–635.
  329. Poole, I., and J. E. Francis. 2000. The first record of fossil wood
  330. of Winteraceae from the Upper Cretaceous of Antarctica. Ann.
  331. Bot. 85:307–315.
  332. Qiu, Y. L., J. H. Lee, F. Bernasconi-Quadroni, D. E. Soltis, P. S.
  333. Soltis, M. Zanis, E. A. Zimmer, Z. D. Chen, V. Savolainen, and
  334. M. W. Chase. 1999. The earliest angiosperms: evidence
  335. mitochondrial, plastid and nuclear genomes. Nature 402:
  336. 404–407.
  337. ———. 2000. Phylogeny of basal angiosperms: analyses of five
  338. genes from three genomes. Int. J. Plant Sci. 161:S3–S27.
  339. Quilty, P. G. 1994. The background: 144 million years of Australian
  340. palaeoclimate and palaeogeography. Pp. 14–43 in R. S. Hill, ed.
  341. History of the Australian Vegetation. Cambridge Univ. Press,
  342. New York.
  343. Rabinowitz, P. D., M. F. Coffin, and D. Falvey. 1983. The separation
  344. of Madagascar and Africa. Science 220:67–69.
  345. Raleigh, R. E., P. Y. Ladige, T. J. Entswisle, and A. N. Drinnan.
  346. 1994. Morphometric studies of the genus Tasmannia (Winteraceae)
  347. in Victoria, Australia. Mulleria 38:235–256.
  348. Raven, P. H., and D. I. Axelrod. 1974. Angiosperm biogeography
  349. and past continental movements. Ann. Mo. Bot. Gard. 61:
  350. 539–673.
  351. Rebertus, A. J., and T. T. Veblen. 1993. Structure and tree-fall gap
  352. dynamics in old growth Nothofagus forests in Tierra del Fuego,
  353. Argentina. J. Veg. Sci. 4:641–654.
  354. Rich, P. V., T. H. Rich, B. E. Wagstaff, J. M. Mason, C. B. Douthitt,
  355. R. T. Gregory, and E. A. Felton. 1988. Evidence for low temperatures
  356. and biologic diversity in Cretaceous high-latitudes of
  357. Australia. Science 242:1403–1406
  358. Sakai, A. D., D. M. Patton, and P. Wardle. 1981. Freezing resistance
  359. of trees of the south temperate zone, especially sub-alpine species
  360. of Australasia. Ecology 62:563–570.
  361. Sampson, F. B. 1980. Natural hybridism in Pseudowintera (Winteraceae).
  362. NZ J. Bot. 18:43–51.
  363. ———. 1983. A new species of Zygogynum (Winteraceae). Blumea
  364. 28:353–360.
  365. Sampson, F. B., J. B. Williams, and P. S. Woodland. 1988. The
  366. morphology and taxonomic position of Tasmannia glaucifolia
  367. (Winteraceae), a new Australian species. Aus. J. Bot. 36:
  368. 395–413.
  369. Schatz, G. E. 2000. The rediscovery of a Malagasy endemic: Takhtajania
  370. perrieri (Winteraceae). Ann. Mo. Bot. Gard. 87:297–302.
  371. Smith, A. C. 1943a. The American species of Drimys. J. Arnold
  372. Arbor. Harv. Univ. 24:1–24.
  373. ———. 1943b. Taxonomic notes on the Old World species of Winteraceae.
  374. J. Arnold Arbor. Harv. Univ. 24:119–164.
  375. ———. 1945a. A taxonomic review of Trochodendron and Tetracentron.
  376. J. Arnold Arbor. Harv. Univ. 26:123–142.
  377. ———. 1945b. Geographic distribution of the Winteraceae. J. Arnold
  378. Arbor. Harv. Univ. 26:48–59.
  379. Soltis, P. S., D. E. Soltis, and M. W. Chase. 1999. Angiosperm
  380. phylogeny inferred from multiple genes as a tool for comparative
  381. biology. Nature 402:402–404.
  382. Sperry, J. S. 1995. Limitations on stem water transport and their
  383. consequences. Pp. 105–124 in B. L. Gartner, ed. Plant stems:
  384. physiology and functional morphology. Academic Press, San
  385. Diego, CA.
  386. Sperry, J. S., and J. E. M. Sullivan. 1992. Xylem embolism in
  387. response to freeze-thaw cycles and water-stress in ring-porous,
  388. diffuse-porous, and conifer species. Plant Physiol. 100:605–613.
  389. Sperry, J. S., J. R. Donnelly, and M. T. Tyree. 1988. A method for
  390. measuring hydraulic conductivity and embolism in xylem. Plant
  391. Cell Environ. 11:35–40.
  392. Sperry, J. S., K. L. Nichols, J. E. M. Sullivan, and S. E. Eastlack.
  393. 1994. Xylem embolism in ring-porous, diffuse-porous, and coniferous
  394. trees of northern Utah and interior Alaska. Ecology 75:
  395. 1736–1752.
  396. Spicer, R., and B. L. Gartner. 1998. Hydraulic properties of Douglas
  397. fir (Pseudotsuga menziesii) branches and branch halves with reference
  398. to compression wood. Tree Physiol. 18:777–784.
  399. Sprugel, D. G. 1989. The relationship of evergreenness, crown architecture,
  400. and leaf size. Am. Nat. 133:465–479.
  401. Srivastava, S. K. 1994. Evolution of Cretaceous phytogeoprovinces,
  402. continents and climates. Rev. Palaeobot. Palynol. 82:197–224.
  403. Stebbins, G. L. 1974. Flowering plants: evolution above the species
  404. level. Harvard Univ. Press, Cambridge, MA.
  405. Stover, L. E., and A. D. Partridge. 1973. Tertiary and Late Cretaceous
  406. spores and pollen from the Gippsland Basin, southeastern
  407. Australia. Proc. R. Soc. Victoria 85:237–286.
  408. Sucoff, E. 1969. Freezing of conifer xylem sap and the cohesiontension
  409. theory. Physiol. Plant. 22:424–431.
  410. Suh, Y. B., L. B. Thien, H. E. Reeve, and E. A. Zimmer. 1993.
  411. Molecular evolution and phylogenetic implications of internal
  412. transcribed spacer sequences of ribosomal DNA in Winteraceae.
  413. Am. J. Bot. 80:1042–1055.
  414. Takhtajan, A. L. 1969. Flowering plants: origin and dispersal.
  415. Smithsonian Institution Press, Washington, DC.
  416. Taylor, D.W., and L. J. Hickey. 1996. Evidence for and implications
  417. of an herbaceous origin for angiosperms. Pp. 232–266 in D.
  418. Taylor and L. Hickey, eds. Flowering plant origin, evolution,
  419. and phylogeny. Chapman and Hall, New York.
  420. Thorne, R. F. 1974. A phylogenetic classification of the Annoniflorae.
  421. Aliso 8:147–209.
  422. ———. 1986. Antarctic elements in Australian rainforests. Telopea
  423. 2:611–617.
  424. Tobe, H., and B. Sampson. 2000. Embryology of Takhtajania (Winteraceae)
  425. and a summary statement of embryological features
  426. for the family. Ann. Mo. Bot. Gard. 87:389–397.
  427. Turner, I. M. 2001. The ecology of trees in the tropical rainforest.
  428. Cambridge Univ. Press, Cambridge, U.K.
  429. Tyree, M. T., and F. W. Ewers. 1991. The hydraulic architecture
  430. of trees and other woody plants. New Phytol. 119:345–360.
  431. ———. 1996. Hydraulic architecture of woody tropical plants. Pp.
  432. 217–243 in S. S. Mulkey, R. L. Chazdon and A. P. Smith, eds.
  433. Tropical forest ecophysiology. Chapman and Hall, New York.
  434. Tyree, M. T., S. D. Davis, and H. Cochard. 1994. Biophysical
  435. perspectives of xylem evolution: Is there a tradeoff hydraulic
  436. efficiency for vulnerability to dysfunction? IAWA Bull. 15:
  437. 335–360.
  438. Van Boskirk, M. C. 1997. The paleofloristics and systematic character
  439. of the Cretaceous (Lower Campanian) eagle formation,
  440. Wyoming and Montana, USA. (Abstract). Am. J. Bot. 84:144.
  441. van Stennis, C. G. G. J. 1968. Frost in the tropics. Proc. Symp.
  442. Rec. Adv. Trop. Ecol. Varanasi 21:154–167.
  443. Van Tieghem, P. 1900. Sur les dicotyle´dones du groupe des Homoxyle
  444. ´es. J. Bot. (Morot) 14:259–297.
  445. Vink, W. 1970. The Winteraceae of the Old World. I. Pseudowintera
  446. and Drimys—morphology and taxonomy. Blumea 16:225–354
  447. ———. 1977. The Winteraceae of the Old World. II. Zygogynum–
  448. morphology and taxonomy. Blumea 23:219–250.
  449. ———. 1983. The Winteraceae of the Old-World . 4. the Australian
  450. Species of Bubbia. Blumea 28:311–328.
  451. ———. 1993. Winte´race´es. Flore de la Nouvelle-Cale´donie 19:
  452. 90–171.
  453. Vogelmann, T. C. 1993. Plant tissue optics. Annu. Rev. Plant Phys.
  454. 44:231–251.
  455. Walker, J. W., G. J. Brenner, and A. G. Walker. 1983. Winteraceous
  456. pollen in the Lower Cretaceous of Israel—early evidence of a
  457. Magnolialean angiosperm family. Science 220:1273–1275.
  458. Wang, J., N. E. Ives, and M. J. Lechowicz. 1992. The relation of
  459. foliar phenology to xylem embolism in trees. Funct. Ecol. 6:
  460. 469–475.
  461. Wardle, P. 1971. An explanation for alpine timberlines. NZ J. Bot.
  462. 9:371–402.
  463. ———. 1985. New Zealand timberlines. Vol. 3. A synthesis. NZ
  464. J. Bot. 23:263–271.
  465. Wilson, T. K. 1960. The comparative morphology of the Canellaceae.
  466. I. Synopsis of genera and wood anatomy. Trop. Woods
  467. 112:1–27.
  468. Young, D. A. 1981. Are the angiosperms primitively vesselless?
  469. Syst. Bot. 6:313–330.
  470. Young, S. B. 1972. Subantarctic rain forest of Magellanic Chile:
  471. distribution, composition, and age and growth rate studies of
  472. common forest trees. Antarctic Res. Ser. 20:307–322.
  473. Zimmermann, M. H. 1983. Xylem structure and the ascent of sap.
  474. Springer-Verlag, Berlin.
  475. Zwieniecki, M. A., P. J. Melcher, and N. M. Holbrook. 2001. Hydrogel
  476. control of xylem hydraulic resistance in plants. Science
  477. 291:1059–1062." name="eprints.referencetext" />
  478. <meta content="Feild, Taylor S. and Brodribb, Tim J. and Holbrook, N. M. (2002) Hardly a Relict: Freezing and the Evolution of Vesselless Wood in Winteraceae. Evolution, 56 (3). pp. 464-478. ISSN 0014-3820" name="eprints.citation" />
  479. <meta content="http://eprints.utas.edu.au/2606/1/FeildBrod_Evolution.pdf" name="eprints.document_url" />
  480. <link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" />
  481. <meta content="Hardly a Relict: Freezing and the Evolution of Vesselless Wood in Winteraceae" name="DC.title" />
  482. <meta content="Feild, Taylor S." name="DC.creator" />
  483. <meta content="Brodribb, Tim J." name="DC.creator" />
  484. <meta content="Holbrook, N. M." name="DC.creator" />
  485. <meta content="270402 Plant Physiology" name="DC.subject" />
  486. <meta content="270400 Botany" name="DC.subject" />
  487. <meta content="The Winteraceae are traditionally regarded as the least-specialized descendents of the first flowering plants,
  488. based largely on their lack of xylem vessels. Since vessels have been viewed as a key innovation for angiosperm
  489. diversification, Winteraceae have been portrayed as declining relicts, limited to wet forest habitats where their tracheidbased
  490. wood does not impose a significant hydraulic constraints. In contrast, phylogenetic analyses place Winteraceae
  491. among angiosperm clades with vessels, indicating that their vesselless wood is derived rather than primitive, whereas
  492. extension of the Winteraceae fossil record into the Early Cretaceous suggests a more complex ecological history than
  493. has been deduced from their current distribution. However, the selective regime and ecological events underlying the
  494. possible loss of vessels in Winteraceae have remained enigmatic. Here we examine the hypothesis that vessels were
  495. lost as an adaptation to freezing-prone environments in Winteraceae by measuring the responses of xylem water
  496. transport to freezing for a diverse group of Winteraceae taxa as compared to Canella winterana (Canellaceae, a close
  497. relative with vessels) and sympatric conifer taxa. We found that mean percent loss of xylem water transport capacity
  498. following freeze-thaw varied from 0% to 6% for Winteraceae species from freezing-prone temperate climates and
  499. approximately 20% in those taxa from tropical (nonfreezing) climates. Similarly, conifers exhibit almost no decrease
  500. in xylem hydraulic conductivity following freezing. In contrast, water transport in Canella stems is nearly 85% blocked
  501. after freeze-thaw. Although vessel-bearing wood of Canella possesses considerably greaterhydraulic capacity than
  502. Winteraceae, nearly 20% of xylem hydraulic conductance remains, a value that is comparable to the hydraulic capacity
  503. of vesselless Winteraceae xylem, if the proportion of hydraulic flow through vessels (modeled as ideal capillaries) is
  504. removed. Thus, the evolutionary removal of vessels may not necessarily require a deleterious shift to an ineffective
  505. vascular system. By integrating Winteraceae’s phylogenetic relationships and fossil history with physiological and
  506. ecological observations, we suggest that, as ancestors of modern Winteraceae passed through temperate conditions
  507. present in Southern Gondwana during the Early Cretaceous, they were exposed to selective pressures against vesselpossession
  508. and returned to a vascular system relying on tracheids. These results suggest that the vesselless condition
  509. is advantageous in freezing-prone areas, which is supported by the strong bias in the ecological abundance of Winteraceae
  510. to wet temperate and tropical alpine habitats, rather than a retained feature from the first vesselless angiosperms.
  511. We believe that vesselless wood plays an important role in the ecological abundance of Winteraceae in Southern
  512. Hemisphere temperate environments by enabling the retention of leaves and photosynthesis in the face of frequent
  513. freeze-thaw events." name="DC.description" />
  514. <meta content="2002" name="DC.date" />
  515. <meta content="Article" name="DC.type" />
  516. <meta content="PeerReviewed" name="DC.type" />
  517. <meta content="application/pdf" name="DC.format" />
  518. <meta content="http://eprints.utas.edu.au/2606/1/FeildBrod_Evolution.pdf" name="DC.identifier" />
  519. <meta content="http://dx.doi.org/10.1111/j.0014-3820.2002.tb01359.x" name="DC.relation" />
  520. <meta content="Feild, Taylor S. and Brodribb, Tim J. and Holbrook, N. M. (2002) Hardly a Relict: Freezing and the Evolution of Vesselless Wood in Winteraceae. Evolution, 56 (3). pp. 464-478. ISSN 0014-3820" name="DC.identifier" />
  521. <meta content="http://eprints.utas.edu.au/2606/" name="DC.relation" />
  522. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2606/BibTeX/epprod-eprint-2606.bib" title="BibTeX" type="text/plain" />
  523. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2606/ContextObject/epprod-eprint-2606.xml" title="OpenURL ContextObject" type="text/xml" />
  524. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2606/ContextObject::Dissertation/epprod-eprint-2606.xml" title="OpenURL Dissertation" type="text/xml" />
  525. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2606/ContextObject::Journal/epprod-eprint-2606.xml" title="OpenURL Journal" type="text/xml" />
  526. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2606/DC/epprod-eprint-2606.txt" title="Dublin Core" type="text/plain" />
  527. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2606/DIDL/epprod-eprint-2606.xml" title="DIDL" type="text/xml" />
  528. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2606/EndNote/epprod-eprint-2606.enw" title="EndNote" type="text/plain" />
  529. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2606/HTML/epprod-eprint-2606.html" title="HTML Citation" type="text/html; charset=utf-8" />
  530. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2606/METS/epprod-eprint-2606.xml" title="METS" type="text/xml" />
  531. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2606/MODS/epprod-eprint-2606.xml" title="MODS" type="text/xml" />
  532. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2606/RIS/epprod-eprint-2606.ris" title="Reference Manager" type="text/plain" />
  533. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2606/Refer/epprod-eprint-2606.refer" title="Refer" type="text/plain" />
  534. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2606/Simple/epprod-eprint-2606text" title="Simple Metadata" type="text/plain" />
  535. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2606/Text/epprod-eprint-2606.txt" title="ASCII Citation" type="text/plain; charset=utf-8" />
  536. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2606/XML/epprod-eprint-2606.xml" title="EP3 XML" type="text/xml" />
  537.  
  538. </head>
  539. <body bgcolor="#ffffff" text="#000000" onLoad="loadRoutine(); MM_preloadImages('images/eprints/ePrints_banner_r5_c5_f2.gif','images/eprints/ePrints_banner_r5_c7_f2.gif','images/eprints/ePrints_banner_r5_c8_f2.gif','images/eprints/ePrints_banner_r5_c9_f2.gif','images/eprints/ePrints_banner_r5_c10_f2.gif','images/eprints/ePrints_banner_r5_c11_f2.gif','images/eprints/ePrints_banner_r6_c4_f2.gif')">
  540. <div class="ep_noprint"><noscript><style type="text/css">@import url(http://eprints.utas.edu.au/style/nojs.css);</style></noscript></div>
  541.  
  542.  
  543.  
  544.  
  545. <table width="795" border="0" cellspacing="0" cellpadding="0">
  546. <tr>
  547. <td><script language="JavaScript1.2">mmLoadMenus();</script>
  548. <table border="0" cellpadding="0" cellspacing="0" width="795">
  549. <!-- fwtable fwsrc="eprints_banner_final2.png" fwbase="ePrints_banner.gif" fwstyle="Dreamweaver" fwdocid = "1249563342" fwnested="0" -->
  550. <tr>
  551. <td><img src="/images/eprints/spacer.gif" width="32" height="1" border="0" alt="" /></td>
  552. <td><img src="/images/eprints/spacer.gif" width="104" height="1" border="0" alt="" /></td>
  553. <td><img src="/images/eprints/spacer.gif" width="44" height="1" border="0" alt="" /></td>
  554. <td><img src="/images/eprints/spacer.gif" width="105" height="1" border="0" alt="" /></td>
  555. <td><img src="/images/eprints/spacer.gif" width="41" height="1" border="0" alt="" /></td>
  556. <td><img src="/images/eprints/spacer.gif" width="16" height="1" border="0" alt="" /></td>
  557. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  558. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  559. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  560. <td><img src="/images/eprints/spacer.gif" width="82" height="1" border="0" alt="" /></td>
  561. <td><img src="/images/eprints/spacer.gif" width="69" height="1" border="0" alt="" /></td>
  562. <td><img src="/images/eprints/spacer.gif" width="98" height="1" border="0" alt="" /></td>
  563. <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
  564. </tr>
  565. <tr>
  566. <td colspan="12"><img name="ePrints_banner_r1_c1" src="/images/eprints/ePrints_banner_r1_c1.gif" width="795" height="10" border="0" alt="" /></td>
  567. <td><img src="/images/eprints/spacer.gif" width="1" height="10" border="0" alt="" /></td>
  568. </tr>
  569. <tr>
  570. <td rowspan="6"><img name="ePrints_banner_r2_c1" src="/images/eprints/ePrints_banner_r2_c1.gif" width="32" height="118" border="0" alt="" /></td>
  571. <td rowspan="5"><a href="http://www.utas.edu.au/"><img name="ePrints_banner_r2_c2" src="/images/eprints/ePrints_banner_r2_c2.gif" width="104" height="103" border="0" alt="" /></a></td>
  572. <td colspan="10"><img name="ePrints_banner_r2_c3" src="/images/eprints/ePrints_banner_r2_c3.gif" width="659" height="41" border="0" alt="" /></td>
  573. <td><img src="/images/eprints/spacer.gif" width="1" height="41" border="0" alt="" /></td>
  574. </tr>
  575. <tr>
  576. <td colspan="3"><a href="http://eprints.utas.edu.au/"><img name="ePrints_banner_r3_c3" src="/images/eprints/ePrints_banner_r3_c3.gif" width="190" height="31" border="0" alt="" /></a></td>
  577. <td rowspan="2" colspan="7"><img name="ePrints_banner_r3_c6" src="/images/eprints/ePrints_banner_r3_c6.gif" width="469" height="37" border="0" alt="" /></td>
  578. <td><img src="/images/eprints/spacer.gif" width="1" height="31" border="0" alt="" /></td>
  579. </tr>
  580. <tr>
  581. <td colspan="3"><img name="ePrints_banner_r4_c3" src="/images/eprints/ePrints_banner_r4_c3.gif" width="190" height="6" border="0" alt="" /></td>
  582. <td><img src="/images/eprints/spacer.gif" width="1" height="6" border="0" alt="" /></td>
  583. </tr>
  584. <tr>
  585. <td colspan="2"><img name="ePrints_banner_r5_c3" src="/images/eprints/ePrints_banner_r5_c3.gif" width="149" height="1" border="0" alt="" /></td>
  586. <td rowspan="2" colspan="2"><a href="/information.html" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821132634_0,0,25,null,'ePrints_banner_r5_c5');MM_swapImage('ePrints_banner_r5_c5','','/images/eprints/ePrints_banner_r5_c5_f2.gif',1);"><img name="ePrints_banner_r5_c5" src="/images/eprints/ePrints_banner_r5_c5.gif" width="57" height="25" border="0" alt="About" /></a></td>
  587. <td rowspan="2"><a href="/view/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133021_1,0,25,null,'ePrints_banner_r5_c7');MM_swapImage('ePrints_banner_r5_c7','','/images/eprints/ePrints_banner_r5_c7_f2.gif',1);"><img name="ePrints_banner_r5_c7" src="/images/eprints/ePrints_banner_r5_c7.gif" width="68" height="25" border="0" alt="Browse" /></a></td>
  588. <td rowspan="2"><a href="/perl/search/simple" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133201_2,0,25,null,'ePrints_banner_r5_c8');MM_swapImage('ePrints_banner_r5_c8','','/images/eprints/ePrints_banner_r5_c8_f2.gif',1);"><img name="ePrints_banner_r5_c8" src="/images/eprints/ePrints_banner_r5_c8.gif" width="68" height="25" border="0" alt="Search" /></a></td>
  589. <td rowspan="2"><a href="/perl/register" onMouseOut="MM_swapImgRestore();MM_startTimeout();" onMouseOver="MM_showMenu(window.mm_menu_1018171924_3,0,25,null,'ePrints_banner_r5_c9');MM_swapImage('ePrints_banner_r5_c9','','/images/eprints/ePrints_banner_r5_c9_f2.gif',1);"><img name="ePrints_banner_r5_c9" src="/images/eprints/ePrints_banner_r5_c9.gif" width="68" height="25" border="0" alt="register" /></a></td>
  590. <td rowspan="2"><a href="/perl/users/home" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133422_4,0,25,null,'ePrints_banner_r5_c10');MM_swapImage('ePrints_banner_r5_c10','','/images/eprints/ePrints_banner_r5_c10_f2.gif',1);"><img name="ePrints_banner_r5_c10" src="/images/eprints/ePrints_banner_r5_c10.gif" width="82" height="25" border="0" alt="user area" /></a></td>
  591. <td rowspan="2"><a href="/help/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133514_5,0,25,null,'ePrints_banner_r5_c11');MM_swapImage('ePrints_banner_r5_c11','','/images/eprints/ePrints_banner_r5_c11_f2.gif',1);"><img name="ePrints_banner_r5_c11" src="/images/eprints/ePrints_banner_r5_c11.gif" width="69" height="25" border="0" alt="Help" /></a></td>
  592. <td rowspan="3" colspan="4"><img name="ePrints_banner_r5_c12" src="/images/eprints/ePrints_banner_r5_c12.gif" width="98" height="40" border="0" alt="" /></td>
  593. <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
  594. </tr>
  595. <tr>
  596. <td rowspan="2"><img name="ePrints_banner_r6_c3" src="/images/eprints/ePrints_banner_r6_c3.gif" width="44" height="39" border="0" alt="ePrints home" /></td>
  597. <td><a href="/" onMouseOut="MM_swapImgRestore()" onMouseOver="MM_swapImage('ePrints_banner_r6_c4','','/images/eprints/ePrints_banner_r6_c4_f2.gif',1);"><img name="ePrints_banner_r6_c4" src="/images/eprints/ePrints_banner_r6_c4.gif" width="105" height="24" border="0" alt="ePrints home" /></a></td>
  598. <td><img src="/images/eprints/spacer.gif" width="1" height="24" border="0" alt="" /></td>
  599. </tr>
  600. <tr>
  601. <td><img name="ePrints_banner_r7_c2" src="/images/eprints/ePrints_banner_r7_c2.gif" width="104" height="15" border="0" alt="" /></td>
  602. <td colspan="8"><img name="ePrints_banner_r7_c4" src="/images/eprints/ePrints_banner_r7_c4.gif" width="517" height="15" border="0" alt="" /></td>
  603. <td><img src="/images/eprints/spacer.gif" width="1" height="15" border="0" alt="" /></td>
  604. </tr>
  605. </table></td>
  606. </tr>
  607. <tr><td><table width="100%" style="font-size: 90%; border: solid 1px #ccc; padding: 3px"><tr>
  608. <td align="left"><a href="http://eprints.utas.edu.au/cgi/users/home">Login</a> | <a href="http://eprints.utas.edu.au/cgi/register">Create Account</a></td>
  609. <td align="right" style="white-space: nowrap">
  610. <form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/search" style="display:inline">
  611. <input class="ep_tm_searchbarbox" size="20" type="text" name="q" />
  612. <input class="ep_tm_searchbarbutton" value="Search" type="submit" name="_action_search" />
  613. <input type="hidden" name="_order" value="bytitle" />
  614. <input type="hidden" name="basic_srchtype" value="ALL" />
  615. <input type="hidden" name="_satisfyall" value="ALL" />
  616. </form>
  617. </td>
  618. </tr></table></td></tr>
  619. <tr>
  620. <td class="toplinks"><!-- InstanceBeginEditable name="content" -->
  621.  
  622.  
  623. <div align="center">
  624. <table width="720" class="ep_tm_main"><tr><td align="left">
  625. <h1 class="ep_tm_pagetitle">Hardly a Relict: Freezing and the Evolution of Vesselless Wood in Winteraceae</h1>
  626. <p style="margin-bottom: 1em" class="not_ep_block"><span class="person_name">Feild, Taylor S.</span> and <span class="person_name">Brodribb, Tim J.</span> and <span class="person_name">Holbrook, N. M.</span> (2002) <xhtml:em>Hardly a Relict: Freezing and the Evolution of Vesselless Wood in Winteraceae.</xhtml:em> Evolution, 56 (3). pp. 464-478. ISSN 0014-3820</p><p style="margin-bottom: 1em" class="not_ep_block"></p><table style="margin-bottom: 1em" class="not_ep_block"><tr><td valign="top" style="text-align:center"><a href="http://eprints.utas.edu.au/2606/1/FeildBrod_Evolution.pdf"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" class="ep_doc_icon" border="0" /></a></td><td valign="top"><a href="http://eprints.utas.edu.au/2606/1/FeildBrod_Evolution.pdf"><span class="ep_document_citation">PDF</span></a> - Full text restricted - Requires a PDF viewer<br />324Kb</td><td><form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/request_doc"><input accept-charset="utf-8" value="3414" name="docid" type="hidden" /><div class=""><input value="Request a copy" name="_action_null" class="ep_form_action_button" onclick="return EPJS_button_pushed( '_action_null' )" type="submit" /> </div></form></td></tr></table><p style="margin-bottom: 1em" class="not_ep_block">Official URL: <a href="http://dx.doi.org/10.1111/j.0014-3820.2002.tb01359.x">http://dx.doi.org/10.1111/j.0014-3820.2002.tb01359.x</a></p><div class="not_ep_block"><h2>Abstract</h2><p style="padding-bottom: 16px; text-align: left; margin: 1em auto 0em auto">The Winteraceae are traditionally regarded as the least-specialized descendents of the first flowering plants,&#13;
  627. based largely on their lack of xylem vessels. Since vessels have been viewed as a key innovation for angiosperm&#13;
  628. diversification, Winteraceae have been portrayed as declining relicts, limited to wet forest habitats where their tracheidbased&#13;
  629. wood does not impose a significant hydraulic constraints. In contrast, phylogenetic analyses place Winteraceae&#13;
  630. among angiosperm clades with vessels, indicating that their vesselless wood is derived rather than primitive, whereas&#13;
  631. extension of the Winteraceae fossil record into the Early Cretaceous suggests a more complex ecological history than&#13;
  632. has been deduced from their current distribution. However, the selective regime and ecological events underlying the&#13;
  633. possible loss of vessels in Winteraceae have remained enigmatic. Here we examine the hypothesis that vessels were&#13;
  634. lost as an adaptation to freezing-prone environments in Winteraceae by measuring the responses of xylem water&#13;
  635. transport to freezing for a diverse group of Winteraceae taxa as compared to Canella winterana (Canellaceae, a close&#13;
  636. relative with vessels) and sympatric conifer taxa. We found that mean percent loss of xylem water transport capacity&#13;
  637. following freeze-thaw varied from 0% to 6% for Winteraceae species from freezing-prone temperate climates and&#13;
  638. approximately 20% in those taxa from tropical (nonfreezing) climates. Similarly, conifers exhibit almost no decrease&#13;
  639. in xylem hydraulic conductivity following freezing. In contrast, water transport in Canella stems is nearly 85% blocked&#13;
  640. after freeze-thaw. Although vessel-bearing wood of Canella possesses considerably greaterhydraulic capacity than&#13;
  641. Winteraceae, nearly 20% of xylem hydraulic conductance remains, a value that is comparable to the hydraulic capacity&#13;
  642. of vesselless Winteraceae xylem, if the proportion of hydraulic flow through vessels (modeled as ideal capillaries) is&#13;
  643. removed. Thus, the evolutionary removal of vessels may not necessarily require a deleterious shift to an ineffective&#13;
  644. vascular system. By integrating Winteraceae’s phylogenetic relationships and fossil history with physiological and&#13;
  645. ecological observations, we suggest that, as ancestors of modern Winteraceae passed through temperate conditions&#13;
  646. present in Southern Gondwana during the Early Cretaceous, they were exposed to selective pressures against vesselpossession&#13;
  647. and returned to a vascular system relying on tracheids. These results suggest that the vesselless condition&#13;
  648. is advantageous in freezing-prone areas, which is supported by the strong bias in the ecological abundance of Winteraceae&#13;
  649. to wet temperate and tropical alpine habitats, rather than a retained feature from the first vesselless angiosperms.&#13;
  650. We believe that vesselless wood plays an important role in the ecological abundance of Winteraceae in Southern&#13;
  651. Hemisphere temperate environments by enabling the retention of leaves and photosynthesis in the face of frequent&#13;
  652. freeze-thaw events.</p></div><table style="margin-bottom: 1em" cellpadding="3" class="not_ep_block" border="0"><tr><th valign="top" class="ep_row">Item Type:</th><td valign="top" class="ep_row">Article</td></tr><tr><th valign="top" class="ep_row">Additional Information:</th><td valign="top" class="ep_row">"The definitive version is available at www.blackwell-synergy.com"&#13;
  653. </td></tr><tr><th valign="top" class="ep_row">Keywords:</th><td valign="top" class="ep_row">Angiosperm evolution, Canellaceae, Drimys, freezing stress, Winteraceae, xylem evolution.</td></tr><tr><th valign="top" class="ep_row">Subjects:</th><td valign="top" class="ep_row"><a href="http://eprints.utas.edu.au/view/subjects/270402.html">270000 Biological Sciences &gt; 270400 Botany &gt; 270402 Plant Physiology</a><br /><a href="http://eprints.utas.edu.au/view/subjects/270400.html">270000 Biological Sciences &gt; 270400 Botany</a></td></tr><tr><th valign="top" class="ep_row">ID Code:</th><td valign="top" class="ep_row">2606</td></tr><tr><th valign="top" class="ep_row">Deposited By:</th><td valign="top" class="ep_row"><span class="ep_name_citation"><span class="person_name">Scholarly Publications Librarian</span></span></td></tr><tr><th valign="top" class="ep_row">Deposited On:</th><td valign="top" class="ep_row">03 Dec 2007 13:03</td></tr><tr><th valign="top" class="ep_row">Last Modified:</th><td valign="top" class="ep_row">09 Jan 2008 02:30</td></tr><tr><th valign="top" class="ep_row">ePrint Statistics:</th><td valign="top" class="ep_row"><a target="ePrintStats" href="/es/index.php?action=show_detail_eprint;id=2606;">View statistics for this ePrint</a></td></tr></table><p align="right">Repository Staff Only: <a href="http://eprints.utas.edu.au/cgi/users/home?screen=EPrint::View&amp;eprintid=2606">item control page</a></p>
  654. </td></tr></table>
  655. </div>
  656.  
  657.  
  658.  
  659. <!-- InstanceEndEditable --></td>
  660. </tr>
  661. <tr>
  662. <td><!-- #BeginLibraryItem "/Library/footer_eprints.lbi" -->
  663. <table width="795" border="0" align="left" cellpadding="0" class="footer">
  664. <tr valign="top">
  665. <td colspan="2"><div align="center"><a href="http://www.utas.edu.au">UTAS home</a> | <a href="http://www.utas.edu.au/library/">Library home</a> | <a href="/">ePrints home</a> | <a href="/contact.html">contact</a> | <a href="/information.html">about</a> | <a href="/view/">browse</a> | <a href="/perl/search/simple">search</a> | <a href="/perl/register">register</a> | <a href="/perl/users/home">user area</a> | <a href="/help/">help</a></div><br /></td>
  666. </tr>
  667. <tr><td colspan="2"><p><img src="/images/eprints/footerline.gif" width="100%" height="4" /></p></td></tr>
  668. <tr valign="top">
  669. <td width="68%" class="footer">Authorised by the University Librarian<br />
  670. © University of Tasmania ABN 30 764 374 782<br />
  671. <a href="http://www.utas.edu.au/cricos/">CRICOS Provider Code 00586B</a> | <a href="http://www.utas.edu.au/copyright/copyright_disclaimers.html">Copyright &amp; Disclaimers</a> | <a href="http://www.utas.edu.au/accessibility/index.html">Accessibility</a> | <a href="http://eprints.utas.edu.au/feedback/">Site Feedback</a>  </td>
  672. <td width="32%"><div align="right">
  673. <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><img src="http://www.utas.edu.au/shared/logos/unioftasstrip.gif" alt="University of Tasmania Home Page" width="260" height="16" border="0" align="right" /></a></p>
  674. <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><br />
  675. </a></p>
  676. </div></td>
  677. </tr>
  678. <tr valign="top">
  679. <td><p>  </p></td>
  680. <td><div align="right"><span class="NoPrint"><a href="http://www.eprints.org/software/"><img src="/images/eprintslogo.gif" alt="ePrints logo" width="77" height="29" border="0" align="bottom" /></a></span></div></td>
  681. </tr>
  682. </table>
  683. <!-- #EndLibraryItem -->
  684. <div align="center"></div></td>
  685. </tr>
  686. </table>
  687.  
  688. </body>
  689. </html>